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A Comparison of NBCC 1995 and NBCC 2005 Seismic
Provisions

This appendix provides a review of the NBCC 1995 seismic design provisions, and
compares the base shear force and bending moments for a shear wall structure for both
the 1995 and 2005 codes. It provides a means of assessing the changes in the seismic
design provisions in the two codes, and is organized so that the sections in this appendix
follow the same order as the sections in Section 1.5 of Chapter 1.

A.1 NBCC 1995 Seismic Hazard
Section 1.5.1, Chapter 1

4.1.9.1.6)

The seismic hazard in NBCC 1995 is given by the product v-S , where S is a shape
function shown in Figure A-1, and v is the zonal velocity ratio. The product v-S is very
much like an acceleration response spectrum, as it provides a measure of hazard for
different structural periods. The magnitude of vand the shape of S are based on
estimates of the peak ground velocity and peak ground acceleration, for a 10% in 50
year probability of non-exceedance (1/475 per year probability). The v value is based
directly on the peak ground velocity, while the shape of the S function is based on the
ratio of the peak ground acceleration (expressed in terms of ¢ ) to the peak ground
velocity (expressed in m/sec). For code purposes, these values are represented by the
parameters Z, and Z,, which are used to define the seismic zones set out in the 1995
code. Eastern sites located on the Canadian Shield have high Z,/Z, ratios, because
hard rock transmits high frequency waves more readily than does the soil and fractured
rock of Western Canada, which generally has Z /Z,<1. The result is that the seismic
hazard is dependent on two site parameters with a 1/475 per year probability.

Note that v-S does not represent the true seismic hazard as the long period values
have been increased to account for higher mode effects in structures. S decreases as
]/\/? in the longer period range, while S, (T) in NBCC 2005, which better represents a
true spectrum, decreases much more rapidly (as a function of /T beyond 2 seconds).
The higher mode effects in structures in NBCC 2005 are explicitly accounted for by use
of the M, factor.
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Figure A-1. S function according to NBCC 1995.

A.2 Effect of Site Soil Conditions
Section 1.5.2, Chapter 1

| 4.1.9.1.11)

The site soil amplification procedure in NBCC 1995 is considerably simpler that that in

NBCC 2005. There is only one parameter that multiplies the S function, although there
are limits on the amplification in the short period region for some sites.

F denotes the foundation factor which is given in Table A-1. It is applied as a multiplier
to S, with the restriction that

F-S<30 whereZ,<2Z,, and

F-S<4.2 whereZ,> 2,
i.e., the foundation factor need not increase the short period end of the S function
except when Z, < Z,.

Table A- 1. NBCC 1995 Foundation Factors

Foundation Factors
Category | Type and Depth of Soil Measured from the Foundation or Pile Cap Level F
1 Rock, dense and very dense coarse-grained soils, very stiff and hard fine- 1.0
grained soils; compact coarse-grained soils and firm and stiff fine-grained
soils from 0 to 15 m deep
2 Compact coarse-grained soils, firm and stiff fine-grained soils with a depth 1.3
greater than 15 m; very loose and loose coarse-grained soils and very soft
and soft fine-grained soils from 0 to 15 m deep
3 Very loose and loose coarse-grained soils with depth greater than 15 m 1.5
4 Very soft and fine-grained soils with depth greater than 15 m 2.0
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A.3 Methods of Analysis
Section 1.5.3, Chapter 1

4.1.9.1.13.b) |

NBCC 1995 does not prescribe a specific method of seismic analysis for building
structures. However, Cl.4.1.9.1.13.b) related to vertical force distribution, states that the
total lateral seismic force V shall be distributed by means of an equivalent static analysis
procedure (part a), or by dynamic analysis with the seismic effects scaled so that the
base shear from the dynamic analysis equals V (part b). Commentary J to the NBCC
1995 (NRC, 1996) states that the application of dynamic analysis pertains “especially to
buildings with significant irregularities either in plan or elevation, and buildings with
setbacks or major discontinuities in stiffness or mass. Performing a dynamic analysis will
lead to a better representation of modal contribution in tall buildings.”

A.4 Base Shear Calculations
Section 1.5.4, Chapter 1

41.91.4)

The formula for the design base shear V according to the NBCC 1995 is:

i}

where
V,=v-S-I-F-W
represents the elastic shear force.

The design parameters used in the NBCC 1995 base shear equation are explained in
Table A-2. A comparison of V' between the 1995 and 2005 codes is presented in
Section A.12.

NBCC 1995 (Cl.4.1.9.1.7) prescribes the following relations for the fundamental period
T of wall structures:

a) T =0.09n,,D,

where

h, (m) is building height from the base i.e. top of foundations to the roof level,

D, (m) is the length of wall or braced frame which constitutes the main lateral load-
resisting system in a direction parallel to the applied forces. When the length of the
lateral load resisting system is not well defined, then the Code requires that D , the
length of building in the direction parallel to the applied forces, shall be used instead of
D,.
b) other established methods of mechanics; with the restriction that the value of V, used
for design shall be not less than 0.80 of the value computed using the period calculated
in a).

The period given by the formula (a), which is based on measured values, is a

conservative (low) estimate from the data, and generally is smaller than that found using
method (b), particularly if the length D is used in the calculation. The code adopted this
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low estimate as it leads to higher, more conservative, forces. The limit prescribed in (b)
is applied to the base shear and not to the period, as the base shear is very sensitive to
period in some areas.

Table A- 2. NBCC 1995 Seismic Design Parameters

zonal velocity ratio for the site from the climatic data table in Appendix C of NBCC
1995, based on ground motion associated with a 10% probability of exceedance in 50
years (475 year earthquake).

the seismic response factor, dependent on the Z, /Z, ratio for the site and the period
T of the structure (see Section A.1).

Importance factor for the structure, equal to I=1.5 for “post-disaster” structures, 1.3 for
schools, and 1.0 for ordinary structures;

Foundation factor related to soil conditions (see Section A.2 and Table A-1)

dead weight plus some portion of live load that would move laterally with the structure.
Live loads considered are 25% of the snow load, 60% of storage loads for areas used
for storage, and the full contents of any tanks. 100% of the live loads are not used as

the probability of that occurring at the same time as the earthquake is small. Also, live

loads such as people or cars would not move with the same motion as the building.

R = | force modification factor that represents the capability of a structure to dissipate
energy through cyclic inelastic (ductile) behaviour. For masonry structures designed
and detailed according to CSA S304.1-94: R = 2.0 for reinforced walls with nominal
ductility, 1.5 for regular reinforced masonry and 1.0 for unreinforced masonry.

U = | 0.60, and is described as a “factor representing level of protection based on
experience”. U was introduced so as to make the design base shear for the 1995
code similar to that in previous codes. Some persons later thought of U as being an
overstrength factor, recognizing that the structure has strength higher than the
nominal yield strength, but this was not the basis for the introduction of U .

A.5 Force Reduction Factor R
Section 1.5.5, Chapter 1

4.1.9.1.8)

NBCC 1995 had only one R factor, equivalent to the R, factor in NBCC 2005. NBCC
1995 Table 4.1.9.1.B allows R = 2 for reinforced masonry with nominal ductility, R =1.5
for regular reinforced masonry, and R =1 for unreinforced masonry. These values are
equivalent to walls with moderate ductility, conventional construction and unreinforced
masonry, respectively, in NBCC 2005. Height limitations, and some other provisions that
required reinforced masonry, were given in Clause 4.1.9.3 Special Provisions NBCC
1995.

A.6 Higher Mode Effects
Section 1.5.6, Chapter 1

NBCC 1995 does not explicitly mention higher mode effects in calculating the base

shear V, but the S function has been set artificially high in the long period region to
account for the contribution from the higher modes. Higher mode effects are considered
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in the distribution of forces along the height of the structure, see Section A.7, and in
calculating the overturning moments, Section A.8.

Note that in contrast to NBCC 2005, the higher mode effects in the 1995 code make no
distinction between walls or frames.

A.7 Vertical Distribution of Seismic Forces
Section 1.5.7, Chapter 1

14.1.9.1.13.3) |

The distribution of the inertial forces to the floors in NBCC 1995 is essentially the same
as in NBCC 2005, and is summarized below

WXhX

n

Z\Ni hi
where .

F, — seismic force acting at level X

W, - portion of W that is assigned to level X

h, — height from the base of the structure up to the level x

F, — a portion of the base shear to be applied as an additional force to F, at the top of
the building, and is given by

F.=0 for T, <0.7 sec
F, =0.07T,V for0.7<T, <3.6 sec

F, =0.25V for T, > 3.6 sec
where T, is the fundamental lateral period.

F=(V -F)

Once the forces at each floor are established, the total storey shears can simply be
calculated using statics.

A.8 Overturning Moments (J factor)
Section 1.5.8, Chapter 1

14.1.9.1.23-27 |

In NBCC 1995, the overturning moment, M , at the base of the structure, shall be
reduced by the factor J, where

J=1 for T <0.5s
J=1-0.2T for 0.5s < T <1.55
J=0.8 for T >1.5s

The overturning moment M, at any level x shall be multiplied by J, , where
J,=3+@-J)h/h,)
where h, is the height to the top of the structure.

Unlike NBCC 2005, the J factor in NBCC 1995 is not dependent on the structure type
or the site conditions.
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A.9 Torsion
Section 1.5.9, Chapter 1

4.1.9.1.28)

At each storey level throughout the building, the torsional moment applied is taken as
one of the following four cases:
i) T, =F (15, +0.1D,,)

) T, =F (1.5e, —0.1D,,)
iii) T, = F (0.5, +O.1an)
iv) T, =F,(0.5e, —0.1D,,)
where
F, is lateral force at the x™ floor level,

. Is the eccentricity at level X, and is distance between the centre of mass and the

centre of rigidity in the direction perpendicular to the direction of F,, and
D., is a plan dimension of the building at level x perpendicular to the direction of F, .

nx

Note that 0.1D,, is termed the accidental eccentricity.

nx

Each element in the building must be designed for the most severe effect of the above
load cases.

Note that it is necessary to explicitly determine the value of e, . However, if a static 3-D
structural analysis program is available, it is possible to use a combination of two
analyses to determine F,(1.5¢, ) and F,(0.5e, ) without explicitly determining the e,-

Alternately, if a 3-D dynamic analysis is carried out the effects of accidental eccentricity
should be accounted for by combining the dynamic analysis element forces with the
results from a static analysis of either of the two cases of accidental torques given by:

T, =+F (0.1D,,), or
T, =-F,(0.1D,,)

In all of the above analyses, F, represents the storey force from the static analysis
described earlier.

A.10 Irregularities and Restrictions
Section 1.5.10, Chapter 1

NBCC 1995 has very few restrictions regarding irregularities. Masonry is specifically
mentioned as requiring reinforcement if Z, or Z, is 2 or higher, but there are no height
limitations based on irregularities as found in NBCC 2005.
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A.11 Displacements
Section 1.5.11, Chapter 1

14.1.9.2.1-3) |

In NBCC 1995, displacements are to be calculated using the reduced design forces as
given by V, and then multiplied by R to give realistic values. Since V is given by

iy

this would imply that the displacements are the elastic displacements reduced by the
factor U, which has been a somewhat controversial issue. One difference in the codes,
is that V. in the 1995 code is multiplied by the importance factor I, while in NBCC 2005
the displacements are not dependent on the importance factor.

The drift ratio limits in NBCC 1995 are 0.01 for post-disaster buildings and 0.02 for alll
other structures. This is essentially the same as NBCC 2005, except for ordinary
structures which can have a drift ratio of 0.025. Overall, the drift limits in NBCC 2005 are
tighter than in the 1995 code.

A.12 Shear and Moment Comparison

This section provides a comparison of the base shear and base moment for ductile
masonry walls under the NBCC 1995 and NBCC 2005 codes, for periods ranging from
very short to four seconds. For ductile masonry shear walls, Toronto and Vancouver
have been selected to investigate the effect of the different spectral shapes between
eastern and western Canada.

