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A  Comparison of NBCC 1995 and NBCC 2005 Seismic 
Provisions 
 
This appendix provides a review of the NBCC 1995 seismic design provisions, and 
compares the base shear force and bending moments for a shear wall structure for both 
the 1995 and 2005 codes. It provides a means of assessing the changes in the seismic 
design provisions in the two codes, and is organized so that the sections in this appendix 
follow the same order as the sections in Section 1.5 of Chapter 1.  

A.1 NBCC 1995 Seismic Hazard 
         Section 1.5.1, Chapter 1 
 
4.1.9.1.6)  

 
The seismic hazard in NBCC 1995 is given by the product Sv ⋅ , where S  is a shape 
function shown in Figure A-1, and v  is the zonal velocity ratio. The product Sv ⋅  is very 
much like an acceleration response spectrum, as it provides a measure of hazard for 
different structural periods. The magnitude of v and the shape of S  are based on 
estimates of the peak ground velocity and peak ground acceleration, for a 10% in 50 
year probability of non-exceedance (1/475 per year probability). The v  value is based 
directly on the peak ground velocity, while the shape of the S function is based on the 
ratio of the peak ground acceleration (expressed in terms of g ) to the peak ground 
velocity (expressed in m/sec). For code purposes, these values are represented by the 
parameters aZ  and  vZ , which are used to define the seismic zones set out in the 1995 
code. Eastern sites located on the Canadian Shield have high va ZZ  ratios, because 
hard rock transmits high frequency waves more readily than does the soil and fractured 
rock of Western Canada, which generally has va ZZ ≤1. The result is that the seismic 
hazard is dependent on two site parameters with a 1/475 per year probability. 
 
Note that Sv ⋅  does not represent the true seismic hazard as the long period values 
have been increased to account for higher mode effects in structures. S  decreases as 

T1  in the longer period range, while )(TSa  in NBCC 2005, which better represents a 
true spectrum, decreases much more rapidly (as a function of T1  beyond 2 seconds). 
The higher mode effects in structures in NBCC 2005 are explicitly accounted for by use 
of the vM   factor. 
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Figure A-1. S  function according to NBCC 1995. 

A.2 Effect of Site Soil Conditions 
         Section 1.5.2, Chapter 1 
 
4.1.9.1.11)  

 
The site soil amplification procedure in NBCC 1995 is considerably simpler that that in 
NBCC 2005. There is only one parameter that multiplies the S   function, although there 
are limits on the amplification in the short period region for some sites.  
 
F  denotes the foundation factor which is given in Table A-1. It is applied as a multiplier 
to S , with the restriction that 

0.3≤⋅ SF  where Za ≤ Zv, and  
2.4≤⋅ SF  where Za > Zv, 

i.e., the foundation factor need not increase the short period end of the S  function 
except when Za < Zv. 
 

Table A- 1. NBCC 1995 Foundation Factors 

 
                                                   Foundation Factors 
Category Type and Depth of Soil Measured from the Foundation or Pile Cap Level F  

1 Rock, dense and very dense coarse-grained soils, very stiff and hard fine-
grained soils; compact coarse-grained soils and firm and stiff fine-grained 
soils from 0 to 15 m deep 

1.0 

2 Compact coarse-grained soils, firm and stiff fine-grained soils with a depth 
greater than 15 m; very loose and loose coarse-grained soils and very soft 
and soft fine-grained soils from 0 to 15 m deep 

1.3 

3 Very loose and loose coarse-grained soils with depth greater than 15 m 1.5 
4 Very soft and fine-grained soils with depth greater than 15 m 2.0 
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A.3 Methods of Analysis 
         Section 1.5.3, Chapter 1 
 
4.1.9.1.13.b)  

 
NBCC 1995 does not prescribe a specific method of seismic analysis for building 
structures. However, Cl.4.1.9.1.13.b) related to vertical force distribution, states that the 
total lateral seismic force V shall be distributed by means of an equivalent static analysis 
procedure (part a), or by dynamic analysis with the seismic effects scaled so that the 
base shear from the dynamic analysis equals V (part b). Commentary J to the NBCC 
1995 (NRC, 1996) states that the application of dynamic analysis pertains “especially to 
buildings with significant irregularities either in plan or elevation, and buildings with 
setbacks or major discontinuities in stiffness or mass. Performing a dynamic analysis will 
lead to a better representation of modal contribution in tall buildings.” 

A.4 Base Shear Calculations 
          Section 1.5.4, Chapter 1 
 
4.1.9.1.4)  

 
The formula for the design base shear V according to the NBCC 1995 is: 

U
R
V

V e ⎟
⎠
⎞

⎜
⎝
⎛=  

where  
WFISvVe ⋅⋅⋅⋅=    

represents the elastic shear force. 
 
The design parameters used in the NBCC 1995 base shear equation are explained in 
Table A-2. A comparison of V  between the 1995 and 2005 codes is presented in 
Section A.12. 
 
NBCC 1995 (Cl.4.1.9.1.7) prescribes the following relations for the fundamental period 
T  of wall structures: 
a)   sn DhT 09.0=  
where  

nh  (m) is building height from the base i.e. top of foundations to the roof level,  
sD  (m) is the length of wall or braced frame which constitutes the main lateral load-

resisting system in a direction parallel to the applied forces. When the length of the 
lateral load resisting system is not well defined, then the Code requires that D  , the 
length of building in the direction parallel to the applied forces, shall be used instead of 

sD . 
 
b) other established methods of mechanics; with the restriction that the value of eV  used 
for design shall be not less than 0.80 of the value computed using the period calculated 
in a). 
 
The period given by the formula (a), which is based on measured values, is a 
conservative (low) estimate from the data, and generally is smaller than that found using 
method (b), particularly if the length D  is used in the calculation. The code adopted this 
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low estimate as it leads to higher, more conservative, forces. The limit prescribed in (b) 
is applied to the base shear and not to the period, as the base shear is very sensitive to 
period in some areas.  
 

Table A- 2. NBCC 1995 Seismic Design Parameters 

 
v  = zonal velocity ratio for the site from the climatic data table in Appendix C of NBCC 

1995, based on ground motion associated with a 10% probability of exceedance in 50 
years (475 year earthquake).   

S  = the seismic response factor, dependent on the va ZZ ratio for the site and the period 
T of the structure (see Section A.1). 

I  = Importance factor for the structure, equal to I=1.5 for “post-disaster” structures, 1.3 for 
schools, and 1.0 for ordinary structures; 

F  = Foundation factor related to soil conditions (see Section A.2 and Table A-1) 
W  = dead weight plus some portion of live load that would move laterally with the structure. 

Live loads considered are 25% of the snow load, 60% of storage loads for areas used 
for storage, and the full contents of any tanks. 100% of the live loads are not used as 
the probability of that occurring at the same time as the earthquake is small. Also, live 
loads such as people or cars would not move with the same motion as the building. 

R  = force modification factor that represents the capability of a structure to dissipate 
energy through cyclic inelastic (ductile) behaviour. For masonry structures designed 
and detailed according to CSA S304.1-94: R = 2.0 for reinforced walls with nominal 
ductility, 1.5 for regular reinforced masonry and 1.0 for unreinforced masonry. 

U  = 0.60, and is described as a “factor representing level of protection based on 
experience”. U  was introduced so as to make the design base shear for the 1995 
code similar to that in previous codes. Some persons later thought of U  as being an 
overstrength factor, recognizing that the structure has strength higher than the 
nominal yield strength, but this was not the basis for the introduction of U . 

 

A.5 Force Reduction Factor R 
         Section 1.5.5, Chapter 1 
 
4.1.9.1.8)  

 
NBCC 1995 had only one R  factor, equivalent to the dR  factor in NBCC 2005. NBCC 
1995 Table 4.1.9.1.B allows 2=R  for reinforced masonry with nominal ductility, 5.1=R  
for regular reinforced masonry, and 1=R  for unreinforced masonry. These values are 
equivalent to walls with moderate ductility, conventional construction and unreinforced 
masonry, respectively, in NBCC 2005. Height limitations, and some other provisions that 
required reinforced masonry, were given in Clause 4.1.9.3 Special Provisions NBCC 
1995. 

A.6 Higher Mode Effects 
          Section 1.5.6, Chapter 1 
 
NBCC 1995 does not explicitly mention higher mode effects in calculating the base 
shear V, but the S function has been set artificially high in the long period region to 
account for the contribution from the higher modes. Higher mode effects are considered 
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in the distribution of forces along the height of the structure, see Section A.7, and in 
calculating the overturning moments, Section A.8. 
 
Note that in contrast to NBCC 2005, the higher mode effects in the 1995 code make no 
distinction between walls or frames. 

A.7 Vertical Distribution of Seismic Forces 
          Section 1.5.7, Chapter 1 
 
4.1.9.1.13.a)  

 
The distribution of the inertial forces to the floors in NBCC 1995 is essentially the same 
as in NBCC 2005, and is summarized below 

where 
xF  – seismic force acting at level x  
xW - portion of W  that is assigned to level x  

xh  – height from the base of the structure up to the level x  
tF  – a portion of the base shear to be applied as an additional force to nF  at the top of 

the building, and is given by 
0=tF                  for  aT  < 0.7 sec 

VTF at 07.0=      for 0.7 < aT  < 3.6 sec 
VFt 25.0=         for aT  > 3.6 sec 

where aT  is the fundamental lateral period. 
 
Once the forces at each floor are established, the total storey shears can simply be 
calculated using statics.  

A.8 Overturning Moments (J factor) 
          Section 1.5.8, Chapter 1 
 
4.1.9.1.23-27  

 
In NBCC 1995, the overturning moment, M , at the base of the structure, shall be 
reduced by the factor J , where 
 1=J                     for sT 5.0<  
            TJ 2.01−=          for sTs 5.15.0 <<  
            8.0=J                  for sT 5.1>  
The overturning moment xM  at any level x  shall be multiplied by xJ , where 

( )( )31 nxx hhJJJ −+=  
where nh  is the height to the top of the structure. 
 
Unlike NBCC 2005, the J  factor in NBCC 1995 is not dependent on the structure type 
or the site conditions. 

( )
∑
=

⋅−= n

i
ii

xx
tx

hW

hWFVF

1
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A.9 Torsion 
          Section 1.5.9, Chapter 1 
 
4.1.9.1.28)  

 
At each storey level throughout the building, the torsional moment applied is taken as 
one of the following four cases: 
i)   ( )nxxxx DeFT 1.05.1 +=  
ii)  ( )nxxxx DeFT 1.05.1 −=  
iii) ( )nxxxx DeFT 1.05.0 +=  
iv) ( )nxxxx DeFT 1.05.0 −=  
where 

xF  is lateral force at the thx  floor level, 
xe  is the eccentricity at level x , and is distance between the centre of mass and the 

centre of rigidity in the direction perpendicular to the direction of xF , and  
nxD  is a plan dimension of the building at level x  perpendicular to the direction of xF . 

Note that nxD1.0  is termed the accidental eccentricity. 
 
Each element in the building must be designed for the most severe effect of the above 
load cases.  
 
Note that it is necessary to explicitly determine the value of xe . However, if a static 3-D 
structural analysis program is available, it is possible to use a combination of two 
analyses to determine ( )xx eF 5.1  and ( )xx eF 5.0  without explicitly determining the xe . 
 
Alternately, if a 3-D dynamic analysis is carried out the effects of accidental eccentricity 
should be accounted for by combining the dynamic analysis element forces with the 
results from a static analysis of either of the two cases of accidental torques given by: 

( )nxxx DFT 1.0+= , or 
 

( )nxxx DFT 1.0−=  
 
In all of the above analyses, xF  represents the storey force from the static analysis 
described earlier. 

