
SEISMIC DESIGN GUIDE FOR MASONRY BUILDINGS
 

Canadian Concrete Masonry Producers Association

Donald Anderson       Svetlana Brzev

April 2009



 
DISCLAIMER 
While the authors have tried to be as accurate as possible, they cannot be held 
responsible for the designs of others that might be based on the material presented in 
this document. The material included in this document is intended for the use of design 
professionals who are competent to evaluate the significance and limitations of its 
contents and recommendations and able to accept responsibility for its application. The 
authors, and the Canadian Concrete Masonry Producers Association, disclaim any and 
all responsibility for the applications of the stated principles and for the accuracy of any 
of the material included in the document. 
 
 
AUTHORS 
Don Anderson, Ph.D., P.Eng. 
Department of Civil Engineering, 
University of British Columbia 
Vancouver, BC 

 
 
Svetlana Brzev, Ph.D., P.Eng. 
Department of Civil Engineering 
British Columbia Institute of Technology 
Burnaby, BC 

 
TECHNICAL EDITORS 
Gary Sturgeon, P.Eng., Director of Technical Services, CCMPA 
Bill McEwen, P.Eng., LEED AP, Executive Director, Masonry Institute of BC 
Dr. Mark Hagel, EIT, Technical Services Engineer, CCMPA 
 
GRAPHIC DESIGN  
Natalia Leposavic, M.Arch. 
 
COVER PAGE  
Photo credit: Bill McEwen, P.Eng. 
Graphic design: Marjorie Greene, AICP 
 
 
 
COPYRIGHT 
© Canadian Concrete Masonry Producers Association, 2009 
 
Canadian Concrete Masonry Producers Association 
P.O. Box 54503, 1771 Avenue Road 
Toronto, ON M5M 4N5 
Tel:  (416) 495-7497        
Fax:  (416) 495-8939 
Email: information@ccmpa.ca 
Web site: www.ccmpa.ca 
 
The Canadian Concrete Masonry Producers Association (CCMPA) is a non-profit 
association whose mission is to support and advance the common interests of its 
members in the manufacture, marketing, research, and application of concrete masonry 
products and structures.  It represents the interests of Region 6 of the National Concrete 
Masonry Association (NCMA). 



 i

Contents Summary 
 

Chapter 1   NBCC 2005 Seismic Provisions 
Objective: to provide background on seismic response of structures 

and seismic analysis methods and explain key NBCC 2005 seismic 

provisions of relevance for masonry design 

DETAILED 
NBCC SEISMIC 
PROVISIONS 

  
Chapter 2   Seismic Design of Masonry Walls to CSA S304.1                        
Objective: to provide background and commentary for CSA S304.1-04 

seismic design provisions related to reinforced concrete masonry walls, 

and discuss the revisions in CSA S304.1-04 seismic design 

requirements with regard to the 1994 edition 

DETAILED 
MASONRY 
DESIGN 
PROVISIONS 

Chapter 3   Summary of Changes in NBCC 2005 and CSA S304.1-04 Seismic 
Design Requirements for Masonry Buildings 

Objective: to provide a summary of NBCC 2005 and CSA S304.1-04 

changes with regard to previous editions (NBCC 1995 and CSA S304.1-

94) and to present the results of a design case study of a hypothetical 

low-rise masonry building to illustrate differences in seismic forces and 

masonry design requirements due to different site locations and different 

editions of NBCC and CSA S304.1 

SUMMARY OF 
NBCC AND 
S304.1 
CHANGES 

  
Chapter 4   Design Examples 
Objective: to provide illustrative design examples of seismic load 

calculation and distribution of forces to members according to NBCC 

2005, and the seismic design of loadbearing and nonloadbearing 

masonry elements according to CSA S304.1-04 

DESIGN 
EXAMPLES 

  

Appendix A Comparison of NBCC 1995 and NBCC 2005 Seismic Provisions  

Appendix B Research Studies and Code Background Relevant to Masonry Design 

Appendix C Relevant Design Background 

Appendix D Design Aids 

Appendix E Notation 
 



 ii

 
Table of Contents 

 
 
1 SEISMIC DESIGN PROVISIONS OF THE NATIONAL BUILDING  
             CODE OF CANADA 2005             1-2 
 
1.1 Introduction               1-2 
 
1.2 Background               1-2 
 
1.3 Design and Performance Objectives           1-3 
 
1.4 Response of Structures to Earthquakes           1-4 

1.4.1   Elastic Response              1-4 
1.4.2   Inelastic Response             1-8 
1.4.3   Ductility               1-9 
1.4.4   A Primer on Modal Dynamic Analysis Procedure            1-10 

 
1.5 Seismic Analysis According to NBCC 2005        1-19 

1.5.1    Seismic Hazard            1-19 
1.5.2    Effect of Site Soil Conditions              1-20 
1.5.3    Methods of Analysis           1-23 
1.5.4    Base Shear Calculations- Equivalent Static Analysis Procedure     1-24 
1.5.5    Force Reduction Factors dR  and oR            1-27 
1.5.6    Higher Mode Effects ( vM  factor)          1-28 
1.5.7    Vertical Distribution of Seismic Forces         1-30 
1.5.8    Overturning Moments ( J  factor)          1-31 
1.5.9    Torsion             1-32 
1.5.10  Configuration Issues: Irregularities and Restrictions       1-40 
1.5.11   Deflections and Drift Limits          1-44 
1.5.12   Dynamic Analysis Method          1-46 
1.5.13   Soil-Structure Interaction           1-47 

 
 
2 SEISMIC DESIGN OF MASONRY WALLS TO CSA S304.1-04        2-2 
 
2.1 Introduction                                                                                                     2-2 
 
2.2 Masonry Walls – Basic Concepts                                                                  2-2 
 
2.3 Reinforced Masonry Shear Walls Under In-Plane Seismic Loading       2-8 

2.3.1    Behaviour and Failure Mechanisms                                                      2-8 
2.3.2    Shear/Diagonal Tension Resistance                                                    2-10 
2.3.3    Sliding Shear Resistance                                                                            2-18 
2.3.4    In-Plane Flexural Resistance Due to Combined Axial Load  
            and Bending                                                                                        2-20 



 iii

 
2.4 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading     2-20 

2.4.1     Background                                                                                        2-20 
2.4.2     Out-of-Plane Shear Resistance                                                                2-21 
2.4.3        Out-of-Plane Sliding Shear Resistance                                        2-22 
2.4.4        Out-of-Plane Section Resistance Due to Combined Axial Load  
                and Bending            2-22 

 
2.5 Seismic Design Considerations for Reinforced Masonry Shear Walls     2-23 

2.5.1        Background                                                                                        2-23 
2.5.2        Capacity Design Approach                                                                2-23 
2.5.3        Ductile Seismic Response                                                                2-28 
2.5.4        CSA S304.1-04 Seismic Design Requirements                             2-28 
2.5.5        Summary of Seismic Design Requirements for Reinforced  
                Masonry Walls                                                                                        2-52 

 
2.6 Special Topics            2-54 

2.6.1        Unreinforced Masonry Shear Walls         2-54 
2.6.2        Masonry Infill Walls           2-59 
2.6.3        Stack Pattern Walls           2-67 
2.6.4        Nonloadbearing Walls           2-71 
2.6.5        Masonry Veneers and their Connections        2-72 
2.6.6        Boundary Elements and Flanged Shear Walls       2-75 
2.6.7        Wall-to-Diaphragm Anchorage          2-78 
2.6.8        Constructability Issues           2-79 

 
 
3 SUMMARY OF CHANGES IN NBCC 2005 AND CSA S304.1-04 SEISMIC       
 DESIGN REQUIREMENTS FOR MASONRY BUILDINGS         3-2 
 
3.1 Introduction               3-2 
 
3.2 Comparison of the Seismic Load Requirements of the 2005 and  
 1995 Editions of NBCC             3-2 
 
3.3 Comparison of the Seismic Design Requirements of the 2004 and  
 1994 Editions of CSA S304.1             3-4 

3.3.1        Summary of New Seismic Design Provisions in CSA S304.1-04       3-4 
3.3.2        Comparison of the Seismic Design and Detailing Requirements for     
           Reinforced Masonry Walls in CSA S304.1-04 and CSA S304.1-94       3-4 

 
3.4 Comparison of Masonry Wall Design for Different Design Codes and  
             Site Locations                                                                                          3-8 

3.4.1 Building Description                                                                              3-8 
3.4.2 Design Criteria             3-8 
3.4.3 NBCC Seismic Load Calculations           3-8 
3.4.4 Shear Wall Design             3-9 
3.4.5 Discussion            3-11 



 iv

4            DESIGN EXAMPLES 
 
1 Seismic load calculation for a low-rise masonry building to NBCC 2005             4-2 

 
2 Seismic load calculation for a medium-rise masonry building to NBCC 2005      4-8 

 
3 Seismic load distribution in a masonry building considering both rigid  

and flexible diaphragm alternatives                                                                    4-22 
 

4a Minimum seismic reinforcement for a squat masonry shear wall                       4-34 
 

4b Seismic design of a squat shear wall of conventional construction                    4-41 
 

4c Seismic design of a squat shear wall of moderate ductility                                4-47 
 

5a Seismic design of a flexural shear wall of limited ductility                                  4-57 
 

5b Seismic design of a flexural shear wall of moderate ductility                             4-66 
 

6a Design of a loadbearing wall for out-of-plane seismic effects                            4-75 
 

6b Design of a nonloadbearing wall for out-of-plane seismic effects                      4-82 
 

7 Seismic design of masonry veneer ties                                                              4-87 
 

8 Seismic design of a masonry infill wall                                                               4-89 
 
 
REFERENCES                                                                                                
 

APPENDICES  
 
 
A COMPARISON OF NBCC 1995 AND NBCC 2005 SEISMIC  
            PROVISIONS              A-2 
 
A.1 NBCC 1995 Seismic Hazard            A-2 
 
A.2 Effect of Site Soil Conditions           A-3 
 
A.3 Methods of Analysis             A-4 
 
A.4 Base Shear Calculations            A-4 
 
A.5 Force Reduction Factor R            A-5 
 
A.6 Higher Mode Effects             A-5 
 
A.7 Vertical Distribution of Seismic Forces          A-6 
 
A.8 Overturning Moments (J factor)           A-6 



 v

A.9 Torsion              A-7 
 
A.10 Irregularities and Restrictions           A-7 
 
A.11 Displacements             A-8 
 
A.12 Shear and Moment Comparison           A-8 
   
 
B  RESEARCH STUDIES AND CODE BACKGROUND RELEVANT TO  
MASONRY DESIGN              B-2 
 
B.1 Shear/Diagonal Tension Resistance          B-2 
 
B.2 Ductile Seismic Response            B-4 
 
B.3 Ductility Check             B-8 
 
B.4 Wall Height-to-Thickness Ratio Restrictions         B-9 
 
B.5 Grouting            B-10 
 
 
C RELEVANT DESIGN BACKGROUND          C-2 
 
C.1 Design for Combined Axial Load and Flexure         C-2 

C.1.1       Reinforced Masonry Walls Under In-Plane Seismic Loading       C-2 
C.1.2       Reinforced Masonry Walls Under Out-of-Plane Seismic Loading      C-8 

 
C.2 Wall Intersections and Flanged Shear Walls       C-14 
 
C.3 Wall Stiffness Calculations          C-20 

C.3.1       Lateral Load Distribution                                                               C-20 
C.3.2       Wall Stiffness: Cantilever and Fixed-End Model                            C-21 
C.3.3       Approximate Method for Force Distribution in Masonry Shear Walls    C-22 
C.3.4       Advanced Design Approaches for Reinforced Masonry Shear  
                Walls with Openings                                                                           C-25 
C.3.5       The Effect of Cracking on Wall Stiffness                                        C-30 

 
 
D DESIGN AIDS                         D-2 
 
Table D-1.  Properties of Concrete Masonry Walls (per metre or foot length)      D-2 
 
Table D-2.   wlc ratio,   yf = 400 MPa                                                                 D-3 
 
Table D-3. Wall Stiffness Values  ( )tEK m *                                                      D-4 
 
 
E NOTATION                         



 vi

FOREWORD 
 
The Canadian Concrete Masonry Producers Association (CCMPA) is a non-profit 
association whose mission is to support and advance the common interests of its 
members in the manufacture, marketing, research, and application of concrete masonry 
products and structures.  The CCMPA represents the producers of concrete masonry 
products in Canada.  Our member firms are engaged in the manufacture of concrete 
block and concrete brick masonry units used for loadbearing and nonloadbearing 
applications, and as veneers.  The CCMPA represents Canadian interests within the 
National Concrete Masonry Association, a U.S.-based international association of 
concrete masonry producers. 
 
The CCMPA supports the educational efforts of Canadian universities and other 
educational institutions, and the education of the masonry design professional, 
practitioner and student, both formally and informally.  The CCMPA is intimately involved 
in the development and maintenance of CSA masonry and masonry-related standards.  
Our standards serve as the basis for manufacturing and specifying concrete masonry 
materials and products, product and assembly testing, and the structural design and 
construction of masonry elements.  The CCMPA continually develops and disseminates 
information and design tools needed by designers to deliver state-of-the-art, safe and 
serviceable, cost-effective masonry elements and structures.  As part of this continuing 
commitment to education, the CCMPA is pleased to sponsor and publish this guide, co-
authored by Drs. Anderson and Brzev, two authorities in seismic behaviour and design 
of masonry. 
 
This is the first edition of the “Seismic Design Guide for Masonry Buildings”.  This 
comprehensive and illustrated guide is based on the 2005 edition of the National 
Building Code of Canada (NBCC) and the 2004 edition of CSA S304.1, “Design of 
Masonry Structures”.  Its format and content have been specifically developed to 
address the needs of the practicing structural engineer designing low and mid-rise 
masonry buildings and their elements.  The Guide describes the behaviour of masonry 
under seismic loading, explains and rationalizes the basis of the seismic design 
requirements within the NBCC and S304.1, and provides guidance and assistance to 
masonry designers on their interpretation and use.  It describes and details the 
appropriate methods of seismic design and analysis, and demonstrates use by 
illustrative example.  The Guide recognizes the high standard of quality control present 
in modern masonry structures and the advanced methods used in its structural design.  
There is no similar or comparable guide for the seismic design of masonry in Canada, 
and no more comprehensive guide internationally.   
 
In particular, the CCMPA acknowledges the commitment to the development of this 
Guide by its authors and their dedication to masonry education and research.  We 
recognize the past and on-going work by Dr. Anderson, University of British Columbia, 
who has spearheaded and coordinated the requirements for masonry seismic design in 
both the 1994 and 2004 editions of CSA S304.1, the Canadian masonry design 
standard.  At the Building Code level, Dr. Anderson also serves as a member of the 
Canadian National Committee for Earthquake Engineering (CANCEE).  CANCEE is the 
Standing Committee on Earthquake Design of NBCC Part 4.  Dr. Anderson’s liaison 
between CANCEE and S304.1 has been eminently important for developing seismic 
requirements in the S304.1 standard and harmonizing these requirements with those of 
the NBCC.  Dr. Brzev, British Columbia Institute of Technology, brings to us, her vast 
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international experience and understanding in behaviour and design of concrete and 
masonry elements and structures, and earthquake engineering.  She is the author of 
numerous research publications and a co-author of “Reinforced Concrete Design, A 
Practical Approach”.  The Canadian Concrete Masonry Producers Association is very 
grateful for the support offered by both of these educators and researchers.   
 
This Guide was developed on the basis of the Limit States Design method of CSA 
Standard S304.1-04.  The references to this standard in this Guide neither duplicate nor 
replace this standard.  Therefore, it is recommended that the user of this Guide obtain a 
copy of CSA S304.1-04, “Masonry Design for Structures” developed and published by 
the Canadian Standards Association (www.csa.ca). 
 
The timely appearance of this guide will give rise to a new generation of masonry 
buildings and their proliferation. 
 
 
Gary R. Sturgeon, B.Eng., MSc. P.Eng. 
Director of Technical Services 
Canadian Concrete Masonry Producers Association 
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PREFACE  
 
This document is intended to assist practicing structural engineers in designing masonry 
buildings for seismic load effects according to the National Building Code of Canada 
2005 (NBCC 2005) and the CSA S304.1-04 masonry design standard. The document 
provides a commentary which explains the underlying theoretical background and 
rationale for the CSA S304.1-04 seismic design provisions. Changes in the seismic 
design provisions contained in Part 4 of the NBCC 2005 and CSA S304.1-04, and their 
impact on masonry design and construction are discussed.  
 
This document is a comprehensive state-of-the-art guide on seismic design and 
construction of masonry structural elements for low to mid-rise structures, such as 
warehouses, industrial buildings, schools, commercial buildings, and residential/hotel 
structures. It is restricted to masonry structures designed and constructed using 
concrete block units. Consideration of the slenderness effects in tall masonry walls is 
beyond the scope of this document. 
 
The material is presented in a simple and user-friendly manner. It facilitates the 
application of seismic design provisions and cross-referencing of code clauses for 
designers. The document has been developed in a modular form, with the content 
divided into four chapters, each of which can be used in a stand-alone manner. The 
appendices contain useful resources such as design procedures and research 
background for some of the design provisions. For easy reference, relevant code 
clauses are identified by framed boxes wherever appropriate. 
 
Chapter 1 provides a review of the general seismic design provisions contained in Part 4 
of NBCC 2005, including seismic hazard levels, and the equivalent static force 
procedure. It discusses key design parameters such as irregularities, torsion, height 
limitations, and the ductility and overstrength factors for masonry structures. Additionally, 
there is an introduction to the dynamic analysis of structures to assist in understanding 
pertinent code provisions. Since there are major changes to the seismic provisions in 
NBCC 2005, some comparisons with the previous 1995 edition of the building code are 
included in Appendix A. 
 
Chapter 2 provides an overview of seismic design requirements for reinforced masonry 
walls. Relevant CSA S304.1-04 design requirements are presented along with related 
commentary that provides detailed explanations of the code provisions. Topics include 
reinforced masonry shear walls subjected to in-plane and out-of-plane seismic loads, 
and a detailed discussion of the CSA S304.1 seismic design requirements. A few special 
topics such as masonry infill walls, stack pattern walls, masonry veneers, and 
construction-related issues are also included. Changes in CSA S304.1-04 seismic 
design requirements from the previous (1994) edition are identified and discussed, along 
with their design implications. Appendix B contains resources related to the Chapter 2 
content, including findings of research studies and foreign code provisions related to 
seismic design of masonry structures.  
 
Chapter 3 summarizes differences in seismic design provisions contained in the 1995 
and 2005 editions of NBCC, and the 1994 and 2004 editions of CSA S304.1. Designers 
who are already familiar with the detailed seismic and masonry design issues discussed 
in Chapters 1 and 2 may wish to move directly to this summary chapter. The differences 
in code provisions are presented in a tabular format. This chapter also summarizes the 
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results of a case study of a typical warehouse building designed to both NBCC 1995 and 
NBCC 2005. The study considers three Canadian locations characterized by different 
seismic hazards (Vancouver, Calgary, and Toronto).  
 
Chapter 4 provides illustrative design examples of seismic load calculations and 
distribution of forces to members according to NBCC 2005, and the design of 
loadbearing and nonloadbearing masonry elements to CSA S304.1-04. The layout of 
masonry buildings and the mechanical properties of their components in the examples 
are chosen to reflect situations often encountered in design practice, particularly as they 
relate to torsionally unsymmetric buildings. These examples are laid out in a step-by-
step manner, with ample explanations and appropriate illustrations provided to clarify the 
design process. Appendix C provides relevant background information for the design 
examples, including an extensive discussion of in-plane wall stiffness. Appendix D 
contains design aids used in the Chapter 4 examples. 
 
A list of key references, useful for supplementary reading for those interested in pursuing 
the subject further, is also included. 
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1  Seismic Design Provisions of the National Building Code 
of Canada 2005 

1.1 Introduction  
 
This chapter provides a review of the seismic design provisions in the 2005 National Building 
Code of Canada (NBCC 2005). Additionally, there is an introduction to the dynamic analysis of 
structures to assist in understanding the NBCC provisions. Since there are major changes to the 
seismic provisions reflected in NBCC 2005, some comparisons will be made to the previous 
edition of the building code, NBCC 1995, and this is covered in more detail in Appendix A.  
 
In the past, building structures in many areas of Canada did not have to be designed for 
earthquakes. However, after the NBCC 2005 was issued and adopted by the Provinces, 
structures in some additional areas must now be designed for earthquakes, especially if the 
structure is an important or post-disaster building, or if it is located on a soft soil site. Since 
many engineers in these regions have not had experience in seismic design and now may have 
to include such design in their practice, this guideline has been prepared to explain the seismic 
provisions included in the NBCC 2005 and CSA S304.1-04, and to point out the recent changes 
in these two documents as they pertain to masonry design. 

1.2 Background 
 
Seismic design of masonry structures became an issue following the 1933 Long Beach, 
California earthquake in which school buildings suffered damage that would have been fatal to 
students had the earthquake occurred during school hours. At that time, a seismic lateral load 
equal to the product of a seismic coefficient and the structure weight had to be considered in 
those areas of California known to be seismically active. Strong motion instruments that could 
measure the peak ground acceleration or displacement were developed around that time, and in 
fact, the first strong motion accelerogram was recorded during the 1933 Long Beach 
earthquake. However, in this era the most widely used strong ground motion acceleration record 
was measured at El Centro during the 1940 Imperial Valley earthquake in southern California. 
The 1940 El Centro record became famous and is still used by many researchers studying the 
effect of earthquakes on structures. 
 