Figure A-2a shows the shear comparison for a site in Toronto, and Figure A-2b for
Vancouver. It is assumed that both sites are on firm ground with no soil amplification
(site Class C per NBCC 2005). The following force modification factors were used:
R=2 and U=0.6 for the NBCC 1995 code calculation, and

Rq=2 and R,=1.5 for the NBCC 2005 values

In each plot, the line titled ‘NBC 2005 spectral shape’ represents the V/W ratio for the
2005 code, for the same values of Ry and R, used in the design calculations, but without
considering the upper and lower bounds on V per NBCC 2005, and with M,=1 for all
periods.

The comparison for Toronto in Figure A-2a shows that there is not much difference in
the design level base shear between the codes, with the 2005 code values being lower
in the short and long period ranges, but higher for intermediate periods. At a period of 2
seconds, the M, value is equal to 2.5 for Toronto. The effect of this in increasing the
shear is very apparent at the longer periods when compared to the NBCC 2005 spectral
shape. Also, it is apparent that without the short period cutoff, the short period shears
from NBCC 2005 would be much larger than the NBCC 1995 values.
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The comparison for Vancouver in Figure A-2b shows that the NBCC 2005 design base
shear is larger than the NBCC 1995 base shear over the entire period range, especially
around 0.5 seconds. The M, factor for Vancouver is equal to 1.2 at the period of 2
seconds, and so has little effect on the long period base shear.

In general, it appears that the base shear from NBCC 2005 is larger than that from
NBCC1995. However, because the periods given by the two codes may be different, and
because the limit placed on using a longer calculated period is more liberal in the short
period end in NBCC 2005, it may be that in some cases there may be a smaller
difference in design base shear than the figures indicate.

Since wall size and reinforcement are mainly governed by the wall moments, a moment
comparison of the two codes may be more meaningful than a shear comparison.

Figure A-3 compares the base bending moment for NBCC 1995 and NBCC 2005 for the
same cases as shown in Figure A-2. The units are not particularly meaningful, but allow
a comparison to be made between the two codes. In the short period range less than 1.0
seconds, the moment comparisons are essentially the same as the shear comparisons.
But for longer periods, particularly for Toronto, the small value of J at periods of 2.0 s
and greater for NBCC 2005 substantially reduces the moments, resulting in much
smaller design moments at the longer periods compared to the NBCC 1995 code, as
shown in Figure A-3a. For Vancouver, the J factor is larger and does not have as much
an effect, but it does bring the design moments from the two codes into close agreement
in the longer periods.
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Figure A-2. Base shear comparison for NBCC 1995 and NBCC 2005:
a) Toronto; b) Vancouver.
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B Research Studies and Code Background Relevant to

Masonry Design

This appendix contains additional background material relevant to the aspects of masonry
design discussed in Chapter 2. Findings of some relevant research studies, as well as the
discussion on provisions of masonry design codes from other countries, are included. This
information may be useful to readers interested in gaining a more detailed insight into the
subject. However, it should be noted that designers may use alternative design provisions in
situations where CSA S304.1 is silent on a specific issue. The design provisions contained in
design standards from other countries cannot supersede the provisions of pertinent Canadian
standards.

B.1 Shear/Diagonal Tension Resistance

Axial compression:

An experimental study on reinforced masonry wall specimens by Voon and Ingham (2006)
showed that an increase in axial compression stress from 0 to 0.5 MPa resulted in an increase
in the maximum wall shear resistance of more than 20%. However, walls subjected to higher
axial compression had a reduced post-cracking deformation capacity, resulting in a more brittle
failure pattern. The presence of higher axial stress also delayed the onset of diagonal cracking
in the walls from the lateral loads, as the vertical stress reduced the principal stress that leads to
cracking.

The latest edition of New Zealand Masonry Standard NZS 4230:2004 (SANZ, 2004) prescribes
a different method for calculating the axial load contribution to masonry shear resistance than
CSA S304.1-04 for low aspect walls. This contribution (equal to 0.9N tan « ), results from a
diagonal strut mechanism, which is based on an assumption that axial compression load N
must effectively form a compression strut at an angle « to the axis (see Figure B-1). The axial
load must be transmitted through the flexural compression zone, while the horizontal component
of the strut force resists the applied shear force (Priestley et al., 1994). This model implies that
the shear strength of squat walls under axial loads should be greater than that of more slender
walls, and higher than that prescribed in CSA S304.1-04. According to this model, the axial load
contribution is limited toN <0.1f'A, .

Figure B-1. Contribution of axial load to wall shear strength (reproduced from NZS 4230:2004
with the permission of Standards New Zealand under Licence 000725).
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Grouting pattern:

Experimental studies have reported a significant reduction in shear resistance for partially
grouted walls compared to otherwise identical fully grouted walls, however partially grouted
masonry is a viable lateral load resisting system for regions of low to moderate seismic risk.
Schultz (1996) tested a series of six partially grouted reinforced block wall specimens under in-
plane cyclic loads. Only the outermost vertical cores and a single course bond beam at
midheight were grouted. The mechanism of shear resistance in partially grouted walls is
characterized by the development of vertical cracks between ungrouted and grouted masonry
due to stress concentrations or planes of weakness (this mechanism is different than the one
expected to develop in solidly grouted masonry walls). It was also reported that an increase in
horizontal reinforcement ratio did not have a significant effect on the overall shear resistance.

An experimental study by Voon and Ingham (2006) showed that the shear strength of a solidly
grouted wall specimen was approximately 110% higher than an otherwise identical specimen
with 30% grouted cores. Also, the specimen with 55% grouted cores had more than a 50%
higher shear strength compared to the specimen with 30% grouted cores. However, the
difference is smaller when the shear stress is compared using the net wall area.

Wall aspect ratio:

The findings of several experimental studies, e.g. Matsumura (1987), Okamoto et al. (1987),
and Voon (2007) confirmed that masonry walls with lower aspect ratios exhibited shear
strengths that were larger than those for more slender masonry walls. The researchers
concluded that the shear strength enhancement was due to the more prominent role of arching
action in masonry walls with low aspect ratios, in which shear was mainly resisted by
compression struts (see Figure 2-16a).Voon and Ingham (2006) reported that the shear
resistance decreased by 15% when the wall aspect ratio increased from 1.0 to 2.0. A squat wall
specimen with an aspect ratio of approximately 0.6 showed a significant increase in shear
resistance (by over 100%) as compared to a specimen with aspect ratio of 1.0. The findings of
an experimental study by Okamoto et al. (1987) confirmed that the wall shear strength
increased by 20 to 30% when the aspect ratio decreased from 2.3 to 1.6 and from 2.3 to 0.9
respectively. A study of partially grouted masonry block walls by Schultz (1996) showed that a
decrease in the wall aspect ratio was reported to have a beneficial effect on the shear
resistance, that is, squat walls are expected to have larger shear resistance than flexural walls
of the same height. However, squat wall specimens also showed a reduced deformation
capacity and increased strength deterioration.

Steel shear resistance V,:

Shear reinforcement in masonry walls does not seem to be as effective as in concrete walls.

A possible explanation is that the reinforcing bars located where the inclined crack crosses near
the end of the bar are unable to develop their full yield strength in the masonry walls. To
account for this phenomenon, the New Zealand Masonry Standard NZS 4230:2004 (SANZ,
2004) prescribes a coefficient of 0.8 in the V_ equation, while CSA S304.1-04 uses a 0.6 factor.
This phenomenon is particularly pronounced in short walls where it is likely that the length of the
shear reinforcement is insufficient to fully develop its yield strength.

It should be acknowledged that horizontal reinforcement in masonry walls usually does not have
as good anchorage as the corresponding reinforcement in concrete walls. Anderson and
Priestley (1992) have noticed that straight bars or 90° hooks were used in some experimental
studies (see Figure B-2a), whereas the horizontal reinforcement in concrete walls is usually
anchored in a more effective way, that is, by means of 180° hooks. The type and extent of
anchorage are expected to influence the effectiveness of shear reinforcement. Anderson and
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Priestley also found that shear strength didn’t show any correlation with the vertical
reinforcement ratio.

According to some researchers (Shing et al., 1990; Tomazevic, 1999; Voon, 2007), a fraction of
the wall shear resistance can be attributed to the presence of vertical reinforcement. Dowel
action in vertical reinforcing bars enables shear transfer across a diagonal crack by the localized
kinking in reinforcing bars due to their relative displacement (see Figure B-2b) (note that
compression kinks cancel out some of the tension kinks). However, once the vertical
reinforcement yields, as it would in the plastic hinge zone of ductile walls, its contribution to the
shear resistance drops significantly, so CSA S304.1 ignores its contribution to the wall shear

resistance.
lP P
Y
V—s V —
x W
K . 1 \L
l: ‘\\ “"x 1
l: “%% “"H 1
l: M’;‘
l: ‘”*g‘l W
< N P
| | P11 1 |

a) b)

Figure B-2. Wall reinforcement contributing to shear resistance: a) horizontal reinforcement
acting in tension; b) dowel action in vertical reinforcement (Tomazevic, 1999, reproduced by
permission of the Imperial College Press).

B.2 Ductile Seismic Response

A prime consideration in seismic design is the need to have a structure that is capable of
deforming in a ductile manner when subjected to several cycles of lateral loading well into the
inelastic range. This section explains a few key terms related to ductile seismic response,
including ductility ratio, curvature, plastic hinge, etc. It is very important for a structural designer
to have a good understanding of these concepts before proceeding with the seismic design and
detailing of ductile masonry walls according to CSA S304.1.

Ductility is a measure of the capacity of a structure or a member to undergo deformation beyond
yield level, while maintaining most of its load-carrying capacity. Ductile structural members are
able to absorb and dissipate earthquake energy by inelastic (plastic) deformations that are
usually associated with permanent structural damage. These inelastic deformations are
concentrated mainly in regions called plastic hinges. In general, plastic hinges develop in shear
walls responding in the flexural mode and are typically formed at their base. An example of a
plastic hinge formed in a reinforced masonry wall subjected to seismic loading is shown in
Figure 2-8a. The concept of ductility and ductile seismic response was introduced in Section
1.4.3.
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A common way to quantify ductility in a structure is through the displacement ductility ratio z, .
This is the ratio of the maximum lateral displacement experienced by the structure at the
ultimate (A, ), to the displacement at the onset of inelastic response (A, ) (see Figure 1-5c).

Next, the concept of curvature will be explained by an example of a reinforced masonry shear
wall subjected to bending due to a shear force applied at the top, as shown in Figure B-3a.
Consider a wall segment ABCD of unit height. This segment deforms due to bending moments,
so sections AB and CD rotate by a certain angle relative to their original horizontal position
(these deformed sections are denoted as A'B’ and C'D’). Rotation between the ends of the
segment defines the curvature ¢, as shown in Figure B-3b. Curvature represents relative
section rotations per unit length. It should be noted that curvature is directly proportional to the
bending moment at the wall section under consideration, if the section remains elastic.

Consider any section CD that undergoes curvature ¢, as shown in Figure B-3c. Strain
distribution along the wall section is defined by the product of curvature and the distance from
the neutral axis, located by the depthc. The maximum compressive strain in masonry &, is
given by

unit
height

—
e € o c)

Eﬁ)ﬁﬂl Em
/

Figure B-3. Curvature in a shear wall subjected to flexure: a) wall elevation; b) deformed wall
segment ABCD; c) strain distribution along the section CD.

For the seismic design of reinforced masonry walls, it is of interest to determine curvatures at
the following two stages: the onset of steel yielding and at the ultimate stage. Consider a
reinforced masonry wall section subjected to axial load and bending shown in Figure B-4a.
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Yield curvature ¢, corresponds to the onset of yielding characterized by tensile yield strain &,
developed in the end rebars, as shown in Figure B-4b, where

y

l,—-d'—c

Ultimate curvature ¢, corresponds to the ultimate stage, when the maximum masonry
compressive strain ¢, has been reached. The maximum ¢ value has been limited to 0.0025
by CSA S304.1-04 (see Figure B-4c) to prevent damage to the outer blocks in the plastic hinge

region. Note that the neutral axis depth ¢ is going to decrease as more of the reinforcement has
yielded (see Figure B-4c).
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Figure B-4. Curvature in a reinforced masonry wall section: a) wall cross section; b) yield
curvature; c) ultimate curvature; d) moment-curvature relationship.