A.10  Irregularities and Restrictions 
            Section 1.5.10, Chapter 1 
 
4.1.9.3)  

 
NBCC 1995 has very few restrictions regarding irregularities. Masonry is specifically 
mentioned as requiring reinforcement if aZ  or vZ   is 2 or higher, but there are no height 
limitations based on irregularities as found in NBCC 2005. 
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A.11  Displacements 
            Section 1.5.11, Chapter 1 
 
4.1.9.2.1-3)  

 
In NBCC 1995, displacements are to be calculated using the reduced design forces as 
given by V, and then multiplied by R to give realistic values. Since V is given by 

U
R
V

V e ⎟
⎠
⎞

⎜
⎝
⎛=  ,  

this would imply that the displacements are the elastic displacements reduced by the 
factor U, which has been a somewhat controversial issue. One difference in the codes, 
is that Ve in the 1995 code is multiplied by the importance factor I, while in NBCC 2005 
the displacements are not dependent on the importance factor.  
 
The drift ratio limits in NBCC 1995 are 0.01 for post-disaster buildings and 0.02 for all 
other structures. This is essentially the same as NBCC 2005, except for ordinary 
structures which can have a drift ratio of 0.025. Overall, the drift limits in NBCC 2005 are 
tighter than in the 1995 code. 

A.12 Shear and Moment Comparison 
 
This section provides a comparison of the base shear and base moment for ductile 
masonry walls under the NBCC 1995 and NBCC 2005 codes, for periods ranging from 
very short to four seconds. For ductile masonry shear walls, Toronto and Vancouver 
have been selected to investigate the effect of the different spectral shapes between 
eastern and western Canada. 
 
Figure A-2a shows the shear comparison for a site in Toronto, and Figure A-2b for 
Vancouver. It is assumed that both sites are on firm ground with no soil amplification 
(site Class C per NBCC 2005). The following force modification factors were used: 
 R=2 and U=0.6 for the NBCC 1995 code calculation, and  
Rd=2 and Ro=1.5 for the NBCC 2005 values  
 
In each plot, the line titled ‘NBC 2005 spectral shape’ represents the V/W ratio for the 
2005 code, for the same values of Rd and Ro used in the design calculations, but without 
considering the upper and lower bounds on V per NBCC 2005, and with Mv=1 for all 
periods.  
 
The comparison for Toronto in Figure A-2a shows that there is not much difference in 
the design level base shear between the codes, with the 2005 code values being lower 
in the short and long period ranges, but higher for intermediate periods. At a period of 2 
seconds, the Mv value is equal to 2.5 for Toronto. The effect of this in increasing the 
shear is very apparent at the longer periods when compared to the NBCC 2005 spectral 
shape. Also, it is apparent that without the short period cutoff, the short period shears 
from NBCC 2005 would be much larger than the NBCC 1995 values.  
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The comparison for Vancouver in Figure A-2b shows that the NBCC 2005 design base 
shear is larger than the NBCC 1995 base shear over the entire period range, especially 
around 0.5 seconds. The Mv factor for Vancouver is equal to 1.2 at the period of 2 
seconds, and so has little effect on the long period base shear. 
 
In general, it appears that the base shear from NBCC 2005 is larger than that from 
NBCC1995. However, because the periods given by the two codes may be different, and 
because the limit placed on using a longer calculated period is more liberal in the short 
period end in NBCC 2005, it may be that in some cases there may be a smaller 
difference in design base shear than the figures indicate. 
 
Since wall size and reinforcement are mainly governed by the wall moments, a moment 
comparison of the two codes may be more meaningful than a shear comparison. 
 
Figure A-3 compares the base bending moment for NBCC 1995 and NBCC 2005 for the 
same cases as shown in Figure A-2. The units are not particularly meaningful, but allow 
a comparison to be made between the two codes. In the short period range less than 1.0 
seconds, the moment comparisons are essentially the same as the shear comparisons. 
But for longer periods, particularly for Toronto, the small value of J  at  periods of 2.0 s 
and greater for NBCC 2005 substantially reduces the moments, resulting in much 
smaller design moments at the longer periods compared to the NBCC 1995 code, as 
shown in Figure A-3a. For Vancouver, the J  factor is larger and does not have as much 
an effect, but it does bring the design moments from the two codes into close agreement 
in the longer periods.  
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a) 

 
b) 
 
Figure A-2. Base shear comparison for NBCC 1995 and NBCC 2005:  
a) Toronto; b) Vancouver.  
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a) 

 

 
 
b) 
 
Figure A-3. Base bending moment comparison for NBCC 1995 and NBCC 2005:  
a) Toronto; b) Vancouver. 
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B  Research Studies and Code Background Relevant to 
Masonry Design 
This appendix contains additional background material relevant to the aspects of masonry 
design discussed in Chapter 2. Findings of some relevant research studies, as well as the 
discussion on provisions of masonry design codes from other countries, are included. This 
information may be useful to readers interested in gaining a more detailed insight into the 
subject. However, it should be noted that designers may use alternative design provisions in 
situations where CSA S304.1 is silent on a specific issue.  The design provisions contained in 
design standards from other countries cannot supersede the provisions of pertinent Canadian 
standards. 

B.1 Shear/Diagonal Tension Resistance 
Axial compression: 
An experimental study on reinforced masonry wall specimens by Voon and Ingham (2006) 
showed that an increase in axial compression stress from 0 to 0.5 MPa resulted in an increase 
in the maximum wall shear resistance of more than 20%. However, walls subjected to higher 
axial compression had a reduced post-cracking deformation capacity, resulting in a more brittle 
failure pattern. The presence of higher axial stress also delayed the onset of diagonal cracking 
in the walls from the lateral loads, as the vertical stress reduced the principal stress that leads to 
cracking.  
 
The latest edition of New Zealand Masonry Standard NZS 4230:2004 (SANZ, 2004) prescribes 
a different method for calculating the axial load contribution to masonry shear resistance than 
CSA S304.1-04 for low aspect walls. This contribution (equal to αtan9.0 N ), results from a 
diagonal strut mechanism, which is based on an assumption that axial compression load N  
must effectively form a compression strut at an angle α  to the axis (see  Figure B-1). The axial 
load must be transmitted through the flexural compression zone, while the horizontal component 
of the strut force resists the applied shear force (Priestley et al., 1994). This model implies that 
the shear strength of squat walls under axial loads should be greater than that of more slender 
walls, and higher than that prescribed in CSA S304.1-04. According to this model, the axial load 
contribution is limited to gm AfN ′≤ 1.0 .  

 
Figure B-1. Contribution of axial load to wall shear strength (reproduced from NZS 4230:2004 
with the permission of Standards New Zealand under Licence 000725). 
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Grouting pattern: 
Experimental studies have reported a significant reduction in shear resistance for partially 
grouted walls compared to otherwise identical fully grouted walls, however partially grouted 
masonry is a viable lateral load resisting system for regions of low to moderate seismic risk. 
Schultz (1996) tested a series of six partially grouted reinforced block wall specimens under in-
plane cyclic loads. Only the outermost vertical cores and a single course bond beam at 
midheight were grouted. The mechanism of shear resistance in partially grouted walls is 
characterized by the development of vertical cracks between ungrouted and grouted masonry 
due to stress concentrations or planes of weakness (this mechanism is different than the one 
expected to develop in solidly grouted masonry walls). It was also reported that an increase in 
horizontal reinforcement ratio did not have a significant effect on the overall shear resistance. 
 
An experimental study by Voon and Ingham (2006) showed that the shear strength of a solidly 
grouted wall specimen was approximately 110% higher than an otherwise identical specimen 
with 30% grouted cores. Also, the specimen with 55% grouted cores had more than a 50% 
higher shear strength compared to the specimen with 30% grouted cores.  However, the 
difference is smaller when the shear stress is compared using the net wall area.  
 
Wall aspect ratio: 
The findings of several experimental studies, e.g. Matsumura (1987), Okamoto et al. (1987), 
and Voon (2007) confirmed that masonry walls with lower aspect ratios exhibited shear 
strengths that were larger than those for more slender masonry walls. The researchers 
concluded that the shear strength enhancement was due to the more prominent role of arching 
action in masonry walls with low aspect ratios, in which shear was mainly resisted by 
compression struts (see Figure 2-16a).Voon and Ingham (2006) reported that the shear 
resistance decreased by 15% when the wall aspect ratio increased from 1.0 to 2.0. A squat wall 
specimen with an aspect ratio of approximately 0.6 showed a significant increase in shear 
resistance (by over 100%) as compared to a specimen with aspect ratio of 1.0. The findings of 
an experimental study by Okamoto et al. (1987) confirmed that the wall shear strength 
increased by 20 to 30% when the aspect ratio decreased from 2.3 to 1.6 and from 2.3 to 0.9 
respectively. A study of partially grouted masonry block walls by Schultz (1996) showed that a 
decrease in the wall aspect ratio was reported to have a beneficial effect on the shear 
resistance, that is, squat walls are expected to have larger shear resistance than flexural walls 
of the same height. However, squat wall specimens also showed a reduced deformation 
capacity and increased strength deterioration. 
 
Steel shear resistance sV : 
Shear reinforcement in masonry walls does not seem to be as effective as in concrete walls. 
A possible explanation is that the reinforcing bars located where the inclined crack crosses near 
the end of the bar are unable to develop their full yield strength in the masonry walls. To 
account for this phenomenon, the New Zealand Masonry Standard NZS 4230:2004 (SANZ, 
2004) prescribes a coefficient of 0.8 in the sV  equation, while CSA S304.1-04 uses a 0.6 factor. 
This phenomenon is particularly pronounced in short walls where it is likely that the length of the 
shear reinforcement is insufficient to fully develop its yield strength. 
 
It should be acknowledged that horizontal reinforcement in masonry walls usually does not have 
as good anchorage as the corresponding reinforcement in concrete walls. Anderson and 
Priestley (1992) have noticed that straight bars or 90° hooks were used in some experimental 
studies (see Figure B-2a), whereas the horizontal reinforcement in concrete walls is usually 
anchored in a more effective way, that is, by means of 180° hooks. The type and extent of 
anchorage are expected to influence the effectiveness of shear reinforcement. Anderson and 
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Priestley also found that shear strength didn’t show any correlation with the vertical 
reinforcement ratio. 
 
According to some researchers (Shing et al., 1990; Tomazevic, 1999; Voon, 2007), a fraction of 
the wall shear resistance can be attributed to the presence of vertical reinforcement.  Dowel 
action in vertical reinforcing bars enables shear transfer across a diagonal crack by the localized 
kinking in reinforcing bars due to their relative displacement (see Figure B-2b) (note that 
compression kinks cancel out some of the tension kinks). However, once the vertical 
reinforcement yields, as it would in the plastic hinge zone of ductile walls, its contribution to the 
shear resistance drops significantly, so CSA S304.1 ignores its contribution to the wall shear 
resistance. 

 
Figure B-2. Wall reinforcement contributing to shear resistance: a) horizontal reinforcement 
acting in tension; b) dowel action in vertical reinforcement (Tomazevic, 1999, reproduced by 
permission of the Imperial College Press). 

B.2 Ductile Seismic Response 
A prime consideration in seismic design is the need to have a structure that is capable of 
deforming in a ductile manner when subjected to several cycles of lateral loading well into the 
inelastic range. This section explains a few key terms related to ductile seismic response, 
including ductility ratio, curvature, plastic hinge, etc. It is very important for a structural designer 
to have a good understanding of these concepts before proceeding with the seismic design and 
detailing of ductile masonry walls according to CSA S304.1. 
 