With the availability of ground motion acceleration records (also known as acceleration time 
history records), it was possible to determine the response of simple structures modelled as 
single degree of freedom systems. After computers became available in the 1960s it was 
possible to develop more complex models for analyzing the response of larger structures. The 
advent of computers has also had a huge impact on the ability to predict the ground motion 
hazard at a site, and in particular, on probabilistic predictions of hazard on which the NBCC 
seismic hazard model is based. 
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1.3 Design and Performance Objectives 
 
For many years, seismic design philosophy has been founded on the understanding that it 
would be too expensive to design most structures to remain elastic under the forces that the 
earthquake ground motion creates. Accordingly, most modern building codes allow structures to 
be designed for forces lower than the elastic forces with the result that such structures may be 
damaged in an earthquake, but they should not collapse, and the occupants should be able to 
safely evacuate the building. The past and present NBCC editions follow this philosophy and 
allow for lateral design forces smaller than the elastic forces, but impose detailing requirements 
so that the inelastic response remains ductile and a brittle failure is prevented. 
 
Research studies have shown that for most structures, the lateral displacements or drifts are 
about the same irrespective of whether the structure remains elastic or it is allowed to yield and 
experience inelastic (plastic) deformations. This is known as the equal displacement rule and 
will be discussed later in this chapter, as it forms the basis for many of the code provisions.  
 
The seismic response of a building structure depends on several factors, such as the structural 
system and its dynamic characteristics, the building materials and design details, but probably 
the most important is the expected earthquake ground motion at the site. The expected ground 
motion, termed the seismic hazard, can be estimated using probabilistic methods, or be based 
on deterministic means if there is an adequate history of large earthquakes on identifiable faults 
in the immediate vicinity of the site.   
 
Canada generally uses a probabilistic method to assess the seismic hazard, and over the years, 
the probability has been decreasing, from roughly a 40% chance (probability) of being exceeded 
in 50 years in the 1970s (corresponding to 1/100 per annum probability, also termed the 100 
year earthquake), to a 10% in 50 year probability in the 1980s (the 475 year earthquake), to 
finally a 2% in 50 year probability (the 2475 year earthquake) used for NBCC 2005. The latest 
change was made so that the risk of building failure in eastern and western Canada would be 
roughly the same (Adams and Atkinson, 2003), as well as to recognize that an acceptable 
probability of severe building damage in North America from seismic activity is about 2% in 50 
years. Despite the large changes over the years in the probability level for the seismic hazard 
determination, the seismic design forces have not changed appreciably because other factors in 
the NBCC design equations have changed to compensate for these higher hazard values. Thus, 
while the code seismic design hazard has been rising over the years, the seismic risk of failure 
of buildings designed according to the code has not changed greatly.  
 
A comparison of building designs performed according to the NBCC 1995 and the NBCC 2005 
will show an increase in design level forces in some areas of Canada and a decreased level in 
other areas, however it is expected that the overall difference between these designs is not 
significant (see Appendix A for more details). 
 
The NBCC 2005 has taken a more rational approach towards seismic design than have 
previous editions, in that the seismic hazard has been assessed for a certain probability related 
to risk of severe building damage, with the building designed with no empirical or calibrating 
factors. The real strength of the building has been utilized in the design, so that at this level of 
ground motion it should not collapse but could be severely damaged. Thus, the probability of 
severe damage or near collapse is about 1/2475 per annum, or about 2% in the predicted 50-
year life span of the structure. When compared to wind or snow loads, which are based on the 1 
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in 50 year probability of not being exceeded, the 1 in 2475 year probability for seismic design 
appears inconsistent. However, unlike design for seismic loads, design for wind and snow loads 
uses load and material performance factors, and so the resulting probability of failure is 
expected to be smaller than that for earthquakes. Seismic design does use material resistance 
factors, φ  factors, in assessing member capacity, but they are effectively cancelled out by the 
overstrength factor, oR  (which will be described later), used to reduce the seismic forces. 
 
Work on new model codes around the world is leading to what is described as, “Performance 
Based Design”, a concept that is already being applied by some designers working with owners 
who have concerns that building damage will have an adverse effect on their ability to maintain 
their business. NBCC 2005 only addresses one performance level, that of collapse prevention 
and life safety, and is essentially mute on serviceability during smaller seismic events that are 
expected to occur more frequently. Performance based design attempts to minimize the cost of 
earthquake losses by weighing the cost of repair, and cost of lost business, against an 
increased cost of construction.  

1.4 Response of Structures to Earthquakes 

1.4.1 Elastic Response 
When an earthquake strikes, the base of a building is subject to lateral motion while the upper 
part of the structure initially is at rest. The forces created in the structure from the relative 
displacement between the base and upper portion cause the upper portion to accelerate and 
displace. At each floor the lateral force required to accelerate the floor mass is provided by the 
forces in the vertical members. The floor forces are inertial forces, not externally applied forces 
such as wind loads, and exist only as long as there is movement in the structure.  
 
Earthquakes cause the ground to shake for a relatively short time, 15 to 30 seconds of strong 
ground shaking, although movements may go on for a few minutes. The motion is cyclic and the 
response of the structure can only be determined by considering the dynamics of the problem. A 
few important dynamic concepts are discussed below.  
 
Consider a simple single-storey building with masonry walls and a flat roof. The building can be 
represented by a Single Degree of Freedom (SDOF) model (also known as a stick model) as 
shown in Figure 1-1a. The mass, M , lumped at the top, represents the mass of the roof and a 
fraction of the total wall mass, while the column represents the combined wall stiffness, K , in 
the direction of earthquake ground motion. If an earthquake causes a lateral deflection, Δ , at 
the top of the building, Figure 1-1b, and if the building response is elastic with stiffness, K , then 
the lateral inertial force, F , acting on the mass M  will be  
 

Δ⋅= KF  
 
When the mass of a SDOF un-damped structure is allowed to oscillate freely, the time for a 
structure to complete one full cycle of oscillation is called the period, T , which for the SDOF 
system shown is given by 

K
MT π2=   (seconds) 

 
Instead of period, the term natural frequency, ω , is often used in seismic design. It is related to 
the period as follows 
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M
K

T
==

πω 2
  (radians/sec) 

 
Frequency is sometimes also expressed in Hertz, or cycles per second, instead of radians/sec, 
denoted by the symbol cpsω , where     
 

π
ωω
2

1
==

Tcps  

 
Figure 1-1. SDOF system: a) stick model; b) displaced position.    
As the structure vibrates, there is always some energy loss which will cause a decrease in the 
amplitude of the motion over time - this phenomenon is called damping. The extent of damping 
in a building depends on the materials of construction, its structural system and detailing, and 
the presence of architectural components such as partitions, ceilings and exterior walls. 
Damping is usually modelled as viscous damping in elastic structures, and hysteretic damping 
in structures that demonstrate inelastic response. In seismic design of buildings, damping is 
usually expressed in terms of a damping ratio,β , which is described in terms of a percentage of 
critical viscous damping. Critical viscous damping is defined as the level of damping which 
brings a displaced system to rest in a minimum time without oscillation. Damping less than 
critical, an under-damped system, allows the system to oscillate; while an over-damped system 
will not oscillate but take longer than the critically damped system to come to rest. Damping has 
an influence on the period of vibration, T, however this influence is minimal for lightly damped 
systems, and in most cases is ignored for structural systems. For building applications, the 
damping ratio can be as low as 2%, although 5% is used in most seismic calculations. Damping 
in a structure increases with displacement amplitude since with increasing displacement more 
elements may crack or become slightly nonlinear. For linear seismic analysis viscous damping 
is usually taken as 5% of critical as the structural response to earthquakes is usually close to or 
greater than the yield displacement. A smaller value of viscous damping is usually used in non-
linear analyses as hysteretic damping is also considered. 
 
One of the most useful seismic design concepts is that of the response spectrum. When a 
structure, say the SDOF model shown in Figure 1-1, is subjected to an earthquake ground 
motion, it cycles back and forth. At some point in time the displacement relative to the ground 
and the absolute acceleration of the mass reach a maximum, maxΔ  and maxa , respectively. 
Figure 1-2a shows the maximum displacement plotted against the period, T . Denote the period 
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of this structure as 1T . If the dynamic properties, i.e. either the mass or stiffness change, the 
period will change, say to 2T . As a result, the maximum displacement will change when the 
structure is subjected to the same earthquake ground motion, as indicated in Figure 1-2b. 
Repeating the above process for many different period values and then connecting the points 
produces a plot like that shown in Figure 1-2c, which is termed the displacement response 
spectrum. The spectrum so determined corresponds to a specific input earthquake motion and a 
specific damping ratio,β . The same type of plot could be constructed for the maximum 
acceleration, maxa , rather than the displacement, and would be termed the acceleration 
response spectrum.  

 
Figure 1-2. Development of a displacement response spectrum - maximum displacement 
response for different periods T : a) 1TT = ;  b) 2TT = ; c) many values of T . 

Figure 1-3a shows the displacement response spectrum for the 1940 El Centro earthquake at 
different damping levels. Note that the displacements decrease with an increase in the damping 
ratio, β , from 2% to 10%. Figure 1-3b shows the acceleration response spectrum for the same 
earthquake. For the small amount of damping present in the structures, the maximum 
acceleration, maxa , occurs at about the same time as the maximum displacement, maxΔ , and 
these two parameters can be related as follows 

max

2

max
2

Δ⎟
⎠
⎞

⎜
⎝
⎛=

T
a π

 

Thus, by knowing the spectral acceleration, it is possible to calculate the displacement spectral 
values and vice versa. It is also possible to generate a response spectrum for maximum 
velocity. Except for very short and very long periods, the velocity, maxv , is closely approximated 
by  

maxmax
2

Δ⎟
⎠
⎞

⎜
⎝
⎛=

T
v π

 

This is generally called the pseudo velocity response spectrum as it is not the true velocity 
response spectrum. 
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a) 

 
b) 

Figure 1-3. Response spectra for the 1940 El Centro NS earthquake at different damping levels: 
a) displacement response spectrum; b) acceleration response spectrum. 

The response spectrum can be used to determine the maximum response of a SDOF structure, 
given its fundamental period and damping, to a specific earthquake acceleration record. 
Different earthquakes produce widely different spectra and so it has been the practice to choose 
several earthquakes (usually scaled) and use the resulting average response spectrum as the 
design spectrum. For years, the NBCC seismic provisions have used this procedure where the 
design spectrum for a site was described by one or two parameters, either peak ground 
acceleration and/or peak ground velocity, that were determined using probabilistic means. 
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More recently, probabilistic methods have been used to determine the spectral values at a site 
for different structural periods. Figure 1-4 shows the 5% damped acceleration response 
spectrum for Vancouver used in developing the NBCC 2005. This is a uniform hazard response 
spectrum, i.e., spectral accelerations corresponding to different periods are based on the same 
probability of being exceeded, that is, 2% in 50 years. This will be discussed further in Section 
1.5.1. 

 
Figure 1-4. Uniform hazard acceleration response spectrum for Vancouver, 2% in 50 year 
probability, 5% damping.  

1.4.2 Inelastic Response 
For any given earthquake ground motion and SDOF elastic system it is possible to determine 
the maximum acceleration and the related inertia force, elF , and the maximum displacement, 

elΔ . Figure 1-5a shows a force-displacement relationship with the maximum elastic force and 
displacement indicated. If the structure does not have sufficient strength to resist the elastic 
force, elF , then it will yield at some lower level of inertia force, say at lateral force level, yF . It 
has been observed in many studies that a structure with a nonlinear cyclic force-displacement 
response similar to that shown in Figure 1-5b will have a maximum displacement that is not 
much different from the maximum elastic displacement. This is indicated in Figure 1-5c where 
the inelastic (plastic) displacement, uΔ , is shown just slightly greater than the elastic 
displacement, elΔ . This observation has led to the equal displacement rule, an empirical rule 
which states that the maximum displacement that the structure reaches in an earthquake is 
independent of its yield strength, i.e. irrespective of whether it demonstrates elastic or inelastic 
response. The equal displacement rule is thought to hold because the nonlinear response 
softens the structure and so the period increases, thereby giving rise to increased 
displacements. However, at the same time, the yielding material dissipates energy that 
effectively increases the damping (the energy dissipation is proportional to the area enclosed by 
the force-displacement loops, termed hysteresis loops). Increased damping tends to decrease 
the displacements; therefore, it is possible that the two effects balance one another with the 
result that the elastic and inelastic displacements are not significantly different. 
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Figure 1-5. Force-displacement relationship: a) elastic response; b) nonlinear (inelastic) 
response; c) equal displacement rule. 
There are limits beyond which the equal displacement rule does not hold. In short period 
structures, the nonlinear displacements are greater than the elastic displacements, and for very 
long period structures, the maximum displacement is equal to the ground displacement. 
However, the equal displacement rule is, in many ways, the basis for the seismic provisions in 
many building codes which allow the structure to be designed for forces less than the elastic 
forces. But there is always a trade-off, and the lower the yield strength, the larger the nonlinear 
or inelastic deformations. This can be inferred from Figure 1-5c where it is noted that the 
difference between the nonlinear displacement, uΔ , and yield displacement, yΔ , which 
represents the inelastic deformation, would increase as the yield strength decreases. Inelastic 
deformations generally relate to increased damage, and the designer needs to ensure that the 
strength does not deteriorate too rapidly with subsequent loading cycles, and that a brittle failure 
is prevented. This can be achieved by additional “seismic” detailing of the structural members, 
which is usually prescribed by the material standards. For example, in reinforced concrete 
structures, seismic detailing consists of additional confinement reinforcement that ensures 
ductile performance at critical locations in beams, columns, and shear walls. In reinforced 
masonry structures, it is difficult to provide similar confinement detailing, and so restrictions are 
placed on limiting the reinforcement spacing, on levels of grouting, and on certain strain limits in 
the masonry structural components (e.g. shear walls) which provide resistance to seismic loads 
(see Chapter 2 for more details on seismic design of masonry shear walls). 

1.4.3 Ductility 
Ductility relates to the capacity of the structure to undergo inelastic displacements. For the 
SDOF structure, whose force-displacement relation is shown in Figure 1-5c the displacement 
ductility ratio, Δμ , is a measure of damage that the structure might undergo and can be 
expressed as 
 

y

u

Δ
Δ

=Δμ  

 
The ratio between the maximum elastic force, elF , and the yield force, yF , is given by the force 
reduction factor, R , defined as 
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If the material is elastic-perfectly plastic, i.e. there is no strain hardening as it yields (see Figure 
1-5b), and if uΔ  is equal to elΔ , then it can be shown that 

Δμ  is equal to R . 
 
For different types of structures and detailing requirements, most building codes tend to 
prescribe the R  value while not making reference to the displacement ductility ratio, 

Δμ , thus 
implying that the

Δμ and R values would be similar. 

1.4.4 A Primer on Modal Dynamic Analysis Procedure 
The main objective of this section is to explain how more complex multi-degree-of-freedom 
structures respond to earthquake ground motions and how such response can be quantified in a 
form useful for structural design. This background should be helpful in understanding the NBCC 
seismic provisions.  
 
1.4.4.1 Multi-degree-of-freedom systems 
The idea of modelling the building as a SDOF structure was introduced in Section 1.4.1, and the 
dynamic response to earthquake ground motions was developed in terms of a response 
spectrum. Such a simple model might well represent the lateral response of a single storey 
warehouse building with flexible walls or bracing system, and with a rigid roof system where the 
roof comprises most of the weight (mass) of the structure. However, this is not a good model for 
a masonry warehouse with a metal deck roof, where the walls are quite stiff and the deck is 
flexible and light relative to the walls. Such a system requires a more complex model using a 
multi-degree-of-freedom (MDOF) system. A shear wall in a multi-storey building is another 
example of a MDOF system.  
 
Figure 1-6 shows two examples of MDOF structures. A simple four-storey structure is shown in 
Figure 1-6a, and a simple MDOF model for this building consists of a column representing the 
stiffness of vertical members (shear walls or frames), with the masses lumped at the floor levels. 
If the floors are rigid, it can be assumed that the lateral displacements at every point in a floor 
are equal, and the structure can be modelled with one degree of freedom (DOF) at each floor 
level (a DOF can be defined as lateral displacement in the direction in which the structure is 
being analyzed). This will result in as many degrees of freedom as number of floors, so this 
building can be modelled as a 4-DOF system. It must also be assumed that there are no 
torsional effects, that is, there is no rotation of the floors about a vertical axis (torsional effects 
will be discussed later in Section 1.5.9). The analysis will be the same irrespective of the lateral 
force resisting system (a shear wall or a frame), aside from details in finding the lateral stiffness 
matrix for the floor displacements.  
 
The warehouse building shown in Figure 1-6b is another example of a MDOF structure. The 
walls are treated as a single column with some portion of the wall and roof mass, 1M , located at 
the top. The roof can be treated as a spring (or several springs) with the remaining roof mass, 

2M , attached to the spring(s). How much mass to attach to each degree of freedom, and how 
to determine the stiffness of the roof, are major challenges in this case. 
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Figure 1-6. MDOF systems: a) multi-storey shear wall building; b) warehouse with flexible roof. 

 
1.4.4.2  Seismic analysis methods 
The question of interest to structural engineers is how to determine a realistic seismic response 
for MDOF systems? The possible approaches are:  

 static analysis,  and  
 dynamic analysis (modal analysis or time history method). 

 
The simplest method is the equivalent static analysis procedure (also known as the quasi-static 
method) in which a set of static horizontal forces is applied to the structure (similar to a wind 
load). These forces are meant to emulate the maximum effects in a structure that a dynamic 
analysis would predict. This procedure works well when applied to small, simple structures, and 
also to larger structures if they are regular in their layout. 
 
NBCC 2005 specifies a dynamic analysis as the default method. The simplest type of dynamic 
analysis is the modal analysis method. This method is restricted to linear systems, and consists 
of a dynamic analysis to determine the mode shapes and periods of the structure, and then 
uses a response spectrum to determine the response in each mode. The response of each 



4/1/2009  1-12 
 
 
 

mode is independent of the other modes, and the modal responses can then be combined to 
determine the total structural response. In the next section, the modal analysis procedure will be 
explained with an example.  
 
The second type of dynamic analysis is the time history method. This consists of a dynamic 
analysis model subjected to a time-history record of an earthquake ground motion. Time history 
analysis is a powerful tool for analyzing complex structures and can take into account nonlinear 
structural response. This procedure is complex and time-consuming to perform, and as such, 
not warranted for low-rise and regular structures. It requires an advanced level of knowledge of 
the dynamics of structures and it is beyond the scope of this document. For detailed background 
on dynamic analysis methods the reader is referred to Chopra (2007). 
 
1.4.4.3 Modal analysis procedure: an example 
Consider a four-storey shear wall building example such as that shown in Figure 1-6a. The 
building can be modelled as a stick model, with a weight,W , of 2,000 kN lumped at each floor 
level, and a uniform floor height of 3 m (see Figure 1-7). For simplicity, the wall stiffness and the 
masses are assumed uniform over the height. This model is a MDOF system with four degrees 
of freedom consisting of a lateral displacement at each storey level. A MDOF system has as 
many modes of vibration as degrees of freedom. Each mode has its own characteristic shape 
and period of vibration. The periods are given in Table 1-1, the four mode shapes are given in  
Table 1-2 and shown in Figure 1-7. In this example, the stiffness has been adjusted to give a 
first mode period of 0.4 seconds, which is representative of a four-storey structure based on a 
simple rule-of-thumb that the fundamental period is on the order of 0.1 sec per floor. Note that 
the first mode, also known as the fundamental mode, has the longest period. The first mode is 
by far the most important for determining lateral displacements and interstorey drifts, but higher 
modes can substantially contribute to the forces in structures with longer periods. In this 
example the mode shapes have been normalized so that the largest modal amplitude is unity. 
 
For linear elastic structures, the equations governing the response of each mode are 
independent of the others provided that the damping is prescribed in a particular manner. Thus, 
the response in each mode can be treated in a manner similar to a SDOF system, and this 
allows the maximum displacement, moment and shear to be calculated for each mode. In the 
final picture, the modal responses have to somehow be combined to find the design forces (this 
will be discussed later in this section). Modal analysis can be performed by hand calculation for 
a simple structure, however, in most cases, the use of a dynamic analysis computer program 
would be required. 
 
Knowing the mode shapes and the mass at each level, it is possible to calculate the modal 
mass for each mode, which is given in Table 1-1 as a fraction of the total mass of the structure. 
The modal masses are representative of how the mass is distributed to each mode, and the 
sum of the modal masses must add up to the total mass. When doing modal analysis, a 
sufficient number of modes should be considered so that the sum of the modal masses adds up 
to at least 90% of the total mass. In the example here this would indicate that only the first two 
modes would need to be considered (0.696 + 0.210 = 0.906). 



4/1/2009  1-13 
 
 
 

 
Figure 1-7. Four-storey shear wall building model and modal shapes. 

As an example of how the different modes can be used to determine the structural response, 
Figure 1-8 shows a typical design acceleration response spectrum which will be used to 
determine the modal displacements and accelerations. The four modal periods are indicated on 
the spectrum (note that only the first two periods are identified on the diagram; T1=0.40 and 
T2=0.062 sec) and the spectral acceleration Sa at each of the periods is given in  
Table 1-3.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-8. Design acceleration response spectrum. 

