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4 Design Examples 
 
EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBCC 2005 
 
Consider a single-storey warehouse building located in Mississauga, Ontario. The building plan 
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure 
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70 
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the 
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil 
at the building site is classed as a Site Class D per NBCC 2005. 
 
Calculate the seismic base shear force for this building to NBCC 2005 seismic requirements 
(considering the masonry walls to be detailed as “conventional construction”). Next, determine 
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity. 
Assume that the roof acts like a rigid diaphragm. 
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SOLUTION: 
 
1.  Calculate the seismic weight  W  (NBCC 2005 Cl.4.1.8.2) 
a) Roof loads: 
- Snow load (Mississauga, ON)                      sW   = 0.25*(1.1*0.8+0.4)= 0.32 kPa 
(25% of the total snow load is used for the seismic weight) 
- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete 
topping)                                                                     DW  = 2.60 kPa 
Total roof seismic weight  roofW = (0.32kPa+2.60kPa)(64.0m*27.0m)= 5046 kN 
b) Wall weight: 
Assume solid grouted walls                                 w = 4.0 kN/m2 
(this is a conservative assumption and could be changed later if it is determined that partially 
grouted walls would be adequate) 
The usual assumption is that the weight of all the walls above wall midheight is part of the 
seismic weight (mass) that responds to the ground motion and contributes to the total base 
shear. 
Tributary wall surface area: 

- North face elevation   = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m2 
- South face elevation (same as north face elevation)        = 181.1 m2 
- East face elevation   = 0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m)  =   81.4 m2 
- West face elevation (same as east face elevation)         =   81.4 m2 

Total tributary wall area                                                                          Area   = 525.0 m2 
                                                            ________________________________________ 
Total wall seismic weight      AreawWwall *= =  4.0*525.0= 2100 kN 
 
The total seismic weight is equal to the sum of roof weight and the wall weight, that is, 

wallroof WWW += = 5046+2100= 7146 kN ≈ 7150 kN 
 
2. Determine the seismic hazard for the site (see Section 1.5.2). 
• Location: Mississauga, ON   

)2.0(aS = 0.31  (NBCC 2005 Appendix C, page C-21)                    
)5.0(aS = 0.15 
)0.1(aS = 0.055 
)0.2(aS = 0.017 

• Foundation factors 
aF = 1.28 for )2.0(aS =0.31 and Site Class D (by interpolation from Table 1-10 or NBCC 

2005 Table 4.1.8.4.B, since aF = 1.3 for ≤)2.0(aS  0.25 and aF = 1.2 for =)2.0(aS  0.50 

vF = 1.4 for )0.1(aS = 0.055 and Site Class D (from Table 1-11 or NBCC 2005 Table 
4.1.8.4.C), since vF = 1.4 for ≤)0.1(aS  0.1 

• Site design spectrum ( )TS   (see Section 1.5.2) 
For T =0.2 sec:  ( ) ( )2.02.0 aa SFS = = 1.28*0.31=0.40       ( )2.0S =0.40   
For T =0.5 sec:   use the smaller of;      
  ( ) ( )5.05.0 av SFS = =1.4*0.15=0.21                        or  
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  ( ) ( )2.05.0 aa SFS = =1.28*0.31=0.40,    thus ( )5.0S =0.21 

For T =1 sec:  ( ) ( )0.10.1 av SFS = =1.4*0.055=0.08              ( )0.1S =0.08 

For T =2 sec:  ( ) ( )0.20.2 avSFS = =1.4*0.017=0.024           ( )0.2S =0.024 
 

The site design spectrum ( )TS  is shown below. 

 
• Building period (T ) calculation (see Section 1.5.4 and NBCC 2005 Cl.4.1.8.11.(3).c) for  
wall structures) 

nh = 6.6 m   building height 

( ) 4305.0 nhT = = 0.21 sec 
Then interpolate between ( )2.0S  and ( )5.0S to determine the design spectral acceleration: 
( )TS = ( )21.0S = 0.39 

 
3. Compute the seismic base shear (see Section 1.5.4) 
The base shear is given by the expression (NBCC 2005 Cl.4.1.8.11) 

                         
( ) W

RR
IMTSV

od

Ev=  

where 
EI = 1.0   (building importance factor, equal to 1.0 for normal importance, 1.3 for high 

importance, and 1.5 for post-disaster buildings) 
vM = 1.0 (higher mode factor, equal to 1.0 for ≤T 1.0 sec, that is, most low-rise masonry 

buildings) 
Building SFRS description:  masonry structure – conventional construction (see Table 1-13 or 
NBCC 2005 Table 4.1.8.9), hence   dR = 1.5 and  oR = 1.5      
 
The design base shear V  is given by: 

( )
WWW

RR
IMTS

V
od

Ev 17.0
5.1*5.1

0.1*0.1*39.0
===  

but not less than  
 

( )
WW

RR
WIMS

V
od

Ev 0011.0
5.1*5.1

0.1*0.1*024.00.2
min ===  

and need not be taken more than  
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( ) WW
RR
WISV

od

E 12.0
5.1*5.1

0.1
3

40.0*2
3

2.02
max =⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= , provided 5.1≥dR .      

The upper limit on the design seismic base shear governs and therefore 
8608587150*12.012.0 ≈=== WV   kN 

Note that the upper limit on the base shear is often going to govern for low-rise masonry 
structures which have low fundamental periods. The lower bound value would generally only 
apply to very tall buildings. 
 
4. Determine if the equivalent static procedure can be used (see Section 1.5.3 and NBCC 
2005 Cl. 4.1.8.7). 
According to the NBCC 2005, the dynamic method is the default method of determining member 
forces and deflections, but the equivalent static method can be used if the structure meets any 
of the following criteria:  
(a) is located in a region of low seismic activity where the seismic hazard index 

( ) 35.02.0 <aaE SFI . 
In this case, the seismic hazard index is ( )2.0aaE SFI =1.0*1.28*0.31=0.40 > 0.35 
and so this criterion is not satisfied. 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction.  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-15 
of Section 1.5.10.1. A single storey structure by definition will not have any irregularities of Type 
1 to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7 
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on 
the torsional sensitivity.  
(c) has any type of irregularity, other than Type 7, and is less than 20 m in height with 
period T < 0.5 seconds in either direction.  
This structure satisfies the height and period criteria. 
 
Since the criterion c) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure. It will be shown later that, even when using a conservative assumption, the 
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For 
structures with the lateral resisting elements distributed around the perimeter walls the B value 
will almost always be less than 1.7. 
 
5. Distribute the base shear force to the individual walls. 
In this example, the structure is symmetric in each direction and so the centre of mass, MC , and 
the centre of resistance, RC ,  coincide at the geometric centre of the structure. One might argue 
that in this simple system with walls at only each side of the building, the system is statically 
determinate in each direction and the total shear on each side can be determined using statics. 
However, how much shear goes to each of the walls on a side depends on the relative stiffness 
of the walls, although once yielding occurs the force on each wall depends on the yield strength 
of the wall.  
 
a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to 
act through the centre of resistance) 
Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in 
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height, 
length, thickness) and mechanical properties and it can be concluded that these walls have the 
same stiffness.  
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As a result, equal shear force will be 
developed at each side. The force per 
side is equal to (see the figure): 

430860*5.05.0 ==V  kN 
So, shear force in each of the two 
walls in the N-S direction is equal to: 

215
2

430
2
5.0

===
VVV  kN 

 
 
b) Seismic forces in the N-S direction taking into account the effect of accidental torsion 
The building is symmetrical in plan and so the centre of mass MC  coincides with the centre of 
resistance RC   (see Section 1.5.9 for more details on torsional effects). Therefore, there are no 
actual torsional effects in this building. However, NBCC 2005 Cl.4.1.8.11.(8) requires that 
torsional moments (torques) due to accidental eccentricities must be taken into account in the 
design. The forces due to accidental torsion can be determined by applying the seismic force at 
a point offset from the RC  by an accidental eccentricity nxa De 1.0= , thereby causing the 
torsional moments equal to  

( ) 5504)0.64*1.0(*8601.0 ±=±=±= nxx DVT  kNm 
Note that 0.64=nxD  m (equal to the total length of the structure in the East/West direction). 
 
As a result of the accidental torsion, seismic shear forces resisted by each side of the building 
are different. These forces can be calculated by taking the sum of moments around the RC  
(torsional moment created by force must be equal to the sum of moments created by the side 
forces). The resulting end forces are equal to V6.0  and V4.0 , thereby indicating an increase in 
the end forces by V1.0  due to accidental torsion. 
 
It should be noted that, in this example, accidental torsion would cause forces in the E-W walls 
as well because of the rigid diaphragm. But a conservative approach is to ignore the 
contribution of E-W walls and take all the torsional forces on the N-S walls. 
 
The shear force in each N-S wall from accidental torsion is equal to: 

43
2

645504
2

=== nx
T

DT
V  kN 

 
Thus the maximum shear force in each of the two walls is the sum of the lateral component plus 
the torsional force, 

25843215 =+=+= TVW VVV  kN 
 
Note that the same result could be obtained by 
applying the lateral load through a point equal to 
the accidental eccentricity to one side of the 
centre of rigidity and then solving for the wall 
forces using statics (see the figure). This would 
show that  

2586.0*
2

8606.0*
2

===
VVW  kN 
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Therefore, even though this building is symmetrical in plan, the accidental torsion causes 
increased seismic shear force in each wall of 43 kN, corresponding to a 20% increase 
compared to the design without torsion. However, this is based on the assumption that the N-S 
walls resist all the torsion. Walls in the E-W direction would also resist the torsional forces, and 
in this example the contribution to total torsional stiffness would be roughly the same for the E-
W and N-S walls. Thus one could reduce the torsional forces on the N-S walls by roughly one 
half. 
 
c) Seismic forces in the E-W walls 
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and 
consequently the same stiffness, the shear force will be equal at the East and West side. The 
force per side is equal to 

430860*5.05.0 ==V  kN 
• Seismic forces in the E-W walls – torsional effects ignored 
Shear force in each E-W wall is equal to (there are seven walls per side): 

61
7

430
7
5.0

===
VVV  kN 

• Seismic forces in the E-W walls – torsional effects considered: 

746.0*
7

8606.0*
7

===
VVW  kN 

 
6. Check whether the structure is torsionally sensitive (see Section 1.5.9.2). 
NBCC 2005 Cl. 4.1.8.11.(9) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey, to the 
average displacement of that storey. Torsional sensitivity is determined in a similar manner as 
the effect of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of 

nxD1.0±  from the centre of mass MC . In case of a rigid diaphragm, displacements are 
proportional to the forces developed in the walls. Therefore, B  can be determined by 
comparing the forces at the sides of the building with/without the effect of accidental torsion. 
 
The maximum displacement would be proportional to 0.6V, while the displacement on the other 
side would be proportional to 0.4V. Thus the average displacement is proportional to 0.5V. Thus 

2.1
5.0
6.0

==
V
VB  

Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would 
have also been allowed under criterion b) as discussed in step 4 above. 
 
7. Discussion 
It was assumed at the beginning of this example that the roof structure can be modeled like a 
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S 
wall would be equal to 0.5V.  From a reliability point of view, it does not seem quite right that the 
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around. 
On the other hand, the flexible diaphragm may have a longer period and the forces would be 
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models). 
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBCC 2005 
 
A typical floor plan and vertical elevation are shown below for a four-storey mixed use 
(commercial/residential) building located near the intersection of Granville Street and 41st 
Avenue in Vancouver, BC. The ground floor is commercial with a reinforced concrete slab 
separating it from the residential floors, which have lighter floor system consisting of steel joists 
supporting a composite steel and concrete deck. The front of the building is mostly glazing, 
which has no structural application.  
 
First, determine the seismic force for this building according to the NBCC 2005 equivalent static 
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and 
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that 
the strong N-S walls can resist the torsion. 
 
Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the 
seismic forces obtained with and without torsional effects. 
 
For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for  
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a 
preliminary design) and the compressive strength mf ′  is 10.0 MPa. Grade 400 steel has been 
used for the reinforcement. The building is of normal importance and is supported on Class C 
soil. Consider “limited ductility” reinforced masonry shear walls. 
 
Movement joints are not to be considered in this example. Note that movement joints in the N-S 
walls would have caused slight changes in the stiffness values of these walls. 
 
Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and 
glazing): 
4th floor (roof level) = 3 kPa    Note: 1 kPa = 1 kN/m2 
2nd and 3rd floor = 4 kPa 
1st floor (concrete floor) = 6 kPa 
25% snow load = 0.4 kPa 
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SOLUTION: 
 
1.  Design assumptions 
• Rigid diaphragm 
• All walls are solid grouted 
 
2.  Calculate the seismic weight  W  (see Table 1-12 and NBCC 2005 Cl.4.1.8.2) 
Wall weight: 
N-S walls - 200 mm thick                 w = 4.18 kPa 
E-W walls – 300 mm thick           w = 6.38 kPa 
Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while 
the length of an E-W wall is 10.0 m. 
 
Seismic weight 1W : 

( ) ( )( ) kNmmkPamkPamkPammW 357920*200.60.10*2*38.620*2*18.4
2
0.3

2
0.5

1 =++⎟
⎠
⎞

⎜
⎝
⎛ +=  

Seismic weight 2W : 

( ) ( )( ) kNmmkPamkPamkPammW 248420*200.40.10*2*38.620*2*18.4
2
0.3

2
0.3

2 =++⎟
⎠
⎞

⎜
⎝
⎛ +=  

Seismic weight 3W  (same as 2W ) : 
kNW 24843 =  

Seismic weight 4W : 

( ) ( )( ) kNmmkPakPamkPamkPamW 180220*204.00.30.10*2*38.620*2*18.4
2
0.3

4 =+++⎟
⎠
⎞

⎜
⎝
⎛=

Note that the seismic weight for each floor level is the sum of the wall weights and the floor 
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height 
(below and above a certain floor level) was considered in the wall area calculations. 
The total seismic weight is equal to 

kNWWWWW 1035018022484248435794321 ≅+++=+++=  
 
3.  Calculate the seismic base shear force (see Section 1.5.4). 
a) Find seismic design parameters used to determine seismic base shear. 
• Location: Vancouver, BC (Granville and 41st Avenue)   

)2.0(aS = 0.95 (NBCC 2005 Appendix C, page C-13)                    
)5.0(aS = 0.65 
)0.1(aS = 0.34 
)0.2(aS = 0.17 

• Foundation factors 
Site Class C: aF = 1.0 (Table 1-10 or NBCC 2005 Table 4.1.8.4.B) and vF = 1.0 (Table 1-
11 or NBCC 2005 Table 4.1.8.4.C) 

• EI = 1.0 (normal importance building) 
• vM = 1.0 (higher mode factor, equal to 1.0 for ≤T 1.0 sec) 
• Building SFRS description:  masonry structure – limited ductility shear walls for building 
height of 14 m (see Table 1-13 or NBCC 2005 Table 4.1.8.9), hence  



4/1/2009 4-10

dR = 1.5 and  oR = 1.5      
• Building period (T ) calculation (NBCC 2005 Cl.4.1.8.11.3.c) –  wall structures 

nh = 14.0 m   building height 

( ) 4305.0 nhT = = 0.36 sec 
• Site design spectrum ( )TS   (see Section 
1.5.2) 
Since the soil is characterized as Site Class C, 

)()( TSTS a=  
 For T =0.2 sec:   

( ) ( )2.02.0 aa SFS = = 1.0*0.95=0.95 ( )2.0S =0.95
         

 For T =0.5 sec:   
( ) ( )5.05.0 av SFS = =1.0*0.65=0.65 ( )5.0S =0.65                             

or (smaller value governs) 
( ) ( )2.05.0 aa SFS = =1.0*0.95=0.95 

 For T =1 sec:      
( ) ( )0.10.1 av SFS = =1.0*0.34=0.34 ( )0.1S =0.34  

  
 For T =2 sec:      

( ) ( )0.20.2 avSFS = = 1.0*0.17=0.17 ( )0.2S =0.17 
  
Building period T = 0.36 sec, so interpolate between ( )2.0S  and ( )5.0S , hence  ( )TS = 0.79 
 
b) Compute the design base shear (NBCC 2005 Cl.4.1.8.11). 
The design base shear V  is determined according to the following equation: 

( )
WWW

RR
IMTS

V
od

Ev 35.0
5.1*5.1

0.1*0.1*79.0
===  

Check the lower and upper bounds for the V  value. 
• Lower bound ( minV ) value (must be exceeded) 

( )
WW

RR
WIMS

V
od

Ev 075.0
5.1*5.1

0.1*0.1*17.00.2
min ===   

• Upper bound ( maxV ) value (base shear need not exceed this value) 

( ) WWW
RR
WISV

od

E 35.028.0
5.1*5.1

0.1
3

95.0*2
3

2.02
max <=⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=         <=   Governs 

Note that the upper bound base shear value can be used only when 5.1≥dR . 
Therefore, the design seismic base shear is equal to 

2900289810350*28.028.0 ≈=== WV   kN 



4/1/2009 4-11

 
4. Determine if the equivalent static procedure can be used (see Section 1.5.7 and NBCC 
2005 Cl. 4.1.8.7). 
According to the NBCC 2005, the dynamic method is the default method, but the equivalent 
static method can be used if the structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where ( ) 35.02.0 <aaE SFI , 
In this case, seismic hazard index ( )2.0aaE SFI =1.0*1.0*0.95=0.95 > 0.35 and so this criterion is 
not satisfied. 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction,  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
To confirm that this structure is regular, the designer needs to review the irregularities discussed 
in Section 1.5.10.1. It can be concluded that this building does not have any of the irregularity 
types identified by NBCC 2005 and so this criterion is satisfied. 
(c) has any type of irregularity (other than Type 7 that requires the dynamic method if  
B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either direction  
This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5 
sec. The torsional sensitivity B  should be checked to confirm that B < 1.7 (see Section 1.5.9.2). 
 