The curvature value depends on the load level, the section geometry, the amount and
distribution of reinforcement, and the mechanical properties of steel and masonry. An actual
moment-curvature relationship for ductile sections is nonlinear, however it is usually idealized by
elastic-plastic (bilinear) relationship, as shown in Figure B-4d.

Once the curvatures at the critical stages have been determined, the curvature ductility ratio z,
can be found as follows
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When the curvature distribution along a structural member (e.g. shear wall) is defined, rotations
and deflections can be calculated by integrating the curvatures along the member. This can be
accomplished in several ways, including the moment area method.

Rotations and deflections in a masonry shear wall at the ultimate state can be determined
following the approach outlined above. Consider a cantilevered shear wall of length |, and
height h,,, and the plastic hinge length |, (see Figure B-5a). The wall is subjected to a seismic
shear force at the top, which results in a correspondlng bending moment diagram as shown in
Figure B-5b. The curvature diagram shown in Figure B-5c has two distinct portions: an elastic
portion, with the maximum curvature equal to the yield curvature ¢, , and the plastic portion with
the maximum curvature equal to the ultimate curvature ¢, . Note that the elastic portion of the
curvature diagram has the same shape as the bending moment diagram (since the curvatures
and bending moments are directly proportional). The actual curvature distribution in the plastic
region varies in a nonlinear manner, as shown in Figure B-5c. For design purposes, the
curvature can be taken as constant over the plastic hinge length Ip (note that the areas under
the actual and the equivalent plastic curvature are set to be equal). The elastic rotation 6, and
the plastic rotation @, are presented in Figure B-5d. The plastic rotation can be determined as
the area of the equivalent rectangle of width ¢, —¢, and height |/, as shown in Figure B-5c.
These rotations can be calculated from the curvature diagram as Follow

6,=0, +¢9p
where
g, =¥
2
99 =((/’u _(Py)'lp

The maximum deflection A, at the top of the wall is shown in Figure B-5d. This deflection has
two components: elastic deflection Aycorrespondlng to the yield curvature ¢, , and the plastic
deflection A due to a rigid body rotation, since bending moments do not mcrease once the
yielding has taken place. Deflection values can be found by taking the moment of the curvature
area around point A, as follows:

_ ¢th . 2hW _ ¢th2
y 2 3 3

A, =(§0u _(Dy)'lp(hw_o'ap)

A, =A, +A,
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Figure B-5. Shear wall at the ultimate: a) wall elevation; b) bending moment diagram;
c¢) curvature diagram; d) deflections.

The above equations can be used to determine the displacement ductility ratio , , in terms of
the curvature ductility x, and other parameters, as follows:

A, ! |
=2u —143(y, 1) = | 1-05-2
/JA Ay (/J(p {hWJ( hW]

Alternatively, the curvature ductility ratio 1, can be expressed in terms of the displacement
ductility ratio, as follows:

H, :&: hw (IUA _1) +1
o, 3l (h,~05l)

It should be noted that 1, and g, values are different for the same member. Once the yielding
has taken place, the deformations concentrate at the plastic hinges, so the curvature ductility

is expected to be larger than the displacement ductility x, . This difference is more pronouncedw
in walls with larger displacement ductility ratios.

B.3 Ductility Check

CSA S304.1-04 prescribes ductility check for certain classes of ductile masonry shear walls, as
discussed in Section 2.5.4.3 of this document. Masonry design standards in other countries also
contain ductility check provisions. For example, the New Zealand Masonry Standard NZS
4230:2004 (SANZ, 2004) CI. 7.4.6 prescribes the C/I limit of 0.2 for limited ductile cantilever
walls (provided that h / < 3). The same limit was prescribed by the 1994 version of CSA
S304.1. (Note that limited ductility walls according to the NZS 4230 are characterized by the
displacement ductility of 2.0). It should be noted that the NZS 4230 prescribes maximum strain
limits for unconfined and confined masonry of 0.003 and 0.008 respectively. The standard also
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includes a provision for confining plates in plastic hinge regions as a means of confining the
compression zone of the wall section and enhancing its ductile performance (NZS 4230:2004
Cl.7.4.6.5). The seismic design provisions for reinforced concrete shear walls in CSA A23.3-04
also prescribe C/IW limits for shear walls at different ductility levels.

B.4 Wall Height-to-Thickness Ratio Restrictions

Paulay and Priestley (1992, 1993) developed an analytical model, which offers a means to find
the minimum wall thickness required to avoid out-of-plane instability. This thickness depends on
several parameters, including the vertical reinforcement ratio, desired curvature and
displacement ductility ratios, plastic hinge length, and the mechanical properties of steel and
masonry. Paulay and Priestley also performed an experimental study to confirm their analytical
model. They tested a few reinforced concrete shear wall specimens and a concrete masonry
wall specimen. The masonry wall specimen failed by out-of-plane buckling at a very large
displacement ductility z, of around 14.

The application of this procedure will be illustrated on an example of a reinforced masonry wall.
The equation for the critical wall thickness b, is as follows (Paulay and Priestley, 1992)

b, =0.0221,,./1,

Curvature ductility, x,, is related to displacement ductility, x, , as shown in Section B.3. The
plastic hinge length Ip is taken equal to hW/6, and so the equation can be simplified as follows

The displacement ductility ratio z, can be considered equal to R, prescribed by NBCC 2005 for
different SFRSs (note that x, values in the range from 2.0 to 3.0 are considered in this
example). By following the above procedure, it is possible to obtain the b, /I, ratios
corresponding to different x, values. The results are summarized in Table B-1.

For example, if the wall length |, is equal to 5,000 mm, the corresponding critical thickness b, is

equal to 150 mm for u, = 2.0, or 230 mm for x, = 3.0. Paulay and Priestley suggest that the
critical wall thickness should be expressed as a fraction of the wall length rather than its height.

Table B-1. Critical Wall Thickness b, Versus the Displacement Ductility Ratio z,

Ha Hy Iw/bc
2.0 2.2 31
2.5 3.3 25
3.0 4.4 22

Findings of this research were incorporated in the seismic design provisions for reinforced
concrete shear walls in New Zealand and Canada (CSA A23.3 first introduced these provisions
in its 1994 edition). The New Zealand masonry design standard (NZS 4230:2004) also includes
provisions, which restrict the thickness of reinforced masonry shear walls; however these
provisions are somewhat less stringent than the current Canadian provisions. NZS 4230:2004
prescribes the following minimum thicknesses for limited ductility walls ( z, of 2.0) and ductile
walls ( z, of 4.0):
1. For walls up to 3 storeys high (Cl.7.4.4.1 and 7.3.3), minimum thickness t should not be
less than L, /20 (or 0.05L,), where L, denotes clear vertical distance between lines of
effective horizontal support or clear horizontal distance between lines of effective vertical
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support. Commentary to CI.7.3.3 states that “for a given wall thickness, t, and the case
when lines of horizontal support have a clear vertical spacing of L, > 20t , then vertical lines
of support having a clear horizontal spacing of L, <20t shall be provided.”

2. For walls more than 3 storeys high (CI.7.4.4.1) minimum thickness t shall not be less than
L,/13.3 (or 0.075L,). However, a larger wall thickness can be used provided that one of
the following conditions is satisfied (maximum strain in masonry ¢, is equal to 0.003
according to NZS 4230:2004) (see Figure 2-28):

a) c<4t or

b) ¢<0.3l, or
c) c<6tfrom the inside of a wall return of a flanged wall, which has a minimum length
0.2L,.

The relaxed thickness requirement applies to the cases where the neutral axis depth is small,
and so the compressed area may be so small that the adjacent vertical strips of the wall will be
able to stabilize it. This is likely the case with rectangular walls subjected to low axial
compression. (The same criteria for relaxed thickness restrictions are included in the seismic
provisions for reinforced concrete design CSA A23.3-04 Cl.21.6.3.)

Commentary to NZS 4230 CI.7.4.4.1 states that it is considered unlikely that failure due to
lateral instability of the wall will occur in structures less than 3 storeys high, because of the rapid
reduction in flexural compression with height. This is also in line with the statement made by
Paulay (1986), that out-of-plane stability is likely to take place in walls with large plastic hinge
length (one storey or more). According to CSA S304.1 CI.10.16, plastic hinge length is related to
the wall height (on the order of h,/6), and so a large plastic hinge length would not be
expected in shear walls found in low-rise masonry buildings.

Paulay and Priestley (1992) stated that “where the wall height is less than three storeys, a
greater slenderness should be acceptable. In such cases, or where inelastic flexural
deformations cannot develop, the wall thickness t need not be less than 0.05L,” (where
L, denotes clear wall length between the supports).

FEMA 306 (1999) also discusses the issue of wall instability. This document also refers to the
procedure by Paulay and Priestley (1993) and provides the following recommendation for
minimum wall thickness in ductile walls ( z, of 4.0):

t<lI,/24 or t<h/18

Note that the above requirement, which applies to the walls with displacement ductility ratio
(u,) equal to 4.0, is the same as the CSA S304.1-04 requirement for limited ductility walls with
R, equal to 1.5.

FEMA 306 (1999) also points out that “the lack of evidence for this type of failure in existing
structures may be due to the large number of cycles at high ductility that must be achieved —
most conventionally designed masonry walls are likely to experience other behaviour modes
such as diagonal shear before instability becomes a problem.”

B.5 Grouting

Limited experimental research evidence indicates that fully grouted reinforced masonry walls
demonstrate higher ductility and strength under cyclic lateral loads than otherwise similar
partially grouted specimens. Ingham et al. (2001) reported the results of an experimental study
of twelve full-scale reinforced masonry wall specimens subjected to an in-plane cyclic lateral
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load. Of the twelve specimens, nine were partially grouted, and three were fully grouted. The
walls were reinforced with 12 mm diameter vertical reinforcing bars spaced at 800 mm on centre
(25% grouted cores), with a bond beam at the top of the wall. The wall thickness varied from 90
mm to 190 mm, which resulted in height/length aspect ratios ranging from 0.57 to 1.33. The
walls were not subjected to any external axial load. The walls were designed to fail in the
diagonal shear mode. The test results showed that the fully grouted wall specimens
demonstrated significantly higher displacement ductility (on the order of 6.0) than the otherwise
identical partially grouted specimens (4.0). It should be noted that all of the partially grouted
specimens achieved a displacement ductility of 2.0 or higher. A possible reason for the higher
ductility in the fully grouted wall specimens is that they ultimately failed in the sliding shear
mode, which is characterized by large deformations at the base of the wall. The partially grouted
specimens failed in the shear/diagonal tension mode. Force-displacement responses for a
partially grouted Wall 2 and a fully grouted Wall 3 specimen are shown in Figure B-6. Note that
the specimen dimensions were identical: 2600 mm length x 2400 mm height x 2700 mm nominal
thickness.

It is important to note that none of the twelve specimens exhibited a sudden failure, as is
typically associated with conventional (diagonal tension) shear failure; instead, gradual strength
degradation was observed. The findings of related experimental studies by Voon and Ingham
(2006) and Schultz (1996) were reported in Section B.1.
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Figure B-6. Force-displacement responses for partially grouted (left) and fully grouted (right)
wall specimens (Ingham et al., 2001, reproduced by permission of the Masonry Society).
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C Relevant Design Background

This appendix contains additional information relevant for masonry design as discussed in
Chapter 2, but it is not directly related to the seismic design provisions of CSA S304.1-04.
Applications of design methods and procedures presented in this appendix can be found in
Chapter 4, which contains several design examples. The appendix addresses in detail a few
topics of interest to masonry designers, e.g., the calculation of in-plane wall stiffness including
the effect of cracking, and force distribution in perforated shear walls. However, modeling and
analysis of multi-storey perforated shear walls have not been covered in this document.