A very useful feature of the modal analysis procedure gives the base shear in each mode as a 
product of the modal mass and the spectral acceleration Sa for that mode, as shown in  
Table 1-3. For example, the base shear for the first mode is equal to (8000kN x 0.696) x 0.74 = 
4127 kN). Note that the spectral acceleration is higher for the higher modes, but because the 
modal mass for these modes is smaller, the base shear is smaller. The inertia forces from each 
floor mass act in the same directions as the mode shape, that is, some forces are positive while 
others are negative for the higher modes (refer to mode shapes shown in Figure 1-7). It can be 
seen from the figure that the forces from the first mode all act in the same direction at the same 
time, while the higher modes will have both positive and negative forces. Thus the base shear 
from the first mode is usually larger than that from the other modes. 
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The modal base shears shown in Table 1-3 are the maximum base shears for each mode. It is 
very unlikely that these forces will occur at the same time during the ground shaking, and they 
could have either positive or negative signs. Summing the contribution of each mode where all 
values are taken as positive, known as the absolute sum (ABS) method, produces a very high 
upper bound estimate of the total base shear. Statistical analyses have shown that the square-
root-of-the-sum-of-the squares (RSS) procedure, whereby the contribution of each mode is 
squared, and the square root is then taken of the sum of the squares, gives a reasonably good 
estimate of the modal sum, especially if the modal periods are widely separated.  
 
Table 1-3 shows the base shear values estimated by the two methods and gives an indication of 
the conservatism of the ABS method for this case (total base shear of 6,462 kN), where the 
modal periods are widely separated, and use of the RSS method is appropriate since it gives a 
lower total base shear value of 4,468 kN. Note that there is a third method that is incorporated in 
many modal analysis programs called the complete-quadratic-combination (CQC) method. This 
method should be used if the periods of some of the modes being combined are close together, 
as would be the case in many three-dimensional structural analyses, but for most structures 
with well-separated periods and low damping, the result of the RSS and CQC methods will be 
nearly identical (this is true for most two-dimensional structural analyses). 
 
The amplitude of displacement in each mode is dependent upon the spectral acceleration for 
that mode and its modal participation factor, which is a measure of the degree to which a certain 
mode participates in the response. The value of the modal participation factor depends on how 
the mode shapes are normalized, and so will not be given here, however the values are smaller 
for the higher modes with the result that the displacements for the higher modes are generally 
smaller than those of the first mode. The modal displacements are presented in Table 1-4 (to 
three decimal places, which is why some values are shown as zero) and plotted in Figure 1-9 
for the first two modes as well as the RSS value. In this example, the influence of the two 
highest modes is very small and has been omitted from the diagram. It is difficult to distinguish 
between the first mode displacements and the RSS displacements in Figure 1-9; this is 
characteristic of structures with periods less than about 1 second, such as would be the case for 
most masonry structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-9. Modal displacements. 
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Modal analysis gives the modal shears and bending moments in each member and these 
values can be used to generate the shear and moment diagrams. These are summarized in 
Tables 1-5 and 1-6, and are graphically presented in Figure 1-10. Only the results from the first 
two modes are shown as the higher modes contribute very little to the response. Except for 
some contribution to the shears, the second mode is insignificant in contributing to the total 
values calculated using the RSS method.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

a)      b) 

Figure 1-10. Modal analysis results: a) shear forces; b) bending moments. 

The inertia force at each floor for each mode can be determined by taking the difference 
between the shear force above and below the floor in question. Modal inertia forces along with 
the RSS values are summarized in Table 1-7, and show that the higher modes at some levels 
contribute more than the first mode. Note that the sum of the inertia forces for each mode is 
equal to the base shear for that mode. However, the sum of the RSS values of the floor forces 
at each level is 6284 kN (obtained by adding values for storeys 1 to 4 in the last column of the 
table); this is not equal to the total base shear of 4468 kN found by taking the RSS of the base 
shears in each mode (see Table 1-3). This demonstrates the key rule in combining modal 
responses: only primary quantities from each mode should be combined. For example, if 
the designer is interested in the shear force diagram for the structure, it is necessary to find the 
shear forces in each mode and then combine these modal quantities using the RSS method. It 
is incorrect to find the total floor forces at each level from the RSS of individual modal values, 
and then use these total forces to draw the shear diagram. Even interstorey drift ratios, defined 
as the difference in the displacement from one floor to the next divided by the storey height, 
should be calculated for each mode and then combined using the RSS procedure. It would be 
incorrect to divide the total floor displacements by the storey height; although in this example 
since the deflection is almost entirely given by the first mode this approach would be very close 
to that found using the RSS method. 
 
One of the disadvantages of modal analysis is that the signs of the forces are lost in the RSS 
procedure and so equilibrium of the final force system is not satisfied. Equilibrium is satisfied in 
each mode, but this is lost in the procedure to combine modal quantities since each quantity is 
squared. That is why it is important to determine quantities of interest by combining only the 
original modal values. 
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1.4.4.4  Comparison of static and modal analysis results 
The equivalent static force analysis procedure, which will be presented in more detail in Section 
1.5.4, has been applied to the four storey structure described above for the spectrum shown in 
Figure 1-8. Table 1-8 compares the results of the two types of analyses. It can be seen that both 
the base shear and moment given by the modal analysis method is about 75% of that given by 
the static method. This occurs with short period MDOF structures that respond in essentially the 
first mode because the modal mass of the first mode for walls is about 70 to 80% of the total 
mass. The top displacement from the modal analysis is 78% of the static displacement, nearly 
the same as the ratio of the base moments; this would be expected given that the deflection is 
mostly tied to the moment.  
 
If the structure is a single-storey, SDOF system, the two analyses methods will give the same 
result. But for MDOF systems, such as two-storey or higher buildings, dynamic analysis will 
generally result in smaller forces and displacements than the static procedure.  
 
The floor forces from the two analyses are quite different. The floor forces in the upper storeys 
obtained by modal analysis are less than the static forces, but in the lower storeys, a reverse 
trend can be observed. The reason for this is the contribution of the higher modes to the floor 
forces. It can be seen in Table 1-7, that at the 2nd storey, the second mode contribution is the 
largest of all the modes. To ensure the required safety level when seismic design is performed 
using the equivalent static analysis procedure, NBCC 2005 seismic provisions (e.g. Clause 
4.1.8.15) provides additional guidance on the level of floor forces to be used in connecting the 
floors to the lateral load resisting elements. 
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Table 1-1. Modal Periods and Masses 

Mode Period 
(sec) 

Modal mass/ 
Total mass 

1 0.400 0.696 
2 0.062 0.210 
3 0.022 0.070 
4 0.012 0.024 

Sum  1.000 

 

Table 1-2. Mode Shapes 

Mode Shapes Storey 
1st mode 2nd mode 3rd mode 4th mode 

0 0.000 0.000 0.000 0.000 
1 0.093 0.505 1.000 -1.000 
2 0.328 1.000 0.334 0.969 
3 0.647 0.544 -0.972 -0.619 
4 1.000 -0.727 0.427 0.175 

Note: mode shapes are normalized to a maximum of 1 

 

Table 1-3. Spectral Accelerations, Sa, and Base Shears 

Mode Period 
(sec) 

Spectral 
Acceleration 

Sa (g) 

Modal mass / 
Total mass 

Base 
Shear 
(kN) 

1 0.400 0.74 0.696 4127 
2 0.062 0.96 0.210 1617 
3 0.022 0.96 0.070 534 
4 0.012 0.96 0.024 184 

                                       Total base shear     ABS 6462 
                                        Total base shear    RSS 4468 
Note: total weight = 8000 kN 

 

Table 1-4. Modal Displacements 

Modal Displacements (cm) 
Storey 

1st mode 2nd mode 3rd mode 4th mode 
RSS 

Base 0.000 0.000 0.000 0.000 0.00 
1 0.367 0.021 0.002 0.000 0.37 
2 1.300 0.042 0.001 0.000 1.30 
3 2.564 0.023 -0.002 0.000 2.56 
4 3.963 -0.031 0.001 0.000 3.96 
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Table 1-5. Modal Shear Forces 

Shear Forces (kN) 
Storey 

1st mode 2nd mode 3rd mode 4th mode 
RSS 

0-1 4127 1617 534 -184 4468 
1-2 3942 999 -143 204 4074 
2-3 3287 -224 -369 -172 3320 
3-4 1996 -888 289 68 2205 

 

Table 1-6. Modal Bending Moments 

Bending Moments (kNm) 
Storey 

1st mode 2nd mode 3rd mode 4th mode 
RSS 

Base 40053 -4511 -931 255 40320 
1 27675 339 670 -298 27686 
2 15849 3335 240 313 16201 
3 5988 2665 -867 -204 6614 
4 0 0 0 0 0 

 

Table 1-7. Modal Inertia Forces (Floor Forces) 

Floor Forces (kN) 
Storey 

1st mode 2nd mode 3rd mode 4th mode 
RSS 

1 185 618 677 -388 1012 
2 655 1223 226 376 1455 
3 1291 665 -658 -240 1612 
4 1996 -888 289 68 2205 

Sum 4127 1617 534 -184 4468 
 

Table 1-8. Comparison of Static and Dynamic Analyses Results 

Shear Forces 
(kN) 

Floor Forces 
(kN) 

Moments 
(kNm) 

Deflections 
(cm) 

Storey 

Static Modal(1) Static Modal(2) Static Modal(3) Static Modal(4) 
Base   0 0 53280 40320 0 0 

 5920 4468       
1   592 1012 35520 27686 0.48 0.37 
 5328 4074       

2   1184 1455 19536 16201 1.70 1.30 
 4144 3320       

3   1776 1612 7104 6614 3.32 2.56 
 2368 2205       

4   2368 2205 0 0 5.11 3.96 
Notes: (1) see Table 1-5, last column   
           (2) see Table 1-7, last column;   
           (3) see Table 1-6, last column;    
           (4) see Table 1-4, last column. 
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1.5 Seismic Analysis According to NBCC 2005 
This section presents and explains the relevant seismic code provisions in NBCC 2005. 
Reference will be made here to NBCC 1995 where appropriate, but Appendix A contains the 
pertinent 1995 code provisions and a comparison of the design forces from the two codes. 

1.5.1 Seismic Hazard 
 
4.1.8.4.(6)  

 
One of the major changes to the seismic provisions between the 1995 and 2005 editions of the 
NBCC is related to the determination of the seismic hazard. The 1995 code was based on 
probabilistic estimates of the peak ground acceleration and peak ground velocity for a 
probability of exceedance of 1/475 per annum (10% in 50 years). For NBCC 2005, the seismic 
hazard is based on a 2% in 50 years probability (corresponding to 1/2475 per annum), and it is 
represented by the 5% damped spectral response acceleration, )(TSa . During the NBCC 2005 
code development cycle, records became available, and the ability to compute how response 
spectral values vary with magnitude and distance from source to site greatly improved. Thus, it 
was possible to compute probabilistic estimates of spectral acceleration for different structural 
periods, and construct a response spectrum where each point on the spectrum has the same 
probability of exceedance. Such a spectrum is termed a Uniform Hazard Spectrum, or UHS. 
The acceleration UHS for Montreal is shown in Figure 1-11. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-11. Uniform hazard spectrum for Montreal (UHS), 2% in 50 years probability, 5% 
damping. 

 
For design purposes, the NBCC 2005 does not use the UHS, but rather an approximation given 
by four period-spectral values which are used to construct a spectrum, )(TSa , which is used as 
the basis for the design spectrum. For many locations in the country, these values are specified 
in Table C-2, Appendix C to the NBCC 2005, along with the peak ground acceleration (PGA) for 
each location, which is used mainly for geotechnical purposes. For other Canadian locations, it 
is possible to find the values online at:  
 
http://earthquakescanada.nrcan.gc.ca/hazard/interpolator/index_e.php  
 
by entering the coordinates (latitude and longitude) of the location. The program does not 
directly calculate the )(TSa  values, but instead, interpolates them from the known values at 
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several surrounding locations. For detailed information on the models used as the basis for the 
NBCC 2005 seismic hazard provisions, the reader is referred to Adams and Halchuk (2003).  
 
Figure 1-12 shows the )(TSa  spectrum for Montreal and the corresponding UHS. Since )(TSa  
is constructed using only four points (corresponding to different periods), it is an approximation 
to the UHS, and it also reflects some conservatism in the code. At very short periods )(TSa  is 
taken to be constant at the )2.0(aS  value, and it does not decrease to the PGA, which is the 
UHS value at zero period. This may appear to be very conservative, but only a few structures 
have periods less than 0.2 sec, and there are other reasons related to the inelastic response of 
such short-period structures, to be conservative in this region. Note that many low-rise masonry 
buildings may have a fundamental period on the order of 0.2 sec. 
 
The data needed to calculate the UHS values for large periods (over 2 seconds) is not available 
for all regions in Canada, and so between 2 seconds and 4 seconds, )(TSa  is assumed to vary 
as T/1 . Beyond 4 seconds there is even less data, and )(TSa  is assumed to be constant at the 

)4(aS  value for periods larger than 4 seconds.  )(TSa  is defined as the design hazard spectrum 
for sites located on what is termed soft rock or very dense soil.  For sites situated on either 
harder rock or softer soil the hazard spectrum needs to be modified as discussed below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-12. )(TSa   and UHS spectrum for Montreal. 

1.5.2 Effect of Site Soil Conditions 
 
4.1.8.4  

 
In the NBCC 2005, the seismic hazard given by the )(TSa  spectrum has been developed for a 
site that consists of either very dense soil or soft rock (Site class C within NBCC 2005). If the 
structure is to be located on soil that is softer than this, the ground motion may be amplified, or 
in the case of rock or hard rock sites, the motion will be de-amplified. In NBCC 2005 two site 
coefficients are provided to be applied to the )(TSa spectrum to account for these local ground 
conditions. The coefficients depend on the building period, level of seismic hazard, as well as on 
the site properties, which are described in terms of site classes. The NBCC 2005 site 
coefficients are more detailed than the foundation factor, F , provided in previous code editions, 
but should better represent the effect of the local soil conditions on the seismic response. 
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Table 1-9 excerpted from NBCC 2005, describes six site classes, labelled from A to E, which 
correspond to different soil profiles (note that the seventh class, F, is one that fits none of the 
first six and would require a special investigation). The site classes are based on the properties 
of the soil or rock in the top 30 m. Site class C is the base class for which the site coefficients 
are unity, i.e. it is the type of soil on which the data used to generate the ( )TSa  spectrum is 
based. The table identifies three soil properties that can be used to identify the site class; the 
best one being the average shear wave velocity, sV , which is a parameter that directly affects 
the dynamic response. The site class determination is based on the weighted average, of the 
property being considered, in the top 30 m, which for sV  would correspond to the average 
velocity it would take for a shear wave to traverse the 30 m depth. NBCC 2005 and 
Commentary J (NRC, 2006) do not discuss the level from which the 30 m should be measured. 
For buildings on shallow foundations, the 30 m should be measured from the bottom of the 
foundation. However, if the building has a very deep foundation where the ground motion forces 
transferred to the building may come from both friction at the base and soil pressures on the 
sides, the answer is not so clear and may require a site specific investigation to determine the 
accelerations of the building foundation. 
 

Table 1-9. NBCC 2005 Site Classification for Seismic Response (NBCC 2005 Table 4.1.8.4.A) 
 

Average Properties in Top 30 m, as per Appendix A 
Site 

Class 
Ground Profile 

Name 
Average Shear Wave 

Velocity, V s (m/s) 
Average Standard 

Penetration 
Resistance, N 60 

Soil Undrained 
Shear Strength, su 

A Hard rock V s > 1500 Not applicable Not applicable 
B Rock 760 < V s ≤ 1500 Not applicable Not applicable 

C Very dense soil 
and soft rock 360 < V s < 760 N 60 > 50 su > 100kPa 

D Stiff soil 180 < V s < 360 15 < N 60 < 50 50 < su ≤ 100kPa 

V s <180 N 60 < 15 su < 50kPa 

E Soft soil 
Any profile with more than 3 m of soil with the following characteristics: 

  plasticity index: PI > 20 
  moisture content: w ≥ 40%; and 
  undrained shear strength: su < 25 kPa 

F Other soils(1) Site-specific evaluation required 

  Reproduced with the permission of the National Research Council of Canada, copyright holder  

Notes: 
      (1)  Other soils include: 

a)  liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils, 
and other soils susceptible to failure or collapse under seismic loading, 

b)   peat and/or highly organic clays greater than 3 m in thickness, 
c)   highly plastic clays (PI>75) more than 8 m thick, 
d)   soft to medium stiff clays more than 30 m thick. 

 
The effect of the site class on the response spectrum is given by the following two site 
coefficients: aF , which modifies the spectrum ( )TSa  in the short period range (see  Table 1-10), 
and vF , which modifies ( )TSa  in the longer period range (see Table 1-11).  
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Table 1-10. Values of aF  as a Function of Site Class and )2.0(aS  (NBCC 2005 Table 4.1.8.4.B) 
Values of Fa Site 

Class Sa(0.2)≤ 0.25 Sa(0.2) = 0.50 Sa(0.2) = 0.75 Sa(0.2) =1.00 Sa(0.2) = 1.25 
A 0.7 0.7 0.8 0.8 0.8 
B 0.8 0.8 0.9 1.0 1.0 
C 1.0 1.0 1.0 1.0 1.0 
D 1.3 1.2 1.1 1.1 1.0 
E 2.1 1.4 1.1 0.9 0.9 
F (1) (1) (1) (1) (1) 

   Reproduced with the permission of the National Research Council of Canada, copyright holder 
   Notes:  (1) See Sentence 4.1.8.4.(5). 

Table 1-11. Values of vF  as a Function of Site Class and )0.1(aS  (NBCC 2005 Table 4.1.8.4.C) 

Values of Fv Site 
Class Sa(1.0) ≤ 0.1 Sa(1.0) = 0.2 Sa(1.0) = 0.3 Sa(1.0) =0.4 Sa(1.0) > 0.5 

A 0.5 0.5 0.5 0.6 0.6 
B 0.6 0.7 0.7 0.8 0.8 
C 1.0 1.0 1.0 1.0 1.0 
D 1.4 1.3 1.2 1.1 1.1 
E 2.1 2.0 1.9 1.7 1.7 
F (1) (1) (1) (1) (1) 

   Reproduced with the permission of the National Research Council of Canada, copyright holder 
   Notes: (1) See Sentence 4.1.8.4.(5). 
 
Note that the aF  and vF  values depend on the level of seismic hazard as well as on the site soil 
class. For soft soil sites (site classes D and E), motion from a high hazard event would lead to 
higher shear strains in the soil, which gives rise to higher soil damping and reduced surface 
motion, when compared to a low hazard motion. The softer the soil, as given by a higher site 
classification, the higher the site coefficients, except for a few aF  values at high hazard level. 
For rock and hard rock, the site coefficients will generally be less than unity. 

 
The aF  and vF  factors are applied to the ( )TSa  spectrum to give ( )TS , which is the design 
spectral acceleration for the site. The calculation of ( )TS  values will be illustrated with an 
example. 
 
Figure 1-13 shows the design seismic hazard spectrum, )(TS , for Vancouver for a firm ground 
site, Class C, and a soft soil site, Class E. For Vancouver (Granville and 41 Ave): 

( )2.0aS =0.96g, ( )5.0aS =0.66g, ( )0.1aS =0.34g, and ( )0.2aS =0.17  
(see Appendix C, NBCC 2005; note that these values were taken from an earlier version of 
Table C-2 and are slightly different from the published values). 
 
Interpolating from the values in Table 1-10 for site Class E and ( )2.0aS =0.96g, gives Fa=0.932, 
and from Table 1-11 for ( )0.1aS =0.34g, gives Fv=1.82.  
 
The calculations to determine )(TS  for the Class E site are (see Clause 4.1.8.4.(6)): 
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For T=0.2 sec:  S(0.2) = FaSa(0.2) = 0.932x0.96=0.89  S(0.2)=0.89     
For T=0.5 sec:         
  S(0.5) = FvSa(0.5) = 1.82x0.66 = 1.2, or   
  S(0.5) = FaSa (0.2) = 0.932x0.96 = 0.89, whichever is smaller 
             Since the smaller value governs,    S(0.5)=0.89 
For T=1 sec:  S(1.0) = FvSa(1.0) = 1.82x0.34 = 0.62  S(1.0)=0.62 
For T=2 sec: S(2.0) = FvSa(2.0) = 1.82x0.17 = 0.31  S(2.0)=0.31 
For T≥4 sec: S(T) = FvSa(2.0)/2 = 1.82x0.17/2 = 0.155  S(T≥4.0)=0.155 
 
The resulting )(TS  soil Class C and E design spectra for Vancouver are plotted in Figure 1-13. 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 1-13.  S(T) design spectra for Vancouver for site Classes C and E. 

1.5.3 Methods of Analysis 
 
4.1.8.7  

 
NBCC 2005 prescribes two methods of calculating the design base shear of a structure. The 
dynamic method is the default method, but the equivalent static method can be used if the 
structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where ( ) 35.02.0 <aaE SFI  ( EI  is the earthquake 
importance factor of the structure as defined in Clause 4.1.8.5.(1)), 
(b) is a regular structure less than 60 m in height with period, aT , less than 2 seconds in either 
direction ( aT  is defined as the fundamental lateral period of vibration of the structure in the 
direction under consideration, as defined in Clause 4.1.8.11.(3)),or 
(c) is an irregular structure, but does not have Type 7 irregularity, and is less than 20 m in 
height with period, aT , less than 0.5 seconds in either direction (see Section 1.5.10.1 for more 
details on irregularities). 
 