Since the criterion b) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure.  
 
5. Seismic force distribution over the building height (see Section 1.5.7). 
According to NBCC 2005 Cl. 4.1.8.11.(6), the total lateral seismic force, V ,  is to be distributed 
over the building height in accordance with the following formula (see Figure 1-15): 

where 
xF  – seismic force acting at level x   

tF  – a portion of the base shear to be applied in addition to force nF  at the top of the building. 
In this case, tF = 0 since the fundamental period is less than 0.7 sec. 
Interstorey shear force at level x  can be calculated as follows: 

∑+=
n

x
itx FFV  

Bending moment at level x  can be calculated as follows: 

( )∑
=

−=
n

xi
xiix hhFM  

These calculations are presented in Table 1. 

( )
∑
=

⋅−= n

i
ii

xx
tx

hW

hW
FVF

1
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Table 1. Distribution of Seismic Forces over the Wall Height 
 
Level 

xh   
(m) 

xW   
(kN) 

xxhW  xF   
(kN) 

xV  
(kN) 

xM  
(kNm) 

4 14.0 1802 25228 810 810 0 
3 11.0 2484 27324 877 1687 2430 
2 8.0 2484 19872 638 2325 7492 
1 5.0 3579 17895 575 2900 14468 

∑   10349 90319 2900  28968 

 
Distribution of seismic forces over the building height and the corresponding shear and moment 
diagrams are shown on the figure below. 

 
It is important to confirm that the sum of seismic forces xF  over the building height is equal to 
the base shear  

==VVb  2900 kN 
The bending moment at the base of the building, also called the base bending moment, is equal 
to  

bM = 28968 ≈ 29000 kNm. 
 
6. Find the seismic forces in the E-W walls – torsional effects ignored. 
Due to asymmetric layout of the E-W walls, the centre of mass MC  in the building under 
consideration does not coincide with the centre of resistance RC , hence there are torsional 
effects in all walls. However, since the N-S walls are significantly more rigid compared to the E-
W walls, it can be assumed that the N-S walls will resist the torsional effects (see step 8 for a 
detailed discussion). As a consequence, it can be assumed that the base shear force in the E-W 
direction is equally divided between the two E-W walls (see the figure on the next page), that is, 
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1450
2

2900
2

===
VVxo  kN 

 
Similarly, the base bending moment in each wall is equal 
to 

14500
2

29000
2

=== b
bx

M
M  kNm 

 
7. Find the seismic forces in the E-W walls – 
torsional effects considered (see Section 1.5.9). 
To determine the wall forces from the torsional forces a 
3-D analysis should be made. Even though the walls are 
considered uniform over the entire height, the contribution of shear deformation relative to 
bending deformation is different over the height. An approximate method that does not require a 
3-D analysis is to consider the structure 
as an equivalent  single-storey structure. 
The entire shear is applied at the 
effective height, eh , defined as the 
height at which the shear force fV   must 
be applied to produce the base moment 

fM , that is, 

0.10
2900
29000

===
f

f
e V

M
h  m 

This model, although not strictly correct, 
will be used to determine the elastic 
distribution of the torsional forces as 
well as the displacements. The top 
displacement of the wall is assumed to 
be 1.5 times the displacement at the eh  
height (see step 8 for displacement calculations).  
 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ), which will be calculated in the following 
tables. 
 
First, the centre of mass will be determined, as shown on the figure on the next page. The 
calculations are summarized in Table 2. 
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Table 2. Calculation of the Centre of Mass ( MC ) 
 

Wall iw  
(kN) 

ix  
(m) 

iy  
(m) 

ii xw *  ii yw *  

1X  733.7 10.00 20.00 7337 14674 

2X  733.7 10.00 13.33 7337 9780 

1Y  961.4 0 10.00 0 9614 

2Y  961.4 20.00 10.00 19228 9614 

Floors 6960 10.00 10.00 69600 69600 

∑  10350   103502 113282 

 
The MC  coordinates can be determined as follows: 

00.10
10350
103502

*
===

∑
∑

i
i

i
ii

CM w

xw
x  m           94.10

10350
113282

*
===

∑
∑

i
i

i
ii

CM w

yw
y  m 

  
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 3, although because there are only two equal walls in each direction the RC  will lie 
between the walls. 
 
Table 3. Calculation of the Centre of Resistance ( RC ) 
 

Wall 
t   
(m) wlh * )( tEK m ⋅ ** xK x103 

(kN/m) 
yK x103 

(kN/m) 
ix  

(m) 
iy  

(m) 
iy xK ⋅  

*103 
ix yK ⋅  

*103 

1X  0.29 1.0 0.143 352.5   20.
00 

 7050.0 

2X  0.29 1.0 0.143 352.5   13.
33 

 4699.0 

1Y  0.19 0.5 0.5  807.5 0  0  

2Y  0.19 0.5 0.5  807.5 20.
00 

 16150.0  

∑     705.0 1615.0   16150.0 11750.0 

Notes: 
* - ehh = = 10.0 m effective wall height 
** - see Table D-3 
 
Note that the elastic uncracked wall 
stiffnesses K  for individual walls have been 
determined from Table D-3, by entering 
appropriate height-to-length ratios. In this 
design, all walls and piers have been 
modelled as cantilevers (fixed at the base 
and free at the top) – see Section C.3 for 
more details regarding wall stiffness 
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calculations. The modulus of elasticity for masonry is =mE 8.5*106 kPa (corresponding to mf ′  of 
10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure): 

10
10*1615
10*16150

*

3

3

===
∑
∑

i
yi

i
iyi

CR K

xK
x  m 

67.16
10*705
10*11750

*

3

3

===
∑

∑

i
xi

i
ixi

CR K

yK
y  m 

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W 
walls, we need to determine the actual eccentricity in the y direction ( ye ), that is, 

73.594.1067.16 =−=−= CMCRy yye  m 
In addition, the accidental eccentricity needs to be considered, that is, 

0.220*1.01.0 ±=±=±= nya De  m 
The total maximum eccentricity in the y-direction is equal to 

73.70.273.51 =+=+= ayty eee  m 
or 

73.30.273.52 =−=−= ayty eee  m 
Note that the latter value does not govern and will not be considered in further calculations. 
 
Torsional moment is determined as a product of the shear force and the eccentricity, that is, 

2241773.7*2900* 1 === tyeVT  kNm 
Torsional effects are illustrated on the figure below. 

 
Seismic force in each wall has two components: translational (no torsional effects) and torsional, 
that is, 

itioi VVV +=  
where 

∑
=

i

i
io K

K
VV *   translational component  

and 
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i
i

it K
J

cT
V *

*
=   torsional component 

622 10*169=⋅+⋅= ∑∑ yiyixixi cKcKJ   torsional stiffness (see Table 4) 

xic , yic  - distance of the wall centroid from the centre of resistance ( RC ) (see the figure below) 

 
Translational and torsional force components for the individual walls are shown below. 

 
 
Calculation of translational and torsional forces is presented in Table 4. 
 
Table 4.  Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction 
 

Wall 
xK *103 

(kN/m) 
yK *103 

(kN/m) 
ic  

(m) 

2
ii cK ⋅∑ *106 

∑ x

x

K
K

 

xoV  
(kN) 

xtV  
(kN) 

totalV  
(kN) 

1X  352.5  -3.33 3.84 0.5 1450 -154 1296  

2X  352.5  3.33 3.84 0.5 1450  154 1604 

1Y   807.5 -10.00 80.80   -1070 -1070 

2Y   807.5 10.00 80.80   1070 1070 

∑  705.0 1615.0  169.0     
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It can be concluded from the above table that the maximum force in the E-W direction is equal 
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained 
ignoring torsional effects. 
 
It can be noted that the contribution of E-W walls to the overall torsional moment T  of 22417 
kNm is not significant (see Table 4). 

kNmmkNmkNT WE 10173.3*1543.3*154 ≅+=−  
because 

%5045.022417/1017 ≈==− TT WE  
this shows that the E-W walls contribute only 5% to the overall torsional moment. 
 
The contribution of N-S walls to the overall torsional moment is as follows: 

kNmmkNmkNT SN 2140010*107010*1070 =+=−  
and 

%9522417/21400 ≈=− TT SN  
and 

kNmTTT SNWE 22417214001017 ≈+=+= −−   (this is also a check for the torsional forces) 
 
Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable, 
since these walls contribute approximately 95% to the overall torsional resistance. 
 
8. Calculate the displacements at the roof level (consider torsional effects). 
Approximate deflections in the E-W walls can be determined according to the procedure 
outlined below. It should be noted that the force distribution calculations have been performed 
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to 
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the 
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K ) 
value to account for the effect of cracking. 
 
a) The reduced stiffness to account for the effect of cracking (see Section C.3.5) 
The reduced stiffness for walls 1X  and  2X  will be determined according to equation (15) from 
Section C.3.5, that is, 

c
em

f

y
ce K

Af
P

f
K )100(

′
+=    

where 
cK  is elastic uncracked stiffness 

1513)0.60.4*20.3)(67.6*67.6*2( =++=fP  kN   (axial force due to dead load in wall 2X ) 

( 43 10*2900.10*)10*290 ==eA mm2   (effective cross sectional area for 290 mm block wall, 
solid grouted, length 10.0 m; see Table D-1 for eA  values for the unit wall length) 

mf ′ =10.0 MPa 
400=yf  MPa (Grade 400 steel) 

thus 

ccce KKK 3.0)
10*290*0.10

10*1513
400
100( 4

3

=+=  
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b) The translational displacement in the walls 1X  and  2X  
can be calculated as follows 
 

mm
mkN

kN
K

V

X

oX
X 7.13

/10*5.352*3.0
1450

3.0 3
2

2
20 ===Δ  

According to NBCC 2005 Cl. 4.1.8.13, these deflections need to 
be multiplied by the Eod IRR  ratio (see Section 1.5.11). In this 
case, EI = 1.0, and so 

( ) mmRRmm odX 8.305.1*5.1*7.137.1320 ===Δ  
 
Since the previous analysis assumed that the seismic force 
acts at the effective height eh , the displacement at the top 
of the wall will be larger (see the figure). The top 
displacement can be calculated by deriving the 
displacement value at the tip of the cantilever; alternatively, 
an approximate factor of 1.5 can be used as follows: 

mmmmx
top

X 468.30*5.1*5.1 220 ≈=Δ=Δ  
Since this is a rigid diaphragm, it can be assumed that the 
translational displacements are equal at a certain floor 
level – let us use point A at the South-East corner as a 
reference (see the figure). 
 
c) The torsional displacements can be calculated as follows: 
Torsional rotation of the building θ  can be determined as 
follows, considering the reduced torsional stiffness to account 
for cracking (same as discussed in step a) above): 

4
6 10*421.4

10*169*3.0
22417 −===

kNm
J
Tθ rad 

where (see the step 7 calculations) 
22417=T  kNm     torsional moment 

610*169=J           elastic torsional stiffness 
The maximum torsional displacement at the South-East corner 
in the X direction (see point A on the figure): 

mmmYCRt
A 4.767.16*10*421.4* 4 ===Δ −θ  

 
Similarly as above, these displacements need to be multiplied 
by Eod IRR  and also by 1.5 to determine the displacement at 
the top of the roof, and so 

mmRR od
top

t
A 0.25*4.7*5.1 ≈=Δ  

 
d) Finally, the total maximum displacement at the roof level (at point A) is equal to:  

mmtop
t

Atop
X

A 7125462max =+=Δ+Δ=Δ  
 
9. Check whether the building is torsionally sensitive. 
NBCC 2005 Cl. 4.1.8.11.(9) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey to the 
average displacement of that storey (see Section 1.5.9.2 and Figure 1-19). This should be done 
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for every storey, but in this case will only be done for the one storey as the remaining storeys 
will have similar B  values because of the vertical uniformity of the walls. Torsional sensitivity is 
determined in a similar manner like the effect of accidental torsion, that is, by applying a set of 
lateral forces at a distance of nxD1.0±  from the centre of mass MC . Since the purpose of this 
evaluation is to compare deflections at certain locations relative to one another, it is not critical 
to use cracked wall stiffnesses. 
 
In this case, the total maximum displacement at point A was determined in step 8 above, that is, 

mmA 71max =Δ  
We need to determine the displacement at other corner (point B), that is, the minimum 
displacement. This can be done as follows: 
Translational component: 

mmtop
X

B 46200 =Δ=Δ  
Torsional component: 

mmmcXt 5.13.3*10*421.4* 4
1 ≈==Δ −θ  

These displacements need to be multiplied by Eod IRR  
and also by 1.5 to determine the displacement at the top 
of the roof, and so 

mmRR odt
B 5*5.1*5.1 ==Δ  

Since the direction of torsional displacements is opposite 
from the translational displacements, it follows that 

mmt
B

o
BB 41546min =−=Δ−Δ=Δ  

The average displacement at the roof level in the E-W 
direction (see the figure showing the displacement 
components): 

mm
BA

ave 56
2

4171
2

minmax =
+

=
Δ+Δ

=Δ  

 

27.1
0.56
0.71max ==

Δ
Δ

=
ave

B  

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with 
the main force resisting elements located around the exterior of the building will not be 
torsionally sensitive.  
 
10. Discussion 
A couple of important issues related to this design example will be discussed in this section. 
 
a) Why should the N-S walls be considered to resist entire torsional effects? 
The distribution of forces to the various elements in the structure is generally based on the 
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible 
and then the forces are distributed on the basis of contributory masses. The present example 
structure with four floors of concrete construction can be considered as having rigid diaphragms, 
and an elastic analysis was performed to determine the wall forces due to the torsional effects. 
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely 
separated, it is expected that they will resist most of the torque from the eccentricity. However, 
since we are designing the structures to respond inelastically, the distribution of forces from an 
elastic analysis should always be questioned. An argument is presented below to show that if 
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the forces in the E-W walls are designed to be equal, they will not contribute to the torsional 
resistance.  
 
The elastic torsional analysis for the forces in the E-W direction result in additional forces of 
±154 kN in the E-W walls and ±1070 kN in the N-S walls (see Table 4). If all the torque is 
resisted by the N-S walls, the force in 
these walls would be ±1120 kN (an 
increase of only 50 kN). 
 
For the earthquake load in the E-W 
direction the E-W walls must resist the 
total base shear in this direction and so 
they will have reached their yield 
strength and progressed along the flat 
portion of the shear/displacement curve 
as shown in the figure (assuming they 
have equal strength). The torsional load 
will have caused a small rotation of the 
diaphragms and so wall 2X  will have a 
slightly larger displacement than wall 1X , as shown on the figure. Had the walls remained 
elastic, the shear in wall 2X  would then be greater than wall 1X  and this would contribute to 
the torsional resistance. However in the nonlinear case, they both have the same shear 
resistance and so do not contribute to the torsional resistance. Thus in this example, all the 
torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the 
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W 
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two 
directions would occur at the same time, and practice has been to consider only 30% of the 
loads in one direction when combining with the loads in the other direction. Thus the forces in 
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the 
yield level on one side, but the torsional displacement on the other side would be in the opposite 
direction, so the wall force would be much reduced in the other direction. The two N-S forces 
then provide a torque to resist the torsional motion. Although this resisting torque may not be as 
large as the elastic analysis would predict, the result would not be failure, but only slightly larger 
torsional displacements. 
 
b) Application of the “100%+30%” rule 
In the calculation of total wall seismic forces including the torsional effects (see step 7 above), 
the effect of seismic loads in E-W direction only was taken into consideration when calculating 
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that 
requires the forces in any element that arise from 100% of the loads in one direction be 
combined with 30% of the loads in the orthogonal direction (for more details refer to NBCC 
4.1.8.8.(1)c and the commentary portion in Section 1.5.9.3 of this document). 
 
Let us determine the forces in one of the E-W walls, e.g. wall 2X , by applying the 
“100+30%”rule. If only 100% of the force in the E-W direction is considered, the total force in the 
wall is equal to (see Table 4): 

kNVVV tXoX
WE

X 16041541450222 =+=+=−  
If the seismic load is applied in the N-S direction, the torsional moment would be determined 
based on the accidental eccentricity ae  (since the building is symmetrical in that direction), and 
so the torsional force in the wall 2X  can be prorated by the ratio of torsional eccentricities in the 
E-W and N-S directions as follows, 

Δ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V

X1 X2
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kN
m
m

e
e

VV
y

a
tX

SN
X

408.39
73.7
0.2*154*22

≈===−  

The total seismic force in the wall 2X  due to 100% of the load in E-W direction and 30% of the 
load in the N-S direction can be determined as 

kNVVV SN
X

WE
XX 161640*3.016043.0 222 =+=+= −−  

It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule 
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant. 
 
