

EMPIRICAL DESIGN FOR MASONRY BUILDINGS

INTRODUCTION

The Empirical or Conventional Design for Masonry is based on a simplified analysis of the loads and forces acting on the structure. When this approach is utilized, the limitations of height, load location, seismic zone, wind loading, the size of any openings and lateral support requirements must be considered.

Structures resulting from this type of procedure are often described by such phrases as "deemed to perform based on long-term experience". Engineered Analysis, results in a more cost effective structure in many instances and must be used whenever the limitations are exceeded.

This chapter is a commentary on selected details of Clause 16, Masonry Design for Buildings (Limit States Design) S304.1-94 does not purport to be a total design analysis.

Canadian Concrete Masonry Producers' Association
Empirical Masonry Design Guidelines

The Canadian Concrete Masonry Producers' Association gratefully acknowledges the contributions of the following:

Dr. R.G. Drysdale, PhD., P.Eng.

McMaster University, Hamilton

R. Jiran, P.Eng.

Buildings Branch, City of Oshawa

M.R. Shirlaw, P.Eng.

Canadian Portland Cement Association, Toronto, Ontario

This "Guide" is intended to facilitate the use of concrete block construction in accordance with CSA-S304.1, Masonry Design for Buildings, (Limit States Design) Clause 16

While all possible care has been taken to ensure that the information contained herein is accurate neither the Canadian Concrete Masonry Producers' Association nor any of the contributors can accept responsibility for any errors or omissions.

APPLICABILITY

The Empirical Rules can be used for non-reinforced Masonry where:

- 1. Total height of loadbearing walls above the first storey floor does not exceed 11 metres.
- Total height of exterior non-loadbearing walls above grade does not exceed 20 metres and the 1 in 30 years wind pressure does not exceed 0.5 kN/m². (Refer to Table 2.5.1.1, Ontario Building Code, for applicable data).
- Foundation walls are not subject to lateral pressure. The Ontario Building Code (9.15) allows limited usage on basis of "deems to" i.e. proven, performance. (See Figure 3.0)

- 4. The structure is not subjected to lateral pressure other than wind loads.
- 5. The resultant vertical force of a load falls within the middle third of the wall thickness. (See Figure 1.0)
- Construction is located within seismic zones 0 and
 (Refer to Table 2.5.1.1 Ontario Building Code, for applicable data).
- 7. The Empirical Rules can only be used for plain, non-reinforced masonry. Note that joint reinforcing for bonding or crack control and reinforcing in secondary structural elements such as short span lintels, does not invalidate this design approach.

Figure 1 MIDDLE THIRD RULE

NOTES:

1.0 Conditions `A' and `B' fall within Empirical approach

2.0 Condition `C' requires Engineered Analysis

ALLOWABLE COMPRESSIVE STRESSES

Maximum allowable compressive stresses on masonry, based on gross cross-sectional area, are given in Table 7 in CAN3-S304.1 Where concentrated loads occur, Clause 16.1.6.2 allows maximum stresses to be increased by 25% (But the total load on the masonry cannot exceed value allowable). Note that the latest specification for concrete block CAN3-A165.1, designates strengths in terms of net area.

TABLE A:

MAXIMUM ALLOWABLE COMPRESSIVE STRESS FOR NON-REINFORCED CONCRETE MASONRY BASED ON GROSS CROSS-SECTIONAL AREA (MPa)

WALL TYPES	MORTAR TYPES		
	S	Ν	
SOLID MASONRY 20 MPa & over	1.6	1.4	
Solid Unit 12.5 - 20 MPa	1.1	1.0	
Hollow Unit 7.5 MPa	0.7	0.6	
CAVITY WALL Solid Unit 12.5 MPa	0.9	0.8	
Hollow unit 7.5 MPa	0.5	0.4	

NOTES:

1.0 For the purposes of Table `A', the conversion from Net to Gross Area strength of standard units is as follows:

See Tables `B' and `C' for allowable loads on standard strength units. 15 MPa net is the standard strength available from CCMPA Members

See Section 11.