The equivalent static method will be described in this section because it likely can be used on 
the majority of masonry buildings given the above criteria, and notwithstanding, if the dynamic 
method is used, it must be calibrated back to the base shear determined from the equivalent 
static analysis procedure. Basic concepts of the modal dynamic analysis method were 
presented in Section 1.4.4, and a further discussion is offered in Section 1.5.12. 
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1.5.4 Base Shear Calculations- Equivalent Static Analysis Procedure  
 
4.1.8.11  

 
The lateral earthquake forces used in design are specified in the NBCC 2005, and are based on 
the maximum (design) base shear,V , of the structure as given by Clause 4.1.8.11. The elastic 
base shear, eV , denotes the base shear if the structure were to remain elastic. Design base 
shear,V , is equal to eV  reduced by the force reduction factors, dR  and oR ,  (related to ductility 
and overstrength, respectively; discussed in Section 1.5.5), and increased by the importance 
factor EI  (see Table 1-12 for a description of parameters used in these relations), thus; 
 

od

Ee

RR
IVV =  

 
where  
 

( ) WMTSV vae =  
represents the elastic base shear, vM  is a multiplier that accounts for higher mode shears, and 
W  is the dead load, as defined in Table 1-12.   
 
The relationship between eV  and V  is shown in Figure 1-14. Note that the actual strength of the 
structure is greater than the design strength V . 
 

 
Figure 1-14. Design base shear,V , and elastic base shear, eV . 

NBCC 2005 prescribes the following lower and upper bounds for the design base shear, V : 
 
a) Lower bound: 
Because of uncertainties in the hazard spectrum, ( )TSa , for periods greater than 2 seconds, the 
minimum design base shear should not be taken less than: 

( )
od

Ev

RR
WIMS

V
0.2

min =  
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b) Upper bound: 
Short period structures have small displacements, and there is not a huge body of evidence of 
failures for very low period structures, provided the structure has some ductile capacity. Thus an 
upper bound on the design base shear is given by: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

od

E

RR
WISV

3
2.02

max , provided 5.1≥dR  

vM  is not included in the above equation as 1=vM  for short periods. 
 
Some site specific studies for soil classes E and F, especially those located in high seismic 
zones, may show spectral values for periods of 0.5 to1.0 seconds to be greater than ( ) 32.02S . 
If this occurs it is recommended that the spectral value used in the short period range not be 
less than maximum value at the longer period. 
 
Note that the design base shear force,V , corresponds to the design force at the ultimate limit 
state, where the structure is assumed to be at the point of collapse. Consequently, seismic 
loads are designed with a load factor value of 1.0 when used in combination with other loads 
(e.g. dead and live loads; see Table 4.1.3.2, NBCC 2005). It is also useful to recall that while V  
represents the design base shear, individual members are designed using factored 
resistances, Rφ , and since the nominal resistance, R , is greater than the factored resistance, 
the actual base shear capacity will be approximately equal to oVR , as shown in Figure 1-14. 
 

aT  denotes the fundamental period of vibration of the building or structure in seconds in the 
direction under consideration (i.e. direction of seismic force). The fundamental period of wall 
structures is given in the NBCC 2005 by: 
 
a)   ( ) 4305.0 na hT = , where nh  is the height of the building in metres (Cl.4.1.8.11.3 (c)), or 
 
b)  other established methods of mechanics, except that aT  should not be greater than 2.0 

times that determined in (a) above (Sub Cl.4.1.8.11.3.(d)iii).  
 
The code formula to calculate aT  in (a) is simpler than the corresponding NBCC 1995 equation, 
in that it is based solely on building height and not on the length of the walls, and the allowance 
for using a calculated aT  in (b) is usually more liberal than in NBCC 1995. The period given by 
the NBCC 2005 in (a) is a conservative (short) estimate based on measured values for existing 
buildings. Using method (b) will generally result in a longer period, with resulting lower forces, 
and should be based on stiffness values reflecting possible cracked sections and shear 
deformations. For the purpose of calculating deflections, there is no limit on the calculated 
period as a longer period results in larger displacements (a conservative estimate), but it should 
never be less than that period used to calculate the forces.  
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Table 1-12. NBCC 2005 Seismic Design Parameters 

Design parameter NBCC 
reference 

 ( )TS  = the design spectral acceleration that includes the site soil 
coefficients Fa and Fv (see Section 1.5.2) 
S(T) = FaSa(0.2) for T < 0.2 s 
        = FvSa(0.5) or FaSa (0.2) whichever is smaller for T= 0.5 s 
        = FvSa (1.0) for T = 1.0 s 
        = FvSa (2.0) for T = 2.0 s 
        = FvSa (2.0)/2 for T ≥ 4.0 s 

Cl.4.1.8.4(6) 

vM  = higher mode factor (see Section 1.5.6) Cl.4.1.8.11.(5) 
Table 4.1.8.11 

EI  = importance factor for the design of the structure:  
1.5 for post-disaster buildings,  
1.3 for high importance structures, including schools and places 

of assembly that could be used as refuge in the event of an 
earthquake,   

1.0 for normal buildings, and  
0.8 for low importance structures such as farm buildings where 

people do not spend much time.  
See Table 4.1.2.1 in NBCC 2005 Part 4 for more complete 
definitions of the importance categories. There are also 
requirements for the serviceability limit states for the different 
categories. 

Cl.4.1.8.5(1) 
Table 4.1.8.5 

W  = dead load plus some portion of live load that would move 
laterally with the structure (also known as seismic weight). Live 
loads considered are 25% of the design snow load, 60% of 
storage loads for areas used for storage, and the full contents of 
any tanks. 
This requirement is the same as in the NBCC 1995 except that 
minimum partition load that need not exceed 0.5 kPa, and that 
parking garages need not be considered as storage areas. 

Cl.4.1.8.2 

dR  = ductility related force modification factor that represents the 
capability of a structure to dissipate energy through inelastic 
behaviour (see Table 1-13 and Section 1.5.5); ranges from 1.0 
for unreinforced masonry to 2.0 for moderately ductile masonry 
shear walls. 

Table 4.1.8.9 

oR  = overstrength related force modification factor that accounts for 
the dependable portion of reserve strength in the structure (see 
Table 1-13 and Section 1.5.5); equal to 1.5 for all reinforced 
masonry walls. 

Table 4.1.8.9 
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1.5.5 Force Reduction Factors dR  and oR  
 
4.1.8.9  

 
Table 1-13 (NBCC 2005 Table 4.1.8.9) gives the dR  and oR  values for the different types of 
masonry lateral load-resisting systems, which are termed the Seismic Force Resisting Systems, 
SFRS(s), by NBCC 2005 Cl.4.1.8.2. The SFRS is that part of the structural system that has 
been considered in the design to provide the lateral resistance to the earthquake forces and 
effects.  In addition to providing the dR  and oR  values,  Table 1-13 lists height limits for the 
different systems depending on the level of seismic hazard and importance factor, EI . 
 
Table 1-13. Masonry dR  and oR  Factors and General Restrictions(1) - Forming Part of Sentence 
4.1.8.9(1) (Source: NBCC 2005 Table 4.1.8.9) 
 

Height Restrictions (m) (2) 
Cases where IEFaSa(0.2) 

Type of SFRS Rd Ro 
<0.2 

≥0.2 
to 

<0.35

≥0.35 
to 

≤0.75 
>0.75 

Cases 
where 
IEFvSa(1.0) 
>0.3 

Masonry Structures Designed and Detailed According to CSA S304.1 
Moderately ductile shear 
walls 2.0 1.5 NL NL 60 40 40 

Limited ductility shear walls 1.5 1.5 NL NL 40 30 30 
Conventional construction -
shear walls 

1.5 1.5 
 

NL 
 

60 
 

30 
 

15 15 

Conventional construction -
moment resisting frames 

1.5 1.5 NL 30 NP NP NP 

Unreinforced masonry 1.0 1.0 30 15 NP NP NP 
Other masonry SFRS(s) not 
listed above 

1.0 1.0 15 NP NP NP NP 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
Notes:  (1)   See Article 4.1.8.10. 
            (2)   NP = not permitted. 

NL = system is permitted and not limited in height as an SFRS; height may be limited in other 
parts of the NBCC. 

      Numbers in this Table are maximum height limits in m. 
      The most stringent requirement governs. 

 
Commentary 

 
Table 1-13 identifies the following five SFRS(s) related to masonry construction: 

1. Moderately ductile shear walls 
2. Limited ductility shear walls 
3. Conventional construction: shear walls and moment resisting frames 
4. Unreinforced masonry 
5. Other undefined masonry SFRS(s) 
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Note that moderately ductile shear walls are assigned the highest dR  value of 2.0, leading to 
the lowest design forces for masonry structures. The detailing requirements, given in CSA 
S304.1-04, are the most restrictive of all the masonry shear wall types, but the height limitations 
imposed by the NBCC 2005 are the most liberal, allowing structures up to 60 m in height 
(approximately 20 storeys) in moderately high seismic regions. This type of construction would 
normally only be used in taller structures, but is required for masonry SFRS(s) used in post-
disaster buildings. Moderately ductile squat shear walls, those with a height-to-length ratio less 
than 1, are a separate class of moderately ductile shear walls. They are allowed higher shear 
resistance, and less restrictive requirements on the height-to-thickness ratio, when compared to 
regular moderately ductile walls.  
 
Limited ductility shear walls and conventional construction shear walls both have 5.1=dR . The 
limited ductility walls have more stringent detailing requirements than the conventional 
construction walls, but the height restrictions imposed by the NBCC 2005 are not as onerous. It 
is likely that the most common type of masonry shear wall construction used would be 
conventional construction walls.  
 
Conventional construction moment-resisting frames are also allowed an 5.1=dR , but are not 
permitted in moderately high seismic regions. CSA S304.1 does not discuss moment frames 
and they will not be discussed further here as they are rarely, if ever, used in masonry design. 
 
Unreinforced masonry construction is only allowed where ( ) 35.02.0 <aaE SFI , and is limited to a 
height of 15 m, except that they can go to a height of 30 m if ( ) 2.02.0 <aaE SFI . Unreinforced 
masonry does not have a good record in past earthquakes and is assigned 0.1== od RR  
values, as there is usually no ductility and brittle failures are a possibility. 
 
The oR  factor in NBCC 2005 is an overstrength factor to account for the real resistance 
capacity of the structure when compared to the factored design resistance. It is made up of 3 
components: i) 2.118.1/1 ≈=φ , ii) a factor that accounts for the expected yield strength of the 
reinforcement above the specified yield strength, and iii) a factor of about 1.1 that recognizes 
that, because of restrictions on possible locations for the reinforcement in masonry walls, the 
amount of reinforcement is in most cases larger than that required. This results in an 5.1=oR  
after some rounding of the factors (Mitchell et al., 2003).  

1.5.6 Higher Mode Effects ( vM  factor) 
 
4.1.8.11.(5)  

 
In the determination of elastic base shear, eV , only the first mode spectral value ( )TS  is used. 
To account for the additional base shear that comes from the higher modes, the vM   factor is 
introduced. vM  depends on the type of SFRS, the fundamental period aT , and the ratio 

)0.2()2.0( aa SS . The vM  values assigned by NBCC 2005 are presented in Table 1-14. A 
discussion about the base overturning reduction factor, J , (also tabled) is provided in Section 
1.5.8. 
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Table 1-14. Higher Mode Factor, vM , and Base Overturning Reduction Factor, )2)(1(J  Forming 

Part of Sentence 4.1.8.11.(5) (NBCC 2005 Table 4.1.8.11)  
 

vM  J  
)0.2()2.0( aa SS  Type of Lateral Resisting 

Systems 0.1≤aT  0.2≥aT  5.0≤aT  0.2≥aT  
Moment resisting frames 
or coupled walls (3)  1.0 1.0 1.0 1.0 

Braced frames 1.0 1.0 1.0 0.8 < 8.0 
Walls, wall-frame 
systems, other systems (4) 1.0 1.2 1.0 0.7 

Moment resisting frames 
or coupled walls  (3)   1.0 1.2 1.0 0.7 

Braced frames 1.0 1.5 1.0 0.5 ≥ 8.0 
Walls, wall-frame 
systems, other systems (4) 1.0 2.5 1.0 0.4 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
Notes: 
(1)  For values of vM  between fundamental lateral periods, aT , of 1.0 and 2.0 s, the product ( ) va MTS ⋅  

shall be obtained by linear interpolation. 
(2)  Values of J  between fundamental lateral periods, aT , of 0.5 and 2.0 s shall be obtained by linear 

interpolation. 
(3)  A “coupled wall” is a wall system with coupling beams, where at least 66% of the base overturning 

moment resisted by the wall system is carried by the axial tension and compression forces resulting 
from shear in the coupling beams. 

(4)  For hybrid systems, values corresponding to walls must be used or a dynamic analysis must be 
carried out as per Article 4.1.8.12. 

 
Commentary 

 
For structures with periods aT  greater than 1.0 s (typically, buildings of 10 storeys or higher), 
the contribution of higher modes to the base shear becomes increasingly important. In the 
eastern part of Canada, where 0.8)0.2()2.0( ≥aa SS , and where the ( )TSa  spectrum 
decreases sharply with periods beyond 0.2 seconds, the spectral acceleration for the second 
and third modes can be high compared to the first mode, and thus, these modes make a 
substantial contribution to the base shear. In western Canada, where 0.8)0.2()2.0( <aa SS , 
the spectrum does not decrease as sharply with increasing period, and the higher mode shears 
are less important when compared to the first mode base shear. It can be noted from Table 1-14 
that the vM  factor is largest for wall structures, ranging in value from 1.0 to 2.5. This is relevant 
for high-rise masonry wall structures, and arises because the modal mass for the higher modes 
is larger in wall structures than in frames, and because the difference in periods between the 
modes is larger in wall than in frame structures. 
 
For periods ranging from 1 to 2 seconds, vM  increases but ( )TS  decreases, and it is important 
to note that interpolation between the two periods should be done on the product ( ) vMTS ⋅ , and 
not on the individual terms.  
 
Beyond periods of 2 seconds, vM  is assumed constant, although it theoretically could be larger. 
However, since eV  is conservatively based on the ( )0.2S  spectral value, it is appropriate to use 
the 2 second value of vM . 
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Higher mode effects also affect the overturning moments and the value of J ; this will be 
discussed in Section 1.5.8. 

1.5.7 Vertical Distribution of Seismic Forces 
 
4.1.8.11.(6)  

 
The total lateral seismic force,V ,  is to be distributed such that a portion, tF , is assumed to be 
concentrated at the top of the building; the remainder ( )tFV −  is to be distributed along the 
height of the building, including the top level, in accordance with the following formula (see 
Figure 1-15): 

where 
xF  – seismic force acting at level x   
tF  – a portion of the base shear to be applied, in addition to force nF , at the top of the building  
xh  – height from the base of the structure up to the level x  (base of the structure denotes level 

at which horizontal earthquake motions are considered to be imparted to the structure - 
usually the top of the foundations) 

xW  - a portion of seismic weight, W , that is assigned to level x ; that is, the weight at level x  
which includes the floor weight plus a portion of the wall weight above and below that level. 

 
According to NBCC 2005, Sentence 4.1.8.11.(4), the seismic weight W  is the sum of the 

weights at each floor, ∑=
n

iWW
1

 (see Table 1-12). 

 
Figure 1-15. Vertical force distribution. 
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Commentary 

 
The above formula for the force distribution is based on a linear first mode approximation for the 
acceleration at each level. The purpose of applying force tF  at the top of the structure is to 
increase the storey shear forces in the upper part of longer period structures where the first 
mode approximation is not correct. For periods less than 0.7 sec, shear is dominated by the first 
mode and so 0=tF . The tF  force is determined as follows, see Cl.4.1.8.11.(6): 

0=tF   for  7.0≤aT  sec 
VTF at 07.0=  for  0.7 < 6.3≤aT  sec 

VFt 25.0=  for  aT  > 3.6 sec 
 
The remaining force, tFV − , is distributed assuming the floor accelerations vary linearly with 
height from the base. By establishing the forces at each floor level, the total storey shears can 
be calculated using statics.  

1.5.8 Overturning Moments ( J  factor) 
 
4.1.8.11.(5) 
4.1.8.11.(7) 

 

 
While higher mode forces can make a significant contribution to the base shear, they make a 
much smaller contribution to the storey moments. Thus, moments at each storey level 
determined from the seismic floor forces, which include the higher mode shears in the form of 
the tF  factor, result in overturning moments that are too large. Previous editions of the NBCC 
have traditionally used a factor, termed the J  factor, to reduce the moments, but the value of 
the J  factor and how it is applied over the height of the structure is substantially different in 
NBCC 2005.    
 
The J  factor values are given in Table 1-14. Note that for the 2 second period, J  is nearly 
equal to the inverse of vM , which implies that the overturning moment at the base of the 
structure is governed by the first mode.  
 
The overturning moment at any level shall be multiplied by the factor xJ  (see Figure 1-16), 
where 

0.1=xJ   for nx hh 6.0≥   (there is no reduction over the top 40% of the structure),  
and 

( )( )nxx hhJJJ 6.01−+=  for nx hh 6.0<   (a linear increase from J  at the base to 1.0 at 
the 60% level). 
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Figure 1-16. Distribution of the xJ  factor over the building height. 

Commentary 
 
How the J  factor and reduced overturning moments are incorporated into a structural analysis 
is not always straightforward, and it depends on the structural system.  
 
For shear wall structures the overturning moments can be calculated using the floor forces from 
the lateral force distribution, and then reduced by the xJ  factor at each level to give the design 
overturning moments. Without applying the J  factor, the wall moment capacity would be larger, 
leading to higher shears when the structure yields, and could result in a shear failure.  
 
For frames, the member shears, moments and axial loads, resulting from applying the lateral 
seismic forces at each floor level, will be too large. This would essentially result in higher axial 
loads in the columns, but not increase the shear demand on the structure, and so would be 
conservative. The J  factor for frames is usually small, and it is believed that many designers 
ignore it as it is conservative to do so. 

1.5.9 Torsion 
 
1.5.9.1  Torsional effects 
 
4.1.8.11.(8)  

 
Torsional effects, that are concurrent with the effects of the lateral forces xF , and that are 
caused by the following torsional moments shall be considered in the design of the structure: 

a) torsional moments introduced by eccentricity between the centre of mass and the centre 
of resistance, and their dynamic amplification, or 
b) torsional moments due to accidental eccentricities. 

 
In determining the torsional forces on members the stiffness of the diaphragms is important. The 
discussion in Sections 1.5.9.1 to 1.5.9.3 considers rigid diaphragms only, while flexible 
diaphragms are discussed in Section 1.5.9.4. 
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Commentary 

 
Torsional effects have been associated with many building failures during earthquakes. 
Torsional moments, or torques, arise when the lateral inertial forces acting through the centre of 
mass at each floor level do not coincide with the resisting structural forces acting through the 
centres of resistance. The centre of mass, MC , is a point through which the lateral seismic 
inertia force can be assumed to act. The seismic shear is resisted by the vertical elements, and 
if the resultant of the shear forces does not lie along the same line of action as the inertia force 
acting through the centre of mass, then a torsional moment about a vertical axis will be created. 
The centre of resistance, RC , also known as the centre of stiffness, is a point through which the 
resultant of all resisting forces act provided there is no torsional rotation of the structure. If the 
centre of mass at a certain floor level does not coincide with its centre of resistance, the building 
will twist in the horizontal plane about RC . Torsion generates significant additional forces and 
displacements of the vertical elements (e.g. walls) furthest away from RC . Ideally, RC  should 
coincide with, or be close to MC , and sufficient torsional resistance should be available to keep 
the rotations small. Figure 1-17 shows two different plan configurations, one of which has a non-
symmetric wall layout (a), and the other one with a symmetric layout (b). Both plans have 
approximately the same amount of walls in each direction but the symmetric building will 
perform better. The location of the shear walls determines the torsional stiffness of the structure; 
widely spaced walls provide high torsional stiffness and consequently small torsional rotations. 
Walls placed around the perimeter of the building, such as shown in Figure 1-17b, have very 
high torsional stiffness and are representative of low-rise or single-storey buildings. Taller 
buildings, which often have several shear walls distributed across the footprint of the structure, 
also give satisfactory torsional resistance (see Section 1.5.9.2 for a discussion on torsional 
sensitivity). 

 
Figure 1-17. Building plan: a) non-symmetric wall layout (significant torsional effects);  

b) symmetric wall layout (minor torsional effects). 
Figure 1-18a shows a building plan (of a single storey building, or one floor of a multi-storey 
building), for which the centre of mass, MC , and the centre of resistance, RC , do not coincide. 
The distance between RC  (at each floor) and the line of action of the lateral force (at each 
floor), which passes through MC  is termed the natural floor eccentricity, xe  (note that the 
eccentricity is measured perpendicular to the direction of lateral load). The effect of the lateral 
seismic force, xF , which acts at point MC , can be treated as the superposition of the following 
two load cases: a force xF  acting at point RC  (no torsion, only translational displacements, see 
Figure 1-18b, and pure torsion in the form of torsional moment, xT , about the point RC , as 
shown in Figure 1-18c. The torsional moment, xT , is calculated as the product of the floor force, 

xF , and the eccentricity xe . 
 
In addition to the natural eccentricity, the NBCC requires consideration of an additional 
eccentricity, termed the accidental eccentricity, ae . Accidental eccentricity is considered 
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because of possible errors in determining the natural eccentricity, including errors in locating the 
centres of mass as well as the centres of resistance, additional eccentricities that might come 
from yielding of some elements, and perhaps from some torsional ground motion. 
 