However, it can be shown that the “100+30%” rule would significantly influence the forces in the 
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall 

1Y ) due to torsional effects is equal to (see Table 4)  
kNV WE

Y 10701 =−  
When the seismic force acts in the N-S direction, the total force in the wall 1Y  (including the 
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on 
accidental torsion) 

kNVV SN
Y

17402900*6.0*6.0
1

===−  
So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the 
force in the E-W direction the resulting total force is equal to 

kNVVV WE
Y

SN
YY 20611070*3.017403.0 111 =+=+= −−  

In this case, it can be concluded that the difference between the force of 2061 kN (when the 
“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant 
(around 18%). This is illustrated on the figure below.  
 
For those cases where there is a large eccentricity in one direction and the torsional forces are 
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can 
be significant. 
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and 
flexible diaphragm alternatives 
 
Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The 
building plan and relevant elevations are shown on the figure below. The building has an open 
north-west façade consisting mostly of glazing. The roof elevation is at 4.8 m above the 
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel 
columns on the north-west side. Masonry properties should be determined based on 20 MPa 
block strength and Type S mortar (use mf ′  of 10.0 MPa). Grade 400 steel has been used for the 
reinforcement. 
 
Masonry walls should be treated as “conventional construction” according to NBCC 2005 and 
CSA S304.1. A preliminary seismic design has shown that the total seismic base shear force for 
the building is equal to 700=V  kN. This force was determined based on the total seismic 
weight W of 2340 kN and the seismic coefficient equal to 0.3, that is, WV 3.0= .  
 
This example will determine the seismic forces in the N-S walls ( 1Y  to 3Y ) due to seismic force 
acting in the N-S direction for the following two cases: 
a) Rigid roof diaphragm (consider torsional effects), and 
b) Flexible roof diaphragm. 
 
Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be 
discussed. 
 
Note that both flexible and rigid diaphragms are considered to have the same weight, although 
this would be unlikely in a real design application. Also, the columns located on the north-west 
side are neglected in the seismic design calculations. 
 
Specified loads: 
roof  = 3.5 kPa 
25% snow load = 0.6 kPa 
wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption) 
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SOLUTION: 
 
a) Rigid diaphragm 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ). The coordinates of the centre of mass 
will be determined taking into account the influence of wall masses, the upper half of which are 
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the 
centroid of the roof area is determined by dividing the roof plan into two rectangular sections. 
 
Table 1. Calculation of the Centre of Mass ( MC ) 

Wall 
 

iW  
(kN) 

iX  
(m) 

iY  
(m) 

ii XW *
 

ii YW *  
 

X1 387 15.00 0.00 5810 0 
X2 116 25.50 18.00 2963 2092 
Y1 232 21.00 9.00 4880 2092 
Y2 52 30.00 2.00 1548 103 
Y3 116 30.00 13.50 3486 1569 

Roof 1 1107 15.00 4.50 16605 4982 
Roof 2 332 25.50 13.50 8466 4482 

  2343     43759 15319 
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The MC  coordinates have been determined from the table as follows (see the figure below): 

68.18
86.2343
02.43757

*
===

∑
∑

i
i

i
ii

CM W

XW
x  m 

 

54.6
86.2343
38.15324

*
===

∑
∑

i
i

i
ii

CM W

YW
y  m 

 
Next, the coordinates of the 
centre of resistance ( RC ) will 
be determined. Wall 1X  has 
several openings and the 
overall wall stiffness is 
determined using the method 
explained in Section C.3.3 by 
considering the deflections of 
the following components for a 
unit load (see the figure on the 
next page):  
• solid wall with 4.8 m height 
and 30 m length – cantilever 
( solidΔ ) 
• an interior strip with 1.6 m 
height (equal to the opening 
height) and 30 m length – 
cantilever ( stripΔ ) 
• piers A, B, C, and D – cantilevered ( ABCDΔ )  (the stiffness of the piers A, B, C, and D is 
summed and the inverse taken as ABCDΔ ) 
 
The stiffness of each component is based on the following equation for the cantilever model by 
using appropriate height-to-length ratios (see Section C.3.2), that is, 
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The overall wall deflection is determined from the combined pier deflections, as follows: 

ABCDstripsolidX Δ+Δ−Δ=Δ 1  
Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced with the deflection 
of the four piers. 
 
Finally, the stiffness of the wall 1X  is equal to the reciprocal of the deflection (see Table 2), as 
follows 

71.11

1
1 =

Δ
=

X
XK  

 
Table 2. Wall 1X  Stiffness Calculations 
 

Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions lh  )*( tEK  Displacement )*( tEK final

Solid 0.24 4.8 30.0 cant 0.160 2.015 0.496   
Opening 
strip 0.24 1.6 30.0 cant 0.053 6.226 -0.161   
X1A 0.24 1.6 6.2 cant 0.258 1.186     
X1B 0.24 1.6 6.2 cant 0.258 1.186     
X1C 0.24 1.6 6.2 cant 0.258 1.186     
X1D 0.24 1.6 3.0 cant 0.533 0.453     

          ∑ (ABCD) 4.012 0.249   
              0.585 1.709 

 
The stiffness of wall 1Y  is determined in the same manner (see the figure below). The 
calculations are summarized in Table 3. 
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Table 3. Wall 1Y  Stiffness Calculations 
 
Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions

lh  )*( tEK Displacement )*( tEK final

Solid 0.24 4.8 18 cant 0.267 1.142 0.876   
Opening 
strip 0.24 2.4 18 cant 0.133 2.442 -0.409   
Pier E 0.24 2.4 8 cant 0.300 0.992     
Pier F 0.24 2.4 9 cant 0.267 1.142     
          sum(EF) 2.134 0.469   
              0.935 1.070 

 
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 4. 
 
Table 4. Calculation of the Centre of Resistance ( RC ) 
 
Wall 

 
t  

(m) 
h  

(m) 
l  

(m)
End 

cond. 
lh  

tE
K
*

 xK  
(kN/m) 

yK  
(kN/m) 

iX  
(m) 

iY  
(m) 

iy XK *  ix YK *  

X1 0.24         1.709* 3.49E+06 0 15 0   0.00E+00
X2 0.24 4.8 9 cant 0.53 0.453 9.24E+05 0 25.5 18   1.66E+07
Y1 0.24         1.070** 0 2.18E+06 21  0 4.58E+07   
Y2 0.24 4.8 4 cant 1.20 0.095 0 1.94E+05 30  0 5.82E+06   
Y3 0.24 4.8 9 cant 0.53 0.453 0 9.24E+05 30  0 2.77E+07   
              4.41E+06 3.30E+06     7.94E+07 1.66E+07

Notes: 
* - see Table 2 
** - see Table 3 
 
Note that all walls and piers in this example were modeled as cantilevers (fixed at the base and 
free at the top). For more discussion related to modelling of masonry walls and piers for seismic 
loads see Section C.3. The modulus of elasticity for masonry is taken as =mE 8.5*106 kPa 
(corresponding to mf ′  of 10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure below): 

05.24
10*30.3
10*94.7

*

6

7

===
∑
∑

i
yi

i
iyi

CR K

xK
x m 

77.3
10*41.4
10*66.1

*

6

7

===
∑

∑

i
xi

i
ixi

CR K

yK
y  m 

 
Next, the eccentricity needs to be determined. Since we are considering the seismic load effects 
in the N-S direction, we need to determine the actual eccentricity in the x-direction ( xe ), that is, 

37.568.1805.24 =−=−= CMCRx xxe  m 
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In addition, an accidental eccentricity needs to be considered, as follows: 
0.330*1.01.0 ±=±=±= nxa De  m 

 
The total maximum eccentricity in 
the x-direction assumes the 
following two values depending on 
the sign of the accidental 
eccentricity, that is, 

37.80.337.51 =+=+= axx eee  m 
37.20.337.52 =−=−= axx eee  m 

 
The torsional moment is determined 
as a product of the shear force and 
the eccentricity, that is, 

586037.8*700* 11 ≈== xeVT  kNm 
166037.2*700* 22 ≈== xeVT kNm 

 
The seismic force in each wall can be determined as the sum of the two components: 
translational (no torsional effects) and torsional, that is, 

itioi VVV +=  
where 

∑
=

i

i
io K

K
VV *   translational component  

i
i

it K
J

cT
V *

*
=   torsional component 

822 10*97.2=⋅+⋅= ∑∑ yiyixixi cKcKJ    torsional rigidity (see Table 5) 

xic , yic  - distance of the wall 
centroid from the centre of 
resistance ( RC ) 
 
The calculation of translational 
and torsional forces is presented 
in Table 5. Translational and 
torsional force components due 
to the eccentricity 1xe  and the 
torsional moment 1T  are shown 
on the figure. Note that the 
torque 1T  causes rotation in the 
same direction like the force V 
(showed by the dashed line) 
around point RC  (this is 
illustrated on Figure 1-18). The 
wall forces shown on the 
diagram are in the directions to 
resist the shear V and torque 1T , 
thus on wall Y1 the translational 
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in 
the opposite direction. The calculation of the forces is presented in Table 5 where the sign 
convention has horizontal wall forces positive to the left and vertical forces positive down, 
resulting in negative values for the torsional forces in walls X1, Y2 and Y3. 
 
Table 5.  Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction 
 

Wall 
iK  

(kN/m) 
ic  

(m) 

2* ii cK  ∑ yy KK  oV  
(kN) 

tV1  
(kN) 

totalV1  
(kN) 

tV2  
(kN) 

totalV2  
(kN) 

governV  

(kN) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

X1 3.49E+06 -3.77 4.96E+07     -260 -260 -74 -74 260 
X2 9.24E+05 14.23 1.87E+08     260 260 74 74 260 

∑ xK  4.41E+06                   
Y1 2.18E+06 3.05 2.03E+07 0.66 463 131 594 37 500 594 
Y2 1.94E+05 -5.95 6.87E+06 0.06 41 -23 18 -6 35 35 
Y3 9.24E+05 -5.95 3.27E+07 0.28 196 -109 87 -31 165 165 

∑ yK  3.30E+06     1.00 700           

  
2* ii cK∑  2.97E+08       

 
It should be noted that there are two total seismic forces for each wall in the N-S direction 
(corresponding to torsional moments 1T  and 2T ) – see columns (8) and (10) in Table 5. The 
governing force to be used for design is equal to the larger of these two forces, as shown in 
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and 
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3. 
 
b) Flexible diaphragm 
It is assumed in this example that flexible diaphragms are not capable of transferring significant 
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the 
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act 
as beams spanning between the walls, as shown on the figure below. The diaphragm loads 
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia 
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic 
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example). 
 
Shear forces in the walls aY1  and 2Y  (diaphragm D1): 
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall 1X  inertia 
load: 

[ ] kNkPammkPakPammVD 44838.5*30*4.2)6.05.3(*)30*9(*3.01 =++=  
The diaphragm is considered as a beam with the reactions at the locations of walls aY1  and 2Y , 
that is, 

kNmmkNR aY 747915*4481 ==  
and  

kNRVR aYDY 299747448112 −=−=−=  (opposite direction from aYR 1  is required to satisfy  
equilibrium) 
 
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 
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kNkPammVRV waYaY 78238.5*9*4.2*3.074711 =+=+=  
kNkPammVRV wYY 28438.5*4*4.2*3.029922 −=+−=+=  (note: this force has opposite 

direction from force aYV 1 ) 

 
Shear forces in the walls bY1  and 3Y  (diaphragm D2): 
Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall 2X  inertia 
load: 

[ ] kNkPammkPakPammVD 5.13438.5*9*4.2)6.05.3(*)9*9(*3.02 =++=  
The diaphragm is considered as a beam with the reactions at the locations of walls bY1  and 3Y , 
that is, 
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kNRR YbY 3.672/5.13431 ===  
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 

kNkPammVRV wbYbY 10238.5*9*4.2*3.06711 =+=+=  
kNkPammVRV wYY 10238.5*9*4.2*3.06733 =+=+=  

 
Total shear force in wall 1Y : 
The total seismic force in the wall 1Y  is equal to 

kNVVV bYaYY 884102782111 =+=+=  
 
Shear forces in walls 2Y  and 3Y : 
The total shear force in the combined walls 2Y  and 3Y  is equal to 

kNVVV YYY 1821022843223 −=+−=+=  
This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the 
wall stiffnesses are presented in Table 4): 

kNV
KK

KV Y
YY

Y
Y 32)182(*17.0)182(*

10*24.910*94.1
10*94.1* 55

5

23
32

2
2 −=−=−

+
=

+
=  

kNVVV YYY 150)32(1822233 −=−−−=−=  
 
The comparison  
Shear forces in the walls 1Y  to 3Y  obtained in parts a) and b) of this example are summarized 
on the figure below. A comparison of the shear forces is presented in Table 6. 

 
 
Table 6. Shear Forces in the Walls 1Y  to 3Y  for Rigid and Flexible Diaphragms 
 

Shear forces (kN)  
Wall Rigid diaphragm 

(part a) 
Flexible diaphragm 
(part b) 

1Y  594 972 (884) 

2Y  35 35 (32) 

3Y  165 165 (150) 
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These 
values are increased by 10 % to account for accidental eccentricity. 
 
It can be observed from the table that the flexible diaphragm assumption results in the same 
seismic forces for the walls 2Y  and 3Y , and an increase in the wall 1Y  force. 
 
Deflection calculations 
A fundamental question related to diaphragm design is: when should a diaphragm be modeled 
as a rigid or a flexible one? This is discussed in Section 1.5.9.4. A possible way for comparing 
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid 
and flexible diaphragm case are presented below. 
 
• Rigid diaphragm (see Example 2, step 8 for a similar calculation) 
The deflection will be calculated for point A as this should be the maximum.  First, a reduction in 
the wall stiffness to account for the effect of cracking will be determined following the approach 
presented in Section C.3.5. The reduced stiffness will be determined for wall 2Y  according to 
equation (15) from Section C.3.5, that is, 

c
em

f

y
ce K

Af
P

f
K )100(

′
+=    

where 
cK  is the elastic uncracked stiffness  

( ) 1425.3*20.9*0.9 ==fP  kN   (axial force due to dead load in wall 2X ) 

( 43 10*2160.9*)10*240 ==eA mm2   (effective cross sectional area for 240 mm block wall, 
solid grouted, length 9.0 m; see Table D-1 for eA  values for the unit wall length) 

mf ′ =10.0 MPa 
400=yf  MPa (Grade 400 steel) 

thus 

ccce KKK 26.0)
10*216*0.10

10*142
400
100( 4

3

=+=  

Next, the translational displacement at point A can be calculated as follows: 

mm
mkN

kN
K

V

Y

A 82.0
/10*3.3*26.0

700
26.0 60 ===Δ
∑

 

Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the 
building θ  can be found from the following equation: 

5
6 10*59.7

10*297*26.0
5860 −===

kNm
J
Tθ rad 

where (see the torsional calculations performed in part a) of this example) 
5860=T  kNm     torsional moment 

610*297=J           elastic torsional stiffness (this value is reduced by 0.5 to take into account 
the cracking in the walls) 
The torsional displacement at point A: 

mmmxAt
A 82.105.24*10*59.7* 5 ===Δ −θ  
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The total displacement at point A is can be found as follows (note that the displacements need 
to be multiplied by Eod IRR  ratio, where EI = 1.0): 

( ) ( ) mmRR odt
AAA 0.65.1*5.1*82.182.0*0max =+=Δ+Δ=Δ  

 
• Flexible diaphragm 
As a first approximation the calculation will consider a 21 m long diaphragm portion as a 
cantilever beam subjected to the total shear force equal to: 

[ ] kNkPammkPakPammVD 31438.5*21*4.2)6.05.3(*)21*9(*3.0 =++=  
and the equivalent uniform load is equal to 

0.15== LVv DD  kN/m 
where 

0.21=L  m  diaphragm length for the cantilevered portion 
The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at 
the wall 1Y , and walls 1Y , 2Y , and 3Y  also deflect; both effects provide some rotation at the fixed 
end of the cantilever. 
 
Consider a plywood diaphragm with the following properties: 

1500=E  MPa plywood modulus of elasticity 
600=G  MPa  plywood shear modulus 

4.25=Dt  mm  (1” plywood thickness) 
23.00254.0*0.9* === mmtbA D  m2 

 
Let us assume that the two courses of grouted bond beam block act as a chord member, as 
shown on the figure. The roof-to-wall connection is achieved by means of nails driven into the 
anchor plate and hooked steel anchors welded to the plate embedded into the masonry. The 
corresponding moment of inertia around the centroid of the diaphragm can be found as follows: 

89.3
2
0.9*096.0*2

2
**2

22

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

bAI c  m4 

where 
096.0)2.0*24.0(*2 == mmAc  m2       chord area (two grouted 240 mm blocks) 

kPaEm
610*5.8=       masonry modulus of elasticity based on mf ′ = 10.0 MPa (solid grouted 20 

MPa blocks and Type S mortar) 
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The total displacement at point A is equal to the combination of flexural and shear component, 
that is, 

( ) ( ) mmm
GA
LV

IE
Lv DDA 4010*4010*0.290.11

10*600*23.0*2
0.21*314*2.1

89.3*10*5.8*8
0.21*0.15

**2
*2.1

*8
* 33

36

44

==+=+=+=Δ −−

The total displacement at point A is can be found by multiplying the above displacement by 
Eod IRR  ratio, that is, 

mmRR od
AA 905.1*5.1*40*max ==Δ=Δ  

 
A quick check of the additional deflection caused by rotation at the fixed end of the cantilever 
indicates that an additional 50 mm could be expected at point A. Thus the total displacement 
would be about 140 mm. 
 