Ductility is a measure of the capacity of a structure or a member to undergo deformation beyond 
yield level, while maintaining most of its load-carrying capacity. Ductile structural members are 
able to absorb and dissipate earthquake energy by inelastic (plastic) deformations that are 
usually associated with permanent structural damage. These inelastic deformations are 
concentrated mainly in regions called plastic hinges. In general, plastic hinges develop in shear 
walls responding in the flexural mode and are typically formed at their base. An example of a 
plastic hinge formed in a reinforced masonry wall subjected to seismic loading is shown in 
Figure 2-8a. The concept of ductility and ductile seismic response was introduced in Section 
1.4.3. 
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A common way to quantify ductility in a structure is through the displacement ductility ratio Δμ . 
This is the ratio of the maximum lateral displacement experienced by the structure at the 
ultimate ( uΔ ), to the displacement at the onset of inelastic response ( yΔ ) (see Figure 1-5c).  
 

y

u

Δ
Δ

=Δμ  

 
Next, the concept of curvature will be explained by an example of a reinforced masonry shear 
wall subjected to bending due to a shear force applied at the top, as shown in Figure B-3a. 
Consider a wall segment ABCD of unit height. This segment deforms due to bending moments, 
so sections AB and CD rotate by a certain angle relative to their original horizontal position 
(these deformed sections are denoted as A’B’ and C’D’). Rotation between the ends of the 
segment defines the curvature ϕ , as shown in Figure B-3b. Curvature represents relative 
section rotations per unit length. It should be noted that curvature is directly proportional to the 
bending moment at the wall section under consideration, if the section remains elastic. 
 
Consider any section CD that undergoes curvatureϕ , as shown in Figure B-3c. Strain 
distribution along the wall section is defined by the product of curvature and the distance from 
the neutral axis, located by the depth c . The maximum compressive strain in masonry mε is 
given by 
 

cm ⋅= ϕε  
 

 
 

Figure B-3. Curvature in a shear wall subjected to flexure: a) wall elevation; b) deformed wall 
segment ABCD; c) strain distribution along the section CD.  
For the seismic design of reinforced masonry walls, it is of interest to determine curvatures at 
the following two stages: the onset of steel yielding and at the ultimate stage. Consider a 
reinforced masonry wall section subjected to axial load and bending shown in Figure B-4a.  
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Yield curvature yϕ corresponds to the onset of yielding characterized by tensile yield strain yε  
developed in the end rebars, as shown in Figure B-4b, where  
 

cdlw

y
y −′−
=

ε
ϕ  

Ultimate curvature uϕ corresponds to the ultimate stage, when the maximum masonry 
compressive strain mε  has been reached. The maximum mε  value has been limited to 0.0025 
by CSA S304.1-04 (see Figure B-4c) to prevent damage to the outer blocks in the plastic hinge 
region. Note that the neutral axis depth c  is going to decrease as more of the reinforcement has 
yielded (see Figure B-4c). 

 
Figure B-4. Curvature in a reinforced masonry wall section: a) wall cross section; b) yield 
curvature; c) ultimate curvature; d) moment-curvature relationship. 

The curvature value depends on the load level, the section geometry, the amount and 
distribution of reinforcement, and the mechanical properties of steel and masonry. An actual 
moment-curvature relationship for ductile sections is nonlinear, however it is usually idealized by 
elastic-plastic (bilinear) relationship, as shown in Figure B-4d. 
 
Once the curvatures at the critical stages have been determined, the curvature ductility ratio ϕμ  
can be found as follows 
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y

u

ϕ
ϕμϕ =  

 
When the curvature distribution along a structural member (e.g. shear wall) is defined, rotations 
and deflections can be calculated by integrating the curvatures along the member. This can be 
accomplished in several ways, including the moment area method.  
 
Rotations and deflections in a masonry shear wall at the ultimate state can be determined 
following the approach outlined above. Consider a cantilevered shear wall of length wl and 
height wh , and the plastic hinge length pl (see Figure B-5a). The wall is subjected to a seismic 
shear force at the top, which results in a corresponding bending moment diagram as shown in 
Figure B-5b. The curvature diagram shown in Figure B-5c has two distinct portions: an elastic 
portion, with the maximum curvature equal to the yield curvature yϕ , and the plastic portion with 
the maximum curvature equal to the ultimate curvature uϕ . Note that the elastic portion of the 
curvature diagram has the same shape as the bending moment diagram (since the curvatures 
and bending moments are directly proportional). The actual curvature distribution in the plastic 
region varies in a nonlinear manner, as shown in Figure B-5c. For design purposes, the 
curvature can be taken as constant over the plastic hinge length pl  (note that the areas under 
the actual and the equivalent plastic curvature are set to be equal). The elastic rotation eθ and 
the plastic rotation pθ  are presented in Figure B-5d. The plastic rotation can be determined as 
the area of the equivalent rectangle of width yu ϕϕ −  and height pl , as shown in Figure B-5c. 
These rotations can be calculated from the curvature diagram as follows: 

peu θθθ +=  
where 

2
wy

e

h⋅
=
ϕ

θ  

( ) pyup l⋅−= ϕϕθ  
 
The maximum deflection uΔ  at the top of the wall is shown in Figure B-5d. This deflection has 
two components: elastic deflection yΔ corresponding to the yield curvature yϕ , and the plastic 
deflection pΔ  due to a rigid body rotation, since bending moments do not increase once the 
yielding has taken place. Deflection values can be found by taking the moment of the curvature 
area around point A, as follows: 
 

33
2

2

2
wywwy

y

hhh ϕϕ
=⋅=Δ  

 
( ) ( )pwpyup lhl 5.0−⋅−=Δ ϕϕ  

 
pyu Δ+Δ=Δ  
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Figure B-5. Shear wall at the ultimate: a) wall elevation; b) bending moment diagram;  
c) curvature diagram; d) deflections. 
 
The above equations can be used to determine the displacement ductility ratio Δμ , in terms of 
the curvature ductility ϕμ  and other parameters, as follows: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

Δ
Δ

=Δ
w

p

w

p

y

u

h
l

h
l

5.01131 ϕμμ          

Alternatively, the curvature ductility ratio ϕμ can be expressed in terms of the displacement 
ductility ratio, as follows: 

( )
( ) 1

5.03
12

+
−
−

== Δ

pwp

w

y

u

lhl
h μ

ϕ
ϕμϕ    

 
It should be noted that Δμ  and ϕμ  values are different for the same member. Once the yielding 
has taken place, the deformations concentrate at the plastic hinges, so the curvature ductility ϕμ  
is expected to be larger than the displacement ductility Δμ . This difference is more pronounced 
in walls with larger displacement ductility ratios. 
 

B.3 Ductility Check 
CSA S304.1-04 prescribes ductility check for certain classes of ductile masonry shear walls, as 
discussed in Section 2.5.4.3 of this document. Masonry design standards in other countries also 
contain ductility check provisions. For example, the New Zealand Masonry Standard NZS 
4230:2004 (SANZ, 2004) Cl. 7.4.6 prescribes the wlc limit of 0.2 for limited ductile cantilever 
walls (provided that 3<ww lh ). The same limit was prescribed by the 1994 version of CSA 
S304.1. (Note that limited ductility walls according to the NZS 4230 are characterized by the 
displacement ductility of 2.0). It should be noted that the NZS 4230 prescribes maximum strain 
limits for unconfined and confined masonry of 0.003 and 0.008 respectively. The standard also 
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includes a provision for confining plates in plastic hinge regions as a means of confining the 
compression zone of the wall section and enhancing its ductile performance (NZS 4230:2004 
Cl.7.4.6.5). The seismic design provisions for reinforced concrete shear walls in CSA A23.3-04 
also prescribe wlc limits for shear walls at different ductility levels. 

B.4 Wall Height-to-Thickness Ratio Restrictions 
Paulay and Priestley (1992, 1993) developed an analytical model, which offers a means to find 
the minimum wall thickness required to avoid out-of-plane instability. This thickness depends on 
several parameters, including the vertical reinforcement ratio, desired curvature and 
displacement ductility ratios, plastic hinge length, and the mechanical properties of steel and 
masonry. Paulay and Priestley also performed an experimental study to confirm their analytical 
model. They tested a few reinforced concrete shear wall specimens and a concrete masonry 
wall specimen. The masonry wall specimen failed by out-of-plane buckling at a very large 
displacement ductility Δμ  of around 14. 
 
The application of this procedure will be illustrated on an example of a reinforced masonry wall. 
The equation for the critical wall thickness cb  is as follows (Paulay and Priestley, 1992) 

ϕμwc lb 022.0=                

Curvature ductility, ϕμ , is related to displacement ductility, Δμ , as shown in Section B.3. The 
plastic hinge length pl is taken equal to 6wh , and so the equation can be simplified as follows 
 

( )12.2 −= Δμμϕ  
 
The displacement ductility ratio Δμ can be considered equal to dR prescribed by NBCC 2005 for 
different SFRSs (note that Δμ values in the range from 2.0 to 3.0 are considered in this 
example). By following the above procedure, it is possible to obtain the wc lb ratios 
corresponding to different Δμ values. The results are summarized in Table B-1. 
 
For example, if the wall length wl is equal to 5,000 mm, the corresponding critical thickness cb is 
equal to 150 mm for Δμ = 2.0, or 230 mm for Δμ = 3.0. Paulay and Priestley suggest that the 
critical wall thickness should be expressed as a fraction of the wall length rather than its height. 
 

Table B-1. Critical Wall Thickness cb  Versus the Displacement Ductility Ratio Δμ  

Δμ  ϕμ  cw bl  

2.0 2.2 31 
2.5 3.3 25 
3.0 4.4 22 

 
Findings of this research were incorporated in the seismic design provisions for reinforced 
concrete shear walls in New Zealand and Canada (CSA A23.3 first introduced these provisions 
in its 1994 edition). The New Zealand masonry design standard (NZS 4230:2004) also includes 
provisions, which restrict the thickness of reinforced masonry shear walls; however these 
provisions are somewhat less stringent than the current Canadian provisions. NZS 4230:2004 
prescribes the following minimum thicknesses for limited ductility walls ( Δμ of 2.0) and ductile 
walls ( Δμ of 4.0): 
1. For walls up to 3 storeys high (Cl.7.4.4.1 and 7.3.3), minimum thickness t  should not be 

less than 20nL  (or nL05.0 ), where nL denotes clear vertical distance between lines of 
effective horizontal support or clear horizontal distance between lines of effective vertical 
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support. Commentary to Cl.7.3.3 states that “for a given wall thickness, t , and the case 
when lines of horizontal support have a clear vertical spacing of tLn 20> , then vertical lines 
of support having a clear horizontal spacing of tLn 20< shall be provided.” 

2. For walls more than 3 storeys high (Cl.7.4.4.1) minimum thickness t  shall not be less than 
3.13nL  (or nL075.0 ). However, a larger wall thickness can be used provided that one of 

the following conditions is satisfied (maximum strain in masonry uε is equal to 0.003 
according to NZS 4230:2004) (see Figure 2-28): 

a) tc 4≤  or 
b) wlc 3.0≤  or 
c) tc 6≤ from the inside of a wall return of a flanged wall, which has a minimum length 

nL2.0 . 
The relaxed thickness requirement applies to the cases where the neutral axis depth is small, 
and so the compressed area may be so small that the adjacent vertical strips of the wall will be 
able to stabilize it. This is likely the case with rectangular walls subjected to low axial 
compression. (The same criteria for relaxed thickness restrictions are included in the seismic 
provisions for reinforced concrete design CSA A23.3-04 Cl.21.6.3.) 
 