C.1 Design for Combined Axial Load and Flexure

C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading

10.2

Seismic shear forces acting at floor and roof levels cause overturning bending moments in a
shear wall, which reach a maximum at the base level. In general, shear walls are subjected to
the combined effects of flexure and axial gravity loads. The theory behind the design of masonry
wall sections subjected to effects of flexure and axial load is well established, and is essentially
the same as that of reinforced concrete walls. A typical reinforced masonry wall section is
shown in Figure C-1a, along with the distribution of internal forces and strains arising from the
axial load and moment. According to CSA S304.1-04, the strain distribution along the wall
length is based on the assumptions that the wall section remains plane and that the maximum
compressive masonry strain ¢, is equal to 0.003 (see Figure C-1b). Figure C-1c shows the
distribution of internal forces on the base of the wall, as well as the axial load, P; and the
bending moment, M . In the compression zone, the equivalent rectangular stress block has a
depth a, and a maximum stress intensity of 0.85y¢, ' . Note that the y factor assumes the
value of 1.0 for members subjected to the compression perpendicular to the bed joints, such as
structural walls (S304.1 CI.10.2.6). Each reinforcing bar develops an internal force (either
tension or compression), equal to the product of the factored stress and the corresponding bar
area. The internal vertical forces must be in equilibrium with P, , and the factored moment
capacity M, can be determined by taking the sum of moments of the internal forces around the
centroid of the section.

The following three design scenarios and the related simplified design procedures will be
discussed in this section:
1. Wall reinforcement (both concentrated and distributed) and axial load are given — find
moment capacity
2. Wall is reinforced with distributed reinforcement only — find moment capacity
3. Wall reinforcement needs to be estimated (factored bending moment and axial force are
given)

The first two are applicable for the common situations where a designer assumes the minimum
seismic reinforcement amount and desires to find its moment capacity.

Approximate design approaches that can be used to assist designers in each of these scenarios

are presented below. For detailed analysis and design procedures, the reader is referred to
Drysdale and Hamid (2005) and Hatzinikolas and Korany (2005).
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Figure C-1. A reinforced masonry shear wall under the combined effects of axial load and
flexure: a) plan view cross section; b) strain distribution; c) internal force distribution.

C.1.1.1 Moment capacity for the section with concentrated and distributed
reinforcement

Rectangular section

A simplified wall design model is shown in Figure C-2. The wall reinforcement can be divided
into:

e Concentrated reinforcement at the ends (area A, at each end), and

¢ Distributed reinforcement along the wall length (total area A,).

It is assumed that the concentrated wall reinforcement yields either in tension or in compression
at the wall ends. Also, it is assumed that the distributed reinforcement yields in tension.

A procedure to find the factored moment capacity M, for a shear wall with a given vertical
reinforcement (size and spacing) is outlined below.

From the equilibrium of vertical forces (see Figure C-2b), it follows that

P,+T,+T,-C,-C_ =0 (1)
where
=g, f, A
T2 :¢sfyAd

C,=(0.85¢, ' )t-a)
The compression zone depth, a, can be determined from equation 1 as follows
P + ¢, fyAd

T 0.854 't (%)
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S, =0.8 when f' <20MPa (note that S, value decreases when f' >20MPa, as prescribed
in S304.1 CI.10.2.6)

The neutral axis depth, ¢, measured from the extreme compression fibre to the point of zero
strain is given by

C= a//g1
Next, the factored moment capacity, M, can be determined by summing up the moments
around the centroid of the wall section (point O) as follows

L =C.( —a)/2+2[¢5 y C( /2—d')} (3)

where d’ is the distance from the extreme compression fibre to the centroid of the concentrated
compression reinforcement.

(e
ik f’-(
IAC

T
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Figure C-2. A simplified design model for rectangular wall section: a) plan view cross-section
showing reinforcement; b) internal force distribution.

In case of squat shear walls, CSA S304.1-04 prescribes the use of a reduced effective depth
d for flexural design, i.e.

d =0.671, <0.7h

As a result, the moment capacity should be reduced by taking a smaller lever arm for the tensile
steel, as follows

o=C_( —a)/2+[¢sfyAC w/2- d)} [¢SfyAc( —'W/Z)} (4)
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Note that the reinforcement area A, in squat walls should be increased to provide more than
one reinforcing bar, since the end zone constitutes a larger portion of the overall wall length in
these cases.

The CSA S304.1-04 provision for the reduced effective depth in squat walls contained in
Cl.10.2.8 is intended to account for the effect of the deep beam behaviour of squat walls. This
provision makes more sense for non-seismic design, and it should not be used if the tension
steel yields in seismic conditions.

Flanged section

In case of the flanged wall section shown in Figure C- 3, the factored moment capacity M, can
be determined by summing up the moments around the centroid of the wall section (point O) as
follows

M, :Cm(lw/z_x)+2(¢s fyAc)(Iw/z_d')

where
A —b, *t+t?
s t
Ct*(@%/2)+ (b, -(t?/2)
X = A
A, is the area of the compression zone.
= t b=
] @7/{1};
| (.
_a
0.85 b frn TTTFTR
C3=¢55=A€T TC
I(X,.I [Wj/z e IW/E =

a) b)

Figure C- 3. A simplified design model for flanged wall section.
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C.1.1.2 Moment capacity for rectangular wall sections with distributed vertical
reinforcement
The previous section discussed a general case of a shear wall with both concentrated and
distributed vertical reinforcement. In low- to medium-rise concrete and masonry wall structures,
the provision of distributed vertical reinforcement is often sufficient to resist the effects of
combined flexure and axial loads (see Figure C-4a). The factored moment capacity for walls
with distributed vertical reinforcement can be determined based on the approximate equation
proposed by Cardenas and Magura (1973), which was originally developed for reinforced
concrete shear walls. The equation was derived based on the assumption that the distributed
wall reinforcement shown in Figure C-4b can be modeled like a thin plate of length |, (equal to
the wall length), and the thickness is such that the total area A, is the same as that provided by
distributed reinforcement along the wall length (see Figure C-4b). The factored moment capacity
can be determined as follows:

M =054 fAl|1e—t [1-C 5
r— '¢s yA\/tw +¢Sfp\,( _I_ ()

y w

where

A, - the total area of distributed vertical reinforcement
C - neutral axis depth

A,
¢mf'm IW‘t

a = Pf
¢mflm IW‘t

i ot+ta

l, 20+ o, B

a, =085 and S, =0.8
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Figure C-4. Shear wall with distributed vertical reinforcement: a) vertical elevation; b) actual
cross section; ¢) equivalent cross-section.
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C.1.1.3 An approximate method to estimate the wall reinforcement

Consider a wall cross-section shown in Figure C-5a. In design practice, there is often a need to
produce a quick estimate of wall reinforcement based on the given factored loads. In this case,
the loads consist of the factored bending moment M  and axial force P; acting at the centroid
of the wall section (point O).

The goal of this procedure is to find the total area of wall reinforcement A, . To simplify the
calculations, an assumption is made that the reinforcement yields in tension and that the
resultant force T, acts at the centroid of the wall section, that is, (see Figure C-5b)

T, =g, A (6)
An initial estimate for the compression zone depth acan be made as follows
a=0.3l,

|- IW |
= =1

][]

b)

r Cm
|

l c (fw-ﬂ}/2 =

Figure C-5. Reinforcement estimate: a) plan view wall cross-section; b) distribution of internal
forces.

Next, compute the sum of moments of all forces around the centroid of the compression zone
(point C), as follows
M, -P(l,-a)/2-T (I, -a)/2=0
From the above equation it follows that
-I-_Ivlf_l:)f(lw_a)/2 (7
r (I, -a)/2
The area of reinforcement can then be determined from equation (7) as follows

As :Tr/¢s fy

The area of reinforcement can be chosen to be equal to or larger than that estimated by this
procedure. A uniform reinforcement distribution over the wall length is recommended for seismic
design, since research studies have shown that shear walls with uniform reinforcement
distribution show better seismic response in the post-cracking range. In addition, the seismic
detailing requirements for vertical reinforcement need to be followed.
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C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading

Masonry walls are subjected to the effects of seismic loads acting perpendicular to their surface
— this is called out-of-plane seismic loading. For design purposes, wall strips of a predefined
width are treated as beams spanning vertically or horizontally between lateral supports. When
the walls span in the vertical direction, floor and/or roof diaphragms provide the lateral supports.
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Walls can also span
horizontally, in which case the
lateral supports need to be
provided by cross walls or
pilasters, as shown in Figure C-
6. Note that support on four
edges is very efficient, since
these walls behave as two-way
slabs.

Figure C-6. Masonry walls under out-of plane seismic loads: a) spanning vertically between
floor/roof diaphragms; b) spanning horizontally between pilasters.
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Consider a reinforced concrete masonry wall subjected to the effects of factored axial load
P, and bending moment M , as shown in Figure C-7a. The wall is reinforced vertically, with
only the reinforced cores grouted. It is assumed that the size and distribution of vertical
reinforcement are given. The notation used in Figure C-7b is explained below:

t - overall wall thickness (taken as actual block width, e.g. 140 mm, 190 mm, etc.)

t, - face shell thickness
b - effective width of the compression zone (see Section 2.4.2 and Figure 2-19)
d - effective depth, that is, distance from the extreme compression fibre to the centroid of

the wall reinforcement; typically, the reinforcement is placed in the middle of the wall section,
o

d=t/2
A, - total area of steel reinforcement placed within the effective width b

It is assumed that the steel has yielded, that is, &, > gy, and the corresponding stress in the
reinforcement is equal to the yield stress, fy . This is a reasonable assumption for low-rise
masonry buildings, since the axial load is low and the walls are expected to fail in the steel-
controlled mode. The design procedure is outlined below.

The resultant forces in steel T, and masonry C_ can be determined as follows:
TI‘ = ¢S fyAs
C, =(0.854, f' )Yb-a)

The equation of equilibrium of internal forces gives (see Figure C-7d)

C,=P; +T,
e The depth of the compression stress block a is equal to
a= _ Cn (8)
0.85¢,f' b

The moment resistance can be found from the following equation
M' =C,(d-a/2) 9
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Figure C-7. A wall under axial load and out-of-plane bending: a) vertical section showing
factored loads; b) plan view of a wall cross-section; ¢) strain distribution; d) internal force
distribution.

For partially grouted wall sections (where only reinforced cores are grouted), the designer needs
to confirm that
ast,

When the above relation is correct, then the compression zone is rectangular, as shown in
Figure C-8a. Note: in solidly grouted walls, the compression zone is always rectangular!

When a =>t,, the compression zone needs to be treated as a T-section and an additional
calculation is required to determine the a value. The following equations can be used to
determine the moment resistance in sections with a T-shaped compression zone:

e The resultant force in the steel T, can be determined as follows:

Tr :¢s fyAs
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e The resultant force in the masonry, C_, acts at the centroid of the compression zone and
can be determined from the equation of equilibrium of internal forces, that is,

C,=P +T,
Once the compression force in the masonry is found, the area of the masonry compression
zone, A, (see Figure C-8b), is given by
Cp =(0.854, ') A,
e The depth of the compression stress block a can be found from the following equation
where
b,, = width of the grouted cell plus the adjacent webs
e The distance from the extreme compression fibre to the centroid of the compression zone a

is equal to
b-(tf2/2)+(a—tf)-[tf + a;t‘j
a= X (10)
Jee b =
\ tf‘ Il/- /ll I dha% ;;Zl ﬁn Il-d
JECTETEE -4 T S
] r
< S -]
a) astly T-section
. b —4Am_
. |
/y E = - a : Q“ E Cn | -
o Gt 721 I i N i S .2 = e W/ o 7
b | &
= ]rV.__
b) a > tf

e S (tributary wall width) _
- b (effective compre;.jffon width)

o T i ) [ o

= S >

c)

Figure C-8. Masonry compression zone: a) rectangular shape; b) T-shape; c) effective width
and tributary width.
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e The moment resistance can be found from the following equation
M', =C,(d-2a) (11)

Note that M', denotes the moment capacity for a wall section of width b . It is usually more
practical to convert the M', value to a unit width equal to 1 metre (see Figure C-8c), as follows

M, =M’ (1.0/s) (12)

where
S - spacing of vertical reinforcement expressed in metres (where b<s)

M, - factored moment capacity in KNm/m.