By comparing the displacements for the rigid and flexible diaphragm model, it can be observed 
that the difference is significant: 

mmA 6max =Δ     rigid diaphragm model 
mmA 90max =Δ   flexible diaphragm model 

 
Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to: 

9.1019.0
4800
90max ===

Δ
=

wh
DR  % 

The drift is within the NBCC 2005 limit of 2.5% (see Section 1.5.11); however, a flexible 
diaphragm would not be an ideal solution for this design – a rigid diaphragm would be the 
preferred solution. 
 
Discussion 
In this example, seismic forces were determined for the N-S walls due to seismic load acting in 
the N-S direction. It should be noted, however, that there is a significant eccentricity causing 
torsional effects in the E-W walls due to seismic load acting in the E-W direction – these 
calculations were not included in this example.  
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall 
 
Determine minimum seismic reinforcement according to CSA S304.1-04 for a loadbearing 
masonry shear wall located in an area with a seismic hazard index ( )2.0aaE SFI  of 0.66. The 
wall is subjected to axial dead load (including its own weight) of 230 kN. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG)  
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 
 
 
 
 

 
SOLUTION: 
The purpose of this example is to demonstrate how the minimum seismic reinforcement area 
should be determined and distributed in horizontal and vertical direction. Once the 
reinforcement has been selected in terms of its area and distribution, the flexural and shear 
resistance of the wall will be determined and the capacity design issues discussed, as well as 
the seismic safety implications of vertical and horizontal reinforcement distribution.  
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

yf = 400 MPa  
s

φ = 0.85 
Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it 
will be ignored for the small area included. 
Masonry: 

mφ = 0.6 
Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table 
4 of S304.1-04 that 

mf ′ = 9.8 MPa  
Based on Note 3 to Table 4, this mf ′  value is normally used for hollow block masonry but can 
also be used for partially grouted masonry if the grouted area is not considered. 
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.5.4.7 and 
Table 2-2). 
Since ( )2.0aaE SFI =0.66 > 0.35, minimum seismic reinforcement must be provided (S304.1 
Cl.10.15.2.2). 
 
Seismic reinforcement area 
Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel 
having a minimum area of  

gs AA 002.0min =  = 0.002*(190*103 mm2/m) = 380 mm2/m 
for 190 mm block walls, where 

gA =(1000mm)*(190mm)=190*103 mm2/m gross cross-sectional area for a unit wall length of 1 
m 
Minimum area in each direction (one-third of the total area): 

127
3

380
3

00067.0 min
minmin ====′=′ s

gvh
A

AAA  mm2/m 

Thus the minimum total vertical reinforcement area 
wv lA *127min =  = (127 mm2/m)(8 m) = 1016 mm2  

 
In distributing seismic reinforcement, the designer may be faced with the dilemma: should more 
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3rd of the total 
amount of reinforcement can be placed in one direction and the remainder in the other direction. 
In this example, less reinforcement will be placed in the vertical direction, and more in the 
horizontal direction. The rationale for this decision will be explained later in this example. 
 
Vertical reinforcement (area and distribution) (see Table 2-2): 
According to S304.1 Cl.10.16.4.3.2, spacing of vertical reinforcing bars shall not exceed the 
lesser of: 
• )10(6 +t =6(190+10)=1200 mm 
• 1200mm 
• 4wl =8000/4=2000 mm 
Therefore, the maximum permitted spacing of vertical reinforcement is equal to  
=s 1200 mm. 

 
Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note 
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so 

vA = 8*200 =1600 mm2 
(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the 
upper limit prescribed by CSA S304.1). 
 
The corresponding vertical reinforcement area per metre length is 

1000*
w

v
v l

A
A =′  = 200 mm2/m > minvA′ =127 mm2/m       OK 
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Horizontal reinforcement (area and distribution) (see Table 2-2): 
Let us consider a combination of joint reinforcement and bond beam reinforcement. According 
to S304.1 Cl.10.15.2.6, where both types of reinforcement are used, the maximum spacing of 
bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement 
arrangement is considered: 
• 9 Ga. ladder reinforcement @ 400 mm spacing, and  
• 2-15M bond beam reinforcement @ 2200 mm (1/3rd of the overall wall height). The area of 
ladder reinforcement (2 wires) is equal to 22.4mm2, and the area of a 15M bar is 200 mm2. So, 
the total area of horizontal reinforcement per metre of wall height is 

=⎟
⎠
⎞

⎜
⎝
⎛ +=′ 1000*

2200
400

400
4.22

hA 238 mm2/m > minhA′ =127 mm2/m       OK 

 
So, the total area of horizontal and vertical reinforcement is 

238200 +=′+′= hvs AAA =438 mm2/m   > minsA =380 mm2/m         OK 
 
Note that the total area (438 mm2/m) exceeds the S304.1 minimum requirements (380 mm2/m)   
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also 
a reserve in reinforcement area provides additional safety for seismic effects. 
 
3. Check whether the vertical reinforcement meets the minimum requirements for 
loadbearing walls (S304.1 Cl. 10.15.1.1 – see Table 2-2). 
Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements 
would need to be checked, however the check is omitted from this example since it does not 
govern in seismic zones. 
 
4.  Determine the flexural resistance of the wall section (see Section C.1.1.2). 
Design for combined effects of axial load and flexure will be performed by considering uniformly 
distributed vertical reinforcement. Based on the above discussion, the total area of vertical 
reinforcement is 

vtA = 1600 mm2  
At the base the wall is subjected to axial load fP = 230 kN. 
 
The in-plane moment resistance for the wall section can be determined approximately from the 
following equations: 

85.01 =α           8.01 =β  

061.0
190*8000*8.9*6.0

1600*400*85.0
'

===
tlf

Af

wmm

vtys

φ
φ

ω  

026.0
190*8000*8.9*6.0

10*230
'

3

===
tlf

P

wmm

f

φ
α  

( ) 8688000
8.0*85.0061.0*2

026.0061.0
2 11

=
+
+

=
+
+

= wlc
βαω

αω
 mm    neutral axis depth 
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⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

8000
8681

1600*400*85.0
10*2301

1000
8000*1600*

1000
400*85.0*5.0115.0

3

wvtys

f
wvtysr l

c
Af

P
lAfM

φ
φ

2762=rM   kNm 
 
5.  Find the diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 
Cl.10.10.1). 
Find the masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

5.0=gγ   partially grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.5 MPa 

Note that a conservative assumption 
vf

f

dV
M

=1.0 has been made in the above equation.  

gdvwmmm PdbvV γφ )25.0( += = 0.6(0.5*190*6400+0.25*207*103)*0.5 = 198 kN     

Steel shear resistance sV : 

8.608*85.0*6.06.0 =⎟
⎠
⎞

⎜
⎝
⎛= ∑ s

d
fAV v

yvss φ = 310 kN 

where the shear reinforcement includes 9 Ga. joint reinforcement spaced at 400 mm, and 2-
15M bond beam reinforcement at 2200 mm spacing, and so 

2200
6400*400*

1000
400

400
6400*400*

1000
4.22

+=∑ s
d

fA v
yv = 608.8 kN 

The total diagonal shear resistance is equal to 
508310198 =+=+= smr VVV  kN 

This is a squat shear wall because 0.1825.0
8000
6600

≤==
w

w

l
h

. 

Maximum shear allowed on the section is (S304.1 Cl.10.10.1.3): 

537)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN    

Since 
rr VV max<   OK 

 
6. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 1600 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*1600*400 = 544 kN  

dP  = 207 kN 
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yd TPP +=2  = 207+544 = 751 kN 

2PV mr μφ= = 0.6*1.0*751=451 kN 
 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. Seismic design philosophy considers that it is desirable to 
design structural members such that the more ductile flexural failure takes place before the 
more brittle shear failure has been initiated. This is known as capacity design approach and is 
discussed in detail in Section 2.5.2.  
 
In this case, the factored moment resistance is equal to 

2762=rM   kNm 
 
The nominal moment resistance can be estimated as follows 

3249
85.0

2762
===

s

r
n

MM
φ

 kNm 

 
Shear force at the top of the wall that would cause the overturning moment equal to nM  is 
equal to 

===
6.6

3249

w

n
nb h

M
V  492 kN 

 
To ensure that flexural failure takes place before the diagonal shear failure, it is required that 
(see Figure 2-22) 

rnb VV ≤  
 
Since 

508492 =<= rnb VV  kN 
 
the capacity design criterion has been satisfied. It should be noted that CSA S304.1-04 does not 
formally require that capacity design approach be applied to all categories of reinforced 
masonry walls – it is mandatory only for “ductile walls” (limited ductility and moderately ductile 
shear walls). However, it is a good practice to consider the capacity design approach in 
designing all reinforced masonry walls in areas where seismic design is required by NBCC 2005 
(note that this approach is followed in CSA A23.3 reinforced concrete design standard). 
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8. Design summary 
The reinforcement arrangement for the wall under consideration is summarized below. 

 
 
9. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 492=nbV  kN shear force corresponding to flexural failure 
b) 508=rV  kN diagonal tension shear resistance 
c) 451=rV  kN sliding shear resistance 
Since the sliding shear resistance value is the lowest, it can be concluded that the sliding shear 
mechanism is critical for this case, which is common for seismic design of squat shear walls. 
 
As discussed at the beginning of this example, CSA S304.1 permits the minimum seismic 
reinforcement to be distributed in different ways. The solution presented above proposed that 
minimum reinforcement be placed in the vertical direction so that the capacity design criterion 
could be satisfied. Had the designer decided that more vertical reinforcement is required for 
meeting the flexural design requirements, (s)he could have used 10-15M bars instead of 8-15M 
bars (this would result in a 25% increase in the amount of vertical reinforcement). The 
corresponding amount of horizontal reinforcement could be reduced: 1-15M at 2200 mm 
spacing for bond beam reinforcement and 9 Ga. joint reinforcement at 400 mm spacing. This 
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combination would meet the minimum seismic reinforcement requirements (250 mm2/m vertical 
reinforcement and 146 mm2/m horizontal reinforcement, with a total of 397 mm2/m). For this 
arrangement of reinforcing the moment and shear resistance would be: 3195=rM   kNm (a 
16% increase compared to the previous value 2762=rM   kNm) and 571=nbV  kN shear force 
corresponding to flexural failure; however, 392=rV  kN (diagonal tension shear resistance). 
Since rnb VV >  the capacity design criterion would not be met. As a result, this wall would be 
expected to fail in a shear (diagonal tension) mode characterized by a brittle failure, which is 
undesirable. Alternatively, the wall might fail in shear sliding mode, which is more desirable than 
the diagonal shear failure and often governs in low-rise reinforced masonry shear walls. 
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EXAMPLE 4b: Seismic design of a squat shear wall of conventional construction 
 
Design a single-storey squat concrete block shear wall shown in the figure below according to 
NBCC 2005 and CSA S304.1 seismic requirements for conventional construction. The building 
site is located in Ottawa, ON on Site Class C soil, and the seismic hazard index ( )2.0aaE SFI  is 
0.66. The wall is subjected to a total dead load of 230 kN (including the wall self-weight) and an 
in-plane seismic force of 630 kN. Consider the wall to be solid grouted. Neglect the out-of-plane 
effects in this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 
 
 
 
 
 
 
 

SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6  
S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf ′ = 7.5 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
• fP = 230 kN axial load 

• fV = 630 kN seismic shear force 

• hVM ff *=  = 630*6.6 ≈ 4160 kNm overturning moment at the base of the wall 
Note that, according to NBCC 2005 Table 4.1.3.2, load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
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3. Minimum CSA S304.1 seismic reinforcement (see Section 2.5.4.7 and Table 2-2) 
Since ( )2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (S304.1 
Cl.10.15.2.2). See Example 4a for a detailed calculation of the S304.1 minimum seismic 
reinforcement. 
 
4.  Design for the combined axial load and flexure 
A design for the combined effects of axial load and flexure will be performed using two different 
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering 
concentrated and distributed reinforcement. 
 
Distributed wall reinforcement (see Section C.1.1.2) 
This procedure assumes uniformly distributed vertical reinforcement over the wall length. The 
total vertical reinforcement area can be estimated, and the estimate can be revised until the 
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical 
reinforcement was determined as  

vtA = 3200 mm2 > 1016 mm2 (minimum seismic reinforcement) - OK 
Try 16-15M bars for vertical reinforcement. 
The wall is subjected to axial load 

fP = 230 kN  
The approximate moment resistance for the wall section is given by: 

85.01 =α           8.01 =β  

159.0
190*8000*5.7*6.0

3200*400*85.0
'

===
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Af

wmm
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φ
φ
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10*230
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φ
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( ) 15478000
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⎛
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φ

4253=rM   kNm > 4160=fM   kNm       OK 
 
Distributed and concentrated wall reinforcement (see Section C.1.1.1) 
 
This procedure assumes the same total reinforcement area, but the concentrated reinforcement 
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length. 

vtA = 3200 mm2 
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Concentrated reinforcement area at 
each wall end (3-15M bars in total, 
1-15M in last 3 cells): 

cA = 600 mm2 
 
Distributed reinforcement 

=dA 3200-2*600=2000 mm2 
 
Distance from the wall end to the 
centroid of concentrated 
reinforcement 

300=′d  mm  
 
The compression zone depth a :  

190*5.7*6.0*85.0
2000*400*85.010*230

'85.0

3 +
=

+
=

tf
AfP

a
mm

dysf

φ
φ

    = 1252 mm 

 
The masonry compression resultant rC :   

( )( ) 910)1252*190)(5.7*6.0*85.0('85.0 ==⋅= atfC mmm φ kN 
 
The factored moment resistance rM  will be determined by summing up the moments around 
the centroid of the wall section as follows (see equation (3) in Section C.1.1.1) 

( )( )[ ] 610*'222)( −−+−= dlAfalCM wcyswmr φ  

( )( )[ ] 63 10*30028000600*400*85.0*22)12528000(*10*910 −−+−= 4580=rM   kNm 
 
The second procedure was used as a reference (to confirm the results of the first procedure). 
Both procedure give similar rM  values (4253 kNm and 4580 kNm by the first and second 
procedure respectively).  
 
5.  Find the diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 
Cl.10.10.1). 
Masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.44 MPa 

4.6*630
4160

=
vf

f

dV
M

= 1.03 ≈ 1.0 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     
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Steel shear resistance sV  (2-15M bond beam reinforcement at 1200 mm spacing): 

1200
6400*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 435 kN 

Total shear resistance 
787435352 =+=+= smr VVV  kN     

Since 
787=rV kN > 630=fV kN       OK 

This is a squat shear wall because 0.1825.0
8000
6600

≤==
w

w

l
h

. Maximum shear allowed on the 

section is (S304.1 Cl.10.10.1.3) 

939)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN   

Since 
rr VV max<      OK 

Note that a solid grouted wall is required, that is, 0.1=gγ . A partially grouted wall would have 
5.0=gγ , so its shear capacity would not be adequate for this design. 

 
6. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 3200 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*3200*400 = 1088 kN  

dP  = 207 kN 

yd TPP +=2  = 207+1088 = 1295 kN 

2PV mr μφ= = 0.6*1.0*1295=777 kN 
777=rV kN > 630=fV kN       OK 

 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. It is a good seismic design practice to design structural 
members so that a ductile flexural failure takes place before a shear failure has been initiated, 
that is, to follow the capacity design approach discussed in Section 2.5.2. Note that CSA 
S304.1-04 does not formally require that capacity design approach be applied to reinforced 
masonry walls of conventional construction – it is mandatory only for “ductile walls”. 
 
In this case, the factored moment resistance is equal to 

4253=rM   kNm 
The nominal moment resistance can be estimated as follows 

5004
85.0

4253
===

s

r
n

M
M

φ
 kNm 

The shear force at the top of the wall that would cause an overturning moment equal to nM  is 



4/1/2009 4-45

===
6.6

5004

w

n
nb h

M
V  758 kN 

To ensure that a flexural failure takes place before the diagonal shear failure, it is required that 
(see Figure 2-22) 

rnb VV ≤  
Since 

787758 =<= rnb VV  kN 
the capacity design criterion is satisfied (see discussion in Example 4a). 
 
8. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to 
ensure uniform shear transfer along the entire length (see Section 2.3.2.2). 