Commentary to NZS 4230 Cl.7.4.4.1 states that it is considered unlikely that failure due to 
lateral instability of the wall will occur in structures less than 3 storeys high, because of the rapid 
reduction in flexural compression with height. This is also in line with the statement made by 
Paulay (1986), that out-of-plane stability is likely to take place in walls with large plastic hinge 
length (one storey or more). According to CSA S304.1 Cl.10.16, plastic hinge length is related to 
the wall height (on the order of 6/wh ), and so a large plastic hinge length would not be 
expected in shear walls found in low-rise masonry buildings.   
 
Paulay and Priestley (1992) stated that “where the wall height is less than three storeys, a 
greater slenderness should be acceptable. In such cases, or where inelastic flexural 
deformations cannot develop, the wall thickness t  need not be less than nL05.0 ” (where 

nL denotes clear wall length between the supports).  
 
FEMA 306 (1999) also discusses the issue of wall instability. This document also refers to the 
procedure by Paulay and Priestley (1993) and provides the following recommendation for 
minimum wall thickness in ductile walls ( Δμ of 4.0):  
 

24wlt ≤  or 18ht ≤  
 
Note that the above requirement, which applies to the walls with displacement ductility ratio 
( Δμ ) equal to 4.0, is the same as the CSA S304.1-04 requirement for limited ductility walls with 

dR  equal to 1.5. 
  
FEMA 306 (1999) also points out that “the lack of evidence for this type of failure in existing 
structures may be due to the large number of cycles at high ductility that must be achieved – 
most conventionally designed masonry walls are likely to experience other behaviour modes 
such as diagonal shear before instability becomes a problem.”  

B.5 Grouting 
Limited experimental research evidence indicates that fully grouted reinforced masonry walls 
demonstrate higher ductility and strength under cyclic lateral loads than otherwise similar 
partially grouted specimens. Ingham et al. (2001) reported the results of an experimental study 
of twelve full-scale reinforced masonry wall specimens subjected to an in-plane cyclic lateral 
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load. Of the twelve specimens, nine were partially grouted, and three were fully grouted. The 
walls were reinforced with 12 mm diameter vertical reinforcing bars spaced at 800 mm on centre 
(25% grouted cores), with a bond beam at the top of the wall. The wall thickness varied from 90 
mm to 190 mm, which resulted in height/length aspect ratios ranging from 0.57 to 1.33. The 
walls were not subjected to any external axial load. The walls were designed to fail in the 
diagonal shear mode. The test results showed that the fully grouted wall specimens 
demonstrated significantly higher displacement ductility (on the order of 6.0) than the otherwise 
identical partially grouted specimens (4.0). It should be noted that all of the partially grouted 
specimens achieved a displacement ductility of 2.0 or higher. A possible reason for the higher 
ductility in the fully grouted wall specimens is that they ultimately failed in the sliding shear 
mode, which is characterized by large deformations at the base of the wall. The partially grouted 
specimens failed in the shear/diagonal tension mode. Force-displacement responses for a 
partially grouted Wall 2 and a fully grouted Wall 3 specimen are shown in Figure B-6. Note that 
the specimen dimensions were identical: 2600 mm length x 2400 mm height x 100 mm nominal 
thickness.  
 
It is important to note that none of the twelve specimens exhibited a sudden failure, as is 
typically associated with conventional (diagonal tension) shear failure; instead, gradual strength 
degradation was observed. The findings of related experimental studies by Voon and Ingham 
(2006) and Schultz (1996) were reported in Section B.1. 
 

 
 

Figure B-6. Force-displacement responses for partially grouted (left) and fully grouted (right) 
wall specimens (Ingham et al., 2001, reproduced by permission of the Masonry Society). 
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C Relevant Design Background  
This appendix contains additional information relevant for masonry design as discussed in 
Chapter 2, but it is not directly related to the seismic design provisions of CSA S304.1-04. 
Applications of design methods and procedures presented in this appendix can be found in 
Chapter 4, which contains several design examples. The appendix addresses in detail a few 
topics of interest to masonry designers, e.g., the calculation of in-plane wall stiffness including 
the effect of cracking, and force distribution in perforated shear walls. However, modeling and 
analysis of multi-storey perforated shear walls have not been covered in this document. 

C.1  Design for Combined Axial Load and Flexure 

C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading 
 
10.2  

 
Seismic shear forces acting at floor and roof levels cause overturning bending moments in a 
shear wall, which reach a maximum at the base level. In general, shear walls are subjected to 
the combined effects of flexure and axial gravity loads. The theory behind the design of masonry 
wall sections subjected to effects of flexure and axial load is well established, and is essentially 
the same as that of reinforced concrete walls. A typical reinforced masonry wall section is 
shown in Figure C-1a, along with the distribution of internal forces and strains arising from the 
axial load and moment. According to CSA S304.1-04, the strain distribution along the wall 
length is based on the assumptions that the wall section remains plane and that the maximum 
compressive masonry strain mε  is equal to 0.003 (see Figure C-1b). Figure C-1c shows the 
distribution of internal forces on the base of the wall, as well as the axial load, fP  and the 
bending moment, fM . In the compression zone, the equivalent rectangular stress block has a 
depth a , and a maximum stress intensity of mm f '85.0 χφ . Note that the χ factor assumes the 
value of 1.0 for members subjected to the compression perpendicular to the bed joints, such as 
structural walls (S304.1 Cl.10.2.6). Each reinforcing bar develops an internal force (either 
tension or compression), equal to the product of the factored stress and the corresponding bar 
area. The internal vertical forces must be in equilibrium with fP , and the factored moment 
capacity rM  can be determined by taking the sum of moments of the internal forces around the 
centroid of the section. 
 
The following three design scenarios and the related simplified design procedures will be 
discussed in this section: 

1. Wall reinforcement (both concentrated and distributed) and axial load are given – find 
moment capacity 

2. Wall is reinforced with distributed reinforcement only – find moment capacity 
3. Wall reinforcement needs to be estimated (factored bending moment and axial force are 

given) 
 
The first two are applicable for the common situations where a designer assumes the minimum 
seismic reinforcement amount and desires to find its moment capacity. 
 
Approximate design approaches that can be used to assist designers in each of these scenarios 
are presented below. For detailed analysis and design procedures, the reader is referred to 
Drysdale and Hamid (2005) and Hatzinikolas and Korany (2005). 
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Figure C-1. A reinforced masonry shear wall under the combined effects of axial load and 
flexure: a) plan view cross section; b) strain distribution; c) internal force distribution.  

 
C.1.1.1 Moment capacity for the section with concentrated and distributed 

reinforcement 
 
Rectangular section 
A simplified wall design model is shown in Figure C-2. The wall reinforcement can be divided 
into: 
• Concentrated reinforcement at the ends (area cA  at each end), and 
• Distributed reinforcement along the wall length (total area dA ). 
It is assumed that the concentrated wall reinforcement yields either in tension or in compression 
at the wall ends. Also, it is assumed that the distributed reinforcement yields in tension. 
 
A procedure to find the factored moment capacity rM  for a shear wall with a given vertical 
reinforcement (size and spacing) is outlined below. 
 
From the equilibrium of vertical forces (see Figure C-2b), it follows that  

0321 =−−++ mf CCTTP                               ( 1)         

where 
cys AfCT φ== 31  

dys AfT φ=2  

( )( )atfC mmm ⋅= '85.0 φ  
The compression zone depth, a , can be determined from equation 1 as follows 

tf
AfP

a
mm

dysf

'85.0 φ
φ+

=     ( 2) 
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8.01 =β  when 20' <mf MPa (note that 1β  value decreases when 20' >mf MPa, as prescribed 
in S304.1 Cl.10.2.6) 
 
The neutral axis depth, c , measured from the extreme compression fibre to the point of zero 
strain is given by  
 1βac =  
Next, the factored moment capacity, rM , can be determined by summing up the moments 
around the centroid of the wall section (point O) as follows 

( )⎥⎦⎤⎢⎣
⎡ −+−= '222)( dwlcAyfsawlmCrM φ                 ( 3) 

where d ′  is the distance from the extreme compression fibre to the centroid of the concentrated 
compression reinforcement.  
 

 
Figure C-2. A simplified design model for rectangular wall section: a) plan view cross-section 
showing reinforcement; b) internal force distribution. 

 
10.2.8  

In case of squat shear walls, CSA S304.1-04 prescribes the use of a reduced effective depth 
d for flexural design, i.e. 
 

hld w 7.067.0 ≤=  
As a result, the moment capacity should be reduced by taking a smaller lever arm for the tensile 
steel, as follows 
 

( ) ( )⎥⎦⎤⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ −+−= 2'22)( wldcAyfsdwlcAyfsawlmCrM φφ                 ( 4) 
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Note that the reinforcement area cA  in squat walls should be increased to provide more than 
one reinforcing bar, since the end zone constitutes a larger portion of the overall wall length in 
these cases. 
 
The CSA S304.1-04 provision for the reduced effective depth in squat walls contained in 
Cl.10.2.8 is intended to account for the effect of the deep beam behaviour of squat walls. This 
provision makes more sense for non-seismic design, and it should not be used if the tension 
steel yields in seismic conditions. 
 
Flanged section 
In case of the flanged wall section shown in Figure C- 3, the factored moment capacity rM  can 
be determined by summing up the moments around the centroid of the wall section (point O) as 
follows 

( ) ( ) )2(22 dlAfxlCM wcyswmr ′−+−= φ  
where 

t
ttbA

a fL
2* +−

=  

( ) ( )
L

f

A
ttbat

x
2)(2* 22 −+

=  

LA  is the area of the compression zone.  

 
Figure C- 3. A simplified design model for flanged wall section. 
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C.1.1.2 Moment capacity for rectangular wall sections with distributed vertical  

reinforcement 
The previous section discussed a general case of a shear wall with both concentrated and 
distributed vertical reinforcement. In low- to medium-rise concrete and masonry wall structures, 
the provision of distributed vertical reinforcement is often sufficient to resist the effects of 
combined flexure and axial loads (see Figure C-4a). The factored moment capacity for walls 
with distributed vertical reinforcement can be determined based on the approximate equation 
proposed by Cardenas and Magura (1973), which was originally developed for reinforced 
concrete shear walls. The equation was derived based on the assumption that the distributed 
wall reinforcement shown in Figure C-4b can be modeled like a thin plate of length wl  (equal to 
the wall length), and the thickness is such that the total area vtA  is the same as that provided by 
distributed reinforcement along the wall length (see Figure C-4b). The factored moment capacity 
can be determined as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

wvtys

f
wvtysr l

c
Af

P
lAfM 115.0

φ
φ                          (5) 

where 

vtA - the total area of distributed vertical reinforcement 
c - neutral axis depth 
 

tlf
Af

wmm

vtys

'φ
φ

ω =  

tlf
P

wmm

f

'φ
α =  

 

112 βαω
αω

+
+

=
wl
c

 

 
85.01 =α   and   8.01 =β  

 

 
Figure C-4. Shear wall with distributed vertical reinforcement: a) vertical elevation; b) actual 
cross section; c) equivalent cross-section. 
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C.1.1.3  An approximate method to estimate the wall reinforcement 
Consider a wall cross-section shown in Figure C-5a. In design practice, there is often a need to 
produce a quick estimate of wall reinforcement based on the given factored loads. In this case, 
the loads consist of the factored bending moment fM and axial force fP acting at the centroid 
of the wall section (point O).  
 
The goal of this procedure is to find the total area of wall reinforcement sA . To simplify the 
calculations, an assumption is made that the reinforcement yields in tension and that the 
resultant force rT  acts at the centroid of the wall section, that is, (see Figure C-5b) 

sysr AfT φ=                        ( 6) 
An initial estimate for the compression zone depth a can be made as follows 

wla 3.0≅  

 
Figure C-5. Reinforcement estimate: a) plan view wall cross-section; b) distribution of internal 
forces. 