 
Figure 1-18. Torsional effects can be modelled as a combination of a seismic force, xF , at point  

RC  (causing translational displacements only) and a torsional moment, xT  (causing rotation of 
building plan) about point RC . 
Finding the centre of resistance, RC , may be a complex task in some cases. For single-storey 
structures it is possible to determine a centre of stiffness, which is the same as the RC . However 
in multi-storey structures, RC  is not well defined. For a given set of lateral loads, it is possible to 
find the location on each floor through which the lateral load must pass, so as to produce zero 
rotation of the structure about a vertical axis. These points are often called the centres of 
rigidity, rather than centres of stiffness or resistance, but they are a function of the loading as 
well as the structure, and so centres of rigidity are not a unique structural property. A different 
set of lateral loads will give different centres of rigidity. Earlier versions of the NBCC required 
the determination of the RC  location so as to explicitly determine xe , as it was necessary to 
amplify xe  (by factors of 1.5 or 0.5) to determine the design torque at each floor level. NBCC 
2005 does not require this amplification, so the effect of the torque from the natural 
eccentricities can come directly from a 3-D lateral load analysis, without the additional work of 
explicitly determining xe . However, NBCC 2005 requires a comparison of the torsional stiffness 
to the lateral stiffness of the structure to evaluate the torsional sensitivity, and so requires 
increased computational effort in this regard.  
 
1.5.9.2  Torsional sensitivity 
 
4.1.8.11.(9)  

 
NBCC 2005 requires the determination of a torsional sensitivity parameter, B , which is used to 
determine possible analysis methods. To determine B , a set of lateral forces, xF , is applied at 
a distance of nxD1.0±  from the centre of mass MC , where, nxD , is the plan dimension of the 
building perpendicular to the direction of the seismic loading being considered. The set of lateral 
loads, xF , to be applied can either be the static lateral loads or those determined from a 
dynamic analysis. A parameter, xB , evaluated at each level, x , should be determined from the 
following equation (see Figure 1-19): 
 

ave
xB

δ
δmax=  

where 
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maxδ - the maximum storey displacement at level x  at one of the extreme corners, in the 
direction of earthquake, and 

aveδ  - the average storey displacement, determined by averaging the maximum and minimum 
displacements of the storey at level x . 

 
Figure 1-19. Torsional displacements used in the determination of xB . 

The torsional sensitivity, B , is the maximum value of xB  for all storeys for both orthogonal 
directions. Note that xB  needs not be considered for one-storey penthouses with a weight less 
than 10% of the level below.  
 
Commentary 

 
A structure is considered to be torsionally sensitive when the torsional flexibility compared to the 
lateral flexibility is above a certain level, that is, when 7.1>B . Torsionally sensitive buildings 
are considered to be torsionally vulnerable, and NBCC 2005 in some cases requires that the 
effect of natural eccentricity be evaluated using a dynamic analysis, while the effect of 
accidental eccentricity be evaluated statically.  
 
Structures that are not torsionally sensitive, or located in a low seismic region where 

( ) 35.02.0 <aaE SFI , can have the effects of torsion evaluated using only the equivalent static 
analysis. If the structure is torsionally sensitive and located in a high seismic region, a dynamic 
analysis must be used to determine the effect of the natural eccentricity, but the accidental 
eccentricity effects must be evaluated statically, and the results then combined with the dynamic 
results, as discussed in Section 1.5.9.3. A static torsional analysis of the accidental eccentricity, 
on a torsionally flexible building, will lead to large torsional displacements, and generally to large 
torsional forces in the elements, and thus may require a change in the structural layout so that 
the structure is not so torsionally sensitive. 
 
1.5.9.3  Determination of torsional forces 
 
4.1.8.11.(10)  

 
Torsional effects should be accounted for as follows: 
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a) if 7.1≤B  (or 7.1>B  and ( ) 35.02.0 <aaE SFI ), the equivalent static analysis procedure can 
be used, and the torsional moments, xT , about a vertical axis at each level throughout the 
building, should be considered separately for each of the following load cases: 

i)  ( )nxxxx DeFT 1.0+= , and   
ii)  ( )nxxxx DeFT 1.0−= .  

 
The analysis required to determine the element forces, for both the lateral load and the above 
torques, is identical to that required to determine the B  factor, where the lateral forces are 
applied at a distance nxD1.0±  from the centre of mass, MC , as shown by the dashed arrows in 
Figure 1-20.  
 
b)  if 7.1>B , and ( ) 35.02.0 ≥aaE SFI , the dynamic analysis procedure must be used to 

determine the effects of the natural eccentricities, xe . The results from the dynamic analysis 
must be combined with those from a static torsional analysis that considers only the 
accidental torques given by 

( )nxxx DFT 1.0+= , or 
( )nxxx DFT 1.0−=  

 
In this analysis, xF  can come from either the equivalent static analysis or from a dynamic 
analysis. 
 
c) if 7.1≤B , it is permitted to use a three-dimensional dynamic analysis with the centres of 
mass shifted by by a distance of nxD05.0±  (see Cl.4.1.8.12.(4)b).   

 
Figure 1-20. Torsional eccentricity according to NBCC 2005. 

 
Commentary 

 
When results from a dynamic analysis are combined with accidental torques that use the lateral 
forces xF  from the equivalent static procedure, the designer should ensure that the analysis is 
done in a consistent manner, that is, by using either the elastic forces or the reduced design 
forces (elastic forces modified by odE RRI ). The final force results should be given in terms of 
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the reduced design forces, while the displacements should correspond to the elastic 
displacements. 
 
If the structure is torsionally sensitive, 7.1>B , and if ( ) 35.02.0 ≥aaE SFI , then the member 
forces and displacements from the accidental eccentricity must be evaluated statically by 
applying a set of torques to each floor of ( )nxx DF 1.0± . The set of lateral forces, xF , can come 
from either a static or a dynamic analysis. NBCC 2005 is mute on whether the set of lateral 
static forces should be scaled to match the dynamic base shear (if the dynamic base shear is 
larger than the static value), and whether the dynamic set should correspond to the set 
determined with the floor rotations restrained or not restrained (see Section 1.5.12). It is 
suggested here that if a set of static forces is used, they should (if necessary) be scaled up to 
match the base shear from the rotationally restrained dynamic analysis.  
 
The static approach to determine member forces and displacements from the accidental 
eccentricity is illustrated in Figure 1-21. 
 
 If the static forces are to be used, then the following steps need to be followed: 

1. The forces xF  are determined using the equivalent static method. 
2. Torsional moments at each level are found using the following equations    
 ( )nxxx DFT 1.0+= , or ( )nxxx DFT 1.0−= . 
3. Displacements and forces due to torsional effects are determined, and combined with 

the results from the dynamic analysis. Note that, in buildings with larger periods, tF  will 
cause large rotations and displacements, and the results will probably be conservative. 

 
Figure 1-21. Static approach to determine the accidental eccentricity effects (Anderson, 2006). 
If a dynamic set of floor forces, xF , are to be used, they should be scaled, if necessary (as 
discussed in Section 1.5.12), to be equal to the design base shear. For the determination of the 
storey torques, the force Fx at each floor can be determined from the dynamic analysis by taking 
the difference in the total shear in the storeys above and below the floor in question. These floor 
forces are not necessarily the correct floor forces (as discussed in Section 1.4.4.3), however the 
sum of these forces equals the design base shear and they provide a reasonable set of lateral 
forces to use for the accidental eccentricity calculations. The second and third steps discussed 
in the previous paragraph are then the same. 
 
If the structure is not torsionally sensitive ( 7.1≤B ), and a dynamic analysis is being used, it is 
permissible to account for both the lateral forces and the torsional eccentricity, including the 
natural and accidental eccentricity, by using a 3-D dynamic analysis and moving the centre of 



4/1/2009  1-38 
 
 
 

mass by the distance nxD05.0± . This would require four separate analyses, two in each 
direction. In these dynamic analyses the accidental eccentricity is taken as nxD05.0± , while in 
the static application it is taken as nxD10.0± . It is thought that the real accidental eccentricity is 
about nxD05.0± , but it would likely be amplified during an earthquake; this is reflected in the 
results of a dynamic analysis. Thus, nxD10.0±  is used in the static case to account for 
accidental eccentricity and possible dynamic amplification.  
 
When using a 3-D dynamic analysis for torsional response, it is important to correctly model the 
mass moment of inertia about a vertical axis. If the floor mass is entered as a point mass at the 
mass centroid, it will not have the correct mass moment of inertia and the torsional period will be 
too small. This will have the effect of making the structure appear to be torsionally stiffer than it 
really is, and could lead to smaller torsional deflections.  
 
When applying the lateral loads in one direction, torsional response gives rise to forces in the 
elements in the orthogonal direction. For structures with lateral force resisting elements oriented 
along the principal orthogonal axes, NBCC 2005 Cl. 4.1.8.8.(1)a) requires independent analyses 
along each axis. For structures with elements oriented in non-orthogonal directions (as shown in 
Section 1.5.10.1 for Type 8 Irregularity), an independent analysis about any two orthogonal 
axes is sufficient in low seismic zones, but in higher zones, it is required that element forces 
from loading in both directions be combined. The suggested method for combining forces from 
both directions is the “100+30%” rule that requires the forces in any element that arise from 
100% of the loads in one direction be combined with 30% of the loads in the orthogonal 
direction, see NBCC 4.1.8.8.(1)c). Another method is to apply the ‘root-sum-square’ procedure 
to the forces in each element from 100% of the loads applied in both directions. The two 
methods usually give close agreement and are based on the knowledge that the probability of 
the maximum forces from the two directions occurring at the same time is low. For some 
orthogonal systems, it is possible that the orthogonal forces from the effects of torsion are 
substantial, and a prudent design may consider combined forces from both directions as 
described above, especially in high seismic regions. 
 
Note that the NBCC requirements are based on an estimate of the elastic properties of the 
structure. When the structure yields, the eccentricity between the inertia forces acting through 
the centres of mass and the resultant of the resisting forces based on the capacity of the 
members, termed the plastic eccentricity, will be different than the elastic eccentricity. In most 
cases, the plastic eccentricity will be less than the elastic eccentricity. However, there may be 
cases where some elements are stronger than necessary and do not yield; this could increase 
the eccentricity when other elements yield, and it should be avoided if possible. 
 
1.5.9.4 Flexible diaphragms 
Diaphragms are horizontal elements of the SFRS whose primary role is to transfer inertial forces 
throughout the building to the vertical elements (shear walls in case of masonry buildings) that 
resist these forces. A diaphragm can be treated in a manner analogous to a beam lying in a 
horizontal plane where the floor or roof deck functions as the web to resist the shear forces, and 
the boundary elements (bond beams in case of masonry buildings) serve as the flanges in 
resisting the bending moment. How the total shear force is distributed to the vertical elements of 
the SFRS will depend on their rigidity compared to the rigidity of the diaphragm. For design 
purposes, diaphragms are usually classified as rigid or flexible, but that very much depends on 
the type of structure. Structures with many walls and small individual diaphragms between the 
walls clearly can be considered as having flexible diaphragms. In large plan structures, such as 
warehouses or industrial buildings with the SFRS members located around the perimeter, it is 
more common to assume the diaphragm as being rigid. However the flexibility of the diaphragm 
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may lead to a considerable increase in the period of the structure, and lead to deformations 
considerably larger than the deformations of the SFRS, in which case a more complex analysis 
would be required. 
 
In rigid diaphragms, shear forces are distributed to vertical elements in proportion to their 
stiffness. Torsional effects are considered following the approach outlined in Sections 1.5.9.1 to 
1.5.9.3. Concrete diaphragms, or steel diaphragms with concrete infill, are usually considered 
rigid.    
 
In flexible diaphragms, distribution of shear forces to vertical elements is independent of their 
relative rigidity; these diaphragms act like a series of simple beams spanning between vertical 
elements. A flexible diaphragm must have adequate strength to transfer the shear forces to the 
SFRS members, but cannot distribute torsional forces to the SFRS members acting at right 
angles to the direction of earthquake motion without undergoing unacceptable displacements.  
Corrugated steel diaphragms without concrete fill, and wood diaphragms, are generally 
considered flexible; however, steel and wood diaphragms with horizontal bracing could be 
considered rigid.  
 
Figure 1-22a shows the plan view of a simple one storey structure with walls on three sides and 
non-structural glazing on the fourth side. For an earthquake producing an inertia force, V , the 
walls provide resisting forces to the diaphragm as shown. The displacement of the diaphragm 
would be as shown in Figure 1-22b, and it is the size of the displacements that determines 
whether the diaphragm is considered flexible or rigid. If the displacements are too large to be 
acceptable, the diaphragm would be classed as flexible, and cannot be used with such a layout 
of the SFRS. In general, flexible diaphragms require that the SFRS has at least two walls in 
each direction such as shown in Figure 1-17b. 

 
Figure 1-22. Building plan: a) loads on diaphragm; b) displaced shape of a flexible diaphragm. 

In determining how the inertia forces are distributed to the SFRS, the flexible diaphragm should 
be divided into sections, with each section bounded by two walls in the direction of the inertia 
forces; preferably these two walls will be located on the sides of the section. The inertia forces 
from each section are then distributed to the SFRS on the basis of tributary areas.  Equilibrium 
must be satisfied, and the diaphragm must have sufficient strength in shear and bending to act 
as a horizontal beam carrying the loads to the supports. Figure 1-23 shows a flexible roof 
system supported by three walls in the N-S direction. The roof should be divided into two 
sections as shown, with the inertia force from section 1 distributed to walls A and B. Section 2 
must be considered as a beam with a cantilever end extending beyond wall C. Equilibrium of 
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section 2 then gives rise to a high force in Wall C, with the overhanging portion contributing to a 
reduction in the force in wall B. 

 
Figure 1-23. Plan view for analysis of flexible diaphragm. 

 
NBCC 2005 requires that accidental eccentricity be considered. With rigid diaphragms it is clear 
how this can be accomplished, as described in the above sections, but trying to account for 
accidental eccentricity in flexible diaphragms raises several questions about how it is to be 
applied. NBCC 2005 Commentary J, paragraph 179 (NRC, 2006) states that it is sufficient to 
consider an eccentricity of ±0.05Dnx, where Dnx is defined as the width of the building in the 
direction perpendicular to the direction of the earthquake motion. If the structure consists of a 
single roof section with supporting walls at each end separated by the distance Dnx, moving the 
centre of mass by 0.05Dnx would increase the wall reactions by 10%, and the accidental 
eccentricity requirement would be satisfied. For a structure with several walls in the direction of 
the earthquake motion, shifting the centre of mass by ±0.05Dnx, which would require moving the 
centre of mass of each section by this amount, could lead to unrealistic situations, as well as 
requiring a considerable increase in computational effort. Even flexible diaphragms will have 
some stiffness, and in many cases will transfer some of the torsional load to the walls 
perpendicular to the direction of motion. This transfer is ignored when designing for flexible 
diaphragms, but does provide extra torsional resistance. It is suggested that the wall forces 
determined without any accidental eccentricity all be increased by 10% to account for the 
accidental eccentricity. This minimizes the number of calculations required, and it is suggested 
that it satisfies the intent of NBCC 2005.  

1.5.10 Configuration Issues: Irregularities and Restrictions 
 
1.5.10.1 Irregularities 
 
4.1.8.6  

 
New definitions of structural irregularities represent a substantial change in NBCC 2005. There 
are eight different types of irregularity, and these are used to trigger restrictions and special 
requirements, some of which are more restrictive than those in previous codes. 
 
Table 1-15 (same as Table 4.1.8.6 in NBCC 2005) lists the eight types of irregularity, and the 
notes to the table refer to the relevant code clauses that consider the irregularity. The NBCC 
2005, Commentary J (NRC, 2006) provides an expanded description of each type of irregularity. 
If a structure has none of the listed irregularities it is considered to be a regular structure. A 
trigger for the NBCC 2005 irregularity provisions (Cl.4.1.8.6) is the presence of one of eight 
types of irregularity in combination with the higher seismic hazard index, that is, 

( ) 35.02.0 >aaE SFI . 
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Table 1-15. Structural Irregularities(1) Forming Part of Sentence 4.1.8.6.(1) (NBCC Table 
4.1.8.6.) 
 

 
Type 

 
Irregularity Type and Definition Notes 

1 
Vertical stiffness 

irregularity 

Vertical stiffness irregularity shall be considered to exist when the 
lateral stiffness of the SFRS in a storey is less than 70% of the 
stiffness of any adjacent storey, or less than 80% of the average 
stiffness of the three storeys above or below. 

(2)  
(3)  
(4) 

2 
Weight (mass) 

irregularity 

Weight irregularity shall be considered to exist where the weight, Wi, 
of any storey is more than 150% of the weight of an adjacent 
storey. A roof that is lighter than the floor below need not be 
considered. 

(2) 

3 
Vertical geometric 

irregularity 

Vertical geometric irregularity shall be considered to exist where the 
horizontal dimension of the SFRS in any storey is more than 130 
percent of that in an adjacent storey.  

(2)  
(3)  
(4)  
(5) 

4 
In-plane 

discontinuity in 
vertical lateral force-

resisting element 

An in-plane offset of a lateral-force-resisting element of the SFRS or 
a reduction in lateral stiffness of the resisting element in the storey 
below. 

(2)  
(3)  
(4)  
(5) 

5 
Out-of-plane offsets 

Out-of-plane offsets are discontinuities in a lateral force path, such 
as out-of-plane offsets of the vertical elements of the SFRS. 

(2)  
(3)  
(4)  
(5) 

6 
Discontinuity in 
capacity - weak 

storey 

A weak storey is one in which the storey shear strength is less than 
that in the storey above. The storey shear strength is the total 
strength of all seismic-resisting elements of the SFRS sharing the 
storey shear for the direction under consideration. 

(3) 

7 
 

Torsional sensitivity 

Torsional sensitivity shall be considered when diaphragms are not 
flexible, and when the ratio B>1.7 (see Sentence 4.1.8.11(9)). 

(2)  
(3)  
(4)  
(6) 

8 
Non-orthogonal 

systems 

A non-orthogonal system irregularity shall be considered to exist 
when the SFRS is not oriented along a set of orthogonal axes. (4)  

(7) 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
 
Notes: (1) One-storey penthouses with a weight less than 10% of the level below need not be 

considered in the application of this table. 
            (2) See Article 4.1.8.7. 
            (3) See Article 4.1.8.10. 
            (4) See Appendix A. 
            (5) See Article 4.1.8.15. 
            (6) See Sentences 4.1.8.11.(9), (10), and 4.1.8.12.(4) 
            (7) See Article 4.1.8.8. 
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Commentary 

 
The equivalent static analysis procedure is based on a regular distribution of stiffness and mass 
in a structure. It becomes less accurate as the structure varies from this assumption. 
Historically, regular buildings have performed better in earthquakes than have irregular 
buildings. Layouts prone to damage are: torsionally eccentric ones, “in” and “out” of plane 
offsets of the lateral system, and buildings with a weak storey (Tremblay and DeVall, 2006). For 
more details on building configuration issues refer to Chapter 6 of Naeim (2001). 
 
Figure 1-24 illustrates the NBCC 2005 irregularity types. Note that Types 1 to 6 are vertical 
(elevation) irregularities, while Types 7 and 8 are horizontal (plan) irregularities. 
 
According to NBCC 2005 Clause 4.1.8.7, the structure is considered to be “regular” if it has 
none of the eight types of irregularity, otherwise it is deemed to be “irregular”. The default 
method of analysis is the dynamic method, but the equivalent static method may be used if any 
of the following conditions are satisfied: 

 the seismic hazard index ( ) 35.02.0 <aaE SFI , or 
 the structure is regular, less than 60 m in height, and has a period T < 0.5 seconds in 

either direction, or 
 the structure is irregular, but does not have Type 7 Irregularity, and is less than 20 m in 

height with period T < 0.5 seconds in either direction. 
 
For single-storey structures such as warehouses and other low-rise masonry buildings, only 
irregularity Types 7 and 8 might apply, and these would not likely prevent the use of the 
equivalent static method.  
 
Type 8 irregularity concerns SFRS(s) which are not oriented along a set of orthogonal axes. The 
structures with this type of irregularity may require more complex seismic analysis in which 
seismic loads in two orthogonal directions would need to be considered concurrently. According 
to Clause 4.1.8.8.(1).b), where the components of the SFRS are not oriented along a set of 
orthogonal axes, and the structure is in a low seismic zone ( ( ) 35.02.0 <aaE SFI ), then 
independent analysis about any two orthogonal axes is permitted. However, where the 
components of the SFRS are not oriented along a set of orthogonal axes, and the structure is in 
a medium or high seismic zone ( ( ) 35.02.0 ≥aaE SFI ), then the analysis of the structure can be 
done independently about any two orthogonal axes for 100% of the prescribed earthquake 
loads in one direction concurrently with 30% of the prescribed earthquake loads acting in the 
perpendicular direction (see Clause 4.1.8.8.(1).c). This is so-called “100+30%” rule discussed in 
Section 1.5.9.3. 
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Figure 1-24. Types of irregularity according to NBCC 2005 (Tremblay and DeVall, 2006). 



4/1/2009  1-44 
 
 
 

 
1.5.10.2 Restrictions 
 
4.1.8.10.  

 
Restrictions in NBCC 2005 are based on (i) the natural period or height of the building, (ii) 
whether the building is in a “high” or “low” seismic zone, (iii) irregularities, and (iv) the 
importance category of the building. These restrictions are outlined below: 

1. Except as required by Clause 4.1.8.10.(2).b), structures with Type 6 irregularity, 
Discontinuity in Capacity – Weak Storey, are not permitted unless ( ) 20.02.0 <aaE SFI  
and the forces used for design of the SFRS are multiplied by od RR . 