 
 
10. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
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a) 758=nbV  kN shear force corresponding to flexural failure 
b) 787=rV  kN diagonal tension shear resistance 
c) 777=rV  kN sliding shear resistance 
 
Since the shear force corresponding to flexural resistance is smallest of the three values, it can 
be concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
 
Note that CSA S304.1-04 Cl.10.2.8 prescribes the use of a reduced effective depth d  for the 
flexural design of squat shear walls. This example deals with seismic design, and the wall 
reinforcement is expected to yield in tension, this provision was not followed since it would lead 
to a non-conservative design; instead, the actual effective depth was used for flexural design. 
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EXAMPLE 4c: Seismic design of a squat shear wall of moderate ductility 
 
Design a single-storey squat concrete block shear wall shown on the figure below according to  
NBCC 2005 and CSA S304.1 seismic requirements for moderately ductile squat shear walls 
(note that the same shear wall was designed in Example 4b as a conventional construction). 
The building site is located in Ottawa, ON and the seismic hazard index ( )2.0aaE SFI  is 0.66. 
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher dR  value of 2.0 that can be used for walls 
with moderate ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in 
this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 

 
 
SOLUTION: 
Since  

0.1825.0
8000
6600

≤==
w

w

l
h

 

this is a squat shear wall (S304.1 Cl.4.6.6). The wall is to be designed as a moderately ductile 
squat shear wall, and NBCC 2005 Table 4.1.8.9 specifies the following dR  and oR  values (see 
Table 1-13): 

dR = 2.0 and oR = 1.5      
The seismic shear force of 470 kN for a wall with moderate ductility ( 0.2=dR ) was obtained by 
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with 
conventional construction ( 5.1=dR ), as follows 

 470
0.2
5.1*630 ≈=fV  kN 

 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   

Note that the h/t ratio exceeds the 
S304.1 limit of 20 for moderately 
ductile squat shear walls 
(Cl.10.16.6.3).
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Masonry: 
mφ = 0.6    

From S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 
mf ′ = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
• fP = 230 kN axial load 

• fV = 470 kN seismic shear force 

• hVM ff *=  = 470*6.6 ≈ 3100 kNm overturning moment at the base of the wall 
Note that, according to NBCC 2005 Table 4.1.3.2, the load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
 
3. Minimum CSA S304.1 seismic reinforcement (see Section 2.5.4.7 and Table 2-2) 
Since ( )2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (Cl.10.15.2.2). See 
Example 4a for a detailed calculation of the S304.1 minimum seismic reinforcement. 
 
4.  Design for the combined axial load and flexure (see Section C.1.1.2). 
A design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as 

vtA = 2200 mm2  > 1016 mm2 (minimum seismic reinforcement) - OK 
and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area 
of 2200 mm2). 
 
The wall is subjected to axial load fP = 230 kN. Note that the load factor for the load 
combination with earthquake load is equal to 1.0. 
 
The moment resistance for the wall section can be determined from the following equations (see 
Example 4b): 

85.01 =α   8.01 =β   109.0=ω   034.0=α   1273=c  mm  
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3290≅rM   kNm > 3100=fM   kNm       OK 

 
5. Height/thickness ratio check (see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in moderately ductile squat shear walls (Cl.10.16.6.3): 

20)10( <+th , unless it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability. 
 
For this example, 
h = 6600 mm (unsupported wall height) 
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t = 190 mm actual wall thickness 
So, 

( ) 2033101906600)10( >=+=+th  
The height-to-thickness ratio for this wall exceeds the CSA S304.1 limits by a significant margin. 
However, CSA S304.1 permits the height-to-thickness restrictions for moderately ductile squat 
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability 
is satisfactory.  
 
This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which 
corresponds to the compressive stress of 

15.0
190*8000
10*230 3

===
tl

P
f

w

f
c  MPa 

This stress corresponds to only 2% of the masonry compressive strength mf ′  which is equal to 
7.5 MPa. In general, a compressive stress below 0.1 mf ′  (equal to 0.75 MPa in this case) is 
considered to be very low. 
 
The recommendations included in the commentary to Section 2.5.4.4 will be followed here.  A 
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of 
the compression zone must be confirmed for this case. 
 
Try an effective flange width 390=fb mm.  The wall section and the internal force distribution is 
shown on the figure below.  

 
 
This procedure assumes the same total reinforcement area vtA  as determined in step 4, but the 
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is 
distributed over the wall length. 

vtA = 2200 mm2 
Concentrated reinforcement area (2-15M bars at each wall end): 
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cA = 400 mm2 
Distributed reinforcement area: 

=dA 2200-2*400=1400 mm2 
Distance from the wall end to the centroid of concentrated reinforcement cA : 
 100=′d  mm  
• Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*846.1
5.7*6.0*85.0

1400*400*85.010*230
'85.0

=
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=
+

=
mm

dysf
L f

AfP
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φ

 mm2 

The depth of the compression zone a : 
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190)190*390(10*846.1* 252

=
+−

=
+−

=
t

ttbA
a fL  mm 

The neutral axis depth: 

965
8.0
==

ac  mm 

The centroid of the masonry compression zone: 
( ) ( )
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2)(2* 22

=
−+

=
L

f

A
ttbat

x  mm 

In this case, the compression zone is L-shaped, however only the flange area will be considered 
for the buckling resistance check (see the shaded area shown on the figure below). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
 
Gross moment of inertia for the flange only: 

8
33

10*39.9
12

390*190
12
*

=== f
xg

bt
I  mm4 

 
The buckling strength for the compression zone will be 
determined according to S304.1 Cl. 10.7.4.3, as follows: 

( )( )
1017

5.01 2

2

=
+

=
kH
IE

P
d

mer
cr β

φπ
 kN 

where 
75.0=erφ    

0.1=k  pin-pin support conditions 
0=dβ   assume 100% seismic live load  
6600=H  mm wall height 

6375850 =′= mm fE  MPa modulus of elasticity for masonry 
• Find the resultant compression force (including the concrete and steel component). 

842400*400*85.010*706 3 =+=+= cysmfb AfCP φ  kN 
where 

( ) 706)10*846.1)(5.7*6.0*85.0('85.0 5 === Lmmm AfC φ  kN 
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• Confirm that the out-of-plane buckling resistance is adequate. 
Since  

842=fbP kN < 1017=crP  kN 
it can be concluded that the out-of-plane buckling resistance is adequate and so the flanged 
section can be used for this design. This is in compliance with S304.1 Cl.10.16.6.3, despite the 
fact that the th  ratio for this wall is 33, which exceeds the CSA S304.1-prescribed limit of 20. 
 
4a. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 5 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

( ) ( ) ( ) )10028000(*400*400*85.0*2)32628000(*10*706)2(22 3 −+−=′−+−= dlAfxlCM wcyswmr φ

365510*3655 6 == NmmM r   kNm 
Since 

3655=rM   kNm > 3100=fM   kNm       OK 
 
6.  The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.44 MPa 

4.6*470
3100

=
vf

f

dV
M

= 1.03 ≈ 1.0 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV : 
Assume 2-15M bond beam reinforcement at 1200 mm spacing, so 

400=vA  mm2 
1200=s  mm 

Horizontal reinforcement area per metre: 

3331000*
1200
4001000* ===′

s
A

A v
h  mm2/m 

 

1200
6400*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 435 kN 

Total diagonal shear resistance 
787435352 =+=+= smr VVV  kN     
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787=rV  kN > 470=fV  kN       OK 
Maximum shear allowed on the section is (S304.1 Cl.10.10.1.3) 

939)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN      

Since 
rr VV max<    OK 

 
Note that CSA S304.1 Cl.10.16.6.2 requires that the method by which the shear force is applied 
to the wall shall be capable of applying shear force uniformly over the wall length. This can be 
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section 
2.3.2.2 (see Figure 2-16). 
 
7. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2200 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*2200*400 = 748 kN  

dP  = 207 kN 

yd TPP +=2  = 207+748 = 955 kN 

2PV mr μφ=  = 0.6*1.0*955 = 573 kN 
573=rV  kN > 470=fV  kN       OK 

Note that 573=rV  kN < 787=nbV  kN (this indicates that the sliding shear resistance governs 
over the diagonal tension shear resistance). 
 
8. Reinforcement requirements for moderately ductile squat shear walls (see Section 
2.5.4.8) 
CSA S304.1-04 Cl.10.16.6.6 introduced the following new requirements for the amount of 
reinforcement in moderately ductile squat shear walls: 
 
Vertical reinforcement ratio vρ  
Actual vertical reinforcement ratio vflexρ  based on the flexural design requirements (see step 4): 

310*447.1
190*8000

2200
*

−===
tl

A

w

vt
vflexρ  

Minimum minvρ  value set by CSA S304.1 Cl.10.16.6.6.1: 

=
−

=
⋅⋅⋅

−
≥

400*8000*190*85.0
10*23010*470 33

min
ywws

ff
v flb

PV
φ

ρ 0.464*10-3 

Since  
vflexρ = 1.447*10-3 > minvρ = 0.464*10-3 

Therefore, the amount of vertical reinforcement determined based on the flexural design 
requirements (11-15M) is OK. 
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Horizontal reinforcement ratio hρ   

hρ  should be greater of  
a) the minimum value set by CSA S304.1 Cl.10.16.6.6.2: 

=+=+≥ −

400*8000*190
10*23010*644.4*85.0

3
4

min
yww

f
vshs flb

P
ρφρφ 0.773*10-3 

(note that the vertical reinforcement ratio used in this relation is the one that governed above, 
that is, minvv ρρ = = 4.644*10-4) 
and  
b) the value determined in accordance with Cl.10.10 based on the shear resistance 
requirements 

310*44.1
6600*190
2131*85.0

*
−===

ww

hs
hshears hb

Aφ
ρφ  

where hA  is the total area of horizontal reinforcement along the wall height, that is, 
=′= vhh dAA * 333*6.4=2131 mm2 

333=′hA  mm2/m  (see step 6) 
 
In this case, 

minhsρφ =0.773*10-3 <  hshearsρφ =1.44*10-3 

This indicates that the CSA S304.1 shear resistance requirement governs. The amount of 
horizontal reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is 
adequate. 
 
9. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry 
shear walls be designed so that flexural failure takes place before shear failure has been 
initiated, that is, to follow the capacity design approach (see Section 2.5.2 for more details).  
In this case, the factored moment resistance is equal to 

3655=rM   kNm 
The nominal moment resistance can be estimated as follows 

4300
85.0

3655
===

s

r
n

M
M

φ
 kNm 

The shear force at the top of the wall that would cause an overturning moment equal to nM  is 

===
6.6

4300

w

n
nb h

M
V  652 kN 

In order to ensure that flexural failure takes place before the diagonal shear failure, it is required 
that (see Figure 2-22) 

rnb VV ≤  
Since 

787652 =<= rnb VV  kN 
the capacity design criterion is satisfied (see discussion in Example 4a). 
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10. Shear resistance at the web-to-flange interface (see Section C.2 and Cl.7.11.4). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear: 

31.0
8000*190
10*470 3

===
we

f
f lt

V
v  MPa 

where et = 190 mm (effective wall thickness) 
Vertical shear (caused by the resultant compression force fbP  calculated in Step 5): 

67.0
6600*190
10*842

*

3

===
ww

fb
f hb

P
v  MPa           governs 

Masonry shear resistance: 
44.0=mv  MPa (see step 6) 

Since 
67.0=fv MPa > 26.0=mmvφ MPa 

shear reinforcement at the web-to-flange interface is required. Since the horizontal 
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the 
flange (90° hook), and so 

60.0
190*1200

400*200*2*85.0
==

⋅
=

e

ybs
s ts

fA
v

φ
MPa 

The total shear resistance 
86.060.026.0 =+=+= smmr vvv φ MPa 

Since  
67.0=fv MPa < 86.0=rv MPa 

the shear resistance at the web-to-flange interface is satisfactory. 
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12. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solid grouted. 

 
13. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 652=nbV  kN shear force corresponding to flexural failure 
b) 787=rV  kN diagonal tension shear resistance 
c) 573=rV  kN sliding shear resistance 
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Since the sliding shear resistance value is smallest, it can be concluded that the sliding shear 
mechanism is critical in this case, which is common for seismic design of squat shear walls. 
Sliding shear resistance can be increased by roughening the wall-to-foundation interface (in 
which case the frictional coefficient can be increased to μ  = 1.4) or by providing shear keys. 
Alternatively, additional dowels could be provided at the base of the wall, however this would 
result in an increase in the moment resistance. The designer would need to ensure that the 
capacity design criterion discussed in step 9 is satisfied. 
 
Note that CSA S304.1-04 Cl.10.2.8 prescribes the use of reduced effective depth d  for flexural 
design of squat shear walls. Since this example deals with seismic design and essentially all the 
wall reinforcement is expected to yield in tension, this provision was not used as it is expected 
to result in additional vertical reinforcement, which would increase the moment capacity and 
possibly lead to a more brittle diagonal shear failure. 
 
Note that the S304.1 ductility check is not prescribed for moderately ductile squat shear walls 
(this requirement applies to the narrower flexural shear walls of moderate ductility per 
Cl.10.16.5.2.3). 
 
This example shows that an addition of flanges can be effective in preventing the out-of-plane 
buckling of moderately ductile squat shear walls. This is in compliance with S304.1 
Cl.10.16.6.3, despite the fact that the th  ratio for this wall is 33, which exceeds the CSA 
S304.1-prescribed limit of 20. 
 
The last two examples provide an opportunity for comparing the total amount of vertical 
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a 
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall 
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction 
(16-15M bars); this reduction amounts to approximately 30%. 
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EXAMPLE 5a: Seismic design of a flexural shear wall of limited ductility 
 
Perform the seismic design of a shear wall 1X , which is a part of the building discussed in 
Example 2. The wall is four storeys high, with the total height of 14 m, and due to its height must 
be designed either as a “limited ductility” or a “moderate ductility” shear wall per NBCC 2005 
Table 4.1.8.9 (same as Table 1-13 in Chapter 1 of this document). 
 
The section at the base of the wall is subjected to the total dead load of 1800 kN, the in-plane 
seismic shear force of 1450 kN, and the overturning moment of 14500 kNm. Select the wall 
dimensions (length and thickness) and the reinforcement such that the CSA S304.1 Cl.10.16.4 
seismic design requirements for limited ductility shear walls are satisfied. Due to architectural 
constraints, the wall length should not exceed 10 m, and a rectangular (unflanged) wall section 
should be used. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
 
Note: the wall dead load was calculated based on the tributary area (3.4 m by 13.4 m) at each 
floor level (see a typical floor plan shown in Example 2), plus the wall self-weight. 

 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
S304.1 Table 4, 20 MPa concrete blocks and Type S mortar: 



4/1/2009 4-58

mf ′ = 10.0 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
• fP = 1800 kN axial load 

• fV = 1450 kN seismic shear force 

• fM  = 14500 kNm overturning moment 
 
According to S304.1 Cl.4.6.4, this is a flexural shear wall because wh = 14000 mm height and 

wl = 10000 mm length, and  

0.14.1
10000
14000

>≥≥
w

w

l
h

 

and so the CSA S304.1 seismic design requirements for limited ductility (flexural) shear walls 
should be followed.  
 
3. Determine the required wall thickness based on the S304.1 height-to-thickness 
requirements (Cl.10.16.4.1.2, see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in limited ductility shear walls: 

18)10( <+th  
For this example, 
h = 5000 mm (the largest unsupported wall height) 
So, 

2681018 =−≥ ht  mm 
Therefore, in this case the only possible wall thickness is 

290=t  mm 
Alternatively, the designer may wish to consider a flanged wall section with smaller thickness. 
This is possible, except that (s)he would need to prove that the out-of-plane wall stability is not a 
concern (see Example 5b). 
 
4. Determine the wall length based on the shear design requirements. 
Designers may be requested to determine the wall dimensions (length and thickness) based on 
the design loads. In this case, the thickness is governed by the height-to-thickness ratio 
requirements, and the length can be determined from the maximum shear resistance for the 
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304.1 
Cl.10.10.1.1): 

gvwmmrr dbfVV γφ ′=≤ 4.0max  

0.1=gγ   solid grouted wall (required for plastic hinge zone) 

290=wb  mm overall wall thickness 

wv ld 8.0≈  effective wall depth 
Set  

1450== fr VV  kN 
and so 
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8235
0.1*8.0*290*10*6.0*4.0

10*1450
)8.0(4.0

3

==
′

>
gwmm

f
w bf

V
l

γφ
 mm 

Therefore, based on the shear design requirements the designer could select the wall length of 
8.4 m. However, a preliminary capacity design check indicated that a minimum wall length of 
nearly 10 m was required, thus try 

10000=wl  mm 
which gives 

1760max =rV  kN   
 
5. Minimum CSA S304.1 seismic reinforcement requirements (see Table 2-2) 
Since ( )2.0aaE SFI = 0.95 > 0.35, it is required to provide minimum seismic reinforcement 
(S304.1 Cl.10.15.2.2). See Example 4a for a detailed discussion on the S304.1 minimum 
seismic reinforcement requirements. 
 