Next, compute the sum of moments of all forces around the centroid of the compression zone 
(point C), as follows 

02)(2)( =−−−− alTalPM wrwff  
From the above equation it follows that  

2)(
2)(

al
alPM

T
w

wff
r −

−−
=                    ( 7) 

The area of reinforcement can then be determined from equation (7) as follows 
ysrs fTA φ=  

 
The area of reinforcement can be chosen to be equal to or larger than that estimated by this 
procedure. A uniform reinforcement distribution over the wall length is recommended for seismic 
design, since research studies have shown that shear walls with uniform reinforcement 
distribution show better seismic response in the post-cracking range. In addition, the seismic 
detailing requirements for vertical reinforcement need to be followed. 
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C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading 
Masonry walls are subjected to the effects of seismic loads acting perpendicular to their surface 
– this is called out-of-plane seismic loading.  For design purposes, wall strips of a predefined 
width are treated as beams spanning vertically or horizontally between lateral supports. When 
the walls span in the vertical direction, floor and/or roof diaphragms provide the lateral supports.  

 
Walls can also span 
horizontally, in which case the 
lateral supports need to be 
provided by cross walls or 
pilasters, as shown in Figure C-
6. Note that support on four 
edges is very efficient, since 
these walls behave as two-way 
slabs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure C-6. Masonry walls under out-of plane seismic loads: a) spanning vertically between 
floor/roof diaphragms; b) spanning horizontally between pilasters. 
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Consider a reinforced concrete masonry wall subjected to the effects of factored axial load 
fP and bending moment fM , as shown in Figure C-7a. The wall is reinforced vertically, with 

only the reinforced cores grouted. It is assumed that the size and distribution of vertical 
reinforcement are given. The notation used in Figure C-7b is explained below: 
       t  - overall wall thickness (taken as actual block width, e.g. 140 mm, 190 mm, etc.) 
      ft - face shell thickness 

b - effective width of the compression zone (see Section 2.4.2 and Figure 2-19) 
d - effective depth, that is, distance from the extreme compression fibre to the centroid of 
the wall reinforcement; typically, the reinforcement is placed in the middle of the wall section, 
so  

2td =  

sA - total area of steel reinforcement placed within the effective width b  
 
It is assumed that the steel has yielded, that is, ys εε ≥ , and the corresponding stress in the 
reinforcement is equal to the yield stress, yf . This is a reasonable assumption for low-rise 
masonry buildings, since the axial load is low and the walls are expected to fail in the steel-
controlled mode. The design procedure is outlined below. 
 
• The resultant forces in steel rT and masonry mC  can be determined as follows: 

sysr AfT φ=  

( )( )abfC mmm ⋅= '85.0 φ  
• The equation of equilibrium of internal forces gives (see Figure C-7d) 

rfm TPC +=  
• The depth of the compression stress block a  is equal to 

bf
Ca

mm

m

'85.0 φ
=   ( 8) 

• The moment resistance can be found from the following equation 

)2(' adCM mr −=   (9) 
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Figure C-7. A wall under axial load and out-of-plane bending: a) vertical section showing 
factored loads; b) plan view of a wall cross-section; c) strain distribution; d) internal force 
distribution. 

For partially grouted wall sections (where only reinforced cores are grouted), the designer needs 
to confirm that 

fta ≤  
When the above relation is correct, then the compression zone is rectangular, as shown in 
Figure C-8a. Note: in solidly grouted walls, the compression zone is always rectangular! 
 
When fta ≥ , the compression zone needs to be treated as a T-section and an additional 
calculation is required to determine the a value. The following equations can be used to 
determine the moment resistance in sections with a T-shaped compression zone: 
• The resultant force in the steel rT  can be determined as follows: 

sysr AfT φ=  
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• The resultant force in the masonry, mC ,  acts at the centroid of the compression zone and 
can be determined from the equation of equilibrium of internal forces, that is, 

rfm TPC +=  
Once the compression force in the masonry is found, the area of the masonry compression 
zone, mA  (see Figure C-8b), is given by 

( ) mmmm AfC ⋅= '85.0 φ  
• The depth of the compression stress block a  can be found from the following equation 

( ) wffm btatbA ⋅−+⋅=  
where 

wb = width of the grouted cell plus the adjacent webs 
• The distance from the extreme compression fibre to the centroid of the compression zone a  
is equal to 

)( ( )

m

f
fff

A

ta
ttatb

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⋅−+⋅

=
2

22

    (10) 

 
 

Figure C-8. Masonry compression zone: a) rectangular shape; b) T-shape; c) effective width 
and tributary width. 



4/1/2009 C-12

• The moment resistance can be found from the following equation 

( )adCM mr −='   (11)  

Note that rM '  denotes the moment capacity for a wall section of width b . It is usually more 
practical to convert the rM '  value to a unit width equal to 1 metre (see Figure C-8c), as follows 

( )sMM rr 0.1'=   (12) 

where  
s  - spacing of vertical reinforcement expressed in metres (where sb ≤ ) 

rM  - factored moment capacity in kNm/m. 
 
The design of masonry walls subjected to the combined effects of axial load and bending is 
often performed using P-M interaction diagrams. The axial load capacity is shown on the vertical 
axis of the diagram, while the moment capacity is shown on the horizontal axis. The points on 
the diagram represent the combinations of axial forces and bending moments corresponding to 
the capacity of a wall cross-section. An interaction diagram is defined by the following four 
distinct points and/or regions: i) balanced point, ii) points controlled by steel yielding, iii) points 
controlled by masonry compression, and iv) pure compression (zero eccentricity). A conceptual 
wall interaction diagram is presented in Figure C-9. 

 
Figure C-9. P-M interaction diagram. 

 
1. Balanced point 
At the load corresponding to the balanced point, the steel has just yielded, that is, ys εε = . The 
position of the neutral axis bc  can be determined from the following proportion (see Figure C-7 
c): 

y

m

b

b

cd
c

ε
ε

=
−

 

or  

)(
ym

m
b dc

εε
ε
+

=  
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For 400=yf  MPa and 002.0=yε  it follows that 

dcb 6.0=  
 
2. Points controlled by steel yielding 
For bcc < , the steel will yield before the masonry reaches its maximum useful strain (0.003). 
Since the steel is yielding, it follows that ys εε > .  The designer needs to assume the neutral 
axis depth ( c ) value so that bcc < . The compression zone depth can then be calculated as 

cca 8.01 == β   (this is valid for MPafm 20<′  according to S304.1 Cl.10.2.6). Combinations of 
axial force and moment values corresponding to an assumed neutral axis depth can be found 
from the following equations of equilibrium (see Figure C-7d) 

rmr TCP −=  
where 

sysr AfT φ=      (note that the stress in the steel is equal to yf  since the steel is yielding) 
 
Moment resistance depends on the shape of the masonry compression zone, that is, on 
whether the section is partially or solidly grouted. 
• For a solidly grouted section or a partially grouted section with the compression zone in the 
face shells only: 

)2(' adCM mr −=    
where 

( )( )abfC mmm ⋅= '85.0 φ  
• For a partially grouted section with the compression zone extending into the grouted cells: 

( )adCM mr −='    
where 

( ) mmmm AfC ⋅= '85.0 φ  
 
3. Points controlled by masonry compression 
For bcc > , the steel will remain elastic, that is, ys εε <  and ys ff < , while the masonry reaches 
its maximum strain of 0.003.  The designer needs to assume the neutral axis depth ( c ) value so 
that bcc > , and the strain in steel can then be determined from the following proportion (see 
Figure C-7 c): 

cdd
sm

−
=

εε
 

thus 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
c

cd
ms εε  

The stress in the steel can be determined from Hooke’s Law as follows 
sss Ef ε*=    (note that steel stress ys ff < ) 

where sE  is the modulus of elasticity for steel. The equations of equilibrium are the same as 
used in part 2 above, except that 

sssr AfT φ=  
The point corresponding to 2tc =  is considered as a special case. At that point, the strain 
distribution is defined by the following values 

003.0=mε  and 0=sε  
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thus 
0=rT  

 
4. Pure compression (zero eccentricity) 
In the case of pure axial compression (S304.1 Cl.10.4) the axial load resistance for untied 
sections can be determined as follows: 

emmr AfP ′= φ85.0  actual axial compression resistance 
and 

rr PP 8.0max =  design axial compression resistance 
According to S304.1 Cl.10.2.7, when the steel bars are tied by means of joint reinforcement, 
then the steel contribution can be considered for the compression resistance. The design 
equation for tied wall sections is as follows: 

syssemmr AfAAfP φφ +−′= )(85.0  
and 

rr PP 8.0max =  

C.2 Wall Intersections and Flanged Shear Walls 
Flanged shear wall configurations are encountered when a main shear wall intersects a cross-
wall (or transverse wall). Examples of flanged walls in masonry buildings are very common, 
since the bearing wall systems often consist of walls laid in two orthogonal directions. Also, in 
medium-rise wood frame apartment buildings, elevator shafts are usually of masonry 
construction, and the intersecting masonry walls that form the core can be considered as 
flanged walls. 
 
10.6.2  

 
In flanged shear walls, a portion of the cross wall is considered to act as the flange, while the 
main shear wall acts at the web. Depending on the cross-wall configuration, flanged shear walls 
may be of I, T- or L-section. An I-section is characterized by the two end flanges, similar to that 
in Figure C-10 (left), a T-section is characterized with one flanged end and other rectangular/ 
non-flanged end, while a L-section is characterized by one flanged end (similar to that shown in 
Figure C-10 right), and other rectangular-shaped (non-flanged) end. Design codes prescribe the 
maximum effective flange width that may be considered in the shear wall design.  The CSA 
S304.1 requirements for overhanging flange widths for these wall sections are summarized in 
Table C-1 and Figure C-10. For masonry buildings with substantial flanges the height ratio limits 
will usually govern.  
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Table C-1. Overhanging Flange Width Restrictions for T- and L- Section Walls per CSA S304.1 
Cl.10.6.2 

T-sections ( Tb ) L-sections ( Lb ) 
  ≤Tb  the smallest of: 

a) actualb  
b) 2wa  
c) t⋅6  
d) 12wh  

≤Lb  the smallest of: 
a) actualb  
b) 2wa  
c) t⋅6  
d) 16wh  

where 
actualb  - actual overhang/flange width 

wa - clear distance between the 
adjacent cross walls 
t - actual flange thickness 

wh - wall height 

 

 
Figure C-10. CSA S304.1 flange width requirements. 

 
7.11 
10.11 

 

 
Flanges do not contribute significantly to the shear resistance of flanged walls, but they 
generally enhance the in-plane flexural capacity. However, flanges can be considered to be 
effective in resisting the applied loads only if the web-to-flange joint is capable of transferring the 
vertical shear. According to CSA S304.1 Cl.7.11, the following alternative approaches can be 
used to ensure the effective shear transfer across the web-to-flange connection in both 
unreinforced and reinforced masonry walls (see Figure C-11): 

a) Bonded intersections - 50% of the units of one wall embedded at least 90 mm in the 
other wall (Cl.7.11.1). 

b) Mechanical connection with steel connectors (e.g. anchors, rods, or bolts) at a maximum 
spacing of 600 mm (Cl.7.11.3), and 

c) Fully grouted keyways or recesses, with a minimum of two 3.65 mm diameter steel wires 
from joint reinforcement spaced at 400 mm vertically (Cl.7.11.2).  
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d) Fully grouted bond beam intersections with15M reinforcing bars spaced as required; this 
is not explicitly prescribed by CSA S304.1-04, but it is in line with the approach c) 
outlined in Cl.7.11.3. The bars should be detailed to develop the full yield stress on each 
side of the intersection. 