UNIT TYPE	NET MPa	GROSS MPa
HOLLOW	15.0	7.5
SOLID	15.0	12.5

- 2.0 Solid Units with a strength of 20 MPa and over are available on a made to order basis.
- 3.0 Where masonry is constructed of different types or grades of units or mortar, the allowable stress shall be based on the weakest combination.
- 4.0 Where the wythes of a cavity wall are of different types of material, it is recommended that only one wythe be loaded. Where only one wythe is loaded, the allowable stress shall be based on the loaded wythe.

Canadian Concrete Masonry Producers' Association

Empirical Masonry Design Guidelines

TABLE B: ALLOWABLE LOADS FOR SOLID or SINGLE WYTHE MASONRY (Standard Strength Concrete Block) (kN/m)

MORTAR TYPE	UNIT TYPE ALLOWABLE		UNIT SIZE				
	(15 MPa)	STRESS MPa	90	140	190	240	290
N	Hollow Solid 1	0.6 1.0	54 90	84 140	114 190	144 240	174 290
	Hollow	0.7	63	98	133	168	203
S	Solid 1	1.1	99	154	209	264	319

TABLE C: ALLOWABLE LOADS FOR LOADED CAVITY WYTHE 2 (Standard Strength Concrete Block) (kN/m)							
MORTAR TYPE	UNIT TYPE	ALLOWABLE		U	NIT SIZE	E	
	(15 MPa)	STRESS MPa	90	140	190	240	290
	Hollow	0.4	36	56	76	96	116
N	Solid 1	0.8	72	112	152	192	232
	Hollow	0.5	45	70	95	120	145
e	Solid 1	0.9	81	126	171	216	261
S							

NOTES:

- 1.0 Solid Unit means a structural masonry unit with a net cross sectional area of at least 75% of its gross cross sectional area in any plane parallel to its bearing surface.
- 2.0 Where the exterior wythe is designed as a veneer, the values in Table `B' may be used for the loadbearing wythe.

Canadian Concrete Masonry Producers' Association **Empirical Masonry Design Guidelines**

TABLE D:

ALLOWABLE COMBINED LOADS FOR BOTH WYTHES (kN/m) (Standard Strength Concrete Block)

					WYTHES WIDTH			
MORTAR TYPE	UNIT TYPE (15 MPa)	ALLOWABLE STRESS MPa	90 + 90	140 + 140	190 + 190	240 + 240	290 + 290	
N	Hollow Solid	0.4 0.8	72 144	92 184	112 224	132 264	152 304	
	Hollow	0.5	90	115	140	165	190	
S	Solid	0.9	162	207	252	297	342	

TABLE E: ALLOWABLE LOADS FOR HIGH STRENGTH SOLID UNITS (> 20 MPa)1 (kN/m)							
MORTAR TYPE ALLOWABLE		UNIT SIZE					
	STRESS MPa	90	140	190	240	290	
N	1.4	126	196	266	366	406	
S	1.6	144	224	304	384	464	

NOTE: 1.0 High strength units are available on a made to order basis only.

TABLE F: WALL WEIGHT & MASS FOR STANDARD WEIGHT UNITS (2100 kg/m3)						
MORTAR TYPE	ALLOWABLE		U	NIT SIZE		
	STRESS MPa	90	140	190	240	290
	Hollow	138	170	223	267	310
	75% Solid	155	235	310	393	475
(kg/m²)	Solid	189	294	400	503	609
WALL WEIGHT (kg/m²)	Hollow	1.35	1.67	2.19	2.62	3.04
	75% Solid	1.52	2.31	3.04	3.85	4.66
	Solid	1.85	2.88	3.92	4.93	5.97

NOTE: 1.0 Wall weight = mass x 9.81 \div 1000

Lateral Support

Lateral support must be provided at either horizontal or vertical intervals not exceeding 20 times the actual wall thickness (t) except as follows:

- 1. For partition walls, lateral support is required at 36t.
- 2. For cavity walls, the wall thickness shall be based on two thirds (2/3) the sum of both wythes but not less than the thickness of either wythe. This derived effective thickness (t^e) applies irrespective of the loading of the wythes.

Note that raked joints reduce the usable thickness and cannot be used where unit width is less than 90mm.