2. Post-disaster buildings shall  
a) not have any irregularities conforming to Types 1, 3, 4, 5, and 7 as described in 

Table 4.1.8.6, in cases where ( ) 35.02.0 ≥aaE SFI , 
b) not have a Type 6 irregularity as described in Table 4.1.8.6, and 
c) have an SFRS with an 0.2≥dR . 

3. For buildings having fundamental lateral periods sTa 0.1> , and where 
( ) 25.02.0 >aaE SFI , walls forming part of the SFRS shall be continuous from their top to 

the foundation and shall not have irregularities of Type 4 or 5 as described in Table 
4.1.8.6. 

Note that Table 1-15 in this document is the same as NBCC 2005 Table 4.1.8.6. 
 
Commentary 

 
An important restriction for masonry construction concerns post-disaster structures. In other 
than low seismic regions the structure cannot have irregularity Types 1, 3, 4, 5, or 7; and must 
have an 0.2≥dR . Thus masonry post-disaster structures must be designed with moderately 
ductile shear walls (with 0.2=dR ), and except in low seismic regions (where 

( ) 35.02.0 <aaE SFI ) the above noted irregularity types should be avoided.  
 
Irregularity Type 6, Discontinuity in Capacity-Weak Storey, is an important restriction for multi-
storey structures, and cannot be present at all in post-disaster structures. For structures with 
this type of irregularity, the forces used in the design of the SFRS, except in very low seismic 
areas, must be multiplied by od RR , which implies that the members must remain elastic. This 
type of irregularity is considered very dangerous as in past earthquakes many structures with 
weak storeys have had a total collapse of that storey, which has resulted in many deaths. This 
type of seismic response has often been reported in reinforced concrete frame structures with 
masonry infill walls which contain more infills in the storeys above the ground floor, leaving the 
first storey as a weak storey. 

1.5.11 Deflections and Drift Limits 
 
4.1.8.13  

 
Lateral displacement (deflection) limits are prescribed in terms of maximum drift. Drift means the 
lateral deflection of one floor (or roof) relative to the floor below. Drift ratio is the drift divided by 
the storey height between the two floors, and is thus a measure of the distortion of the structure.  
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The NBCC 2005 drift limits are based on the storey height sh , as follows:  

 0.01 sh  for post-disaster buildings 
 0.02 sh  for schools, and 
 0.025 sh  for all other buildings. 

 
Commentary 

 
Since large deflections and drifts due to earthquakes contribute to (i) damage to the non-
structural components, (ii) damage to the elements which are not a part of the SFRS, and (iii) P-
Delta effects, NBCC 2005 provisions have moved in the direction of tightening up the drift limits 
from the previous versions. NBCC 2005 drift limits are more restrictive than those stated in 
NBCC 1995 because they apply to displacements based on a 1/2475 year return period event, 
whereas the NBCC 1995 uses the 1/475 year event (DeVall, 2003). Specifically, tighter drift 
limits for post-disaster or school buildings reflect the importance of these structures.  
 
Drift and drift ratio can be explained on an example of a three-storey building shown in Figure 
1-25. The drift in say the second storey is equal to 12 Δ−Δ , where 1Δ  and 2Δ  denote lateral 
deflections at the first and second floor level respectively. The corresponding drift ratio for that 
storey is equal to ( ) h12 Δ−Δ  , where 12 hhh −=  (storey height). The average drift ratio for the 
entire structure is ( ) h3Δ . 
 
Drifts are the elastic deflections and need not be increased by the importance factor EI  as that 
has already been accounted for in the drift limits. If the equivalent static forces, which are the 
elastic forces multiplied by odE RRI , are applied to the elastic structure to calculate 
deflections, then these deflections must be multiplied by Eod IRR  to get realistic values of the 
deflections. 

 
Figure 1-25. Lateral deflections and drift. 

In checking drift limits the drift should be taken at the location on the floor which has the 
maximum deflection. Torsional effects can result in corner deflections being much larger than 
the deflection at the centre of the floor plan.  
 
Since deflections increase with an increase in the period T , the stiffness used in calculating the 
deflections should reflect a softening of the structure (before yielding occurs) that might come 
from cracking of the masonry. The stiffness for squat shear walls should be determined taking 
into account shear deformation. If the period T  determined per NBCC provisions (see Section 
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1.5.4) is used to determine the seismic forces, the stiffness of the structure used in calculating 
the deflections should be such that the calculated period would not be less than the NBCC 
period. Many masonry structures are very stiff and the deflections will be well below the code 
limits, and so displacement calculations will not be critical in many cases.   
 
Drift limits are imposed so that members of the SFRS will not be subjected to large lateral 
displacements that might degrade their ability to resist the seismic loads, but also to ensure that 
members that are not part of the SFRS, such as columns that support gravity load only, should 
not fail during the earthquake. The seismic portion of the code is mute on drift limits for 
serviceability, however the designer can estimate the structural deflections at different hazard 
levels, since displacements are roughly proportional to the level of hazard. For example, the drift 
at an exceedance probability of 1/475 per annum would be about half of that for the 1/2475 per 
annum design drift because the 1/475 per annum hazard is roughly half the 1/2475 per annum 
hazard.  

1.5.12 Dynamic Analysis Method 
 
4.1.8.12  

 
In NBCC 2005 the default analysis method is the dynamic method. For many structures, even 
though the equivalent static analysis method could be used according to NBCC seismic 
provisions, dynamic analysis may be used for other reasons. The purpose of this section is not 
to explain how to use dynamic analysis software, but to give some guidance on scaling or 
comparing the dynamic results with the results from the static method. 
 
The base shear from a dynamic analysis, determined using the site design spectrum, will give 
the dynamic elastic base shear, eV . NBCC 2005 requires that for regular buildings if the base 
shear from the dynamic method is less than 0.8 times the base shear from the static method, 
then the dynamic results should be scaled to give 0.8 of the static base shear. If the structure is 
deemed to be irregular, then the dynamic results should be scaled to 100% of the static results. 
In essence this means that the dynamic results cannot be less than the static results (or 80% of 
the static results for regular structures), but if they are larger they should not be reduced to the 
static values. The comparison can be made on the basis of the elastic base shear, eV , or the 
design base shear, V , but must be the same for both analyses.  
 
Since the static analysis method is allowed to reduce the design base shear by a factor of two-
thirds in the short period range while the dynamic analysis method must use the design 
spectrum S(T), it is very unlikely that for short period structures the base shear determined 
using the dynamic method would ever be less than that given by the static method, let alone 
less than the 80% value allowed for regular buildings. This is an inconsistency in the code as it 
adversely impacts the results from a dynamic analysis for short period structures, but not for 
longer period structures. It is anticipated that the NBCC code, or at least the commentary to the 
code, will be changed for the next edition due out in 2010, allowing the base shear from a 
dynamic analysis be evaluated using a spectrum where the short period values are reduced by 
one third.  
 
If the building is very eccentric, a 3-D dynamic analysis will produce a low total base shear. In 
that case, it would be very conservative to require that these low base shears be scaled to the 
static base shear, since the static method of determining the base shear V does not consider 
torsional motion. To make a fair comparison between the static and dynamic results the 
suggestion is to perform a dynamic analysis with the rotation of the structure restrained about a 
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vertical axis, and then compare the resulting base shear to the static value to determine the 
amount of scaling required, if any.  
 
Scaling, if necessary, should be applied to the member forces determined from the full 3-D 
dynamic analysis multiplied by odE RRI  to give the design member forces. The design 
displacements are the elastic displacements given by the dynamic analysis, and scaled if 
necessary. To these design forces and displacements must be added the forces and 
displacements from accidental torsion. 

1.5.13 Soil-Structure Interaction 
 
For large structures located on soft soil sites the deformation of the soil may have an 
appreciable influence on the response of the structure. The most common type of soil-structure 
interaction is based on the flexibility of the soil, which is usually represented by a lateral spring 
between the foundation and the point where the seismic motion is input, and with a rotational 
spring at the base of flexural walls. There is a second type of soil-structure interaction, termed 
the kinematic interaction, which only applies to structures with a very large plan area or a deep 
foundation, and which will not be discussed further here. 
 
The effect of introducing springs between the point of input motion and the foundation is to 
increase the period of the structure, which usually reduces the seismic forces but increases the 
deflections. In the case of a wall structure, the increased deflections may not increase the 
deformation of the wall since they would arise from rotations of the foundation, but they would 
increase the interstorey drifts which would have an influence on other parts of the structure. 
While it is not so apparent, the larger deflections may lead to larger inelastic deformations and 
larger ductility demands. However, at the small ductilities used in masonry design this is most 
likely not to be a concern. 
 
For masonry structures, soil-structure interaction will likely only have an influence for slender 
wall structures with individual footings, where rotation of the footing would have a large effect on 
the wall displacement. The determination of the soil stiffness should be left to an experienced 
geotechnical engineer, but it should be recognized that the precision at which the soil stiffness 
can be estimated is quite low. It is common to consider quite wide upper and lower bounds on 
the estimated stiffness of the soil springs. 
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2 SEISMIC DESIGN OF MASONRY WALLS TO CSA S304.1-04 

2.1 Introduction 
 
Chapter 1 provides background on the seismic response of structures and seismic analysis 
methods, and explains key NBCC 2005 seismic provisions relevant to masonry design. This 
chapter provides an overview of seismic design requirements for reinforced masonry walls. 
Relevant CSA S304.1-04 design requirements are presented, along with related commentary, to 
provide detailed explanations of the NBCC provisions. Topics range from reinforced masonry 
shear walls subjected to in-plane and out-of-plane seismic loads, to a number of special topics 
such as masonry infill walls, stack pattern walls, veneers, and construction-related issues. 
Differences between CSA S304.1-04 seismic design requirements and those of the previous 
(1994) edition are identified and discussed, along with their design implications. For easy 
reference, relevant CSA S304.1 clauses are shown in a framed textbox where appropriate. 
Appendix B contains research findings and international code provisions related to seismic 
design of masonry structures. Appendix C contains relevant design background used in the 
design examples included in Chapter 4. 
 

2.2 Masonry Walls – Basic Concepts 
 
Structural walls are the key structural components in a masonry building and are used to resist 
some or all of the following load effects: 
• axial compression due to vertical gravity loads, 
• out-of-plane bending (flexure) and shear due to transverse wind, earthquake or blast loads 

and/or eccentric vertical loads, and 
• in-plane bending and shear due to lateral wind and earthquake loads applied to building 

system in a direction parallel to the plane of the wall. 
 
In a masonry building subjected to earthquake loads, horizontal seismic inertia forces develop in 
the walls, and the floor and roof slabs. The floor and roof slabs are called diaphragms where 
they transfer lateral loads to the lateral load resisting system. These inertia forces are 
proportional to the mass of these structural components and the acceleration at their level. An 
isometric view of a simple single-storey masonry building is shown in Figure 2-1a (note that roof 
diaphragm has been omitted for clarity). For earthquake ground motion acting in the direction 
shown in the figure, the roof diaphragm acts like a horizontal beam spanning between walls A 
and B. The end reactions of this beam are transferred to the walls A and B. These walls, 
subjected to lateral load along their longitudinal axis (also called in-plane loads), are called 
shear walls. Along with the floor and roof diaphragms, shear walls are the components of the 
building’s lateral load path that transfers the lateral load to the foundations. A well-designed and 
well-built masonry building has a reliable load path, established by design, which transfers the 
forces over the full height of the building from the roof to the foundation. 
 
Note also that the earthquake ground motion causes vibration of the transverse walls C and D. 
These walls are subjected to inertia forces proportional to their self-weight and are loaded out-
of-plane (or transverse to their longitudinal axis). A vertical section through wall D that is loaded 
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in the out-of-plane direction is shown in Figure 2-1b, while an elevation of shear wall A and its 
in-plane loading is shown in Figure 2-1c.  
 
It is important to note that walls are subjected to shear forces in both the in-plane and out-of-
plane directions during an earthquake event. However, the main difference between shear walls 
and other types of walls is that shear walls are key vertical components of a lateral load 
resisting system for a building, referred to as the Seismic Force Resisting System or SFRS by 
NBCC 2005. Usually not all walls in the building are shear walls; some walls (loadbearing and/or 
nonloadbearing) are not intended to resist in-plane loads, and are not designed and detailed as 
shear walls; in that case, they cannot be considered to form a part of the SFRS. 
 

 
 

Figure 2-1 Simple masonry building: a) isometric view showing lateral loads; b) out-of-plane 
loads; c) in-plane loads (resisted by shear walls). 

A typical reinforced concrete block masonry wall is shown in Figure 2-2. Vertical reinforcing bars 
are placed in the open cells of the masonry units (note that the term cores is also used in 
masonry construction practice), and are provided at generally uniform spacing along the wall 
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length. The role of vertical reinforcement is to enhance the ability of the wall to resist forces due 
to vertical loads, and forces resulting from induced moments due to vertical eccentricities, as 
well as the out-of-plane loads. Horizontal wall reinforcement is usually provided in two forms: i) 
ladder- or truss-type wire reinforcement placed in mortared bed joints (see Figure 2-2b), and ii) 
steel bars (similar to vertical reinforcement) placed in grouted bond beams at specified locations 
along the wall height (see Figure 2-2c). Horizontal wire and bar reinforcement restrict in-plane 
movements due to temperature and moisture changes, resist in-plane shear forces and/or  
forces due to moments caused by out-of-plane loads. Grout, similar to concrete but with higher 
slump, is used to fill the cells of the masonry units that contain vertical and horizontal 
reinforcement bars. Grout increases the loadbearing capacity of the masonry by increasing its 
area, and serves to bond the reinforcement to the masonry unit so that the reinforcement and 
unit act compositely. 
 
Grade 400 steel (yield strength 400 MPa) is nearly always used for horizontal and vertical 
reinforcing bars, whereas cold-drawn galvanized wire is used for joint reinforcement (also 
known as American Standard Wire Gauge – ASWG). Yield strength for joint reinforcement 
varies, but it usually exceeds 480 MPa for G30.3 steel wire. In design practice, 400 MPa yield 
strength is used both for the reinforcement bars and the joint wire reinforcement. The properties 
of concrete masonry units are summarized in Appendix D, while mechanical properties of 
masonry and steel materials are discussed by Drysdale and Hamid (2005) and Hatzinikolas and 
Korany (2005). The material resistance factors for masonry and steel prescribed by CSA 
S304.1-04 are as follows: 

m
φ = 0.6 resistance factor for masonry (Cl.4.3.2.1) 

s
φ = 0.85 resistance factor for steel reinforcement (Cl.4.3.2.2)  

The following notation will be used to refer to wall dimensions (see Figure 2-2a): 
wl - wall length 

wh - total wall height 
t  - overall wall thickness 

 
 

Figure 2-2. Typical reinforced concrete masonry block wall: a) vertical reinforcement; b) joint 
reinforcement; c) bond beam reinforcement. 
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Typical reinforced concrete masonry wall construction is shown in Figure 2-3. The lower section 
of the wall has been grouted to the height of a bond beam course. Vertical bars extend above 
the bond beam to serve as bar splices for the continuous vertical reinforcement placed in the 
next wall section. 
 

 
Figure 2-3 Masonry wall under construction (Credit: Masonry Institute of BC). 
Walls in which only the reinforced cells are grouted are called partially grouted walls, whereas 
the walls in which all the cells are grouted are called fully grouted walls. Irrespective of the 
extent of grouting (partial/full grouting), cross-sectional area of the entire wall section 
(considering the overall thickness t ) is termed gross cross-sectional area, gA . In partially 
grouted or hollow (ungrouted) walls, the term effective cross-sectional area, eA , denotes that 
area which includes the mortar-bedded area and the area of grouted cells (S304.1 Cl.10.3). 
Both the gross and effective wall area are shown for a wall strip of unit length (usually equal to 1 
metre). The difference between gA  and eA  is illustrated in Figure 2-4. In ungrouted masonry 
construction, the webs are generally not mortared, however in partially grouted reinforced 
masonry construction, the webs on each side of a grouted cell are sometimes mortared to 
ensure that grout does not flow into the adjacent cells not intended to be grouted. In any case, 
coarse grout will flow from the grouted core to fill the gap between the webs adjacent to the cell. 
In exterior walls the effective area is often significantly reduced by raked joints (this is not a 
concern with a standard concave tool joint). The designer should consider this effect in the 
calculation of the depth of the compression stress block.  
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Figure 2-4. Wall cross-sectional area: a) gross area; b) effective area. 

Shear walls without openings (doors and/or windows) are referred to as solid walls (Figure 
2-5a), while the walls with door and/or window openings are referred to as perforated walls 
(Figure 2-5b). Regions between the openings in a perforated wall are called piers (see piers A, 
B, and C in Figure 2-5b). Perforated shear walls in medium-rise masonry buildings with uniform 
distribution of vertically aligned openings over the wall height are called coupled walls. 

 
Figure 2-5. Masonry shear walls: a) solid, and b) perforated. 
Depending on the wall geometry, in particular the height/length ( ww lh ) aspect ratio, shear walls 
are classified into the following two categories: 
• Flexural shear walls with a  height/length aspect ratio of 1.0 or higher (Figure 2-6a), and 
• Squat shear walls with a height/length aspect ratio less than 1.0 shown in Figure 2-6b (see 

S304.1 Cl.4.6.6 and 10.10.1.3). 
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Figure 2-6. Shear wall classification based on the aspect ratio: a) flexural walls; b) squat walls. 

Depending on whether the walls resist the effects of gravity loads in addition to other loads, 
masonry walls can be classified as loadbearing or nonloadbearing walls. Loadbearing walls 
resist the effects of superimposed gravity loads (in addition to their selfweight) plus the effects of 
lateral loads. Nonloadbearing walls resist only the effects of their selfweight and possibly out-of-
plane wind and earthquake loads. Shear walls are loadbearing walls, irrespective of whether 
they carry gravity loads or not. 
 
In masonry design, selection of the locations where movement joints (also known as control 
joints) need to be provided is one of the initial and very important detailing decisions. Some 
movement joints are provided to facilitate design and construction while others prevent cracking 
at undesirable locations.  In any case, wall length is determined by the location of movement 
joints and so this detailing decision carries an implication for seismic design. For more details on 
movement joints refer to MIBC (2008). 
 
In general, shear walls are subjected to lateral loads at the floor and roof levels, as shown in 
Figure 2-7. (Note the inverse triangular distribution of lateral loads simulating earthquake 
effects.) Distribution of forces in a shear wall is similar to that of a vertical cantilevered beam 
fixed at the base. Figure 2-7 also shows internal reactive forces acting at the base of the wall. 
Note that the wall section at the base is subjected to the shear force, V , equal to the sum of the 
horizontal forces acting on the wall, the bending moment, M , due to all horizontal forces acting 
at the effective height eh , and the axial force, P , equal to the sum of the axial loads acting on 
the wall.  
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Figure 2-7. Load distribution in shear walls. 

2.3 Reinforced Masonry Shear Walls Under In-Plane Seismic Loading 

2.3.1 Behaviour and Failure Mechanisms 
The behaviour of a reinforced masonry shear wall subjected to the combined effect of horizontal 
shear force, axial load and bending moment depends on several factors. These include the level 
of axial compression stress, the amount of horizontal and vertical reinforcement, the wall aspect 
ratio, and the mechanical properties of the masonry and steel. The two main failure 
mechanisms for reinforced masonry shear walls are: 
• Flexural failure (including ductile flexural failure, lap splice slip, and flexure/out-of-plane 

stability), and 
• Shear failure (includes diagonal tension failure and sliding shear failure). 
 
Each of these failure mechanisms will be briefly described in this section. The focus is on the 
behaviour of walls subjected to cyclic lateral load simulating earthquake effects. Failure 
mechanisms for reinforced masonry walls are discussed in detail in FEMA 306 (1999). 
 
2.3.1.1 Flexural failure mechanisms 
Ductile flexural failure is found in reinforced walls and piers characterized by a height/length 
aspect ratio ( wlwh ) of 1.0 or higher and a moderate level of axial stress (less than mf ′1.0 ). 
This failure mode is characterized by tensile yielding of vertical reinforcement at one end of the 
wall and simultaneous cracking and possible spalling of masonry units and grout in the toe area 
(compression zone).  In some cases, buckling of compression reinforcement accompanies the 
cracking and spalling of masonry units. Experimental studies have shown that the vertical 
reinforcement is effective in resisting tensile stresses and that it yields shortly after the cracking 
in masonry takes place (Tomazevic, 1999). Damage is likely to include both horizontal flexural 
cracks and diagonal shear cracks of small size concentrated in the plastic hinge zone, as shown 
in Figure 2-8a. (The plastic hinge zone is the region of the member where inelastic deformations 
occur and it will be discussed in Section 2.5.4.2.) In general, this is the preferred failure mode 
for reinforced masonry shear walls, since the failure mechanism is ductile and effective in 
dissipating earthquake-induced energy once the yielding of vertical reinforcement takes place. 
 

∑= iPP  

∑= iVV  

ehVM ⋅=  
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Flexure/lap splice slip failure may take place when starter reinforcing bars projecting from the 
foundations have insufficient lap splice length, or when the rebar size is large relative to wall 
thickness (e.g. 25M bars used in 200 mm walls), resulting in bond degradation and eventual 
rocking of the wall at the foundation level. Initially, vertical cracks appear at the location of lap 
splices followed by the cracking and spalling at the toes of the wall (see Figure 2-8b). This mode 
of failure may be fairly ductile but it results in severe strength degradation and does not provide 
much energy dissipation. 
 