6.  Design for the combined axial load and flexure (see Section C.1.1.2). 
Design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as follows 

vtA = 6000 mm2  
20-20M reinforcing bars can be used for vertical reinforcement in this design, and the average 
spacing is equal to  

516
19

20010000
=

−
≤s   mm  

Since the amount of vertical reinforcement is significant, it is required to check the maximum 
reinforcement area per S304.1 Cl.10.15.3 (see Table 2-2). 
Since mms 516=  < mmt 1160290*44 ==  

5800)10*290(02.002.0 3
max === gs AA  mm2/m 

This corresponds to the total reinforcement area of approximately 58000 mm2 for a 10 m long 
wall; this is significantly larger than the estimated area of vertical reinforcement. 
 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01 =α   8.01 =β    12.0=ω   1.0=α   2400≈c  mm 
 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

10000
24001

6000*400*85.0
10*18001

1000
10000*6000*

1000
400*85.0*5.0115.0

3

wvtys

f
wvtysr l

c
Af

P
lAfM

φ
φ  

14600=rM   kNm > 14500=fM   kNm       OK 
 
7. Perform the CSA S304.1 ductility check (see Section 2.5.4.3).  
To satisfy the CSA S304.1 ductility requirements for limited ductility shear walls (Cl.10.16.4.1.4), 
neutral axis depth ratio ( wlc ) should be less than the following limit: 

2.0<wlc  when 6<ww lh   
In this case, the neutral axis depth  
c = 2400 mm 
and so 
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2.024.0100002400 >==wlc  
Therefore, the CSA S304.1 ductility requirement is not satisfied. However, Cl.10.16.4.1.4 also 
states that the maximum compressive strain in masonry in the plastic hinge zone shall be 
shown to not exceed 0.0025 at the desired ductility level. 
 
At this point, the designer can use one of the following two alternative approaches to check 
whether the ductility is adequate per CSA S304.1 Cl.10.16.4.1.4: 
 
1) Find the required wall length such that the wlc  limit prescribed in the CSA S304.1 
ductility criteria is satisfied. 
The wall length can be estimated from Table D-2, which provides wlc  ratios for different input 
parameters (α  and ω ). By inspection, it can be concluded that 2.0<wlc   when 1.0≤α . Let 
us try to estimate the wall length based on this criterion. 
Since  

tlf
P

wm

f

'
*1667

=α  

set 
1.009.0 <=α  

and so 

11496
290*09.0*0.10

1800*1667
**'

*1667
===

tf
P

l
m

f
w α

 mm 

Therefore, we can select an increased wall length 11600=wl  mm. 
 
2) Calculate the masonry strain in the extreme compression fibre based on the given 
design loads, and prove that its value is less than 0.0025. 
This check will be performed based on the procedure explained in Section B.2 (see Figure B-5). 
The maximum displacement in the wall 1X  at the roof level was determined in Example 2 (step 
8), that is, 

mm46max =Δ  
Note that the above value includes only translational displacement component. Since the wall 

1X  is located close to the centre of resistance, the torsional displacement component is not 
significant. In the case of wall 1X , torsional displacement has a different direction from the 
translational displacement and (if included) the total displacement would be less than the 
translational one. 
 
The maximum displacement maxΔ  is equal to the sum of elastic displacement at the onset of 
steel yielding yΔ  and the plastic (post-yield) displacement pΔ , that is, 

py Δ+Δ=Δmax  
The yield curvature (corresponding to the onset of yielding in steel reinforcement) can be 
estimated as follows 

710*5.3
10000

0035.00035.0 −===
w

y l
ϕ The elastic displacement at the effective height can be 

estimated as  
( )( ) mm

hey
ye 7.11

3
1000010*5.3

3

272

===Δ
−ϕ
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The elastic displacement at the top of the wall is equal to (see the discussion in Example 2, step 
8) 

mmyey 5.177.11*5.1*5.1 ==Δ=Δ  
So, the plastic displacement can be determined as 

mmyp 5.285.1746max =−=Δ−Δ=Δ  

The plastic rotation pθ  can be found from the plastic displacement at the top and assuming that 
the plastic hinge has developed at the base is equal to (see the figure below) 

310*48.2

2
500014000

5.28

2

−=
−

=
−

Δ
=

p
w

p
p l

h
θ  rad 

where the plastic hinge length to be used for ductility calculations has been estimated as 
mmll wp 500010000*5.05.0 ===  

 
The maximum curvature can be determined from the following relationship between the rotation 
and the curvature: 

( ) pyup l*ϕϕθ −=  
and so 

7
3

10*96.4
5000

10*48.2 −
−

===−
p

p
yu l

θ
ϕϕ  

The ultimate curvature can then be determined as 
777 10*46.810*5.310*96.4 −−− =+=uϕ  

The maximum compressive strain in masonry can be determined from the following equation 

c
m

u
ε

ϕ =  

where 
2400=c  mm   neutral axis depth (see step 6) and so 

002.0)2400)(10*46.8(* 7 ≈== −cum ϕε  
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It should be noted that this procedure uses an assumption that the neutral axis depth c  has the 
same value at the onset of yielding (corresponding to strain yε ) and at the ultimate 
(corresponding to strain mε ); this is not true, however it does not significantly influence the 
accuracy of numerical results. 
 
Since 0025.0002.0 <=mε  it can 
be concluded that the wall 
satisfies the CSA S304.1 ductility 
requirements and that it is not 
necessary to increase its length. 
Therefore, the wall length 

10000=wl  mm will be used in 
the next steps. It should be noted 
that a larger wall length obtained 
from the first approach 
( 11600=wl  mm) would have 
resulted in a reduced amount of 
vertical and horizontal 
reinforcement for the same flexural and shear design requirements, and would be a viable 
design solution had the wall length not been limited to 10 m due to architectural constraints. 
 
8.  The diagonal tension shear resistance and capacity design check (see Section 2.3.2 
and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

290=wb  mm overall wall thickness 
80008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 1620 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.51 MPa 

Since 

0.8*1450
14500

=
vf

f

dV
M

= 1.25 > 1.0  

use 0.1=
vf

f

dV
M

 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.51*290*8000+0.25*1620*103)*1.0 = 953 kN     

S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry shear walls be designed according 
to the capacity design approach (see Section 2.5.2 for more details). According to that 
approach, the shear capacity should exceed the shear corresponding to the nominal moment 
resistance (see Figure 2-22), as follows 

17176
85.0

14600
===

s

r
n

M
M

φ
 kNm 

where   
14600=rM   kNm     the factored moment resistance (see Step 6). 



4/1/2009 4-63

Shear force acts at the effective height eh , that is, distance from the base of the wall to the 
resultant of all seismic forces acting at floor levels. eh  can be determined as follows 

0.10==
f

f
e V

M
h  m 

The shear force nbV  that would cause the overturning moment equal to nM  can be found as 
follows 

===
0.10

17176

e

n
nb h

M
V  1718 kN 

This is less than the maximum shear allowed on the section (S304.1 Cl.10.10.1.1) 
17604.0max =′= gvwmmr dbfV γφ  kN    OK 

Thus the required steel shear resistance is 
7659531718 =−=−= mrs VVV  kN 

The required amount of reinforcement can be found from the following equation 

47.0
8000*400*85.0*6.0

10*765
6.0

3

===
vys

sv

df
V

s
A

φ
 

Try 2-15M bond beam reinforcing bars at 800 mm spacing ( 400=vA  mm2   and  800=s  mm): 

5.0
800
400

==
s
Av  > 0.47    OK 

Steel shear resistance sV : 

800
8000*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 816 kN 

Total diagonal shear resistance: 
1769816953 =+=+= smr VVV  kN     

Since 
1769=rV kN > 1450=fV kN       OK 

In conclusion, both the shear design requirements and the capacity design requirements have 
been satisfied. 
 
9. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 6000 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*6000*400 = 2040 kN 

fd PP 9.0= = 1620 kN  

yd TPP +=2  = 1620+2040 = 3660 kN 

2PV mr μφ=  = 0.6*1.0*3660 = 2196 kN 
2196=rV  kN > 1450=fV  kN       OK 

Also,  
2196=rV  kN > 1718=nbV  kN     (capacity design check)     
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10. CSA S304.1 seismic detailing requirements for limited ductility walls – plastic hinge 
region 
According to Cl.10.16.4.1.1, the required height of the plastic hinge region for limited ductility 
shear walls (for which special detailing is required) must be greater than (see Table 2-4) 

0.520.102/ === wp ll  m  
or 

3.26/0.146/ === wp hl  m 

(note that wh  denotes the total wall height) 
Thus, 

0.5=pl  m governs 
 
Reinforcement detailing requirements for the plastic hinge region of limited ductility shear walls 
are: 
1. The wall in the plastic hinge region must be solid grouted (Cl.10.16.4.1.3, see Table 2-

4). 
 
2. Horizontal reinforcement requirements (see Figure 2-31) 
a) Reinforcement spacing should not exceed the following limits (Cl.10.16.4.3.3), see Table 2-2: 

1200≤s mm or  
50002100002 ==≤ wls  m 

Since the lesser value governs, the maximum permitted spacing is  
1200≤s  mm 

According to the design (see step 8), the horizontal reinforcement consists of 2-15M bars at 
800 mm spacing - OK 

b) Detailing requirements (Cl.10.16.4.3.3), see Table 2-3: 
Horizontal reinforcement shall not be lapped within  

 600 mm or  
 c = 2400 mm (the neutral axis depth) 

whichever is greater, from the end of the wall. In this case, the reinforcement should not be 
lapped within the distance c = 2400 mm from the end of the wall. The horizontal reinforcement 
can be lapped at the wall half-length. 
 
3. Vertical reinforcement requirements (see Table 2-3). 
There are no special detailing requirements for vertical reinforcement in limited ductility shear 
walls. 



4/1/2009 4-65

 
11. Design summary 
Reinforcement arrangement for the wall under consideration is summarized on the figure below. 
Note that the shear wall of limited ductility must be solid grouted in plastic hinge region, but it 
may be partially grouted outside the plastic hinge region (this depends on the design forces). 

 
 
12. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three shear resistance values need to be considered: 
a) 1718=nbV  kN shear force corresponding to flexural failure 
b) 1769=rV  kN diagonal tension shear resistance 
c) 2196=rV  kN sliding shear resistance 
 
Since the shear force corresponding to the flexural resistance is smallest of the three values, it 
can be concluded that the flexural failure mechanism is critical in this case, which is desirable 
for the seismic design. 
 
Had the design specified a shear wall of conventional construction, the same amount of vertical 
and horizontal reinforcement would have been required, but none of the special detailing 
discussed in step 10 would have been required. Also, the CSA S304.1 ductility check discussed 
in step 7 is not required for shear walls of conventional construction. 
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EXAMPLE 5b: Seismic design of a flexural shear wall of moderate ductility 
 
Perform the seismic design of a shear wall 1X  located at the rear side of the building discussed 
in Example 2 and Example 5a. Try to use the same wall dimensions as in Example 5a, that is, 
10 m length and 290 mm thickness. 
 
The section at the base of the wall is subjected to the total dead load of 1800 kN (including the 
wall self-weight), the in-plane seismic shear force of 1090 kN, and the overturning moment of 
10900 kNm.  The design should meet the CSA S304.1 Cl.10.16.5 requirements for shear walls 
of moderate ductility. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 

 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
S304.1 Table 4, 20 MPa concrete blocks and Type S mortar: 

mf ′ = 10.0 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
• fP = 1800 kN axial load 
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• fV = 1090 kN seismic shear force 

• fM  = 10900 kNm overturning moment 
 
This is a moderate ductility shear wall, and NBCC 2005 Table 4.1.8.9 specifies the following dR  
and oR  values (see Table 1-13): 

dR = 2.0 and oR = 1.5      
The seismic shear force of 1090 kN for a wall with moderate ductility ( 0.2=dR ) was obtained 
by prorating the force of 1450 kN from Example 5a which corresponded to a shear wall with 
limited ductility ( 5.1=dR ), as follows 

 1090
0.2
5.1*1450 ≈=fV  kN 

 
3. Height/thickness ratio check (Cl.10.16.5.2.2, see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in moderate ductility shear walls: 

14)10( <+th  
For this example, 
h = 5000 mm (the largest unsupported wall height) 
So, 

3471014 =−≥ ht  mm 
This exceeds the maximum possible wall thickness of 290 mm, which was used in Example 5a. 
 
Commentary to Section 2.5.4.4 contains the following two alternative approaches for verifying 
the out-of-plane stability of ductile masonry shear walls: 
 
1) Provide flanges at the wall ends and prove that the out-of-plane stability of the 
compression zone is satisfactory. 
Try the effective flange width 

690=fb  mm   
The wall section and the internal force distribution is shown on the figure.  
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This procedure assumes that the concentrated reinforcement (area cA ) is provided at the wall 
ends, while the remaining reinforcement (area dA ) is distributed over the wall length. After a few 
trial estimates, the total area of vertical reinforcement vtA  was determined as follows 

vtA = 2800 mm2 
Concentrated reinforcement area (2-15M bars at each wall end): 

cA = 400 mm2 
Distributed reinforcement area: 

=dA 2800-2*400=2000 mm2 
Distance from the wall end to the centroid of concentrated reinforcement cA : 

145=′d  mm  
 
• Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*86.4
0.10*6.0*85.0

2000*400*85.010*1800
'85.0

=
+

=
+

=
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L f

AfP
A

φ
φ

 

The depth of the compression zone a : 

1276
290

290)290*690(10*86.4* 252

=
+−

=
+−

=
t

ttbA
a fL  mm 

The neutral axis depth: 

1595
8.0
==

ac  mm 

The centroid of the masonry compression zone: 
( ) ( )

520
2)(2* 22

=
−+

=
L

f

A
ttbat

x  mm 

In this case, the compression zone is L-shaped, however only 
the flange area will be considered for the buckling resistance 
check (see the shaded area shown on the figure). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
Gross moment of inertia for the flange only: 

9
33

10*94.7
12

690*290
12
*

=== f
xg

bt
I  mm4 

The buckling strength for the compression zone will be determined according to S304.1 Cl. 
10.7.4.3, as follows: 

( )( )
kN

kH
IE

P
d

mer
cr 19983

5.01 2

2

=
+

=
β
φπ

 

where 
75.0=erφ  

0.1=k  pin-pin support conditions 
0=dβ   assume 100% seismic live load 

5000=H  mm unsupported wall height 
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8500850 =′= mm fE  MPa modulus of elasticity for masonry 
• Find the resultant compression force (including the concrete and steel component). 

2620400*400*85.010*2480 3 =+=+= cysmfb AfCP φ  kN 
where 

( ) 2480)10*86.4)(0.10*6.0*85.0('85.0 5 === Lmmm AfC φ  kN 
• Confirm that the out-of-plane buckling resistance is adequate. 
Since  

2620=fbP kN < 19983=crP  kN 
it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section 
can be used for this design. 
 
2) Prove that the compression zone of the wall is small and the adjacent vertical strips 
are able to stabilize it. 
For flanged wall sections, the neutral axis depth needs to meet one of the following requirement 
(see Figure 2-28c): 

1740290*66* ==≤ tc  mm 
Note that t6  denotes the distance from the inside of a wall flange to the point of zero strain. So, 
the total neutral axis depth (distance from the extreme compression fibre to the point of zero 
strain) is equal to 

20302901740* =+=+= tcc  mm 
The neutral axis depth was determined above, as follows 

1595=c  mm < 2030 mm  
 
Based on these two checks, the out-of-plane wall stability should not be a concern when a 
flanged section is used for the design, and so the CSA S304.1 height-to-thickness restrictions 
for moderate ductility shear walls will be relaxed. 
 
4. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 3 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

( ) ( ) ( ) )145210000(*400*400*85.0*2)520210000(*10*2480)2(22 3 −+−=′−+−= dlAfxlCM wcyswmr φ  
 

12431=rM   kNm > 10900=fM   kNm       OK 
 
5. Perform the CSA S304.1 ductility check (see Section 2.5.4.3).  
To satisfy the CSA S304.1 ductility requirements for moderate ductility shear walls 
(Cl.10.16.5.2.3), neutral axis depth ratio ( wlc ) should be less than the following limit: 

2.0<wlc  when 4<ww lh   
In this case,  

44.11000014000 <==ww lh   and mmc 1595=  
thus 

2.016.0100001595 <==wlc  
Therefore, the CSA S304.1 ductility requirement is satisfied. 
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6.  The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

290=wb  mm overall wall thickness 
80008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 1620 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.51 MPa 

0.8*1090
10900

=
vf

f

dV
M

= 1.25 > 1.0     

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.51*290*8000+0.25*1620*103)*1.0 = 953 kN     

To find the steel shear resistance sV , assume 2-15M bond beam reinforcing bars at 600 mm 
spacing (this should make some allowance in the shear strength to satisfy capacity design), 
thus 

400=vA  mm2 
600=s  mm 

600
8000*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 1088 kN 

 
According to Cl.10.16.5.3.1, there is a 50% reduction in the masonry shear resistance 
contribution for moderate ductility shear walls, and so 

15651088953*5.05.0 =+=+= smr VVV  kN    > 1090=fV kN       OK 
 
Maximum shear allowed on the section is (S304.1 Cl.10.10.1.1) 

17604.0max =′= gvwmmr dbfV γφ  kN  > rV       OK 
 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry 
shear walls be designed so that flexural failure takes place before shear failure has been 
initiated, that is, to follow the capacity design approach (see Section 2.5.2 for more details).  
 