The design of masonry walls subjected to the combined effects of axial load and bending is
often performed using P-M interaction diagrams. The axial load capacity is shown on the vertical
axis of the diagram, while the moment capacity is shown on the horizontal axis. The points on
the diagram represent the combinations of axial forces and bending moments corresponding to
the capacity of a wall cross-section. An interaction diagram is defined by the following four
distinct points and/or regions: i) balanced point, ii) points controlled by steel yielding, iii) points
controlled by masonry compression, and iv) pure compression (zero eccentricity). A conceptual
wall interaction diagram is presented in Figure C-9.

P.
il
_tied
Rmax____ e
P T e 3
Fmax : *
~untied _
1
0

- pure bending

Figure C-9. P-M interaction diagram.

1. Balanced point

At the load corresponding to the balanced point, the steel has just yielded, that is, ¢, = ¢, . The
position of the neutral axis ¢, can be determined from the following proportion (see Figure C-7
c):

Cb _gm
d-c, &,
or

&
C, =d(—"—)
Em T &,
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For fy =400 MPa and &, = 0.002 it follows that
c, = 0.6d

2. Points controlled by steel yielding

For ¢ <c,, the steel will yield before the masonry reaches its maximum useful strain (0.003).
Since the steel is yielding, it follows that &, > ¢ . The designer needs to assume the neutral
axis depth (c) value so that ¢ < c,. The compression zone depth can then be calculated as
a=p,c=0.8c (thisis validfor f, <20MPa according to S304.1 Cl.10.2.6). Combinations of
axial force and moment values corresponding to an assumed neutral axis depth can be found
from the following equations of equilibrium (see Figure C-7d)

P=C,-T,

where

T, =4, fyAs (note that the stress in the steel is equal to fy since the steel is yielding)

Moment resistance depends on the shape of the masonry compression zone, that is, on
whether the section is partially or solidly grouted.

o For a solidly grouted section or a partially grouted section with the compression zone in the
face shells only:

M’ =C,(d -a/2)

where

C,=(0.85¢, ', )b-a)

o For a partially grouted section with the compression zone extending into the grouted cells:
M Ir = Cm (d - a)

where

C,=(085¢,f',) A,

3. Points controlled by masonry compression

For ¢ > c,, the steel will remain elastic, that is, ¢, < &y and fS < fy , While the masonry reaches
its maximum strain of 0.003. The designer needs to assume the neutral axis depth (¢) value so
that ¢ > ¢, , and the strain in steel can then be determined from the following proportion (see
Figure C-7 c):

thus

%)
& =é&n| ——
c

The stress in the steel can be determined from Hooke’s Law as follows

f, =E,*¢, (note that steel stress f, < f )

where E; is the modulus of elasticity for steel. The equations of equilibrium are the same as
used in part 2 above, except that

TI’ = ¢S fS AS

The point corresponding to ¢ =1t/2 is considered as a special case. At that point, the strain
distribution is defined by the following values

&, =0.003 and ¢, =0
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thus
T =0

4. Pure compression (zero eccentricity)

In the case of pure axial compression (S304.1 CI.10.4) the axial load resistance for untied
sections can be determined as follows:

P. =0.85¢,, f A, actual axial compression resistance

and

P. ..« = 0.8P. design axial compression resistance

r max
According to S304.1 C1.10.2.7, when the steel bars are tied by means of joint reinforcement,
then the steel contribution can be considered for the compression resistance. The design
equation for tied wall sections is as follows:

Pr = 085¢m fn: (Ae - As) + ¢s fyAs
and
P. .. =0.8P

r max r

C.2 Wall Intersections and Flanged Shear Walls

Flanged shear wall configurations are encountered when a main shear wall intersects a cross-
wall (or transverse wall). Examples of flanged walls in masonry buildings are very common,
since the bearing wall systems often consist of walls laid in two orthogonal directions. Also, in
medium-rise wood frame apartment buildings, elevator shafts are usually of masonry
construction, and the intersecting masonry walls that form the core can be considered as
flanged walls.

In flanged shear walls, a portion of the cross wall is considered to act as the flange, while the
main shear wall acts at the web. Depending on the cross-wall configuration, flanged shear walls
may be of I, T- or L-section. An I-section is characterized by the two end flanges, similar to that
in Figure C-10 (left), a T-section is characterized with one flanged end and other rectangular/
non-flanged end, while a L-section is characterized by one flanged end (similar to that shown in
Figure C-10 right), and other rectangular-shaped (non-flanged) end. Design codes prescribe the
maximum effective flange width that may be considered in the shear wall design. The CSA
S304.1 requirements for overhanging flange widths for these wall sections are summarized in
Table C-1 and Figure C-10. For masonry buildings with substantial flanges the height ratio limits
will usually govern.
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Table C-1. Overhanging Flange Width Restrictions for T- and L- Section Walls per CSA S304.1
ClL.10.6.2

T-sections (b, ) L-sections (b, ) where
b, < the smallest of: b, < the smallest of: D,a - actual overhang/fiange width
a) b a) b a,, - clear distance between the
actual actual
adjacent cross walls
b) a,/2 b) a,/2 t - actual flange thickness
c) 6 c) 6 h,, - wall height
d h,/12 d h,/16

MW
>

== Dactual

Figure C-10. CSA S304.1 flange width requirements.

7.11
10.11

Flanges do not contribute significantly to the shear resistance of flanged walls, but they
generally enhance the in-plane flexural capacity. However, flanges can be considered to be
effective in resisting the applied loads only if the web-to-flange joint is capable of transferring the
vertical shear. According to CSA S304.1 CIL.7.11, the following alternative approaches can be
used to ensure the effective shear transfer across the web-to-flange connection in both
unreinforced and reinforced masonry walls (see Figure C-11):
a) Bonded intersections - 50% of the units of one wall embedded at least 90 mm in the
other wall (CI1.7.11.1).
b) Mechanical connection with steel connectors (e.g. anchors, rods, or bolts) at a maximum
spacing of 600 mm (Cl.7.11.3), and
c) Fully grouted keyways or recesses, with a minimum of two 3.65 mm diameter steel wires
from joint reinforcement spaced at 400 mm vertically (Cl.7.11.2).

4/1/2009 C-15



d) Fully grouted bond beam intersections with15M reinforcing bars spaced as required; this
is not explicitly prescribed by CSA S304.1-04, but it is in line with the approach c)
outlined in Cl.7.11.3. The bars should be detailed to develop the full yield stress on each
side of the intersection.
Note that CI.10.11.2 does not permit the use of rigid anchors (approach b) for portions of
reinforced masonry shear walls in which the flanges contain tensile steel and are subject to axial
tension, but alternative solutions are permitted.

Vertical shear resistance of the flanged walls must be checked by one of the following methods:
o For bonded intersections achieved by approach a), vertical shear at the intersection shall
not exceed the out-of-plane masonry shear resistance (Cl.7.10.2).

¢ For flanged sections with the mechanical steel connectors (approach b), the connectors
must be capable of resisting the vertical shear at the intersection. The connector resistance
should be determined according to CSA A370-04.

e For flanged sections with the horizontal reinforcement (approaches ¢ and d), the
reinforcement must be capable of resisting the vertical shear at the intersection.

_D _D
% _—web |I|

50% uni D n | ~steel anchor

mtarlocke 4 @600mmoc.

Inl.erm(;ke(}\:&/ // ﬂa nge 2450 mm mm o.c.
a) b)

min No. 9 ASWG
ladder-type joint
reinforcement
@400 mm o.c.

L]
(]
ﬁ,-:- 15M rebar

ey R

c) d)

Figure C-11. Masonry wall intersections: a) bonded intersections; b) mechanical connection;
¢) horizontal joint reinforcement; d) horizontal reinforcing bars (bond beam reinforcement).
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Where wall intersections are not bonded and rigid steel connectors are not used, the factored
shear resistance of the web-to-flange joint shall be based on the shear friction resistance taken
as

Vr = ¢mluch

where
1 =1.0 coefficient of friction for the web-to-flange joint

C, =compressive force in the masonry acting normal to the head joint, normally taken as the
factored tensile force at yield of the horizontal reinforcement that crosses the vertical section.
The reinforcement must be detailed to enable it to develop its yield strength on both sides of the
vertical masonry joint, which may be hard to achieve in practice.

| Commentary

The provisions related to flanged shear walls have not changed in CSA S304.1-04 from the
1994 edition, with the exception of the new Cl.7.11.4 related to the shear friction resistance of
wall intersections.

For flanged walls with horizontal reinforcement, resistance to vertical shear sliding is provided
by the frictional forces between the sliding surfaces, that is, the web and the flange of the wall.

The shear friction resistance V, is proportional to the coefficient of friction x, and the clamping
force C, acting perpendicular to the joint of height h (see Figure C-12a).

C, is equal to the sum of the tensile yield forces developed in reinforcement of area A, spaced
at the distances, that is,

Ch = ¢s fyAb h/s
In case of a flanged shear wall with openings, shear friction resistance V, is provided by wall
segments between the openings, as shown in Figure C-12b.

Reinforcement providing the shear friction resistance should be distributed uniformly across the
joint. The bars should be long enough so that their yield strength can be developed on both
sides of the vertical joint, as shown in Figure C-13b.

Clauses 7.11.1 to 7.11.3 list three approaches (a, b, and c) that can be used to ensure shear
transfer at the web-to-flange interface. In addition to the three approaches stated in CSA
S304.1-04, it is a common practice in Canada to use 15M reinforcing bars from intersecting
bond beams to provide shear resistance if needed (approach d). U.S. masonry design standard
ACI 530-08 CI.1.9.4.2.5 c) prescribes intersecting bond beams in intersecting walls at maximum
spacing of 1200 mm (4 ft) on centre. The bond beam reinforcement area shall not be less than
200 mm? per metre of wall height (0.1 in%ft), and the reinforcement shall be detailed to develop
the full yield stress at the intersection.
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Figure C-12. Shear friction resistance at the web-to-flange intersection: a) resistance provided
by the reinforcement; b) flanged shear wall with openings.

When the shear resistance of the web-to-flange interface relies on masonry only (see Figure C-
13a), the horizontal shear stress Vv, , due to shear force V,, can be given by:

Vf
V, =—

telW
where

t, - effective web width

- wall length

The designer should also find the vertical shear stress caused by the resultant compression
force Py :

_ Pi
b, *h,

The larger of these two values governs. The factored shear stress should be less than the
factored masonry shear resistance, ¢V, , as follows

Vf < ¢mvm

Vs
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where

v, =0.164 '

If the above condition is not satisfied, horizontal reinforcement needs to be provided

(see Figure C-13b), and the following shear resistance check should be used

Vf < ¢mvm +Vs

where v, is the factored shear resistance provided by the steel reinforcement, which can be
determined as follows:

. _BAT,
5-t,

where A, is area of horizontal steel reinforcement crossing the web-to-flange intersection at the
spacing S.