Note that Cl.10.11.2 does not permit the use of rigid anchors (approach b) for portions of 
reinforced masonry shear walls in which the flanges contain tensile steel and are subject to axial 
tension, but alternative solutions are permitted. 
 
Vertical shear resistance of the flanged walls must be checked by one of the following methods: 
• For bonded intersections achieved by approach a), vertical shear at the intersection shall 
not exceed the out-of-plane masonry shear resistance (Cl.7.10.2). 
• For flanged sections with the mechanical steel connectors (approach b), the connectors 
must be capable of resisting the vertical shear at the intersection. The connector resistance 
should be determined according to CSA A370-04. 
• For flanged sections with the horizontal reinforcement (approaches c and d), the 
reinforcement must be capable of resisting the vertical shear at the intersection. 

 
 
 
Figure C-11. Masonry wall intersections: a) bonded intersections; b) mechanical connection;  
c) horizontal joint reinforcement; d) horizontal reinforcing bars (bond beam reinforcement). 
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7.11.4  
 
Where wall intersections are not bonded and rigid steel connectors are not used, the factored 
shear resistance of the web-to-flange joint shall be based on the shear friction resistance taken 
as 

hmr CV μφ=       

where 
μ   = 1.0  coefficient of friction for the web-to-flange joint 

hC   = compressive force in the masonry acting normal to the head joint, normally taken as the 
factored tensile force at yield of the horizontal reinforcement that crosses the vertical section. 
The reinforcement must be detailed to enable it to develop its yield strength on both sides of the 
vertical masonry joint, which may be hard to achieve in practice. 
 
Commentary 

 
The provisions related to flanged shear walls have not changed in CSA S304.1-04 from the 
1994 edition, with the exception of the new Cl.7.11.4 related to the shear friction resistance of 
wall intersections. 
 
For flanged walls with horizontal reinforcement, resistance to vertical shear sliding is provided 
by the frictional forces between the sliding surfaces, that is, the web and the flange of the wall. 
The shear friction resistance rV  is proportional to the coefficient of friction μ , and the clamping 
force hC  acting perpendicular to the joint of height h  (see Figure C-12a).  
 

hC  is equal to the sum of the tensile yield forces developed in reinforcement of area bA  spaced 
at the distance s , that is, 

shAfC bysh φ=  

In case of a flanged shear wall with openings, shear friction resistance rV  is provided by wall 
segments between the openings, as shown in Figure C-12b.  
 
Reinforcement providing the shear friction resistance should be distributed uniformly across the 
joint. The bars should be long enough so that their yield strength can be developed on both 
sides of the vertical joint, as shown in Figure C-13b. 
 
Clauses 7.11.1 to 7.11.3 list three approaches (a, b, and c) that can be used to ensure shear 
transfer at the web-to-flange interface. In addition to the three approaches stated in CSA 
S304.1-04, it is a common practice in Canada to use 15M reinforcing bars from intersecting 
bond beams to provide shear resistance if needed (approach d). U.S. masonry design standard 
ACI 530-08 Cl.1.9.4.2.5 c) prescribes intersecting bond beams in intersecting walls at maximum 
spacing of 1200 mm (4 ft) on centre. The bond beam reinforcement area shall not be less than 
200 mm2 per metre of wall height (0.1 in2/ft), and the reinforcement shall be detailed to develop 
the full yield stress at the intersection. 
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Figure C-12. Shear friction resistance at the web-to-flange intersection: a) resistance provided 
by the reinforcement; b) flanged shear wall with openings. 
 
When the shear resistance of the web-to-flange interface relies on masonry only (see Figure C-
13a), the horizontal shear stress fv , due to shear force fV , can be given by: 

we

f
f lt

V
v =  

where 
et - effective web width 

wl - wall length 
The designer should also find the vertical shear stress caused by the resultant compression 
force fbP : 

ww

fb
f hb

P
v

*
=  

The larger of these two values governs. The factored shear stress should be less than the 
factored masonry shear resistance, mmvφ , as follows 

mmf vv φ≤  
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where  

mm fv '16.0=   
If the above condition is not satisfied, horizontal reinforcement needs to be provided 
(see Figure C-13b), and the following shear resistance check should be used 

smmf vvv +≤ φ  
where sv  is the factored shear resistance provided by the steel reinforcement, which can be 
determined as follows: 

e

ybs
s ts

fA
v

⋅
=
φ

 

where bA  is area of horizontal steel reinforcement crossing the web-to-flange intersection at the 
spacing s . 
 
Note that the reinforcement that crosses the vertical section has to be detailed to develop yield 
strength on both sides of the vertical masonry joint (see Figure C-13b). 

 
Figure C-13. Shear resistance of the web-to-flange interface: a) bonded masonry intersection; 
b) horizontal reinforcement at the intersection.  
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C.3 Wall Stiffness Calculations 
The determination of wall stiffness is one of the key topics in the seismic design of masonry 
walls. Although this topic has been covered in other references (e.g. Drysdale and Hamid, 2006, 
and Hatzinikolas and Korany, 2006), a few key concepts are discussed in this section. Section 
C.3.2 derives expressions for the in-plane lateral stiffness of walls under the assumption that the 
walls are uncracked. For seismic analysis it is expected that the walls will be pushed into the 
nonlinear range, and so cracking will occur and the reinforcement will yield. The stiffness to be 
used in seismic analysis should not be the linear elastic (uncracked) stiffness but some effective 
stiffness that reflects the effect of cracking up to the yield capacity of the wall. Section C.3.5 
gives some suggestions for the effective stiffness of shear walls responding in shear-dominant 
and flexure-dominant modes.  

C.3.1 Lateral Load Distribution 
The distribution of lateral seismic loads to individual walls can be performed once the storey 
shear forces have been determined from the seismic analysis. The flexibility of floor and/or roof 
diaphragms is one of the key factors influencing the load distribution (for more details, see 
Section 1.5.9 and Example 3 in Chapter 4). In the case of a flexible diaphragm, the lateral 
storey forces are usually distributed to the individual walls based on the tributary area. In the 
case of a rigid diaphragm, these forces are distributed in proportion to the stiffness of each wall. 
In calculating the wall forces, torsional effects must be considered, as discussed in Section 
1.5.9. The distribution of lateral loads (without torsional effects) in a single-storey building with a 
rigid diaphragm is shown in Figure C-14. 

 
Figure C-14. Distribution of lateral loads to individual walls. 

Wall stiffness is usually determined from the elastic analysis, and depends on wall height/length 
aspect ratio, thickness, mechanical properties, extent of cracking, size and location of openings, 
etc.  
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C.3.2 Wall Stiffness: Cantilever and Fixed-End Model 
Wall stiffness depends on the end support conditions, that is, whether a wall or pier is fixed or 
free to move and/or rotate at its ends. Two models for wall stiffness include the cantilever model 
and the fixed-end model shown in Figure C-15.  In the cantilever model, the wall is free to rotate 
and move at the top in the horizontal direction – this is usually an appropriate model for the 
walls in a single-storey masonry building.  
 
The stiffness can be defined as the lateral force required to produce a unit displacement, but it 
is determined by taking the inverse of the combined flexural and shear displacements produced 
by a unit load. It should be noted that flexural displacements will govern for walls with an aspect 
ratio of 2 or higher. For example, the contribution of shear deformation in a wall with a 
height/length aspect ratio of 2.0, is 16% for the cantilever model and 43% for the fixed-end 
model. The stiffness equations presented in this section take into account both shear and 
flexural deformations.  
 
The stiffness of a cantilever wall or a pier can be determined from the following equation (see 
Figure C-15 a): 

⎥
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The stiffness of a wall or a pier with the fixed ends can be determined from the following 
equation (see Figure C-15 b): 
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where 
h  - wall height (cantilever model) or clear pier height (fixed-end model) 
wl  - wall or pier length 

mm fE ′= 850   modulus of elasticity for masonry 
The following assumptions have been taken in deriving the above equations: 

mm EG 4.0=      modulus of rigidity for masonry (shear modulus) 

12
* 3

we lt
I =  uncracked wall moment of inertia 

6
**5 we

v
lt

A =       shear area (applies to rectangular wall sections only ) 

where et = effective wall thickness. 
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Figure C-15. Wall stiffness models: a) cantilever model, and b) fixed-end model. 

The wall stiffnesses for both models for a range of height/length aspect ratios are presented in 
Table D-3. Note that the derivation of stiffness equations has been omitted since it can be found 
in other references (see Hatzinikolas and Korany, 2005). 

C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls 
In most real-life design applications, walls are perforated with openings (doors and windows). 
The seismic shear force in a perforated wall can be distributed to the piers in proportion to their 
stiffnesses. This approach is feasible when the openings are very large and the stiffness of lintel 
beams is small relative to the pier stiffnesses, or if the lintel beam is very stiff so that connected 
piers act as fixed-ended walls. Figure C-16 illustrates the distribution of wall shear force V  to 
individual piers in direct proportion to their stiffness. Note that, according to this model, the wall 
shear force is equal to the sum of shear forces in the piers, that is,  

∑= iVV  
where 

iii KV Δ= *  force in the pier i  
Thus 

)*( iiKV Δ= ∑  
If the floor diaphragm is considered to be rigid, it can be assumed that the lateral displacement 
in all piers is equal toΔ , that is, 

Δ=Δ=Δ=Δ CBA  
and so 

Δ= ∑ *)( iKV  
Thus 

∑
=Δ

iK
V

 

where 
∑= iKK  

denotes the overall wall stiffness for the system. 
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Therefore, the force in each pier is proportional to its stiffness relative to the sum of all pier 
stiffnesses within the wall, as follows 

∑∑
==Δ=

i

i

i
iiii K

K
V

K
VKKV ***  

This means that stiffer piers are going to attract a larger portion of the overall shear force. This 
can be explained by the fact that a larger fraction of the total lateral force is required to produce 
the same deflection in a stiffer wall as in a more flexible one.  

 
 

Figure C-16. Shear force distribution in a wall with a rigid diaphragm: a) wall in the deformed 
shape: b) pier forces. 
An approximate approach for determining the stiffness of a solid shear wall in a multi-storey 
building is to consider the structure as an equivalent single-storey structure, as shown in Figure 
C-17. The entire shear force is applied at the effective height, eh , defined as the height at which 
the shear force fV   must be applied to produce the base moment fM , that is, 

f

f
e V

M
h =  

The wall stiffness is found to be equal to the reciprocal of the deflection at the effective height 
eΔ , as follows 
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e

K
Δ

=
1

 

This model, although not strictly correct, can be used to determine the elastic distribution of the 
torsional forces as well as the displacements, as illustrated in Example 2 in Chapter 4. 

 
Figure C-17. Vertical combination of wall segments with different stiffness properties. 

Several different elastic analysis approaches can be used to determine the stiffness of a wall 
with openings. A simplified approach suitable for the stiffness calculation of a perforated wall in 
a single-storey building can be explained with the help of an example of the wall X1 shown in 
Figure C-18 (see also Example 3 in Chapter 4). For a unit load applied at the top, the wall 
stiffness calculation involves the following steps: 
• First, calculate the deflection at the top for a cantilever wall, considering the wall to be solid 
( solidΔ ). 
• Next, calculate the deflection for the strip containing openings ( stripΔ ), considering the full 
wall length (i.e. ignore openings). 
• Finally, calculate the deflection for the piers A, B, C, and D ( ABCDΔ ) assuming that all piers 
have the same deflection. 
Note that the deflections for individual components are calculated as the inverse of their 
stiffness values, and that the pier stiffnesses are determined assuming either the cantilever or 
fixed-end models. In most cases, the use of the cantilever model is more appropriate. 