Flexure/out-of-plane instability takes place at high ductility levels (see Figure 2-8c). Ductility is a 
measure of the capacity of a structure to undergo deformation beyond yield level while 
maintaining most of its load-carrying capacity (ductile seismic response will be discussed in 
Section 2.5.3). When large tensile strains develop in the tensile zone of the wall, that zone can 
become unstable when the load direction reverses in the next cycle and the compression takes 
place. This type of failure has been observed in laboratory tests of well detailed highly ductile 
flexural walls (Paulay and Priestley, 1993), but it has not been observed in any of the post-
earthquake field surveys so far (FEMA 306, 1999). This failure mechanism can be prevented by 
ensuring stability of the wall compression zone through seismic design (see Section 2.5.4.4 for 
more details). 

 
Figure 2-8. Flexural failure mechanisms: a) ductile flexural failure; b) lap splice slip, and c) out-
of-plane instability (FEMA 306, 1999, reproduced by permission of the Federal Emergency 
Management Agency). 

 
2.3.1.2 Shear failure mechanisms 
Shear failure is common in masonry walls subjected to seismic loads and has been observed in 
many post-earthquake field surveys. Due to the dominant presence of diagonal cracks, this 
mode is also known as diagonal tension failure (see Figure 2-9a). It usually takes place in walls 
and piers characterized by low aspect ratio ( wlwh  less than 0.8). These walls are usually 
lightly reinforced with horizontal shear reinforcement and so the shear failure takes place before 
the wall reaches its full flexural capacity. 
 
This mode of failure is initiated when the principal tensile stresses due to combined horizontal 
seismic loads and vertical gravity loads exceed the masonry tensile stress.  When the amount 
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and anchorage of horizontal reinforcement are not adequate to transfer the tensile forces across 
the first set of diagonal cracks, the cracks continue to widen and result in a major X-shaped 
diagonal crack pair, thus leading to a relatively sudden and brittle failure.  Note that these 
“diagonal cracks” may develop either trough the blocks, or along the mortar joints.  
 
In modern masonry construction designed according to the code requirements, it is expected 
that adequate horizontal reinforcement is provided and that it is properly anchored within wall 
end zones. Horizontal reinforcement can be effective in resisting tensile forces in the cracked 
wall and in enhancing its load-carrying capacity. After the initial diagonal cracks have been 
formed, several uniformly distributed cracks develop and gradually spread in the wall. Failure 
occurs gradually as the strength of the masonry wall deteriorates under the cyclic loading. Voon 
(2007) refers to this mechanism as “ductile shear failure”. It should be noted that ductile 
behaviour is usually associated with the flexural failure mechanism, while shear failure 
mechanisms are usually characterized as brittle, however in very squat shear walls a ductile 
shear mechanism may be the only ductile alternative. 
 
Sliding shear failure may take place in masonry walls subjected to low gravity loads and rather 
high seismic shear forces. This condition can be found at the base level in low-rise buildings or 
at upper storeys in medium-rise buildings where accelerations induced by earthquake ground 
motion are high, but it can also take place at other locations. Sliding shear failure takes place 
when the shear force across a horizontal plane (usually base in reinforced masonry walls) 
exceeds the frictional resistance of masonry and a horizontal crack is formed at the base of the 
wall, as shown in Figure 2-9b. There may be very limited cracking or damage in the wall outside 
the sliding joint. The frictional mechanism at the sliding interface is activated after the clamping 
force develops in vertical reinforcement which yields in tension. Even though this mode of failure 
is often referred to as shear failure mode, it may also take place in the walls characterized by 
flexural behaviour. Pre-emptive sliding at the base limits the development of full flexural capacity 
in the wall. 

 
Figure 2-9. Shear failure mechanisms: a) diagonal tension1, and b) sliding shear. 

2.3.2 Shear/Diagonal Tension Resistance 
Shear resistance of reinforced masonry shear walls depends on several parameters, including 
the masonry compressive strength, grouting pattern, amount and distribution of horizontal 
reinforcement, magnitude of axial stress, and height/length aspect ratio. Over the last two 
decades, significant experimental research studies have been conducted in several countries, 
including the US, Japan, and New Zealand. Although the findings of these studies have 
confirmed the influence of the above parameters on the shear resistance of masonry walls, it 
appears to be difficult to quantify the influence of each individual parameter. This is because of 
                                                 
1 Source: FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency 
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the complexity of shear resistance mechanisms and a lack of effective theoretical models. As a 
result, shear resistance equations included in the Canadian masonry design standard, S304.1-
04, and those of other countries are based on statistical analyses of test data obtained from a 
variety of experimental studies. The diagonal tension shear resistance equation for reinforced 
masonry walls in CSA S304.1 (both 1994 and 2004 editions) is mainly based on the research by 
Anderson and Priestley (1992) and other research based on wall tests in the US and Japan. 
Refer to Section B.1 for a detailed research background on the subject. 
 
This section discusses the in-plane shear resistance provisions of CSA S304.1-04 for non-
seismic conditions; seismic requirements related to shear design are discussed in Section 
2.5.4.5. The design of walls built using running bond is discussed in this section, and walls built 
using the stack pattern are discussed in Section 2.6.3. 
 
2.3.2.1 Flexural shear walls 
 
10.10.1.1  

 
Flexural shear walls are characterized by height/length aspect ratio of 1.0 or higher (see Figure 
2-6a). Consider a reinforced masonry shear wall built in running bond which is subjected to the 
effect of factored shear force, fV , and the factored bending moment, fM . 
 
Factored in-plane shear resistance, rV , is determined as the sum of contributions from 
masonry, mV , and steel, sV , that is, 

smr VVV +=                                       ( 1)                                      

Masonry shear resistance, mV , is equal to:  

gdvwmmm PdbvV γφ )25.0( +=      ( 2) 

Wall dimensions ( wb and vd ): 
tbw =  overall wall thickness (mm) (referred to as “web width” in CSA S304.1); note that wb does 

not include flanges in the intersection walls 
vd  = effective wall depth (mm) 

wv ld 8.0≥  for walls with flexural reinforcement distributed along the length  
Wall cross-sectional dimensions ( wb and vd ) used for shear design calculations are illustrated in 
Figure 2-10. 

 
Figure 2-10. Wall cross-sectional dimensions used for in-plane shear design. 
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Effect of axial load ( dP ): 

dP  = axial compression load on the section under consideration, based on 0.9 times dead load, 
DLP , plus any axial load, N , arising from bending in coupling beams or piers (see Figure 2-11) 

DLd PP 9.0=  for solid walls 
NPP DLd ±= 9.0   for perforated/coupled walls 

Note that the net effect of tension and compression forces N±  on the total shear in the wall is 
equal to 0. 

 
Figure 2-11. Axial load in masonry walls: a) solid; b) perforated. 

 
Effect of grouting ( gγ ): 
 gγ = factor to account for partially grouted walls that are constructed of hollow or semi-solid 
units 
  0.1=gγ  for fully grouted masonry, solid concrete block masonry, or solid brick masonry 

g

e
g A

A
=γ  for partially grouted walls, but 5.0≤gγ  

where (see Figure 2-4) 
eA = effective cross-sectional area of the wall (mm2) 
gA = gross cross-sectional area of the wall (mm2) 

Masonry shear strength ( mv ): 
mv represents shear strength attributed to the masonry in running bond, which is determined 

according to the following equation: 
 
10.10.1.4  

m
vf

f
m f

dV
M

v ′−= )2(16.0  MPa units    ( 3) 

Shear span ratio (
vf

f

dV
M

):  

The following limits apply to the shear span ratio: 
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0.125.0 ≤≤
vf

f

dV
M

 

 
10.10.1.1  

 
Reinforcement shear resistance, sV , is equal to:  

s
dfAV v

yvss φ6.0=          (4) 

where 
vA = area of horizontal wall reinforcement (mm2) 

s  = vertical spacing of horizontal reinforcement (mm) 
 
As discussed in this section, the factored in-plane shear resistance, rV , is determined as the 
sum of contributions from masonry, mV , and reinforcement, sV , that is, 

smr VVV +=                                          ( 5)                                      

where  

gdvwmmm PdbvV γφ )25.0( +=        ( 6) 

and 

s
dfAV v

yvss φ6.0=                                 (7) 

CSA S304.1 prescribes the following upper limit for the factored in-plane shear resistance rV  for 
flexural walls: 

gvwmmrr dbfVV γφ ′=≤ 4.0max                  (8) 

 

Commentary 
 
Axial compression: 
The equation for the factored shear resistance of masonry, mV , in accordance with CSA S304.1  
[equation (2)], takes into account the positive influence of axial compression. The term dP25.0  
was established based on the statistical analyses of experimental test data carried out by 
Anderson and Priestley (1992). The 0.25 factor is consistent with that used for concrete in 
estimating the shear strength of columns. 
 
Consider a masonry shear wall subjected to the combined effect of axial and shear forces 
shown in Figure 2-12a. A two-dimensional state of stress develops in the wall: axial load, P , 
causes the axial compression stress,σ , while the shear force,V , causes the shear stress, v . 
The presence of axial compression stress delays the onset of cracking in the wall since it 
reduces the principal tensile stress due to the combined shear and compression. Shear cracks 
develop in the wall once the principal tensile stress reaches the masonry tensile strength (which 
is rather low). It should be noted, however, that the masonry shear resistance decreases in a 
wall section subjected to high axial compression stresses (see the diagram shown in Figure 
2-12b). This is based on experimental studies – for more details refer to Drysdale and Hamid 
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(2005). Note that shear walls in low-rise masonry buildings are subjected to low axial 
compression stresses, as shown in Figure 2-12b. 
 
Grouting pattern: 
CSA S304.1-04 takes into account the effect of grouting on the masonry shear resistance 
through the gγ factor, which assumes the value of 1.0 for fully grouted walls and 0.5 or less for 
partially grouted walls. Research evidence indicates that fully grouted reinforced masonry walls 
demonstrate higher ductility and strength under cyclic lateral loads than otherwise similar 
partially grouted specimens, as discussed in Section B.5. 
 

 
Figure 2-12. Effect of axial stress: a) a shear wall subjected to the combined shear and axial 
load; b) relationship between the shear stress at failure and the compression stress. 
Masonry shear strength ( mv ): 
Masonry shear strength defined by equation (3) depends on masonry tensile strength 
represented by the mf ′  term, as well as on the shear span ratio, vff dVM . Walls with shear 
span ratios of less than 1.0 behave like squat walls and are characterized by the highest 
masonry shear resistance, as illustrated in Figure 2-13.    

 
Figure 2-13. Effect of shear span ratio on the masonry shear strength. 
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For shear walls, the ratio ff VM  is equal to the effective height, eh , at which the resultant 
shear force fV acts, thereby causing the overturning moment eff hVM ×=  (see Figure 2-14). 
The term vd denotes the effective wall depth, which is equal to a fraction of the wall length, wl . 
Hence, vff dVM  is equal to shear span ratio, ve dh , which is related to the height-to-length 
aspect ratio. 

 

Figure 2-14. Shear span ratio 
v

e

d
h

. 

Reinforcement shear resistance ( sV ): 
Reinforcement shear resistance in reinforced masonry shear walls of running bond is mainly 
provided by horizontal steel bars and/or joint reinforcement. This model assumes that a 
hypothetical failure plane is at a 45° angle with regard to the horizontal axis, as shown in Figure 
2-15a. When diagonal cracking occurs, tension develops in the reinforcing steel crossing the 
crack. (Before the cracking takes place, the entire shear resistance is provided by the masonry.) 
 
The resistance provided by shear reinforcement is taken as the sum of tension forces 
developed in steel reinforcement (area vA ) which crosses the crack, as shown in Figure 2-15b. 
The number of reinforcing bars crossing the crack can be approximately taken equal to sdv . 
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Figure 2-15. Steel shear resistance in flexural walls: a) wall elevation; b) free-body diagram 
showing reinforcement crossing a diagonal crack. 
It appears that the steel reinforcement is less effective in resisting shear in masonry walls than 
in reinforced concrete walls. This may be due to a rather low masonry bond strength, so that not 
all bars crossing the assumed failure plane are fully stressed, plus the failure plane may be at 
an angle of less than 45° in this high moment region. Even in lightly reinforced masonry walls, 
horizontal reinforcement is less effective than in otherwise similar reinforced concrete walls. It is 
difficult to exactly estimate the contribution of steel reinforcement toward the shear resistance of 
masonry walls. Anderson and Priestley (1992) came to the conclusion that the contribution of 
steel shear reinforcement in a masonry wall is equal to 50% of the value expected in reinforced 
concrete walls. As a result, they proposed the following equation for the nominal steel shear 
resistance, sV , (note that 

s
φ is equal to 1): 

s
dfAV v

yvs 5.0=  

CSA S304.1-04 uses the same sV  equation (4), except that the coefficient 0.6 is used instead of 
0.5. Note also that, when 0.6 is multiplied by the 

s
φ value of 0.85, the resulting value is equal to 

5.051.085.06.0 ≈=× . 
 
The contribution of vertical reinforcement to shear resistance in masonry walls is not considered 
to be significant and it is not accounted for by the CSA S304.1-04 shear design equation. The 
analysis of experimental test data by Anderson and Priestley (1992) showed an absence of 
correlation between the wall shear resistance and the amount of vertical steel reinforcement.  
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2.3.2.2 Squat shear walls 
 
10.10.1.3  

 
Squat shear walls are characterized by a low height/length aspect ratio, ww lh , less than unity. 
The factored shear resistance of squat shear walls, rV , should be determined from the same 
equation as prescribed for flexural walls. To recognize the fact that shear resistance of masonry 
walls increases with a decrease in the height/length aspect ratio, CSA S304.1-04 prescribes an 
increased upper limit for the factored shear resistance as follows: 
 

)2(4.0max
w

w
gvwmmrr l

hdbfVV −′=≤ γφ         0.1≤
w

w

l
h

        (9) 

Cl.10.10.1.3 also prescribes that this maximum shear resistance can be used only when it is 
ensured that the shear input to the wall is distributed along the entire length and that a failure of 
a portion of the wall is prevented. Application is subsequently discussed under Commentary. 
 
Commentary 

 
The first term in equation (9) is equal to the maximum rV  limit for flexural shear walls (equation 
8). Equations (8) and (9) have the same value for a wall with the aspect ratio 0.1=ww lh . The 
term ( )ww lh−2 that accounts for the effect of wall aspect ratio has the minimum value of 1.0 for 
the aspect ratio of 1.0 and its value increases for squat walls – it is equal to 1.5 for the aspect 
ratio of 0.5.   
 
Cl.10.10.1.3 prescribes that an increased maximum rV  limit for squat shear walls applies only 
when the designer can ensure that the shear input to the wall can be distributed along the entire 
wall length. Earthquake-induced lateral load in a masonry building is transferred from the floor 
or roof diaphragm into shear walls. Floor and roof diaphragms in masonry buildings range from 
flexible timber diaphragms to rigid reinforced concrete slab systems. The type of load transfer at 
the wall-to-diaphragm connection depends on the diaphragm rigidity (see Section 1.5.9.4 for 
more details).  
 
CSA S304.1-04 Cl.10.15.1.3 requires that a bond beam be placed at the top of the wall, where 
the wall is connected to roof and floor assemblies. The bond beam therefore acts as a “transfer 
beam” that ensures a uniform shear transfer atop the wall, as shown in Figure 2-16a (this can 
be effectively achieved when the vertical reinforcement extends into the beam).  
 
Shear forces are transferred from the top to the base of the wall by means of a compression 
strut. It should be noted that a majority of experimental studies used specimens with a rigid 
transfer beam cast on top of the wall, as discussed by Anderson and Priestley (1992). Provision 
of the top transfer beam (or an alternative means to apply shear force uniformly along the wall 
length) is required for seismic design of moderately ductile squat shear walls (Cl.10.16.6.2). 
 
Where there is no transfer beam or bond beam at the top of the wall as shown in Figure 2-16b, 
a partial shear failure of the wall is anticipated. In such cases, the designer cannot take 
advantage of the increased maximum rV limit for squat shear walls; the limit pertaining to 
flexural shear walls should be used instead. 
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Figure 2-16. Shear failure mechanisms in squat shear walls: a) wall with the top transfer beam – 
a desirable failure mechanism; b) partial failure of a squat wall without the top beam. 

2.3.3 Sliding Shear Resistance 
Sliding shear failure may occur before walls fail in the flexural mode. Experimental studies 
(Shing et al., 1990) have shown that for squat walls sliding shear mechanism can control the 
failure and prevent the development of their full flexural capacity. This section discusses the 
sliding shear resistance provisions of CSA S304.1-04 for non-seismic conditions; seismic 
requirements related to sliding shear resistance will be discussed in Section 2.5.4.6. 
 
10.10.4  

 
Sliding shear failure can occur in both squat and flexural walls; however, it is much more 
common in squat walls having high shear resistance, rV . Sliding shear resistance is usually 
checked at the foundation-to-wall interface (construction joint), but may need to be checked at 
other sections as well (especially upper portions of multi-storey flexural walls). 
 
10.10.4.1  

 
Sliding shear resistance is generally taken as a frictional coefficient times the maximum 
compressive force at the sliding plane. In accordance with CSA S304.1-04, the factored in-plane 
sliding shear resistance, rV , shall be taken as: 

2PV mr μφ=       ( 10) 

where 
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μ   is the coefficient of friction 
      = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 
      = 0.7 for a masonry-to-smooth concrete or bare steel sliding plane 
      = other (where flashings reduce friction that resists sliding shear, a reduced coefficient of 
friction accounting for the flashing material properties should be used) 

2P  is the compressive force in the masonry acting normal to the sliding plane, normally taken as  
yd TPP +=2  

yssy fAT φ=  the factored tensile force at yield of the vertical reinforcement of area sA  (yield 

stress yf ) 

dP  = axial compressive load on the section under consideration, based on 0.9 times dead load, 
DLP , plus any axial load acting from bending in coupling beams 

 
Note that sA denotes the total area of vertical reinforcement crossing the sliding plane for 
seismic design of limited ductility shear walls and moderately ductile squat shear walls. 
However, sA denotes the area of reinforcement in the tension zone only for moderately ductile 
shear walls (Cl.10.16.5.3.2). Note that, when sliding takes place at the base of the wall, the 
vertical reinforcement is in the form of dowels. For more details refer to Section 2.5.4.6. 
 
Commentary 

 
When sliding begins, the sand grains in the mortar tend to ride up and over neighbouring 
particles causing the mortar to expand in the vertical direction. This creates tension (and 
ultimately yielding) in the vertical reinforcing bars at the interface (note that adequate anchorage 
of reinforcement on both sides of the sliding plane is necessary to develop the yield stress). As 
a result, a clamping force is formed between the support and the wall, normally taken equal to 

yss fAφ , as shown in Figure 2-17. The shear is then transferred through friction at the interface 
along the compression zone of the wall.  

 
Figure 2-17. In-plane sliding shear resistance in masonry shear walls: a) conventional 
construction and limited ductility walls; b) moderately ductile walls. 
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In accordance with CSA S304.1-04, the maximum compression force, 2P , is usually considered 
to be equal to the axial load plus the yield strength of the reinforcement/dowels crossing the 
sliding plane. Since the reinforcement yields in tension, shear resistance of the dowels cannot 
be included. This assumption is appropriate for walls that are not expected to demonstrate 
significant ductility. 
 
However, if a wall is subjected to ultimate moment capacity which causes yielding of the 
compression reinforcement, there is a tendency for this reinforcement to remain in compression 
to maintain the moment resistance, especially after the wall has been cycled into the yield range 
once or twice. Thus, when the compression steel remains in compression, and the normal force 
resisting sliding will be limited to the resultant force in the tension steel, yT , as shown in Figure 
2-17b. This assumption is included in seismic design requirements for moderately ductile walls 
(to be discussed in Section 2.5.4.6). 
  
Presence of flashing at the base of the wall usually reduces the sliding shear resistance when 
the frictional coefficient for the flashing-to-wall interface is low (Anderson and Priestley, 1992). 
 

2.3.4 In-Plane Flexural Resistance Due to Combined Axial Load and 
Bending 

Seismic shear forces acting at floor and roof levels cause overturning bending moments in a 
shear wall, which reach the maximum at the base level. The theory behind the design of 
masonry wall sections subjected to effects of flexure and axial load is well established and the 
design methodology is essentially the same as that related to reinforced concrete walls.  
Note that CSA S304.1-04 Cl.10.2.8 prescribes the use of reduced effective depth, d , for flexural 
design of squat shear walls, that is: 
 

hld w 7.067.0 ≤=  
 
This provision was introduced for the first time in the 2004 edition of CSA S304.1, in order to 
account for the deep beam-like flexural response of squat shear walls. This provision can be 
rationalized for non-seismic design, but it should not be used in seismic conditions as all the 
tension steel is expected to yield, as shown in Figure 2-17b. The wall design according to this 
provision could give the flexural capacity of the wall larger than permitted according to the 
capacity design approach.   
 
For a detailed flexural design procedure the reader is referred to Appendix C (Section C.1.1). 

2.4 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading 

2.4.1 Background 
Seismic shaking in a direction normal to the wall causes out-of-plane wall forces that result in 
bending and shear stresses and may, ultimately, cause out-of-plane collapse of the walls. Note 
that out-of-plane seismic response of masonry walls is more pronounced at higher floor levels 
(due to larger accelerations) than in the lower portions of the buildings, as shown in Figure 2-18. 
When walls are inadequately connected to top and bottom supports provided by floor and/or 
roof diaphragms, out-of-plane failure is very likely, and may also lead to a diaphragm failure. For 
more details on wall-to-diaphragm connections, the reader is referred to Section 2.6.7. The 
design of masonry walls for shear and flexure due to the effects of out-of plane seismic loads is 
discussed in this section.  
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Figure 2-18. Out-of-plane vibration of walls (Tomazevic, 1999, reproduced by permission of the 
Imperial College Press). 