Note that the reinforcement that crosses the vertical section has to be detailed to develop yield
strength on both sides of the vertical masonry joint (see Figure C-13b).
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a) b)

Figure C-13. Shear resistance of the web-to-flange interface: a) bonded masonry intersection;
b) horizontal reinforcement at the intersection.
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C.3 Wall Stiffness Calculations

The determination of wall stiffness is one of the key topics in the seismic design of masonry
walls. Although this topic has been covered in other references (e.g. Drysdale and Hamid, 2006,
and Hatzinikolas and Korany, 2006), a few key concepts are discussed in this section. Section
C.3.2 derives expressions for the in-plane lateral stiffness of walls under the assumption that the
walls are uncracked. For seismic analysis it is expected that the walls will be pushed into the
nonlinear range, and so cracking will occur and the reinforcement will yield. The stiffness to be
used in seismic analysis should not be the linear elastic (uncracked) stiffness but some effective
stiffness that reflects the effect of cracking up to the yield capacity of the wall. Section C.3.5
gives some suggestions for the effective stiffness of shear walls responding in shear-dominant
and flexure-dominant modes.

C.3.1 Lateral Load Distribution

The distribution of lateral seismic loads to individual walls can be performed once the storey
shear forces have been determined from the seismic analysis. The flexibility of floor and/or roof
diaphragms is one of the key factors influencing the load distribution (for more details, see
Section 1.5.9 and Example 3 in Chapter 4). In the case of a flexible diaphragm, the lateral
storey forces are usually distributed to the individual walls based on the tributary area. In the
case of a rigid diaphragm, these forces are distributed in proportion to the stiffness of each wall.
In calculating the wall forces, torsional effects must be considered, as discussed in Section
1.5.9. The distribution of lateral loads (without torsional effects) in a single-storey building with a
rigid diaphragm is shown in Figure C-14.

KT K}_’ K:f
VKKK, VKKK, VKK, K,
of @ ®
KH
K.I H3
V

Figure C-14. Distribution of lateral loads to individual walls.

Wall stiffness is usually determined from the elastic analysis, and depends on wall height/length
aspect ratio, thickness, mechanical properties, extent of cracking, size and location of openings,
etc.
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C.3.2 Wall Stiffness: Cantilever and Fixed-End Model

Wall stiffness depends on the end support conditions, that is, whether a wall or pier is fixed or
free to move and/or rotate at its ends. Two models for wall stiffness include the cantilever model
and the fixed-end model shown in Figure C-15. In the cantilever model, the wall is free to rotate
and move at the top in the horizontal direction — this is usually an appropriate model for the
walls in a single-storey masonry building.

The stiffness can be defined as the lateral force required to produce a unit displacement, but it
is determined by taking the inverse of the combined flexural and shear displacements produced
by a unit load. It should be noted that flexural displacements will govern for walls with an aspect
ratio of 2 or higher. For example, the contribution of shear deformation in a wall with a
height/length aspect ratio of 2.0, is 16% for the cantilever model and 43% for the fixed-end
model. The stiffness equations presented in this section take into account both shear and
flexural deformations.

The stiffness of a cantilever wall or a pier can be determined from the following equation (see
Figure C-15 a):

(13)

The stiffness of a wall or a pier with the fixed ends can be determined from the following
equation (see Figure C-15 b):

K _ 1 (14)

SiCGE

where

h - wall height (cantilever model) or clear pier height (fixed-end model)

I, - wall or pier length

E, =850f, modulus of elasticity for masonry

The following assumptions have been taken in deriving the above equations:

G, =04E_ modulus of rigidity for masonry (shear modulus)

3
*
:te IW

| uncracked wall moment of inertia

5xt, %]
A=

where t, = effective wall thickness.

shear area (applies to rectangular wall sections only )
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Figure C-15. Wall stiffness models: a) cantilever model, and b) fixed-end model.

The wall stiffnesses for both models for a range of height/length aspect ratios are presented in
Table D-3. Note that the derivation of stiffness equations has been omitted since it can be found
in other references (see Hatzinikolas and Korany, 2005).

C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls

In most real-life design applications, walls are perforated with openings (doors and windows).
The seismic shear force in a perforated wall can be distributed to the piers in proportion to their
stiffnesses. This approach is feasible when the openings are very large and the stiffness of lintel
beams is small relative to the pier stiffnesses, or if the lintel beam is very stiff so that connected
piers act as fixed-ended walls. Figure C-16 illustrates the distribution of wall shear force V to
individual piers in direct proportion to their stiffness. Note that, according to this model, the wall
shear force is equal to the sum of shear forces in the piers, that is,

V=>V,

where

V, =K, *A, force in the pier i
Thus

V= Z(Ki *Ai)

If the floor diaphragm is considered to be rigid, it can be assumed that the lateral displacement
in all piers is equal to A, that is,

Ap=Ag =Ac =A

and so

V=0 K)*A

Thus

denotes the overall wall stiffness for the system.

4/1/2009 C-22



Therefore, the force in each pier is proportional to its stiffness relative to the sum of all pier
stiffnesses within the wall, as follows

V. =K, *A, =K, *L=V"‘L

2K 2K
This means that stiffer piers are going to attract a larger portion of the overall shear force. This
can be explained by the fact that a larger fraction of the total lateral force is required to produce
the same deflection in a stiffer wall as in a more flexible one.

v stiff lintel beam -
Tuf Jw Y v
|
[ 4 B C
| | —
@

b)

Figure C-16. Shear force distribution in a wall with a rigid diaphragm: a) wall in the deformed
shape: b) pier forces.

An approximate approach for determining the stiffness of a solid shear wall in a multi-storey
building is to consider the structure as an equivalent single-storey structure, as shown in Figure
C-17. The entire shear force is applied at the effective height, h,, defined as the height at which
the shear force V; must be applied to produce the base moment M, that is,

The wall stiffness is found to be equal to the reciprocal of the deflection at the effective height
A, , as follows

4/1/2009 C-23



K=1
A

e

This model, although not strictly correct, can be used to determine the elastic distribution of the
torsional forces as well as the displacements, as illustrated in Example 2 in Chapter 4.

T fp—
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|/
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hy i hey |
o BE ¢ |

Figure C-17. Vertical combination of wall segments with different stiffness properties.

Several different elastic analysis approaches can be used to determine the stiffness of a wall
with openings. A simplified approach suitable for the stiffness calculation of a perforated wall in
a single-storey building can be explained with the help of an example of the wall X; shown in
Figure C-18 (see also Example 3 in Chapter 4). For a unit load applied at the top, the wall
stiffness calculation involves the following steps:

o First, calculate the deflection at the top for a cantilever wall, considering the wall to be solid
(Aypg)-

. SOIQIdext, calculate the deflection for the strip containing openings (A, ), considering the full
wall length (i.e. ignore openings).

e Finally, calculate the deflection for the piers A, B, C, and D (A ,5cp) assuming that all piers
have the same deflection.

Note that the deflections for individual components are calculated as the inverse of their
stiffness values, and that the pier stiffnesses are determined assuming either the cantilever or
fixed-end models. In most cases, the use of the cantilever model is more appropriate.

Vs,
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strip{

Wall X,

Figure C-18. An example of a perforated wall.

The overall wall deflection can be determined by combining the deflections for these
components, as follows:
A=A g —Agriv + D agcn

solid strip
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Note that the strip deflection is subtracted from the solid wall deflections - this removes the
entire portion of the wall containing all the openings, which is then replaced by the four
segments.

Finally, the wall stiffness is equal to the reciprocal of the deflection, as follows

K=1
A

C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls

with Openings
The approximate approach based on elastic analysis presented in Section C.3.3 is appropriate
for determining the lateral force distribution in masonry walls. However, that method is not
adequate for predicting the strengths in perforated reinforced masonry shear walls (walls with
openings). Openings in a masonry shear wall alter its behaviour and add complexity to its
analysis and design. When the openings are relatively small, their effect can be ignored,
however in most walls the openings need to be considered. The following two design
approaches can be used to design walls with openings:

1) Plastic analysis method, and

2) Strut-and-tie method.
These two approaches have been evaluated by experimental studies and have shown very
good agreement with the experimental results (Voon, 2007; Elshafie et al., 2002; Leiva and
Klingner, 1994). The key concepts will be outlined in this section.

C.3.4.1 Plastic analysis method

The plastic analysis method, also known as limit analysis, can be used to determine the ultimate
load-resisting capacity for statically indeterminate structures. A masonry wall with an opening as
shown in Figure C-19a can be modeled as a frame (see Figure C-19b). The model is subjected
to an increasing load until the flexural capacity of a specific section is reached and a plastic
hinge is formed at that location. (The plastic hinge is a region in the member that is assumed to
be able to undergo an infinite amount of deformation, and can therefore be treated as a hinge
for further analysis.) With further load increases, plastic hinges will be formed at other sections
as their flexural capacity is reached. This process continues until the system becomes statically
determinate, at which point the formation of one more plastic hinge will result in a collapse
under any additional load. This is called a collapse mechanism, and an example is shown in
Figure C-19c. There is usually more than one possible collapse mechanism for a statically
indeterminate structure, and the mechanism that gives the lowest capacity is closest to the
ultimate capacity, as this is an upper bound method.

For specific application to perforated masonry walls, the wall is idealized as an equivalent
frame, where piers are modeled as fixed at the base and either pinned or fixed at the top, while
lintels are modeled as fixed at the ends. A failure state is reached when plastic hinges form at
member ends, and the collapse mechanism forms. The sequence of plastic hinge formation
depends on the relative strength and stiffness of the elements. In this approach, structural
members must be designed to behave mainly in a flexural mode, while a shear failure is
avoided by applying the capacity design approach.

4/1/2009 C-25



plastic
——hinges—

g
g
g
-
-
HH
HH
HH
N

a) b) c)

Figure C-19. An example of a plastic collapse mechanism for a frame system: a) perforated
masonry wall; b) frame model; c) plastic collapse mechanism.

The following two mechanisms are considered appropriate for the plastic analysis of reinforced

masonry walls with openings, as shown in Figure C-20 (Leiva and Klingner, 1994; Leiva et al.
1990):
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Figure C-20. Plastic analysis models for perforated walls: a) actual wall; b) pier model;

c) coupled wall model (Leiva and Klingner, 1994, reproduced by permission of the Masonry
Society).
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A pier mechanism is a collapse mechanism with flexural hinges at tops and bottoms of the piers.
A pier-based design philosophy visualizes a perforated wall as a ductile frame. Horizontal
reinforcement above and below the openings is needed to transfer the pier shears into the rest
of the wall. A drawback of the pier mechanism is that the formation of plastic hinges at the top
and bottom of all piers at a story level can lead to significant damage to the piers, which are the
main vertical load-carrying elements.

A coupled wall mechanism is a collapse mechanism in which flexural hinges are formed at the
base of the wall and at the ends of the coupling lintels. A perforated wall is modeled as a series
of ductile coupled walls; this concept is similar to that used for seismic design of reinforced
concrete shear walls. The vertical reinforcement in each pier must be designed so that the
flexural capacity of the piers exceeds the flexural capacity of the coupling beams. To achieve
this, additional longitudinal reinforcement is placed in the piers, but cut off before it reaches the
wall base. The shear reinforcement in the coupling beams is designed based on the flexural and
shear capacity of the piers. Since masonry walls are usually long in plan, the formation of plastic
hinges at their bases produces large strains in the wall longitudinal reinforcement. Plastic hinges
must have adequate rotational capacity to allow the complete mechanism to form; this can be
achieved in wall structures with low axial load. To ensure the successful application of the
plastic analysis method, the wall reinforcement must be detailed to develop the necessary
strength and inelastic deformation capacity.

Figure C-21 shows a simple single-storey wall that is analyzed for the two mechanisms.
Ultimate shear forces corresponding to the pier and coupled wall mechanisms can be
determined from the equations of equilibrium assuming that the moments at the plastic hinge
locations are known. These equations are summarized in Figure C-21 (Elshafaie et al., 2002).

The plastic analysis method has a few advantages: stiffness calculations are not required, and
the designer can choose the failure mechanism which ensures a desirable ductile response.
The designer needs to have a general background in plastic analysis, which is covered in
several references, e.g. Bruneau, Uang, and Whittaker (1998) and Ferguson, Breen, and Jirsa
(1988). This method is also used for the seismic analysis of concrete and steel structures, and
is referred to as nonlinear static analysis or pushover analysis.
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Figure C-21. Ultimate wall forces according to the plastic analysis method: a) pier mechanism;
b) coupled wall mechanism (Elshafaie et al., 2002, reproduced by permission of the Masonry
Society).