 
Figure C-18. An example of a perforated wall. 

The overall wall deflection can be determined by combining the deflections for these 
components, as follows: 

ABCDstripsolid Δ+Δ−Δ=Δ  
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Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced by the four 
segments. 
 
Finally, the wall stiffness is equal to the reciprocal of the deflection, as follows 

Δ
=

1K  

C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls 
with Openings 

The approximate approach based on elastic analysis presented in Section C.3.3 is appropriate 
for determining the lateral force distribution in masonry walls. However, that method is not 
adequate for predicting the strengths in perforated reinforced masonry shear walls (walls with 
openings). Openings in a masonry shear wall alter its behaviour and add complexity to its 
analysis and design. When the openings are relatively small, their effect can be ignored, 
however in most walls the openings need to be considered. The following two design 
approaches can be used to design walls with openings: 

1) Plastic analysis method, and 
2) Strut-and-tie method.  

These two approaches have been evaluated by experimental studies and have shown very 
good agreement with the experimental results (Voon, 2007; Elshafie et al., 2002; Leiva and 
Klingner, 1994). The key concepts will be outlined in this section. 
 
C.3.4.1 Plastic analysis method 
The plastic analysis method, also known as limit analysis, can be used to determine the ultimate 
load-resisting capacity for statically indeterminate structures. A masonry wall with an opening as 
shown in Figure C-19a can be modeled as a frame (see Figure C-19b). The model is subjected 
to an increasing load until the flexural capacity of a specific section is reached and a plastic 
hinge is formed at that location. (The plastic hinge is a region in the member that is assumed to 
be able to undergo an infinite amount of deformation, and can therefore be treated as a hinge 
for further analysis.) With further load increases, plastic hinges will be formed at other sections 
as their flexural capacity is reached. This process continues until the system becomes statically 
determinate, at which point the formation of one more plastic hinge will result in a collapse 
under any additional load. This is called a collapse mechanism, and an example is shown in 
Figure C-19c. There is usually more than one possible collapse mechanism for a statically 
indeterminate structure, and the mechanism that gives the lowest capacity is closest to the 
ultimate capacity, as this is an upper bound method. 
 
For specific application to perforated masonry walls, the wall is idealized as an equivalent 
frame, where piers are modeled as fixed at the base and either pinned or fixed at the top, while 
lintels are modeled as fixed at the ends. A failure state is reached when plastic hinges form at 
member ends, and the collapse mechanism forms. The sequence of plastic hinge formation 
depends on the relative strength and stiffness of the elements. In this approach, structural 
members must be designed to behave mainly in a flexural mode, while a shear failure is 
avoided by applying the capacity design approach. 
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Figure C-19. An example of a plastic collapse mechanism for a frame system: a) perforated 
masonry wall; b) frame model; c) plastic collapse mechanism. 

The following two mechanisms are considered appropriate for the plastic analysis of reinforced 
masonry walls with openings, as shown in Figure C-20 (Leiva and Klingner, 1994; Leiva et al. 
1990): 
 

1) pier mechanism, and 
 
2) coupled wall mechanism. 

 
 
      
 
 
 
 
 

     a) 
 

 
 
                                   b)          

 
 
                                c) 

Figure C-20. Plastic analysis models for perforated walls: a) actual wall; b) pier model;              
c) coupled wall model (Leiva and Klingner, 1994, reproduced by permission of the Masonry 
Society). 
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A pier mechanism is a collapse mechanism with flexural hinges at tops and bottoms of the piers. 
A pier-based design philosophy visualizes a perforated wall as a ductile frame. Horizontal 
reinforcement above and below the openings is needed to transfer the pier shears into the rest 
of the wall. A drawback of the pier mechanism is that the formation of plastic hinges at the top 
and bottom of all piers at a story level can lead to significant damage to the piers, which are the 
main vertical load-carrying elements.  
 
A coupled wall mechanism is a collapse mechanism in which flexural hinges are formed at the 
base of the wall and at the ends of the coupling lintels. A perforated wall is modeled as a series 
of ductile coupled walls; this concept is similar to that used for seismic design of reinforced 
concrete shear walls.  The vertical reinforcement in each pier must be designed so that the 
flexural capacity of the piers exceeds the flexural capacity of the coupling beams. To achieve 
this, additional longitudinal reinforcement is placed in the piers, but cut off before it reaches the 
wall base. The shear reinforcement in the coupling beams is designed based on the flexural and 
shear capacity of the piers. Since masonry walls are usually long in plan, the formation of plastic 
hinges at their bases produces large strains in the wall longitudinal reinforcement. Plastic hinges 
must have adequate rotational capacity to allow the complete mechanism to form; this can be 
achieved in wall structures with low axial load. To ensure the successful application of the 
plastic analysis method, the wall reinforcement must be detailed to develop the necessary 
strength and inelastic deformation capacity. 
 
Figure C-21 shows a simple single-storey wall that is analyzed for the two mechanisms.  
Ultimate shear forces corresponding to the pier and coupled wall mechanisms can be 
determined from the equations of equilibrium assuming that the moments at the plastic hinge 
locations are known. These equations are summarized in Figure C-21 (Elshafaie et al., 2002). 
 
The plastic analysis method has a few advantages: stiffness calculations are not required, and 
the designer can choose the failure mechanism which ensures a desirable ductile response. 
The designer needs to have a general background in plastic analysis, which is covered in 
several references, e.g. Bruneau, Uang, and Whittaker (1998) and Ferguson, Breen, and Jirsa 
(1988). This method is also used for the seismic analysis of concrete and steel structures, and 
is referred to as nonlinear static analysis or pushover analysis. 
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    a) 

 
    b) 

Figure C-21. Ultimate wall forces according to the plastic analysis method: a) pier mechanism; 
b) coupled wall mechanism (Elshafaie et al., 2002, reproduced by permission of the Masonry 
Society). 

 
C.3.4.2 Strut-and-Tie Method 
The strut-and-tie method essentially follows the truss analogy approach used for shear design 
of concrete and masonry structures. Pin-connected trusses consist of steel tension members 
(ties), and masonry compression members (struts). The masonry compression struts develop 
between parallel inclined cracks in the regions of high shear. The essential feature of this 
approach is that the designer needs to find a system of internal forces that is in equilibrium with 
the externally applied loads and support conditions. A further essential feature is that the 
designer must ensure that the steel and masonry tie members provided adequately resist the 
forces obtained from the truss analysis. 
 
The design of tension ties is particularly important. If a ductile response is to be assured, the 
designer should choose particular tension chords in which yielding can best be accommodated.  
Other ties can be designed so that no yielding will occur by using the capacity design approach. 
The magnitudes of the forces in critical tension ties can be determined from statics, 
corresponding to the overturning moment capacity of the wall using the nominal material 
properties (rather than the factored ones). The remaining forces are then determined from the 
equilibrium of nodes (conventional truss analysis). Compression forces developed in masonry 
struts are usually small due to the small compression strains and do not govern the design. 
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Careful detailing of the wall reinforcement is necessary to ensure that the actual structural 
response will correspond to that predicted by the analytical model.  
 
The designer needs to use judgement to simplify the force paths that are chosen to represent 
the real structure – these differ considerably depending on individual judgement.  
 
An example of a strut-and-tie model for a two-storey perforated masonry wall subjected to 
seismic lateral load is shown in Figure C-22 (note that gravity load also needs to be considered 
in the analysis, however it is omitted from the figure). It can be seen that two different models 
are required to account for the alternate direction of seismic load. The examples show the 
seismic load being applied as a compressive load to the building; however, these loads should 
be applied to the floor levels, depending on the diaphragm-to-wall connection. The designated 
tie members in one model will become struts in the other model (when the seismic load changes 
direction). An advantage of the reversible nature of seismic forces is that a significant fraction of 
the inelastic tensile strains imposed on the end strut members is recoverable due to force 
reversal, thereby providing hysteretic energy dissipation. A detailed solution for this example is 
presented in the User’s Guide by NZCMA (2004). 
 

 
Figure C-22. Strut-and-tie models for a masonry wall corresponding to different directions of 
seismic loading (NZCMA, 2004, reproduced by the permission of the New Zealand Concrete 
Masonry Association Inc.). 

Strut-and-tie models are used for design of masonry walls in New Zealand, and this approach is 
explained in more detail by Paulay and Priestley (1992). The New Zealand Masonry Standard 
NZS 4230:2004 (SANZ, 2004) recommends the use of strut-and-tie models for the design of 
perforated reinforced masonry shear walls. In Canada, strut-and-tie models are used to design 
discontinuous regions of reinforced concrete structures according to the Standard CSA A23.3-
04 Design of Concrete Structures. The design concepts and applications of strut-and-tie models 
for concrete structures in Canada are covered by McGregor and Bartlett (2000).   
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C.3.5 The Effect of Cracking on Wall Stiffness 
The behaviour of masonry walls under seismic load conditions is rather complex, and depends 
on the failure mechanism (shear-dominant or flexure-dominant), as discussed in Section 2.3.1. 
Figure C-23 shows the hysteretic response of shear-dominant and flexure-dominant walls. The 
effective stiffness discussed in this section reflects the secant stiffness up to first crack in the 
brittle shear-dominant walls, and the stiffness for an elastic-perfectly-plastic model that would 
approximate the strength envelope of the hysteretic plot in the ductile flexure-dominant walls.  
 
For the shear-dominant mechanism, the response is initially elastic until cracking takes place, at 
which point there is a substantial drop in stiffness. This is particularly pronounced after the 
development of diagonal shear cracks. After a few major cracks develop, the load resistance is 
taken over by the diagonal strut mechanism, and the shear stiffness can be estimated by an 
appropriate strut model. However, the stiffness drops significantly shortly after the strut 
mechanism is formed, and can be considered to be zero for most practical purposes (see Figure 
C-23a). It is expected that an increase in the quantity of vertical and horizontal steel and/or the 
magnitude of axial compressive stress causes a reduced crack size and an increase in the 
shear stiffness (Shing et al., 1990).  

 
                                                                       a) 

 
                                                                       b) 

Figure C-23. Cracking pattern and load-displacement curves for damaged masonry wall 
specimens: a) shear-dominant response, and b) flexure-dominant response (Shing et al., FEMA 
307, reproduced by permission of the Federal Emergency Management Agency). 
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For the flexure-dominant mechanism, a drop in the stiffness immediately after the onset of 
cracking is not very significant. As can be seen from Figure C-23b, the stiffness drops after the 
yielding of vertical reinforcement takes place, and continues to drop with increasing inelastic 
lateral deformations (this depends on the ductility capacity of the wall under consideration). The 
specimen for which the results are shown in Figure C-23b showed yielding of vertical 
reinforcement and compressive crushing of masonry at the wall toes (Shing et al., 1989). 
 
Note that the height of wall test specimens shown in Figure C-23 was 1.8 m (6 feet), thus a 
2.5% drift ratio permitted by the NBCC 2005 for regular buildings corresponds to 1.8 inch 
displacement. It can be seen that the displacements and drift in these specimens are very low, 
particularly so for the shear-dominant specimen shown in Figure C-23a. 
 
Evidence from studies that focus on quantifying the changes in in-plane wall stiffness under 
increasing lateral loading are limited, so CSA S304.1 and other masonry codes do not provide 
guidance related to this issue. Shing et al. (1990) tested a series of 22 cantilever block masonry 
wall specimens that were laterally loaded at the top, with a height/length aspect ratio of 1.0. 
Based on the experimental test data, they have recommended the following empirical equation 
for the lateral stiffness of a wall with a shear-dominant response 
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et = effective wall thickness 

cf  = axial compressive stress (MPa) 
The above equation is based on the force/displacement measurements taken just after the first 
diagonal crack developed, in specimens with a height/length ratio of 1.0. For seismic 
applications where the walls are expected to yield in flexure before failing in shear, and the 
lateral stiffness is used to estimate the fundamental period of the structure and to determine the 
seismic displacements, it is more appropriate to determine the effective stiffness from a cracked 
section analysis at first yield of the tension reinforcement.  
 