In this case, the factored moment resistance is equal to 

12431=rM   kNm 
The nominal moment resistance can be estimated as follows 

14625
85.0

12431
===

s

r
n

MM
φ

 kNm 

Shear force acts at the effective height eh , that is, distance from the base of the wall to the 
resultant of all seismic forces acting at floor levels. eh  can be determined as follows 

0.10==
f

f
e V

M
h  m 



4/1/2009 4-71

The shear force nbV  that would cause the overturning moment equal to nM  is as follows 

===
0.10

14625

e

n
nb h

M
V  1528 kN  1463=< rV  kN  OK 

 
8. Shear resistance at the web-to-flange interface (Cl.7.11.4, see Section C.2). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear can be determined as follows: 

38.0
10000*290

10*1090 3

===
we

f
f lt

V
v  MPa 

where et = 290 mm (effective wall thickness) 
Vertical shear over the entire wall height (caused by the resultant compression force fbP  
calculated in Step 3): 

64.0
14000*290

10*2620
*

3

===
ww

fb
f hb

P
v  MPa           governs 

Masonry diagonal tension shear strength: 
51.0=mv  MPa (see step 6) 

Since 
64.0=fv  MPa > 31.0=mmvφ  MPa 

it is required to provide shear reinforcement at the web-to-flange interface. Since the horizontal 
reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement); both bars 
can be extended into the flange (90° hook), and so 

78.0
290*600

400*200*2*85.0
==

⋅
=

e

yss
s ts

fA
v

φ
 MPa 

The total shear resistance 
09.178.031.0 =+=+= smmr vvv φ  MPa > 64.0=fv  MPa    OK 

 
9. Sliding shear resistance (see Section 2.5.4.6) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 
For moderate ductility shear walls, only the vertical reinforcement in the tension zone should be 
accounted for in the yT  calculations (Cl.10.16.5.3.2), and so (see Figure 2-17b)  

⎟
⎠
⎞

⎜
⎝
⎛ −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

10000
159510000*400*2800*85.0

w

w
yssy l

cl
fAT φ  = 800 kN 

dP  = 1620 kN 

yd TPP +=2  = 1620+800 = 2420 kN 

2PV mr μφ=  = 0.6*1.0*2420 = 1452 kN 
1452=rV  kN > 1090=fV  kN       OK 
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10. CSA S304.1 seismic detailing requirements for moderate ductility walls – plastic 
hinge region 
According to Cl.10.16.5.2.1, the required height of the plastic hinge region for moderate ductility 
shear walls must be greater than (see Table 2-4) 

0.10== wp ll  m   
or 

3.26/0.146/ === wp hl  m 

(note that wh  denotes the total wall height) 
So, 0.10=pl  m governs 
 
Reinforcement detailing requirements for the plastic hinge region of limited ductility shear walls 
are as follows: 
1. The wall in the plastic hinge region must be solid grouted (Cl.10.16.4.1.3,  
      see Table 2-4). 
2. Horizontal reinforcement requirements (see Figure 2-31) 

a) Reinforcement spacing should not exceed the following limits (Cl.10.16.4.3.3), see Table 
2-2: 

1200≤s  mm or  
50002100002 ==≤ wls  m 

Since the lesser value governs, the maximum permitted spacing is  
1200≤s  mm 

According to the design (see step 7), the horizontal reinforcement spacing is 600 mm, 
hence OK. 

b) Detailing requirements (see Table 2-3) 
 Horizontal reinforcement shall not be lapped within (Cl.10.16.4.3.3) 

  600 mm or  
  c = 1595 mm (the neutral axis depth) 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within the distance c = 1595 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.10.16.5.4.2): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 
All these requirements will be complied with, as shown on the design summary drawing. 

3. Vertical reinforcement requirements (Cl.10.16.5.4.1) 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (see Table 2-3 and Figure 2-31). 
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11. Design summary 
Reinforcement arrangement for the wall under consideration is summarized on the next page. 
Note that the shear wall of limited ductility must be solid grouted in plastic hinge region, but it 
may be partially grouted outside the plastic hinge region (this depends on the design forces). 
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12. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three shear resistance values need to be considered: 
a) 1463=nbV  kN shear force corresponding to flexural failure 
b) 1565=rV  kN diagonal tension shear resistance 
c) 1452=rV  kN sliding shear resistance 
Since the sliding shear resistance value is smallest, it can be concluded that the sliding shear 
mechanism is critical in this case. Sliding shear resistance can be increased by roughening the 
wall-to-foundation interface (in which case the frictional coefficient can be increased to μ  = 1.4) 
or by providing shear keys. Alternatively, additional dowels could be provided at the base of the 
wall, however this would result in an increase in the moment resistance. The designer would 
need to ensure that the capacity design criterion discussed in step 7 is satisfied. 
 
At this point, it is of interest to compare the designs for limited ductility shear wall (Example 5a) 
and the moderate ductility shear wall (Example 5b). The walls are very similar, and have the 
same height, length, and thickness. The wall from this example has a flanged section, while the 
wall from Example 5a has a rectangular section. The walls are subjected to the same seismic 
hazard, but differ depending on the dR  and oR  values required for the respective designs. The 
comparison of the two designs is presented in the table below. 
 
Table 1. A Comparison of the Limited Ductility and Moderate Ductility Shear Wall Designs 
 
 Limited ductility shear wall 

(Example 5a) 
Moderate ductility shear wall 
(Example 5b) 

Actual height/thickness ratio 
for the plastic hinge zone 
(CSA S304.1 limit) 

17.2 (18) 17.2 (14) – flanges used to 
stabilize compression zones at 
wall ends 

Vertical reinforcement  6000 mm2 
(20-20M) 

2800 mm2 
(14-15M) 

Horizontal reinforcement 2-15M@800 mm bond beam 
reinforcement 

2-15M@600 mm bond beam 
reinforcement 

Plastic hinge length pl  5 m 10 m 

Horizontal reinforcement 
detailing (Table 2-3) 

Minimal requirements More extensive detailing 
requirements (see step 10) 

Vertical reinforcement 
detailing (Table 2-3) 

No special requirements Lapping requirement (see step 
10) 

 
The key differences in these designs can be summarized as follows: 
1. Moderate ductility shear wall requires less vertical reinforcement (by approximately 50%) 
since the dead load provides proportionally more of the moment resistance. 
2. Moderate ductility shear wall requires more horizontal reinforcement (by approximately 30%) 
as only 50% of the masonry shear strength can be utilized. 
3. Moderate ductility shear wall requires a substantially larger plastic hinge zone (10 m high) 
as compared to the limited ductility shear wall (5 m high) – the wall needs to be solid grouted 
and special detailing requirements apply in this zone, although the limited ductility shear wall 
may also need to be solid grouted for a height greater than 5 m. 
4. Moderate ductility shear wall has more extensive horizontal and vertical reinforcement 
detailing requirements.  
5. Moderate ductility shear wall requires flanges in order to satisfy the CSA S304.1 
height/thickness requirements. 
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects 
 
Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane 
loads in Example 4b, according to NBCC 2005 and CSA S304.1 requirements. The wall is a 
part of a single-storey warehouse building located in Ottawa, ON, with soil corresponding to Site 
Class C. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN 
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15 
MPa unit strength, Type S mortar, and  solid grouting. The wall is reinforced with 15M Grade 
400 vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in CSA 
S304.1 will not be considered in this design. 

 
 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry:  

mφ = 0.6    
S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf ′ = 7.5 MPa (assume solid grouted masonry) 
 
2. Determine the out-of-plane seismic load according to NBCC 2005 (see Section 2.6.5.3). 
This design requires the calculation of seismic load pV  for parts of buildings and nonstructural 
components according to NBCC 2005 Cl.4.1.8.17. First, seismic design parameters need to be 
determined as follows: 
• Location: Ottawa, ON   

)2.0(aS = 0.66 (NBCC 2005 Appendix C, page C-22)                    
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• Foundation factors  
aF = 1.0 for )2.0(aS =0.66 and Site Class C (from Table 1-10 or NBCC 2005 Table 

4.1.8.4.B) 
• EI = 1.0  normal importance building 
Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBCC 
2005, Table 4.1.8.17, Case 1) 

0.1=pC    0.1=rA   5.2=pR   0.3=xA  ( nx hh =   top floor) 

 2.15.20.30.10.1 =⋅⋅== pxrpp RAACS       

 0.47.0 << pS    O.K. 

• pW  = 4.0 kN/m2 unit weight of the 190 mm block wall (solid grouted) 

Seismic load pV  can be calculated as follows: 

( ) ppEaap WSISFV 2.03.0= =0.3*1.0*0.66*1.0*1.2*(4.0 kN/m2) = 0.95 kN/m2 ≈ 1.0 kN/m2 
 
3. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
According to S304.1 Cl.10.6.1, the effective compression zone width (b ) should be taken as the 
lesser of the following two values (see Figure 2-19): 

600== sb  mm   spacing of vertical reinforcement 
or 

760190*44 === tb  mm 
All design calculations in this example will be performed considering a vertical wall strip of width 

600=b  mm. 
 
4. Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin 
supports at the base and top. The loads on the wall 
consist of axial load due to roof load and wall self-
weight, plus the seismic out-of-plane load. The roof 
load and wall self-weight create moments due to 
minimum axial load eccentricity. 
• Axial load per wall width equal to 600=b  mm: 

0.1725.176.0*
8

230* ≈===
m
kNb

l
PP
w

f  kN 

• Minimum eccentricity (S304.1 Cl.10.7.2)  
== te 1.0min  0.019 m 

• Out-of-plane seismic load per wall width equal to 
600=b  mm: 

6.06.0*0.1 ==pv  kN/m 
• Design bending moment (at the midheight): 

8
6.6*6.0019.0*17

8
*

*
22

min +=+= wp
f

hv
epM  

        = 3.59 ≈ 3.6 kNm 
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5. Check whether the wall resistance for the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
This can be verified from a P-M interaction diagram which can be developed using the EXCEL© 
software (or commercially available masonry design software). Relevant tables used to develop 
the diagram are presented below, while the detailed theoretical background is outlined in 
Section C.1.2. Note that the design width is equal to mmb 600= . 
 
Table 1. Design Parameters 
 
Design parameter Unit Symbol Value 
Wall thickness  mm t 190 
Design width mm b 600 
Masonry maximum strain    EPSm 0.003 
Masonry strength MPa f'm 7.5 
Steel yield strength MPa fy 400 
Steel modulus of elasticity  MPa Es 200000
Effective depth mm d 95 
(c/d)balanced     0.6 
Reinforcement area mm^2/b As 200 
Material resistance-
masonry   Fim 0.6 
Material resistance-steel   Fis 0.85 
X- factor   X 1 
BETA1   BETA1 0.8 
Effective area mm^2 Ae 114000

 
In this case, the reinforcement is placed at the centre of the wall and so 

95
2

190
2

===
td  mm 

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and 
maximum compressive strain in masonry) can be determined from the following proportion 

y

m

b

b

cd
c

ε
ε

=
−

 

For 003.0=mε  and 002.0=yε  it follows that 

dcb 6.0=  
The area of vertical reinforcement per width 600=b  mm can be determined as follows: 

200600*
600
200* === b

s
A

A b
s  mm2    (15M@ 600 mm reinforcement) 

 
To determine whether the wall can carry the combined effect of axial load and bending moment, 
it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction 
diagram). The P-M interaction diagram for this example was developed using Microsoft 
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EXCEL® spreadsheet, but other methods or computer programs are also available. The results 
of the calculations are presented in Table 2. 
 
Table 2. P-M Interaction Diagram Values 
 

  c/d c Cm EPSs Tr Mr Pr   
      mm N   N kNm kN 

  0.01 0.95 1744.2 0.02 68000 0.16504 -66.256 
  0.1 9.5 17442 0.02 68000 1.59071 -50.558 
  0.2 19 34884 0.02 68000 3.04886 -33.116 
  0.3 28.5 52326 0.02 68000 4.37445 -15.674 
  0.4 38 69768 0.02 68000 5.56749 1.768 
  0.5 47.5 87210 0.02 68000 6.62796 19.21 

Points controlled 
by steel c<cb  

  0.6 57 104652 0.02 68000 7.55587 36.652 
  0.6 57 104652 0.002 68000 7.55587 36.652 
  0.7 66.5 122094 0.00129 43714.3 8.35123 78.3797 
  0.8 76 139536 0.00075 25500 9.01403 114.036 

Points controlled 
by masonry c>cb 

  0.9 85.5 156978 0.00033 11333.3 9.54426 145.645 
  1 95 174420 0 0 9.94194 174.42 
  1.2 114 209304 -0.0005 -17000 10.3396 209.304 
  1.3 123.5 226746 -0.0007 -23538 10.3396 226.746 
  1.5 142.5 261630 -0.001 -34000 9.94194 261.63 
  1.7 161.5 296514 -0.0012 -42000 9.01403 296.514 

Full section under 
compression 

  2 190 348840 -0.0015 -51000 6.62796 348.84 
Pure compression             0 348.84 

 
The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated 
on the figure below. For more detailed explanation related to the development of P-M interaction 
diagrams refer to Section C.1.2. 



4/1/2009 4-79

 
 
The P-M interaction diagram showing the point of interest ( 6.3=fM  kNm and 17=fP  kN) is 
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-
plane bending is adequate for the given design loads and the reinforcement determined in 
Example 4b. 
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Wall P-M Interaction Diagram
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6. Check whether the out-of-plane shear resistance of the wall is adequate (Cl.10.10.2, 
see Section 2.4.2). 
Design shear force at the support per wall width 600=b  mm: 

0.2
2

6.6*6.0
2
*

≈== wp
f

hv
V  kN 

According to S304.1 Cl.10.10.2, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV +⋅⋅= φ       

where 

mm fv ′= 16.0 = 0.44 MPa  ( mf ′ = 7.5 MPa for solid grouted 15 MPa block) 
95=d  mm    effective depth (to the block mid-depth) 
600=b  mm  effective compression zone width 

The axial load dP  can be determined as 
 5.1525.17*9.09.0 === fd PP  kN 
(note that the load has been prorated in proportion to the effective compression zone width b ). 
So, 

4.17)15500*25.095*600*44.0(*6.0 =+=rV  kN 
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Since 
0.2=fV  kN < 4.17=rV  kN    OK 

Maximum shear allowed on the section is 
)( 5.37)95*600(*5.7*6.0*4.0*4.0max ==′= dbfV mmr φ  kN          OK         

 
7. Check the sliding shear resistance (see Section 2.4.3). 
The factored out-of-plane sliding shear resistance rV  is determined according to S304.1 
Cl.10.10.4.2, as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement per wall width 600=b  mm  

yssy fAT φ=  = 0.85*200*400 = 68 kN  

5.159.0 == fd PP  kN 

yd TPP +=2  = 15.5+68 = 83.5 kN 

2PV mr μφ= = 0.6*1.0*83.5= 50.0 kN 
0.50=rV kN > 0.2=fV kN       OK 

Note that the sliding shear resistance does not govern in this case, however this mechanism 
often governs the in-plane shear resistance. 
 
8. Conclusion 
It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall 
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design 
governs (this is a common scenario in design practice). 
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects 
 
Consider the same masonry wall discussed in Example 6a, but in this example treat is as a 
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm 
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane 
seismic resistance of the wall according to NBCC 2005 and CSA S304.1 seismic requirements.  
 
Consider the following two cases: 
a) unreinforced wall, and 
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design). 
 
Use the seismic load determined in Example 6a, that is, 0.1=pv  kN/m2. 
 
SOLUTION: 
 
Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
Compresion resistance (S304.1 Table 4, 15 MPa concrete blocks and Type S mortar): 

mf ′ = 9.8 MPa (ungrouted, or partially grouted ignoring grout area)  
Tension resistance normal to bed joint (S304.1 Table 5): 

tf = 0.4 MPa (ungrouted) 
 
Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall 
height is 6.6=wh  m. A unit wall strip (width 1000=b  mm) will be considered for this design.  
 
The forces on the wall consist of the axial load due to the wall self-weight and the bending 
moment due to seismic out-of-plane load (NBCC 2005 load combination 1xD+1xE). 
• Factored axial load per width b  of 1.0 m: 
wall weight w = 2.46 kN/m2 (ungrouted 190 mm block wall) 

1.80.1*
2
6.6*)46.2(*

2
* === b

h
wP w

f  kN/m 

• Out-of-plane seismic load per width b  of 1.0 m: 
0.1=pv  kN/m 

• Factored bending moment (at the midheight): 

5.5
8

6.6*0.1
8
* 22

≈== wp
f

hv
M  kNm/m 

• Factored shear force (at the support): 

3.3
2

6.6*0.1
2
*

≈== wp
f

hv
V  kN/m 
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a) Unreinforced wall 
 
Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section 2.6.1.3). 
Find the load eccentricity: 

mmm
kN
kNm

P
M

e
f

f 68068.0
1.8

5.5
====  

According to S304.1 Cl.7.2.1, an unreinforced masonry wall is to be designed as uncracked if 
te 33.0>  

where t   denotes the wall thickness ( mmt 190= ) 
mmt 63190*33.033.0 ==  

In this case, 
mmtmme 6333.0680 =>=  

so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the 
allowable value) according to S304.1 Cl.7.2.2. The design procedure is explained in Section 
2.6.1.3. 
 
First, we need to determine properties for the effective wall section for a width 1000=b  mm. 
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows: 

310*4.75=eA  mm2/m  effective cross-sectional area 
610*66.4=eS  mm3/m section modulus of effective cross-sectional area 

 
The maximum compression stress at the wall face can be calculated as follows: 

MPa
S

M
A
P

f
e

f

e

f
c 29.118.1107.0

10*66.4
10*5.5

10*4.75
10*1.8max 6

6

3

3

=+=+=+=  

The allowable value is equal to 
MPafmm 9.58.9*6.0 ==′φ  

Since 
MPaMPafc 9.529.1max <=  

it follows that the maximum compression stress is less than the allowable value. 
 