C.3.4.2 Strut-and-Tie Method

The strut-and-tie method essentially follows the truss analogy approach used for shear design
of concrete and masonry structures. Pin-connected trusses consist of steel tension members
(ties), and masonry compression members (struts). The masonry compression struts develop
between parallel inclined cracks in the regions of high shear. The essential feature of this
approach is that the designer needs to find a system of internal forces that is in equilibrium with
the externally applied loads and support conditions. A further essential feature is that the
designer must ensure that the steel and masonry tie members provided adequately resist the
forces obtained from the truss analysis.

The design of tension ties is particularly important. If a ductile response is to be assured, the
designer should choose particular tension chords in which yielding can best be accommodated.
Other ties can be designed so that no yielding will occur by using the capacity design approach.
The magnitudes of the forces in critical tension ties can be determined from statics,
corresponding to the overturning moment capacity of the wall using the nominal material
properties (rather than the factored ones). The remaining forces are then determined from the
equilibrium of nodes (conventional truss analysis). Compression forces developed in masonry
struts are usually small due to the small compression strains and do not govern the design.
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Careful detailing of the wall reinforcement is necessary to ensure that the actual structural
response will correspond to that predicted by the analytical model.

The designer needs to use judgement to simplify the force paths that are chosen to represent
the real structure — these differ considerably depending on individual judgement.

An example of a strut-and-tie model for a two-storey perforated masonry wall subjected to
seismic lateral load is shown in Figure C-22 (note that gravity load also needs to be considered
in the analysis, however it is omitted from the figure). It can be seen that two different models
are required to account for the alternate direction of seismic load. The examples show the
seismic load being applied as a compressive load to the building; however, these loads should
be applied to the floor levels, depending on the diaphragm-to-wall connection. The designated
tie members in one model will become struts in the other model (when the seismic load changes
direction). An advantage of the reversible nature of seismic forces is that a significant fraction of
the inelastic tensile strains imposed on the end strut members is recoverable due to force
reversal, thereby providing hysteretic energy dissipation. A detailed solution for this example is
presented in the User’'s Guide by NZCMA (2004).
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Figure C-22. Strut-and-tie models for a masonry wall corresponding to different directions of
seismic loading (NZCMA, 2004, reproduced by the permission of the New Zealand Concrete
Masonry Association Inc.).

Strut-and-tie models are used for design of masonry walls in New Zealand, and this approach is
explained in more detail by Paulay and Priestley (1992). The New Zealand Masonry Standard
NZS 4230:2004 (SANZ, 2004) recommends the use of strut-and-tie models for the design of
perforated reinforced masonry shear walls. In Canada, strut-and-tie models are used to design
discontinuous regions of reinforced concrete structures according to the Standard CSA A23.3-
04 Design of Concrete Structures. The design concepts and applications of strut-and-tie models
for concrete structures in Canada are covered by McGregor and Bartlett (2000).
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C.3.5 The Effect of Cracking on Wall Stiffness

The behaviour of masonry walls under seismic load conditions is rather complex, and depends
on the failure mechanism (shear-dominant or flexure-dominant), as discussed in Section 2.3.1.
Figure C-23 shows the hysteretic response of shear-dominant and flexure-dominant walls. The
effective stiffness discussed in this section reflects the secant stiffness up to first crack in the
brittle shear-dominant walls, and the stiffness for an elastic-perfectly-plastic model that would
approximate the strength envelope of the hysteretic plot in the ductile flexure-dominant walls.

For the shear-dominant mechanism, the response is initially elastic until cracking takes place, at
which point there is a substantial drop in stiffness. This is particularly pronounced after the
development of diagonal shear cracks. After a few major cracks develop, the load resistance is
taken over by the diagonal strut mechanism, and the shear stiffness can be estimated by an
appropriate strut model. However, the stiffness drops significantly shortly after the strut
mechanism is formed, and can be considered to be zero for most practical purposes (see Figure
C-23a). It is expected that an increase in the quantity of vertical and horizontal steel and/or the
magnitude of axial compressive stress causes a reduced crack size and an increase in the
shear stiffness (Shing et al., 1990).
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Figure C-23. Cracking pattern and load-displacement curves for damaged masonry wall
specimens: a) shear-dominant response, and b) flexure-dominant response (Shing et al., FEMA
307, reproduced by permission of the Federal Emergency Management Agency).
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For the flexure-dominant mechanism, a drop in the stiffness immediately after the onset of
cracking is not very significant. As can be seen from Figure C-23b, the stiffness drops after the
yielding of vertical reinforcement takes place, and continues to drop with increasing inelastic
lateral deformations (this depends on the ductility capacity of the wall under consideration). The
specimen for which the results are shown in Figure C-23b showed yielding of vertical
reinforcement and compressive crushing of masonry at the wall toes (Shing et al., 1989).

Note that the height of wall test specimens shown in Figure C-23 was 1.8 m (6 feet), thus a
2.5% drift ratio permitted by the NBCC 2005 for regular buildings corresponds to 1.8 inch
displacement. It can be seen that the displacements and drift in these specimens are very low,
particularly so for the shear-dominant specimen shown in Figure C-23a.

Evidence from studies that focus on quantifying the changes in in-plane wall stiffness under
increasing lateral loading are limited, so CSA S304.1 and other masonry codes do not provide
guidance related to this issue. Shing et al. (1990) tested a series of 22 cantilever block masonry
wall specimens that were laterally loaded at the top, with a height/length aspect ratio of 1.0.
Based on the experimental test data, they have recommended the following empirical equation
for the lateral stiffness of a wall with a shear-dominant response

K, =(0.2+0.1073f,)K,.,, <K, (15)

where
E.*t. . , .
Kgear = ———= is the shear stiffness of a wall/pier
3+ !
IW
h = wall height

I, = wall length
t, = effective wall thickness
f. = axial compressive stress (MPa)

C
The above equation is based on the force/displacement measurements taken just after the first
diagonal crack developed, in specimens with a height/length ratio of 1.0. For seismic
applications where the walls are expected to yield in flexure before failing in shear, and the
lateral stiffness is used to estimate the fundamental period of the structure and to determine the
seismic displacements, it is more appropriate to determine the effective stiffness from a cracked
section analysis at first yield of the tension reinforcement.

A study by Priestley and Hart (1989), based on the cracked transformed section stiffness at first
yield of the tension reinforcement, recommends that the effective moment of inertia, |, , of a wall
can be approximated by:
1 P
L= (16)
f, oA
where
f, = steel yield strength (MPa)

P, = factored axial load
A, = effective cross-sectional area for the wall
f ’

m

= masonry compressive strength, and
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e

I, = TW is the gross moment of inertia of the wall.
Note that the first term in the bracket,lOO/ f, ,isequalto 0.25 for f =400 MPa (Grade 400
steel). The second term is a ratio of axial compressive stress in the wall, equal to P; /Ae , and
the masonry compressive strength, f .

The above relation is based solely on consideration of flexural stiffness, and is a best fit
relationship for several different values of height/length ratio (h/lvv ), steel strength, vertical
reinforcement ratio and axial load. Other considerations are whether the vertical reinforcement
is uniformly distributed across the wall length or concentrated at the ends, and the effect of
tension stiffening. The vertical reinforcement ratio is not included in the above expression, and
as a result, the wall stiffness is overestimated for lightly reinforced walls and underestimated for
heavily reinforced walls.

If it is assumed that wall cracking causes the same proportional decrease in the effective shear
area as it does for the moment of inertia, then the stiffnesses can be combined to give the
following equation for the reduced wall stiffness, K_,,

Koo = 24 F,)f K, (17)
fy fr A
where
E., *t,

is the combined stiffness of an uncracked cantilever wall or pier, considering both the flexural
and shear deformation components (refer to Section C.3.2 for the wall stiffness equations).

The terms in the large right hand bracket of the K equation give the comparative value of
flexural deformation to shear deformation. At a h/IW ratio of 1.0, flexure contributes 4/7 of the
total deformation and shear 3/7, while at a h/IW ratio of 0.5, shear contributes % of the total
defection.

The Priestley and Hart equation was obtained using experimental data related to cantilever wall
specimens, however it may also be used for fixed-end walls. The stiffness equation for these

walls, K., is the same as for the cantilever walls, that is,
100 P
Ke=Crm Ko @9
y mAe
where
Em *te

= 5 is the stiffness of an uncracked fixed-end wall or a pier
h h
—1|—1 +3
IW IW
A comparison of the proposed equations for a masonry block wall under axial compressive

stress is presented in Figure C-24. The following values were used in the calculations:
f, =400 MPa, P, /A, =1MPa, and f; =10 MPa,
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Note that the Shing equation is only shown for h/IW up to 1.5 as it is based entirely on shear
deformation. Since the Shing equation represents stiffness at first diagonal cracking, it is
expected to give higher stiffness values than the Priestley-Hart equation. Use of the Priestley-
Hart stiffness equation is recommended since it is valid for all h/l,, ratios.

The elastic uncracked stiffness could be used to distribute lateral seismic load to individual walls
and piers, but the reduced cracked stiffness should be used for period estimation and deflection

calculations.

The wall design deflections can be found from the following equation:

R, *R
Adesign = AeI *I—o
E
where
A, = elastic deflections calculated using the reduced wall stiffness (K, or K, ) and the

factored design forces, and

Ry *R, : . -

——— = deflection multiplier to account for the effects of ductility, overstrength, and the
E

building importance factor (see Section 1.5.11)
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Figure C-24. A comparison of the stiffness values obtained using the Shing and Priestley-Hart
equations.
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D Design Aids

Table D-1. Properties of Concrete Masonry Walls (per metre or foot length)*

Grouted Cells f metre 0.00 0.83 1.00 1.25 167 250 5.00
Celidowel Spacing (mm) | none 1200 1000 800 GO0 400 200
Nominal Size 150 mm 6 linch
A, (mm’ x 10°) 520| 667 696| 740 813 96.0 1400
iin%) 24.6 31.5 329 3.0 38.4 45.4 6.2
I {I‘l‘ll'l'l4 X 106} 172 181 183 186 191 201 229
iin* 126 133 L T T 168
Sy (mm* x 10°) 246| 259 262| 266 273 287 3.27
iin®) 45.8 48.2 487 49.5 50.7 53.3 0.8
Weight {kam?} 1.90 2.09 2.13 2.19 2.29 2.49 3.08
ipsf) 30.6 437 44.6 458 47.0 52.0 £4.3
Nominal Size 200 mm &8 inch
A {I‘l‘ll'l'lz X 103} 754 945 98.3| 1040| 1138| 1327 190.0
{in%) 35.6 446 46.5 49.2 53.7 2.7 29.8
I, {mm4 X 106} 442 464 468 475 485 507 572
{in% sed| 340 a3 s sms[ am 419
S, (mm?® x 10°) 466| 488 493| 500 511 534 6.02
{in%) 86.7 g0.9 917 g3.0 95.0 99.3 112.0
Weight {kamﬁ 2.46 275 2.81 2.89 3.03 3.32 4.18
{psi) 5.4 §7.4 586 fi.4 §i3.4 §9.4 873
Nominal Size 250 mm 10 inch
A, {mm2 X 103} 81.7| 108.1 1134 1213 1345 1609 240.0
iin%) 386 §1.1 536 57.3 §3.5 76.0 113.4
I, (mm* x 10°) 816 872 883 900 928 984 1152
iin* sas 638 gar|  esol  srol 7o S44
Sy {mm3 X 106} 6.80 T.27 7.36 7.50 7.73 8.20 9.60
iin®) 1265] 1352 136.9] 1305|1438 1528 178.6
Weight {kNHmQ} 297 3.35 3.43 3.55 3.74 412 5.28
ipsf) 62.0 a0 1.7 4.1 78.1 6.1 110.3
Nominal Size 300 mm 12 linch
A {mmg X 103} 883 1219 1286 1387 1555 189.2 290.0
iin%) 4.7 57.6 0.8 £5.5 73.5 89.4 137.0
I {l‘nrn4 X 106} 1341 1456 1479 1514 1571 1687 2032
iin* asz[ 1066 10s3 o8 q1s0] 4235 1455
Sy {mm’ X 106} 9.25( 10.04 10201 1044 1083 11.63 14.01
iin®) 172.1 186.8 1807  1941|  2mis| 2163 26006
Weight {kam?} 353 4.00 4.10 4.24 4.48 495 6.38
ipsf) 73.7 836 85.6 88.6 g3.6| 1035 133.3
MNote: Assume Bond Beamns at 2.4 m (8 ft) O.C.
Table based on Metric blocks and modules (130 mm high units)
Assumed Wieight 22 kMIim3 140.4 pcf