A study by Priestley and Hart (1989), based on the cracked transformed section stiffness at first 
yield of the tension reinforcement, recommends that the effective moment of inertia, eI , of a wall 
can be approximated by: 
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where 
yf = steel yield strength (MPa) 

fP  = factored axial load 

eA  = effective cross-sectional area for the wall 

mf ′  = masonry compressive strength, and 
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I =  is the gross moment of inertia of the wall.  

Note that the first term in the bracket, yf100 , is equal to 0.25 for 400=yf  MPa (Grade 400 
steel). The second term is a ratio of axial compressive stress in the wall, equal to ef AP , and 
the masonry compressive strength, mf ′ .  
 
The above relation is based solely on consideration of flexural stiffness, and is a best fit 
relationship for several different values of height/length ratio ( wlh ), steel strength, vertical 
reinforcement ratio and axial load. Other considerations are whether the vertical reinforcement 
is uniformly distributed across the wall length or concentrated at the ends, and the effect of 
tension stiffening. The vertical reinforcement ratio is not included in the above expression, and 
as a result, the wall stiffness is overestimated for lightly reinforced walls and underestimated for 
heavily reinforced walls. 
 
If it is assumed that wall cracking causes the same proportional decrease in the effective shear 
area as it does for the moment of inertia, then the stiffnesses can be combined to give the 
following equation for the reduced wall stiffness, ceK ,  
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is the combined stiffness of an uncracked cantilever wall or pier, considering both the flexural 
and shear deformation components (refer to Section C.3.2 for the wall stiffness equations). 
 
The terms in the large right hand bracket of the cK  equation give the comparative value of 
flexural deformation to shear deformation. At a wlh  ratio of 1.0, flexure contributes 4/7 of the 
total deformation and shear 3/7, while at a wlh  ratio of 0.5, shear contributes ¾ of the total 
defection. 
 
The Priestley and Hart equation was obtained using experimental data related to cantilever wall 
specimens, however it may also be used for fixed-end walls. The stiffness equation for these 
walls, feK ,  is the same as for the cantilever walls, that is, 
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A comparison of the proposed equations for a masonry block wall under axial compressive 
stress is presented in Figure C-24. The following values were used in the calculations: 

400=yf  MPa, ef AP  = 1 MPa, and mf ′  = 10 MPa.  
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Note that the Shing equation is only shown for wlh  up to 1.5 as it is based entirely on shear 
deformation. Since the Shing equation represents stiffness at first diagonal cracking, it is 
expected to give higher stiffness values than the Priestley-Hart equation. Use of the Priestley-
Hart stiffness equation is recommended since it is valid for all wlh  ratios. 
 
The elastic uncracked stiffness could be used to distribute lateral seismic load to individual walls 
and piers, but the reduced cracked stiffness should be used for period estimation and deflection 
calculations.  
 
The wall design deflections can be found from the following equation: 

E

od
eldesign I

RR *
*Δ=Δ  

where 
elΔ = elastic deflections calculated using the reduced wall stiffness ( ceK  or feK ) and the 

factored design forces, and 

E
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I
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= deflection multiplier to account for the effects of ductility, overstrength, and the 

building importance factor (see Section 1.5.11) 
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Figure C-24. A comparison of the stiffness values obtained using the Shing and Priestley-Hart 
equations. 
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D Design Aids  
Table D-1.  Properties of Concrete Masonry Walls (per metre or foot length)1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             

1 Source: Masonry Technical Manual (MIBC, 2008, reproduced by permission of the Masonry Institute of 
BC) 
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Table D-2.  wlc ratio, yf  = 400 MPa 
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Table D-3. Wall Stiffness Values ( )tEK m *  
 

 
 
 
 
 
 
 
 
Fixed both ends: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3

1
* 2

ww

m

l
h

l
htE

K
 

 
 
 
 
 
 

mm fE ′= 850   Modulus of elasticity 

mEG 4.0=      Modulus of rigidity (shear modulus) 
65AAv =       Shear area 

Cantilever model: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

34

1
* 2

ww

m

l
h

l
htE

K
 

 
 
 

 

 
 

 

 



4/1/2009      E-1

E    Notation 
 

maxa  = maximum acceleration 

a  = depth of the compression zone (equivalent rectangular stress block) 

wa  = clear distance between the adjacent cross walls 

bA  = area of reinforcement bar 

cA  = area of concentrated reinforcement at each end of the wall 

dA  = area of distributed reinforcement along the wall length  

eA = effective cross-sectional area of masonry  

gA = gross cross-sectional area of masonry 

LA  = area of the compression zone (flanged wall section) 

rA  = response amplification factor to account for the type of attachment of equipment or veneer ties 

ucA  = uncracked area of the cross-section 

vA  = area of horizontal wall reinforcement 

vtA  = total area of the distributed vertical reinforcement 

vA = shear area of the wall section 

xA  = amplification factor at level x to account for variation of response with the height of the building 

(veneer tie design) 

b  = effective width of the compression zone 

actualb  = actual flange width 

cb  = critical wall thickness  

Tb = overhanging flange width  

wb  = overall web width (shear design) 

B  = torsional sensitivity factor 

c  = neutral axis depth (distance from the extreme compression fibre to the neutral axis) 

C   = compressive force in the masonry acting normal to the sliding plane 

mC  = the resultant compression force in masonry 

hC  = compressive force in the masonry acting normal to the head joint 

pC  = seismic coefficient for a nonstructural component (veneer tie design) 

d  =  effective depth (distance from the extreme compression fibre to centroid of tension reinforcement) 
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vd  = effective wall depth for shear calculations 

d ′  = distance from the extreme compression fibre to the centroid of the concentrated compression 

reinforcement 

nxD = plan dimension of the building at level x  perpendicular to the direction of seismic loading being 

considered 

e  = load eccentricity  

ae  = accidental torsional eccentricity 

xe  = torsional eccentricity (distance measured perpendicular to the direction of earthquake loading 

between the centre of mass and the centre of rigidity at the level being considered) 

fE  = modulus of elasticity of the frame material (infill walls) 

mE  = modulus of elasticity of masonry 

tf  = flexural tensile strength of masonry (see Table 5 of CSA S304.1-04) 

mf ′  = compressive strength of masonry normal to bed joints at 28 days (see Table 4 of CSA S304.1-04) 

yf  = yield strength of reinforcement 

F   = force  

tF  = a portion of the base shear V  applied at the top of the building  

elF  = elastic force  

aF  = acceleration-based site coefficient 

vF  = velocity-based site coefficient 

xF  = seismic force applied to level x   

yF  = yield force 

G = modulus of rigidity for masonry (shear modulus) 
 
h  = unsupported wall height/height of the infill wall 

wh  = total wall height 

nh  = building height 

sh  = storey height 

xh  = height from the base of the structure up to the level x  

bI  = moment of inertia of the beam 
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cI = moment of inertia of the column 

EI  = earthquake importance factor of the structure 

J  = numerical reduction coefficient for base overturning moment 

k  = effective length factor for compression member 

K  = stiffness 

l  = length of the infill wall 

dl  = design length of the diagonal strut (infill wall) 

pl  = plastic hinge length  

sl  = length of the diagonal strut 

wl  = wall length 

nL  = clear vertical distance between lines of effective horizontal support or clear horizontal distance 

between lines of effective vertical support 

M   = mass 

fM = factored bending moment  

rM = factored moment resistance  

nM = nominal moment resistance  

pM = probable moment resistance  

vM  = factor to account for higher mode effect on base shear 

N  = axial load arising from bending in coupling beams or piers 

fp = distributed axial stress  

dP  = axial compressive load on the section under consideration 

crP  = critical axial compressive load 

DLP  = dead load  

fbP  = the resultant compression force (flanged walls) 

rP  = factored axial load resistance 

1P  = compressive force in the unreinforced masonry acting normal to the sliding plane 

2P  = compressive force in the reinforced masonry acting normal to the sliding plane 

hP  = horizontal component of the diagonal strut compression resistance (infill walls) 
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vP = the vertical component of the diagonal strut compression resistance (infill walls) 

ultP  = ultimate tie strength 

dR  = ductility-related force modification factor 

oR  = overstrength-related force modification factor 

pR  = element or component response modification factor (veneer tie design) 

s  = reinforcement spacing 

( )TS  = design spectral acceleration 

)(TSa  = 5% damped spectral response acceleration 

eS  = section modulus of effective wall cross-sectional area 

pS = horizontal force factor for part or portion of a building and its anchorage (veneer tie design) 

t  = overall wall thickness 

et  = effective wall thickness 

ft  = face shell thickness 

T  = fundamental period of vibration of the building 

xT  = torsional moment at level  x  

rT  = the resultant force in steel reinforcement 

yT  = factored tensile force at yield of the vertical reinforcement 

fv  = distributed shear stress 

mv  = masonry shear strength 

maxv  = maximum velocity  

V  = lateral earthquake design force at the base of the structure  

eV  = lateral earthquake elastic force at the base of the structure 

fV  = factored shear force  

nbV  = the resultant shear force corresponding to the development of nominal moment resistance nM  at 

the base of the wall 

mV  = masonry shear resistance  

rV  = factored shear resistance  

sV  = average shear wave velocity in the top 30 m of soil or rock 
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sV  = factored shear resistance of steel reinforcement 

w  = diagonal  strut width (infill walls) 

ew  = effective diagonal strut width (infill walls) 

W  = seismic weight, equal to the dead weight plus some portion of live load that would move laterally 

with the structure 

pW  = weight of a part or a portion of a structure (veneer tie design) 

xW  = a portion of seismic weight W  that is assigned to level x  

hα  = vertical contact length between the frame and the diagonal strut (infill walls) 

Lα  = horizontal contact length between the frame and the diagonal strut (infill walls) 

β  = damping ratio 

dβ  = ratio of the factored dead load moment to the total factored moment 

1β  = ratio of depth of rectangular compression block to depth of the neutral axis 

gγ = factor to account for partially grouted or ungrouted walls that are constructed of hollow or semi-solid 

units 

maxδ = the maximum storey displacement at level x  at one of the extreme corners in the direction of 

earthquake 

aveδ  = the average storey displacement determined by averaging the maximum and minimum 

displacements of the storey at level x  

Δ  = lateral displacement  

pΔ  = plastic displacement  

yΔ  = displacement at the onset of yielding 

elΔ  = elastic displacement 

maxΔ  = maximum displacement 

uΔ  = inelastic (plastic) displacement  

mε  = the maximum compressive strain in masonry 

sε  = strain in steel reinforcement 

yε  = yield strain in steel reinforcement 

χ  = factor used to account for direction of compressive stress in a masonry member relative to the 

direction used for determination of mf ′  
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ϕ  = curvature  

uϕ  = ultimate curvature  

yϕ  = yield curvature corresponds to the onset of yielding  

erφ  = resistance factor for member stiffness 

m
φ = resistance factor for masonry 

s
φ = resistance factor for steel reinforcement 

φ  = resistance factor 

vρ  = vertical reinforcement ratio  

hρ  = horizontal reinforcement ratio  

μ   = coefficient of friction 

Δμ  = displacement ductility ratio (Chapter 1)   

ϕμ  = curvature ductility ratio  

Δμ  = displacement ductility ratio  

θ  = angle of diagonal strut measured from the horizontal 

eθ = elastic rotation  

pθ  = plastic rotation 

ω  = natural frequency 
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