Find the maximum tensile stress as follows: 

MPa
S

M
A
P

f
e

f

e

f
t 07.118.1107.0

10*66.4
10*5.5

10*4.75
10*1.8max 6

6

3

3

−=−=−=−=  

 The allowable value is equal to 
MPaftm 24.04.0*6.0 −=−=−φ  

Since 
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MPaMPaft 24.007.1max −<−=  
it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable. 
 
In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is 
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also, 
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where 
the seismic hazard index ( )2.0aaE SFI =1.0*1.0*0.66=0.66 > 0.35.  Therefore, the design will 
proceed considering a reinforced nonloadbearing wall. 
 
b) Reinforced wall 
 
1. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.6.4). 
According to S304.1 Cl.10.15.2.4, if ( ) 75.02.035.0 ≤≤ aaE SFI  nonloadbearing walls shall be 
reinforced in one or more directions with reinforcing steel having a minimum total area of  

gstotal AA 0005.0=   
The reinforcement may be placed in one direction, provided that it is located to reinforce the wall 
adequately against lateral loads and spans between lateral supports. 

gstotal AA 0005.0=  = 0.0005*(190*103 mm2) = 95 mm2/m 
where 

gA =(1000mm)*(190mm)=190*103 mm2 gross cross-sectional area per metre of wall length 
Let us choose 15M vertical reinforcement (area 200 mm2 ) at 1200 mm spacing which is the 
maximum spacing allowed (1200 mm). 
The area of reinforcement per metre of wall length is 

167
1200
1000*200 ==sA mm2/m  > 95 mm2/m   OK 

 
2. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm, 
as follows: 

7.9
0.1
2.1*1.8 ==fP  kN 

6.6
0.1
2.1*5.5 ==fM  kNm 

0.4
0.1
2.1*3.3 ==fV  kN 

 
3. Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
Since this is a partially grouted wall, its flexural resistance will be determined using a T-section 
model.  
 
According to S304.1 Cl.10.6.1, the effective compression zone width (b ) should be taken as the 
lesser of the following two values (see Figure 2-19): 

1200== sb  mm  
or 

760190*44 === tb  mm 
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Therefore, 760=b  mm will be used as the width of the masonry compression zone. 
 
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38 
mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1, 
considering the case of an ungrouted 200 mm block wall. 

 
Since the reinforcement is placed at the centre of the wall, the effective depth is equal to 

95
2

190
2

===
td  mm 

The reinforcement area used for the design needs to be determined as follows: 
200== bs AA  mm2 

The internal forces will be determined as follows (see Figure C-8): 
68000200*400*85.0 === sysr AfT φ  N 

Since 
77700680009700 =+=+= rfm TPC  N 

and 
( )( )abfC mmm ⋅= '85.0 φ  

the depth of the compression stress block a can be determined as follows 

20
760*8.9*6.0*85.0

77700
'85.0

===
bf

C
a

mm

m

φ
 mm  

Since 
mmtmma f 3820 =<=  

the neutral axis is located in the face shell (flange). The moment resistance around the centroid 
of the wall section can be determined as follows 

6.6)22095(*77700)2( =−=−= adCM mr  kNm 
Since  

6.6=rM  kNm = 6.6=fM  kNm 
it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could 
be reduced to s =1000 mm to allow for an additional safety margin (the revised moment 
resistance calculations are omitted from this example). 
 
4. Check whether the out-of-plane shear resistance of the wall is adequate (see Section 
2.4.2). 
According to S304.1 Cl.10.10.2, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV +⋅⋅= φ      where 
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mm fv ′= 16.0 = 0.50 MPa 
95=d  mm    effective depth 
200≈b  mm  web width - equal to the grouted cell width (156 mm) plus the thickness of the 

adjacent webs (26 mm each) 
The axial load dP  can be determined as 
 7.87.9*9.09.0 === fd PP  kN 
Thus, 

0.7)8700*25.095*200*50.0(*6.0 =+=rV  kN 
Since 

0.4=fV  kN < 0.7=rV  kN    OK 
Maximum shear allowed on the section is 

)( 3.14)95*200(*8.9*6.0*4.0*4.0max ==′= dbfV mmr φ  kN          OK         
 
5. Check the sliding shear resistance (see Section 2.4.3). 
The factored in-plane sliding shear resistance rV  is determined according to S304.1 
Cl.10.10.4.2, as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement at 1.2 m spacing 

yssy fAT φ=  = 0.85*200*400 = 68.0 kN  

dP  = 8.7 kN 

yd TPP +=2  = 8.7+68.0 = 76.7 kN 

2PV mr μφ= = 0.6*1.0*76.7 = 46.0 kN 
0.46=rV kN > 0.4=fV kN       OK 

 
6. Conclusion 
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is 
satisfactory. It should be noted that the flexural resistance governs in this design. The required 
amount of vertical reinforcement (15M@1200 mm) corresponds to the following area per metre 
length  

1671000* ==
s

AA bs  mm2 

which is significantly larger than the minimum seismic reinforcement prescribed by CSA S304.1, 
that is, 95=stotalA  mm2/m. Note that 15M@1200 mm is also the minimum vertical reinforcement 
that meets the minimum spacing requirements using typical15M bars. 
 
Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was 
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at 
400 mm spacing could be considered to improve the overall seismic performance of the wall.  
 
It should be noted that, in exterior  walls the mortar-bedded joints could be significantly affected 
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints); 
some of the grooves are up to 10 mm deep. The designer should consider this effect in the 
calculation of the compression zone depth. 
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EXAMPLE 7: Seismic design of masonry veneer ties 
 
Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a 
school gymnasium in Montréal, Quebec. The building is founded on rock. The design should be 
performed to the requirements of NBCC 2005, CSA S304.1-04, and CSA A370-04. Consider the 
following two types of the veneer backup: 
a) Concrete block wall (a rigid backup), and 
b) Steel stud wall with 400 mm steel stud spacing (a flexible backup). 
c) Evaluate the minimum tie strength requirements for the rigid and flexible backup. 
 
SOLUTION: 
 
This design problem requires the calculation of seismic load pV  for nonstructural elements 
according to NBCC 2005 Cl.4.1.8.17 (for more details see Section 2.6.5.3). Note that the wind 
load could govern in a tie design for many site locations in Canada, however wind load 
calculations were omitted for this seismic design example. 
 
First, seismic design parameters need to be determined as follows: 
• Location: Montréal, Quebec   

)2.0(aS = 0.69 (NBCC 2005 Appendix C, page C-26)                    
• Foundation factors 

Site Class = B (rock)    
aF = 0.88 for )2.0(aS =0.69 and Site Class B (by interpolation from Table 1-10 or NBCC 

2005 Table 4.1.8.4.B), since 
aF = 0.8 for =)2.0(aS  0.50 

aF = 0.9 for =)2.0(aS  0.75 
• EI = 1.3   school (high importance building) 
At this point, it would be appropriate to check whether the seismic design of ties is required for 
this design. According to NBCC 2005 Cl.4.1.8.17.2, seismic design of ties is required when the 
seismic hazard index ( ) 35.02.0 ≥aaE SFI  (and also for post-disaster buildings in lower seismic 
regions). 
In this case, 

( )2.0aaE SFI = 1.3*0.88*0.69=0.79 ≥  0.35 
Therefore, seismic design is required. 
• Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBCC 
2005, Table 4.1.8.17, Case 8) 

0.25.10.30.10.1 =⋅⋅== pxrpp RAACS       
where 

0.321 =+= nxx hhA  for top of wall worst case 
Since 0.47.0 << pS    O.K. 

• pW  = 1.8 kN/m2 unit weight of the veneer masonry (concrete blocks) 

Seismic load pV  can be calculated as follows: 

( ) ppEaap WSISFV 2.03.0= =0.3*0.88*0.69*1.3*2.0*(1.8 kN/m2) =0.85 kN/m2 

Note that the above load is determined per m2 of the wall surface area.  
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a) Concrete block backup (rigid) 
Assume the maximum tie spacing permitted according to CSA S304.1 Cl.9.1.3 of 600 mm 
vertically and 820 mm horizontally (see Section 2.6.5.2), resulting in a tributary tie area for a 
concrete backup wall of  
A = 0.82*0.60 = 0.49 m2 
The required factored tie capacity should exceed the factored tie load, that is, 

AVV pf *≥ = (0.85 kN/m2)*(0.49 m2) = 0.42 kN 
Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum 
tributary area calculated from pV  and the factored tie capacity fV , that is, 

pf VVA ≤  
 
b) Steel stud backup (flexible) 
Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral 
load on a vertical line of ties (S304.1 Cl.9.1.3.3, see Section 2.6.5.3): 

tpf AVV **4.0≥ = 0.4*(0.85 kN/m2)*(1.92m2) = 0.65 kN 

where tA = 0.4m*4.8m = 1.92 m2 is tributary area on a vertical line of ties based on a probable 
0.4 m horizontal tie spacing, and 4.8 m wall height 
 
According to the same S304.1 clause, the tie must also be able to resist a load corresponding to 
double the tributary area on a tie, that is, 

AVV pf **2= = 2*(0.85 kN/m2)*(0.4m*0.6m) = 0.41 kN 
Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie 
spacing of 0.6 m prescribed by S304.1 Cl. 9.1.3.1. 
 
In conclusion, the tie design load for the flexible veneer backup is fV = 0.65 kN. 
 
c) Minimum strength requirements 
 CSA A370-04 Cl.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In 
order to obtain the ultimate tie strength, the factored strength needs to be divided by the 
resistance factor φ . According to CSA A370-04 Cl.9.4.2.1.2, the resistance factor is 0.9 for tie 
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the 
connection. It is conservative to use lower resistance factor in determining the ultimate tie 
strength ultV .  
• For the steel stud backup: 

=≥ fr VV 0.65 kN 
thus the ultimate strength can be determined as follows 

08.1
6.0
65.0

===
φ

r
ult

VV  kN 

This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.  
• For the concrete block backup: 

=≥ fr VV 0.42 kN 
thus the ultimate strength can be determined as follows 

7.0
6.0
42.0

===
φ

r
ult

V
V  kN 

This value is less than the minimum of 1 kN, so the minimum requirement governs.  
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EXAMPLE 8: Seismic design of a masonry infill wall 
 
A single-storey reinforced concrete frame structure is shown in the figure below. The frame is 
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the 
frame. The wall is built using 190 mm hollow blocks and Type S mortar.  
 
a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions 
according to CSA S304.1 assuming the infill-frame interaction. 
 
b) Assuming that the infill wall provides the total lateral resistance, determine the maximum 
lateral load that the infilled frame can resist. Consider the following three failure mechanisms: 
strut compression failure, diagonal tension resistance, and sliding shear resistance. 

 
Given: 

fE  =25000 MPa concrete frame modulus of elasticity  

mf ′  = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4, 
CSA S304.1) 
 
SOLUTION: 
 
a) Find the diagonal strut properties. 
 
• Key properties for the masonry wall and the concrete frame 
Concrete frame: 

fE  =25000 MPa 
Beam and column properties: 

9
4

10*133.2
12

)400(
=== cb II  mm4 

Masonry: 
83308.9*850850 ==′= mm fE  MPa 

Effective wall thickness (face shells only): 
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75=et  mm (Table D-1, 200 mm hollow block wall) 
• Diagonal strut geometry (see Section 2.6.2 and S304.1 Cl.7.13) 

3000=h  mm 
3600=l  mm 

Find θ  (angle of diagonal strut measured from the horizontal): 

833.0
3600
3000)tan( ===

l
hθ                o8.39=θ  

Length of the diagonal strut: 

468636003000 2222 =+=+= lhls   mm 
 
Find the strut width (see Figure 2-36): 

( ) 1587
8.39*2sin*75*8330
3000*10*133.2*25000*4

22sin
4

2

4
1

94
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

o

π
θ

πα
em

cf
h tE

hIE
 

 

( ) 3322
8.39*2sin*75*8330
3600*10*133.2*25000*4

2sin
4 4

1
94

1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

o
π

θ
πα

em

bf
L tE

lIE
 

Strut width: 

( ) ( ) 368233221587 2222 =+=+= Lhw αα   mm 
 
Effective diagonal strut width ew  for the compressive resistance calculation should be taken as 
the least of (Cl.7.13.3.3) 

1841236822 === wwe  mm 
or 

1172446864 === se lw  mm 
thus 

11701172 ≈=ew  mm 
The design length of the diagonal strut dl  should be equal to (Cl.7.13.3.5) 

28452368246862 =−=−= wll sd  mm 
 
b) Determine the maximum lateral load which the infilled frame can resist assuming that 
the infill wall provides the total lateral resistance. 
 
• Diagonal strut: compression resistance (Cl.7.13.3.4 and Section 2.6.2) 
The compression strength of the diagonal strut maxrP  is equal to the compression strength of 
masonry times the effective cross-sectional area, that is, 

( ) emmr AfP ⋅′= χφ85.0max  
where 

mφ = 0.6 
5.0=χ  the masonry compressive strength parallel to bed joints  

877501170*75* === eee wtA   mm2 the effective cross-sectional area  
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3.21987750*8.9*6.0*5.0*85.0max ==rP  kN 
 
The corresponding lateral force is equal to the horizontal component of the strut compression 
force hP , that is, (see the figure below) 

0.168)8.39cos(*3.219)cos(*max === θrh PP  kN 

 
Before proceeding with the design, slenderness effects should also be checked. First, the 
slenderness ratio needs to be determined as follows (Cl.7.7.5): 

0.15
190

2845*0.1*
==

t
lk d  

where 
0.1=k  assume pin-pin support conditions 

2845=dl  mm  design length for the diagonal strut 
190=t  mm  overall wall thickness 

The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account, 
that is, 

19*1.021 === tee  mm 
Since 

0.15
*

=
t
lk d > 5.65.310 21 =− ee  and 0.30

*
<

t
lk d  

the slenderness effects need to be considered. 
 
The critical axial compressive force for the diagonal strut crP  will be determined according to 
S304.1 Cl.7.7.6.3 as follows: 

( )( )
1380

5.01 2

2

=
+

=
dd

effmer
cr kl

IE
P

β

φπ
 kN 

where 
65.0=erφ    

0=dβ   assume 100% seismic live load 
8330=mE  MPa modulus of elasticity for masonry 

610*2094.0 == oeff II  mm4 
where 
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[ ] 6
33

10*522
12

)4.75190(190*1170
=

−−
=oI  mm4 moment of inertia of the effective cross-

sectional area based on the effective diagonal strut width 1170=ew  mm and the effective wall 
thickness 4.75=et mm (face shells only). 
 
Since 

3.219max =rP  kN < 1380=crP  kN 
it follows that compression failure governs over buckling failure. 
 
• The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1). 
Find the masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
28808.0 =≈ wv ld  mm    effective wall depth 

5.0=gγ   ungrouted wall 

0=dP  (ignore self-weight) 

mm fv ′= 16.0 = 0.5 MPa 

gdvwmmm PdbvV γφ )25.0( += = 0.6(0.5*190*2880+0)*0.5 ≈ 82.0 kN     

This is a squat shear wall because 0.183.0
3600
3000

<==
w

w

l
h

. In this case, there is no need to find 

the maximum permitted shear resistance per S304.1 Cl.10.10.1.3 rVmax  because it is not 
going to control for an unreinforced wall without gravity load. 
 
• Sliding shear resistance (see Section 2.6.1 and Cl.7.10.4) 

116.0 PAfV mucmmrs μφφ +′=  

The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

2160002880*75 ==⋅= veuc dtA  mm2    uncracked portion of the effective wall cross-sectional 
area  
The compressive force in masonry acting normal to the sliding plane is normally taken as dP  
plus an additional component, equal to 90% of the factored vertical component of the 
compressive force resulting from the diagonal strut action vP  (see the figure on the previous 
page).  

vd PPP *9.01 +=  
where 

)tan(* θrsv VP =  
thus 

)tan(*9.001 θrsVP +=  
The sliding shear resistance can be determined from the following equation 

))tan(*9.0(16.0 θμφφ rsmucmmrs VAfV +′=  
or 
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0.118
)8.39tan(*9.0*0.1*6.01

216000*8.9*6.0*16.0
)tan(*9.0**1

16.0
=

−
=

−

′
=

oθμφ
φ

m

ucmm
rs

Af
V  kN 

 
• Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three lateral forces should be considered: 
a) 168=hP  kN shear force corresponding to the strut compression failure 
b) 82=mV  kN diagonal tension shear resistance 
c) 118=rsV  kN sliding shear resistance 
It could be concluded that the diagonal tension shear resistance governs, however once 
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum 
shear force developed in an infill wall corresponds either to the strut compression resistance or 
the sliding shear resistance (see the discussion in Section 2.6.2). In this case, sliding shear 
resistance governs and so 118max == rsr VV kN. 
 
It should be noted that the maximum shear force developed in the infill maxrV  will be transferred 
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not 
the scope of the masonry design, however the designer should always consider the entire 
lateral load path and the force transfer between the structural components. 
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