! Source: Masonry Technical Manual (MIBC, 2008, reproduced by permission of the Masonry Institute of
BC)
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Table D-2. c¢/l,, ratio,

fy =400 MPa

0.000

0.025

0.050

0.075

0.100

0.150

0.200

0.250

0.300

.350

0.400

1]

0.000

0.037

0.074

0.110

0.147

0.2

0.294

0.366

0.441

0.515

0.588

0.01

0.014

0.050

0.086

0121

0.157

0.229

0.300

0.371

0.443

0.514

0.556

0.0z

0.023

0.063

0.097

0.132

0167

0.236

0.306

0.375

0.444

0.514

0.583

0.03

0.041

0.074

0.103

0.142

0.176

0.243

0.311

0.378

0.446

0.514

0.581

0.04

0.053

0.036

0.113

0151

0.154

0.250

0.316

0.332

0.447

0.513

0.579

0.05

0.064

0.096

0.123

0.160

0.192

0.256

0.321

0.335

0.449

0.513

0.577

0.06

0.075

0.106

0.133

0.169

0.200

0.263

0.325

0.338

0.450

0.513

0.575

0.07

0.085

0116

0.146

0177

0.207

0.285

0.329

0.390

0.451

0.512

0.573

0.05

0.095

0.125

0.155

0.1585

0.214

0.274

0.333

0.393

0.452

0.512

0.571

0.09

0.105

0.134

0.163

0.152

0.221

0.279

0.337

0.395

0.453

0.512

0.570

0.1

0.114

0.142

0.170

0.159

0.227

0.254

0.341

0.396

0.455

0.511

0.565

0.1

0122

0.150

0.173

0.206

0.233

0.259

0.344

0.400

0.456

0.511

0.567

012

0.130

0.158

0.185

0.2

0.239

0.293

0.343

0.402

0.457

0.511

0.565

0.13

0.133

0.165

0.191

0.213

0.245

0.293

0.351

0.404

0.457

0.511

0.564

0.14

0.146

0172

0.193

0.224

0.250

0.302

0.354

0.406

0.453

0.510

0.563

0.15

0.153

0179

0.204

0.230

0.255

0.306

0.357

0.408

0.45%9

0.510

0.561

0.16

0180

0.185

0.210

0.235

0.260

0.310

0.350

0.410

0.450

0.510

0.560

017

0167

0.1

0.216

0.240

0.265

0.314

0.363

0.412

0.461

0.510

0.55%

0.18

0.173

0.197

0.2

0.245

0.269

0.317

0.365

0.413

0.462

0.510

0.558

0.19

0.179

0.203

0.226

0.250

0.274

0.3

0.365

0.415

0.462

0.509

0.557

0.z

0.185

0.205

0.231

0.255

0.278

0.324

0.370

0.417

0.463

0.503

0.556

Input parameters:

_ A

Puflex =

@

t*1,
N 5667 *pvflex
_f—'

m

~1667*P,

o
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Table D-3. Wall Stiffness Values K/(E, *t)

/1 | cantilever | Fixed Cantilever model: - Fe——
005 |6.645 5661 v/ |/
01 |3.289 3322 K 1 T I
015  |2.157 2.206 E *t 2 ¥ |
02 1582 1645 m hyh) L I|' I|'
nzs  [1.231 1.306 1, hl | |
03 [ogaz 1.074

035 [o&1a 0.915

0.4 [oma7 0.791

045 |os83 0.694 L

05 [os00 0615 e——
055 [0.432 0.551

06 [037s 0.496

065  [03z28 0.450

3:35 gjgi g:;?i Fixed both ends: v

na  [022s 0.343 ! B

085 [0.z00 0.316 K _ 1 /
08  |o17s 0.292 E, *t h)

095 |0.159 0.270 (j [] +3 h /
1 0143 0.250 L /
105 [0123 0.232 !
11 |o11s 0.216 ik | '
115 [010s 0.201 w.
12 [ongs 0188 T
125 [0.08s 0175

13 [oo7a 0.164

135 {007 0.154 E, =850f; Modulus of elasticity

14 [o.06s 0.144

145 |o0GD 0135 G =0.4E, Modulus of rigidity (shear modulus)

1.5  |0.0%E 017 A, =5A/6  Shear area

1556  [0.051 0114

16 |0.047 0112

165 [0.044 0.106

17 |04 0.100

175 [0.037 0.084

18 [oo3s 0.084

185 [0.03z2 0.084

19 [oo30 0.080

195 [o.0z28 0.075

2 0.026 0.071
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E Notation

a = maximum acceleration

max
a = depth of the compression zone (equivalent rectangular stress block)

a,, = clear distance between the adjacent cross walls

A, = area of reinforcement bar

A, = area of concentrated reinforcement at each end of the wall

A, = area of distributed reinforcement along the wall length

A, = effective cross-sectional area of masonry

Ag = gross cross-sectional area of masonry

A, = area of the compression zone (flanged wall section)

A, =response amplification factor to account for the type of attachment of equipment or veneer ties
A, = uncracked area of the cross-section

A, = area of horizontal wall reinforcement

A, = total area of the distributed vertical reinforcement
A, = shear area of the wall section

A, =amplification factor at level x to account for variation of response with the height of the building

(veneer tie design)

b = effective width of the compression zone
b = actual flange width

b

actual

. = critical wall thickness

bT = overhanging flange width
b,, = overall web width (shear design)

B = torsional sensitivity factor

C = neutral axis depth (distance from the extreme compression fibre to the neutral axis)
C = compressive force in the masonry acting normal to the sliding plane

C,, = the resultant compression force in masonry
C, =compressive force in the masonry acting normal to the head joint
C_ = seismic coefficient for a nonstructural component (veneer tie design)

p

d = effective depth (distance from the extreme compression fibre to centroid of tension reinforcement)
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d, = effective wall depth for shear calculations

d’ = distance from the extreme compression fibre to the centroid of the concentrated compression

reinforcement
D, = plan dimension of the building at level X perpendicular to the direction of seismic loading being

considered

€ =load eccentricity

e, = accidental torsional eccentricity

e, = torsional eccentricity (distance measured perpendicular to the direction of earthquake loading
between the centre of mass and the centre of rigidity at the level being considered)

E; = modulus of elasticity of the frame material (infill walls)

E., = modulus of elasticity of masonry

fI = flexural tensile strength of masonry (see Table 5 of CSA S304.1-04)

f' = compressive strength of masonry normal to bed joints at 28 days (see Table 4 of CSA S304.1-04)

m

fy = yield strength of reinforcement
F =force

F, = a portion of the base shear \ applied at the top of the building

F

. = elastic force

F, = acceleration-based site coefficient

F, = velocity-based site coefficient

F, = seismic force applied to level X

F, =yield force

G = modulus of rigidity for masonry (shear modulus)
h = unsupported wall height/height of the infill wall
h,, = total wall height

h, = building height

h, = storey height

hX = height from the base of the structure up to the level X

I, = moment of inertia of the beam

4/1/2009 E-2



| . = moment of inertia of the column

| . = earthquake importance factor of the structure

J = numerical reduction coefficient for base overturning moment
k = effective length factor for compression member
K = stiffness

| =length of the infill wall

I, = design length of the diagonal strut (infill wall)
|, = plastic hinge length

|S = length of the diagonal strut

I, =wall length

L, = clear vertical distance between lines of effective horizontal support or clear horizontal distance

between lines of effective vertical support
M =mass

M ; = factored bending moment

M, = factored moment resistance

M , = nominal moment resistance

M b= probable moment resistance

M, = factor to account for higher mode effect on base shear

N = axial load arising from bending in coupling beams or piers

P = distributed axial stress

P, = axial compressive load on the section under consideration
P, = critical axial compressive load

P, = dead load

P;, = the resultant compression force (flanged walls)

P, =factored axial load resistance
P, = compressive force in the unreinforced masonry acting normal to the sliding plane
P, = compressive force in the reinforced masonry acting normal to the sliding plane

P, = horizontal component of the diagonal strut compression resistance (infill walls)
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P, = the vertical component of the diagonal strut compression resistance (infill walls)

P

i = ultimate tie strength

Ry = ductility-related force modification factor
R, = overstrength-related force modification factor

Rp = element or component response modification factor (veneer tie design)

S = reinforcement spacing

S(T) = design spectral acceleration

S, (T) =5% damped spectral response acceleration

S, = section modulus of effective wall cross-sectional area

Sp = horizontal force factor for part or portion of a building and its anchorage (veneer tie design)

t = overall wall thickness

t. = effective wall thickness

e

t; =face shell thickness

T = fundamental period of vibration of the building
T, = torsional moment at level X

T, = the resultant force in steel reinforcement
Ty = factored tensile force at yield of the vertical reinforcement

V; = distributed shear stress

V_ = masonry shear strength

m

Vi = Maximum velocity

V = ateral earthquake design force at the base of the structure
V, = lateral earthquake elastic force at the base of the structure

V, = factored shear force

V,, = the resultant shear force corresponding to the development of nominal moment resistance M at
the base of the wall

V,, = masonry shear resistance

V, = factored shear resistance

V, = average shear wave velocity in the top 30 m of soil or rock
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V, = factored shear resistance of steel reinforcement

W = diagonal strut width (infill walls)

W, = effective diagonal strut width (infill walls)

W = seismic weight, equal to the dead weight plus some portion of live load that would move laterally
with the structure

Wp = weight of a part or a portion of a structure (veneer tie design)

W._ = a portion of seismic weight W that is assigned to level X

X
«,, = vertical contact length between the frame and the diagonal strut (infill walls)

o = horizontal contact length between the frame and the diagonal strut (infill walls)

[ = damping ratio

B, = ratio of the factored dead load moment to the total factored moment

P, = ratio of depth of rectangular compression block to depth of the neutral axis

V= factor to account for partially grouted or ungrouted walls that are constructed of hollow or semi-solid
units

0 ax = the maximum storey displacement at level X at one of the extreme corners in the direction of
earthquake

0, = the average storey displacement determined by averaging the maximum and minimum
displacements of the storey at level X

A = lateral displacement

A, = plastic displacement
Ay = displacement at the onset of yielding

A, = elastic displacement

el

A = maximum displacement

max

A, =inelastic (plastic) displacement
&, = the maximum compressive strain in masonry
&, = strain in steel reinforcement

&y = yield strain in steel reinforcement

x = factor used to account for direction of compressive stress in a masonry member relative to the

direction used for determination of f
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@ = curvature

@, = ultimate curvature

o, = yield curvature corresponds to the onset of yielding
@, = resistance factor for member stiffness

¢m = resistance factor for masonry

¢5 = resistance factor for steel reinforcement

@ = resistance factor

p, = vertical reinforcement ratio

Py, = horizontal reinforcement ratio

H = coefficient of friction

U, = displacement ductility ratio (Chapter 1)
M, = curvature ductility ratio

M, = displacement ductility ratio

6 = angle of diagonal strut measured from the horizontall

6, = elastic rotation

6, = plastic rotation

@ = natural frequency
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