TABLE G: HEIGHT & THICKNESS OF SOLID MASONRY1							
		HEIGHT/TH	ICKNESS RATIO h/t	2			
TYPE OF WALL	MAXIMUM h/t²	MINIMUM WALL t ³ (mm)	MINIMUM WYTHE t (mm)	MAXIMUM TOTAL HEIGHT			
LOADBEARING (Solid or Hollow Units)	20	190	90	11 metres			
EXTERIOR NON-LOADBEARING (Solid or Hollow Units)	20	190	75	20 metres			
PARTITIONS ⁴	36	75	75	72 x actual thickness			

NOTES:

1.0 Solid masonry means masonry of solid or hollow units that does not have cavities between the wythes, e.g. single wythe masonry is included in this definition.

2.0 Unsupported height or length of wall between horizontal or vertical lateral supports.

3.0 Minimum thickness may be reduced; the 140mm solid masonry unit can be used

a) in loadbearing applications, the maximum height at eave is 2.8m and 4.6m at the gable (See Figure 2.0)

b) in exterior, non-loadbearing applications, with a maximum height of 3m but Type `S' mortar is required

4.0 Denotes partitions in buildings with small exterior openings or with unbalanced air pressures not exceeding 24 kPa.

Canadian Concrete Masonry Producers' Association

Empirical Masonry Design Guidelines

TABLE H: EFFECTIVE THICKNESS & LATERAL SUPPORT FOR CAVITY WALLS

WYTHES WIDTHS 1	EFFECTIVE THICKNESS ⁴ (tº) (mm)	LATERAL SUPPORT (m)	MAXIMUM BUILDING HEIGHT ° (m)
90 + 90 ³	120	2.40	11
90 + 140	153	3.06	11
90 + 190	190 ²	3.80	11
90 + 240	240 ²	4.80	11
90 + 290	290 ²	5.80	11

NOTES:

- 1.0 Other wythe combinations are possible, e.g. 140 and 140mm will produce at te of 186.6mm and allows lateral support at 3.732m.
- 2.0 Note use of width of thicker wythe to determine te.
- 3.0 Where both wythes are solid units, one wythe may be 75mm (CAN3-S304, 6.4.4): lateral support is required at 2.4m but maximum building height is limited to 6m above first storey floor.
- 4.0 For cavity walls, the effective thickness shall be based on two thirds (2/3) the sum of both wythes <u>but</u> not less than the actual thickness of the greater wythe.

WALLS NOT SUPPORTED AT THE TOP (CAN3-S304, Clause 6.2.3)

PARAPETS

A cantilevered wall cannot exceed a slenderness ratio (h/t) of four, unless horizontal lateral supports are provided in accordance with the requirement of Table 8 in Code. (generally 20t or 20 te for cavity walls)

WINDOW SILLS

The unsupported distance from sill to the floor below cannot exceed a slenderness ratio (h/t) of 3 but only where the length exceeds the requirements of Table 8 in Code. (20t or $20t^{e}$)

Where lateral support is provided along the top or where the length of wall below the sill is equal or less than permitted, vertical supports are not required.

FIGURE 3.0 DESIGN FOR LATERAL SOIL PRESSURES

NOTES:

- 1.0 Requirements from 9.15, Ontario Building Code
- 2.0 Below grade depth measured from top of floor slab
- 3.0 Footing must be below frost line
- 4.0 Ontario Building Code 9.15.4 gives lateral support requirements

ALLOWABLE OPENINGS IN EXTERIOR W ALLS

Clause 16.7 (S304.1) provides requirements to avoid over stressing walls between openings for doors, windows and ends of wall due to reduced wall area. These requirements apply to walls laterally supported at top and bottom.

Resistance to wind loads is deemed sufficient where a specified percentage of the wall remains. The minimum length depends on the slenderness ratio (h/t): as the ratio increases (i.e. the wall becomes more slender) the

required length of wall remaining increases. Calculation of the required percentage remaining based on the length between centre points of adjacent openings and between centre point of an opening and the end or return of a wall. (See Figure 4.) Where the length of wall remaining is less than 3t, the wall shall be designed as a column with lateral support at 10t.

FIGURE 4.0 ALLOWABLE OPENINGS

Chart 1 PERCENTAGE OF WALL REQUIRED

NOTES:

- 1.0 Chart 1 illustrates values from Table 9 (S304.1).
- 2.0 Lineal interpolation is permitted e.g. h/t = 13: required wall = 35% of total.
- 3.0 Allowable openings vary from 80% of total wall (where h/t = 10) to a minimum of 15% (where h/t = 20)

Empirical Design Example Four Storey Residence

Four Storey Residence

DESIGN LOADS

- Roof Dead Load -2.60 kN/m²
- Roof Live Loads due to snow, ice and rain (Sudbury) -1.78 kN/m²
- Floor Dead Load Precast Concrete Slab -2.60 kN/m²
- Wall Dead Load
 20cm NW Hollow Block -2.19 kN/m²
 20cm NW 75% Solid Block -3.04 kN/m²
- Occupancy Load -1.90 kN/m²

LOAD @ POINT `A'

L_A = Roof Dead Load + Roof Live Load + Wall Dead Load

- = $[[8m \cdot (2.60 \text{ kN/m}^2) + (1.78 \text{ kN/m}^2)] + [2.4m \times 2.19 \text{ kN/m}^2]]$
- = [20.8 kN/m + 14.24 kN/m + 5.26 kN/m]
- = [35.04 kN/m + 5.26 kN/m]
- $L_a = 40.3 \text{ kN/m}$

LOAD @ POINT `B'

- L_B = Floor Dead Load + Occupancy Load + Wall Dead Load + LA
 - $= [[8.0m \cdot (2.60 \text{ kN/m}^2) + (1.9 \text{ kN/m}^2)] + (2.4m \text{ x } 2.19 \text{kN/m})] + 40.3 \text{ kN/m}]$
 - = [[20.8 kN/m + 15.2 kN/m + 5.26 kN/m] + 40.3 kN/m]
 - = [41.26 kN/m + 40.3 kN/m]
- $L_{b} = 81.56 \text{ kN/m}$

LOADS @ POINT `C

- = Floor Dead Load + Occupancy Load + Wall Dead Load + LB
 - = $[[8.0m \cdot (2.60 \text{ kN/m}^2) + (1.9 \text{ kN/m}^2)] + (2.4m \cdot 2.19 \text{ kN/m}^2)] + 81.56 \text{ kN/m}]$
 - = [[20.8 kN/m + 15.2 kN/m + 5.26 kN/m] + 81.56 kN/m]
 - = [41.26 kN/m + 81.56 kN/m]
 - = 122.82 kN/m

LC

LOADS @ POINT `D'

- L_D = Floor Dead Load + Occupancy Load + Wall Dead Load + LC
 - = $[[8.0m \cdot (2.60 \text{ kN/m}^2) + (1.9 \text{ kN/m}^2)] + (2.4m \cdot 3.03 \text{ kN/m}^2)] + 122.82 \text{ kN/m}]$
 - = [[20.8 kN/m + 15.2 kN/m + 7.272 kN/m] + 122.82 kN/m]
 - = [50.54 kN/m + 122.82 kN/m]
- $L_D = 173.36 \text{ kN/m}$

CONSTRUCTION MATERIAL SELECTIONS

1st Floor

• 20cm 75% solid NW concrete block @ 15 MPa strength with Type `S' mortar

2nd Floor

20cm Hollow NW concrete block @ 15 MPa strength with Type `S' mortar

3rd Floor

• 20cm hollow NW concrete block @ 15 MPa strength with Type `S' mortar

4th Floor

20cm hollow NW concrete block @ 15 MPa strength with Type `S' mortar

ALLOWABLE OPENINGS

- HEIGHT/THICKNESS RATIO
- h/t = 2400/190 = 12.6 say 13%
 - Area of wall required is 35% (refer to chart on page 8-10)

DISTANCE TO CHECK

- Distance from centre of window to end of wall
 35% of 1.8m = 0.63m
 Actual Distance = 1.2m
 Actual Distance 1.2m > 0.62m Minimum Allowable
 Distance 1.2m OK!
- 2. Distance between opening centres
 35% of 4.6m = 1.61
 Actual Distance = 3.2m
 Actual Distance 3.2m > 1.61m Minimum Allowable
 Distance 3.2m OK!
- 3. Distance from centre of door to end wall
 35% of 1.4m = 0.49m
 Actual Distance = 0.60m
 Actual Distance 0.60m > 0.49m Minimum Allowable
 Distance 0.60m OK!