2.4.2 Out-of-Plane Shear Resistance 
 
10.10.2  

 
The factored out-of-plane shear resistance, rV , shall be taken as:  

)25.0( dmmr PdbvV +⋅⋅= φ             ( 11) 

where 

mm fv ′= 16.0  MPa units  (Cl.10.10.1.4)   

with the following upper limit, 

)( dbfVV mmrr ⋅′=≤ φ4.0max                   ( 12)       

where  
d  is the distance from extreme compression fibre to the centroid of tension reinforcement, and 
b is the cumulative width of cells and webs within a length not greater than four times the actual 
wall thickness )4( t× around each vertical bar (for running bond), as shown in Figure 2-19a. 
Note that, for the purpose of this provision, the webs are the cross-walls connecting the face 
shells of a hollow or semi-solid concrete masonry unit or a hollow clay block (S304.1 
Cl.10.10.2). 
 
Commentary 

 
Note that the equation for masonry shear resistance, mV , is the same for shear walls subjected 
to in-plane and out-of-plane seismic loading. There is no sV  contribution because the horizontal 
reinforcement is provided only in the longitudinal direction and it does not contribute to the out-
of-plane shear resistance.  
 
In partially grouted walls, the out-of-plane shear design should be performed using a T-shaped 
wall section, where b  denotes the web width (see Figure 2-19a). 
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Figure 2-19. Effective width, b , for out-of-plane seismic effects: a) shear, and b) flexure. 

2.4.3 Out-of-Plane Sliding Shear Resistance 
 
10.10.4.2  

 
The factored out-of-plane sliding shear resistance, rV , is calculated from the following equation 
using the shear friction concept: 

CV mr μφ=       ( 13) 

where 
μ   = the coefficient of friction (same as for the in-plane sliding shear resistance) 
C   = compressive force in the masonry acting normal to the sliding plane, taken as  

yd TPC +=  

yT = the factored tensile force at yield of the vertical reinforcement detailed to develop yield 
strength on both sides of the sliding plane. In determining the out-of-plane sliding shear 
resistance, the entire vertical reinforcement should be taken into account in determining the 
factored tensile yield force, yT , irrespective of the wall class and the associated ductility level.  
 
For more details refer to the discussion on the sliding shear resistance of shear walls under in-
plane seismic loading (Section 2.3.3).  

2.4.4 Out-of-Plane Section Resistance Due to Combined Axial Load and 
Bending 

Masonry walls subjected to out-of-plane seismic loading need to be designed for combined 
effects of bending and axial gravity loads.  For flexural design purposes, wall strips of 
predefined width b  (S304.1-04 Cl.10.6.1) are treated as beams spanning between the lateral 
supports. When the walls span in the vertical direction, floor and/or roof diaphragms provide 
lateral supports. Walls can also span horizontally, in which case lateral supports need be 
provided by cross walls or pilasters. For detailed design procedures, the reader is referred to 
Section C.1.2 in Appendix C. It should be noted that, for the purpose of out-of-plane seismic 
design, the permitted maximum compressive strain in the masonry is equal to 0.003 (note that 
this is an arbitrary value set for the purpose of the analysis). CSA S304.1 does not require 
ductility check, because the mechanism of failure is different for the in-plane and out-of-plane 
seismic resistance and the wall is not expected to undergo significant rotations at the locations 
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of maximum bending moments. Very large curvatures would be required to cause compression 
failure of the masonry, corresponding to a high strain gradient over a very small length (equal to 
the wall thickness). Consequently, there is no need to use the reduced compressive strain limit 
of 0.0025 for this load condition.  
 
10.6.1  

 
For the case of out-of-plane bending, the effective compression zone width,b , used with each 
vertical bar in the design of walls with vertical reinforcement shall be taken as the lesser of (see 
Figure 2-19 b) 

a) spacing between vertical bars s , or 
b) four times the actual wall thickness )4( t×  

Note that the discussion on out-of-plane stability issues is outside the scope of this document 
and it is covered elsewhere (see Drysdale and Hamid, 2006). 
 

2.5 Seismic Design Considerations for Reinforced Masonry Shear 
Walls 

2.5.1 Background 
The focus of this section is mainly on the seismic design and detailing requirements for different 
classes of ductile reinforced masonry shear walls. General seismic design requirements for 
ductile shear walls are stated in Cl. 10.16. In the 1994 edition of this standard (CSA S304.1-94), 
seismic design requirements for ductile reinforced shear walls were included in Cl. 5.2.2, 6.3.3, 
and Appendix A. Changes in seismic design provisions between the two editions of CSA S304.1 
will also be discussed in this section. Shear walls with conventional construction do not require 
seismic detailing since these walls are not designed for ductile performance. 
  
It should be noted that NBCC 2005 also identifies moment-resisting frames with conventional 
construction as a possible masonry SFRS, however seismic design of moment-resisting 
masonry frames is beyond the scope of this document. 

2.5.2 Capacity Design Approach 
 
10.16.3.3  

 
According to the design approach stated in Cl.10.16.3.3, a ductile reinforced masonry shear wall 
must be designed to resist a shear force not less than the shear that is present when the wall 
develops a plastic hinge mechanism. 
 
Every structure or a structural component has several possible modes of failure, some of which 
are ductile while others are brittle. Satisfactory seismic response of structures requires that 
brittle failure modes be avoided. This is accomplished through the application of a capacity 
design approach, which has been used for seismic design of reinforced concrete structures 
since the 1970’s (Park and Paulay, 1975). The objective of the capacity design approach is to 
force the structure to yield in a ductile manner without failing at the expected displacements 
(including other components of the structure, such as columns). At the same time, the rest of 
the structure needs to remain strong enough, say in shear, or flexible enough not to fail under 
gravity loads at these displacements. 
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This concept can be explained using an example of a chain shown in Figure 2-20, which is 
composed of brittle and ductile links. When subjected to force, F , and if the brittle link is 
weakest, the chain will fail suddenly without significant deformation (see Figure 2-20a). If a 
ductile link is the weakest, the chain will show significant deformation before failure and may not 
fail or break if the deformation is not too great (see Figure 2-20b). The structural designer is 
responsible for ensuring that the structure experiences a desirable ductile response when 
exposed to the design earthquake, that is, an earthquake of expected intensity for the specific 
building site location. 

 
Figure 2-20. Chain analogy for capacity design: a) brittle failure; b) ductile failure.  

The capacity design approach can be applied to seismic design of reinforced masonry shear 
walls. The key failure modes in reinforced masonry walls include flexural failure (which is ductile 
and therefore desirable in seismic conditions) and shear failure (which is brittle and should be 
avoided in most cases). For a detailed discussion of masonry failure modes refer to Section 
2.3.1.  
 
Note that the following three resistance “levels” are used in seismic design of masonry shear 
walls: 

• Factored resistances rM  and rV , determined using appropriate material resistance 
factors, that is, 

m
φ = 0.6 and 

s
φ = 0.85, and specified material strength; 

• Nominal resistances nM  and nV , determined without using material resistance factors, 
that is, 

m
φ = 1.0 and 

s
φ = 1.0, and specified material strength; 

• Probable resistances pM  and pV , determined without using material resistance factors; 
stress in the tension reinforcing is taken equal to yf25.1 , and the masonry compressive 
strength is equal to mf ′ . 

In relation to the probable resistance parameters discussed above, it needs to be clarified that 
the flexural resistance of a masonry shear wall is usually governed by the yield strength of the 
reinforcement, yf , while the masonry compressive strength, mf ′ , has a much smaller influence. 
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Thus the probable resistances are determined by taking the masonry strength equal to mf ′ and 
the real yield strength of the reinforcement equal to 1.25 the specified strength, that is, yf25.1 .  
 
Consider a masonry shear wall subjected to an increasing lateral seismic force, V , and the 
corresponding deflection shown in Figure 2-21a. The wall has been designed for a “design 
shear force” shown by a horizontal line. However, the actual wall capacity typically exceeds the 
design force, and the wall is expected to deform either in a flexural or shear mode at higher load 
levels. Conceptual force-deflection curves corresponding to shear and flexural failure 
mechanisms are also shown on the figure. These curves are significantly different: a shear 
failure mechanism is characterized by brittle failure at a small deflection, while a ductile flexural 
mechanism is characterized by significant deflections before failure takes place. 
 
The earthquake will cause significant lateral deflections, which are more or less independent of 
the strength. If the governing failure mode corresponding to the lowest capacity occurs at a 
smaller deflection, the wall will fail in that mode. For example, the wall shown in Figure 2-21a is 
expected to experience shear failure since the maximum force corresponding to shear failure is 
lower than the force corresponding to flexural failure. 
 
Consider a wall which is designed to fail in shear when the shear resistance, AV , and 
corresponding displacement AΔ  have been reached, and to fail in flexure when the shear force, 

BV , and corresponding displacement BΔ  have been reached (see Figure 2-21b). If the wall is 
weaker in flexure than in shear, that is, AB VV < , the shear failure will never take place. In this 
case, a ductile link corresponding to the flexural failure is the weakest and governs the failure 
mode. Such a wall will experience significant deflections before the failure (note that AB Δ≥Δ ); 
this is a desirable seismic performance. 
 
However, suppose that the wall flexural resistance is higher (this is also known as “flexural 
overstrength”) and now corresponds to moments associated with the shear force, CV , as shown 
in Figure 2-21c. Now the wall will fail in shear at the force, AV , and will never reach the force CV . 
This is not a desirable wall design, since shear failure is brittle and sudden and should be 
avoided. Thus, it is important that the member shear strength be greater than its flexural 
overstrength, as we will discuss later in this section. 
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Figure 2-21. Shear force-deflection curves for flexural and shear failure mechanisms:  
a) a possible design scenario; b) flexural mechanism governs; c) shear mechanism governs 
(adapted from Nathan). 
 
The last example demonstrates that making the wall “stronger” can have unintended adverse 
effects, and can change the failure mode from ductile flexural mode (good) to brittle shear mode 
(bad). Thus a designer should not indiscriminately increase member moment capacity without 
also increasing its shear capacity. According to the capacity design approach, ductile flexural 
failure will be assured when the shear force corresponding to the upper bound of moment 
resistance at the critical wall section is less than the shear force corresponding to the lower 
bound shear resistance of the shear failure mechanism. This will be explained with an example 
of the shear wall shown in Figure 2-22.  
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When the moment at the base is equal to the nominal moment resistance, nM (this is considered 
to be an upper bound for the moment resistance value and it is explained below), the 
corresponding shear force acting at the effective height is equal to  

ennb hMV =  
or 

)(* ffnnb MVMV =  
 
as shown in Figure 2-22a. nbV  denotes the resultant shear force corresponding to the 
development of nominal moment resistance, nM , at the base of the wall. To ensure the 
development of a ductile flexural failure mode, nbV  must be less than the corresponding factored 
shear resistance, rV , as shown in Figure 2-22b. 

 
Figure 2-22. Comparison of shear forces at the base of the wall: a) shear force corresponding to 
the nominal flexural resistance, and b) shear force equal to the shear resistance. 

The key capacity design concepts as applied to the design of masonry structures can be 
summarized as follows: 

1. For the design of reinforced masonry walls, the factored shear resistance, rV , should be 
greater than the shear due to effects of factored loads, but not less than the shear 
corresponding to the development of nominal moment capacity, nM , of the wall system at 
its plastic hinge location (see Section 2.5.4.2 for detailed discussion on plastic hinges). The 
nominal moment capacity need not be taken larger than the load calculated with design load 
combinations that include earthquake effects calculated using od RR  equal to 1.0. 
 
2. It is also important that other structural members which are not a part of the SFRS are 
able to undergo the same lateral displacements as the SFRS members without experiencing 
brittle failure. 

 
Although CSA S304.1-04 Cl. 10.16.3.3 requires that the capacity design approach should be 
applied to ductile masonry walls, additionally, it is recommended that this approach be applied 
to all reinforced masonry shear walls. As a minimum, factored shear resistance, rV , should be 
not less than the shear corresponding to the factored moment resistance, rM , of the wall 
system at its plastic hinge location.  
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2.5.3 Ductile Seismic Response  
A prime consideration in the seismic design is the need to have a structure capable of 
deforming in a ductile manner when subjected to several cycles of lateral loading well into the 
inelastic range. Ductility is a measure of the capacity of a structure or a member to undergo 
deformations beyond yield level while maintaining most of its load-carrying capacity. Ductile 
structural members are able to absorb and dissipate earthquake energy by inelastic (plastic) 
deformations, which are usually associated with permanent structural damage.  
 
The concept of ductility and ductile response was introduced in Section 1.4.3. Key terms related 
to ductile seismic response of masonry shear walls, including ductility ratio, curvature, plastic 
hinge, etc. are discussed in detail in Section B.2. It is very important for a structural designer to 
have a good understanding of these concepts before proceeding with the seismic design and 
detailing of ductile masonry walls in accordance with CSA S304.1-04. 

2.5.4 CSA S304.1-04 Seismic Design Requirements 
2.5.4.1 Classes of reinforced masonry shear walls 
Table 4.1.8.9 of NBCC 2005 identifies the following five classes of masonry walls based on the 
expected seismic performance quantified by means of the ductility-related force modification 
factor, dR  (see also Section 1.5.5): 

1. Unreinforced masonry and other masonry structural systems not listed below ( 0.1=dR ) 
2. Shear walls with conventional construction ( 5.1=dR ) 
3. Limited ductility shear walls ( 5.1=dR ) 
4. Moderately ductile shear walls ( 0.2=dR ) 
5. Moderately ductile squat shear walls ( 0.2=dR ) (note that this wall class was not 

identified in NBCC 2005 Table 4.1.8.9, however specific design and detailing provisions 
are stipulated by S304.1-04 Cl.10.16.6). 

The last three classes are referred to as “ductile shear walls”. Although shear walls with 
conventional construction and shear walls of limited ductility have the same 5.1=dR  value, the 
difference between these walls is that the limited ductility walls have additional detailing 
requirements, and so can be used in taller structures. The same value of overstrength 
factor, oR , of 1.5 is prescribed for all the above listed wall classes except for unreinforced 
masonry where oR  is equal to 1.0.  
 
CSA S304.1-04 Clause 4.6 outlines the classes of reinforced masonry walls, while the seismic 
design provisions are prescribed in Clause 10. 
 
New seismic design provisions for reinforced masonry walls in NBCC 2005 and CSA S304.1-04 
are summarized below (note that new terms were introduced to provide consistency with the 
concrete design standard, CSA A23.3-04): 

1. New term “shear walls with conventional construction” (previously “reinforced masonry”)   
2. New term “limited ductility shear walls” (S304.1-04, Cl.10.16.4) 
3. New term “moderately ductile shear walls” (S304.1-04, Cl.10.16.5); note that S304.1-94 

used term “masonry with nominal ductility”   
4. New requirements for “moderately ductile squat shear walls” (S304.1-04, Cl. 10.16.6) 
5. Height-to-thickness ratio restrictions introduced for ductile shear walls: limited ductility 

shear walls, moderately ductile shear walls, and moderately ductile squat shear walls. 
 
Seismic design and detailing requirements for various masonry Seismic Force Resisting 
Systems (SFRSs) are summarized in Table 2-1. In accordance with NBCC 2005 
Sent.4.1.8.1.1), seismic design must be performed when 12.0)2.0( >S . Also, it is permissible to 
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use unreinforced masonry constructions at sites where ( ) 35.02.0 <aaE SFI (S304.1-04, Cl.4.5.1). 
Minimum CSA S304.1-04 seismic reinforcement requirements for masonry walls are 
summarized in Table 2-2. 
 
Note that squat shear walls are most common in low-rise masonry construction, ranging from 
warehouses, school buildings, and fire halls. Some of these buildings, for example fire halls, are 
considered to be post-disaster facilities according to NBCC 2005. A new restriction has been 
introduced in NBCC 2005 (Sent. 4.1.8.10.2), by which post-disaster facilities require an SFRS 
with dR  of 2.0 or higher. An implication of this provision is that squat shear walls in post-disaster 
buildings be designed following the CSA S304.1-04 provisions for “moderately ductile squat 
shear walls”. 
 

Table 2-1. Summary of Seismic Design and Detailing Requirements for Masonry SFRSs in CSA 
S304.1-04 

Type of SFRS Common 
applications dR  oR  Expected 

seismic 
performance  

Summary of CSA 
S304.1-04 design 
requirements 

CSA S304.1 
reinforcing and 
detailing 
requirements 

Unreinforced 
masonry 

Low-rise 
buildings 
located in low 
seismicity 
regions 

1.0 1.0 Potential to 
form brittle 
failure modes 

 Can be used only 
at sites where  

( ) 35.02.0 <aSaFEI  
 Walls must have 

factored shear and 
flexural resistances 
greater than or equal to 
corresponding factored 
loads 

Reinforcement not 
required 

Shear walls 
with 

conventional 
construction 

Used for most 
building 
applications 

1.5 1.5 Design to 
avoid soft 
stories or 
brittle failure 
modes 

Walls must have 
factored shear and 
flexural resistances 
greater than or equal to 
corresponding factored 
loads 

Minimum seismic 
reinf. requirements 
(Cl.10.15.2.2) 
apply if  

( ) 35.02.0 ≥aSaFEI  
otherwise follow 
minimum non-seismic 
reinf. requirements 
(Cl.10.15.1.1) 

Limited 
ductility shear 

walls 

Used only 
when required 
to comply with 
the NBCC 
2005 height 
restrictions 
(Table 4.1.8.9) 

1.5 1.5 Limited 
dissipation of 
earthquake 
energy by 
flexural 
yielding in 
specified 
locations; 
shear failure to 
be avoided 

 Can be used for 
shear wall design when 

0.1≥wlwh  
 Walls to be 

designed using factored 
moment resistance 
such that plastic hinges 
develop without shear 
failure and local 
buckling 
 Sliding shear failure 

at joints to be avoided 
 Expected ductility 

level to be verified 
 Wall height-to-

thickness ratio 
restrictions prescribed 

Minimum seismic 
reinforcement 
requirements 
(Cl.10.15.2.2) must 
be satisfied, as well 
as seismic detailing 
requirements for 
limited ductility walls 
(Cl.10.16.4) 
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Type of SFRS Common 

applications dR
 

oR  Expected 
seismic 
Performance 

Summary of CSA 
S304.1-04 design 
requirements 

CSA S304.1 
reinforcing and 
detailing 
requirements 

Moderately 
ductile shear 

walls 

Used for post-
disaster or 
high risk 
buildings or 
where 

0.2=dR  is 
desired 

2.0 1.5 Dissipation of 
earthquake 
energy by 
ductile flexural 
yielding in 
specified 
locations; 
shear failure to 
be avoided 

 Walls to be 
designed using factored 
moment resistance 
such that plastic hinges 
develop without shear 
failure and local 
buckling 
50% reduction in 
masonry resistance for 

rV  calculations 
 Sliding shear failure 

at joints to be avoided 
(additional requirements 
compared to limited 
ductility walls) 
 Expected ductility 

level to be verified 
 Wall height-to-

thickness ratio 
restrictions more 
stringent than limited 
ductility walls 

Minimum seismic 
reinforcement 
requirements 
(Cl.10.15.2.2) must 
be satisfied, as well 
as seismic detailing 
requirements for 
moderately ductile 
walls (Cl.10.16.5) 
 
 

Moderately 
ductile squat 
shear walls 

Used for post-
disaster 
buildings or 
where 

0.2=dR  is 
desired 

2.0 1.5 Top transfer 
beam to 
ensure uniform 
shear transfer 
along the wall 
length; some 
flexural 
yielding 
expected 

 Walls to be 
designed using factored 
moment resistance; 
shear failure and local 
buckling to be avoided 
 Sliding shear failure 

at joints to be avoided 
 Wall height-to-

thickness ratio 
restrictions less 
stringent than limited 
ductility walls 

Minimum seismic 
reinforcement 
requirements 
(Cl.10.15.2.2) must 
be satisfied, as well 
as special 
reinforcement 
requirements for 
moderately ductile 
squat shear walls 
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2.5.4.2 Plastic hinge region 
 
10.16.4.1.1 
10.16.5.2.1 

 

 
The required extent of the plastic hinge region above the base of a shear wall in the vertical 
direction (also referred to as plastic hinge length, pl ) prescribed by CSA S304.1-04 is as follows 
(see Figure 2-23): 

1. Limited ductility shear walls (Cl.10.16.4.1.1):  
pl = greater of 2/wl or 6/wh  

2. Moderately ductile shear walls (Cl.10.16.5.2.1): 
pl = greater of wl or 6/wh  

 
Figure 2-23. Plastic hinge length pl . 

 
10.16.4.1.3  

 
Masonry within the plastic hinge region must be fully grouted. This provision applies to limited 
ductility and moderately ductile shear walls in running bond. Note that this provision applies to 
moderately ductile shear walls by way of Cl.10.16.5.1. Refer to Section 2.6.3.5 for the 
discussion on plastic hinge requirements related to stack pattern walls. 
 
Commentary 

 
According to CSA S304.1-04 Cl. 10.16.2, the plastic hinge is the region of the member where 
inelastic flexural curvatures occur. In reinforced masonry shear walls which are continuous 
along the building height, this region is located at the base of the walls, as shown in Figure 2-23. 
Plastic hinge length can be defined as a fraction of the wall height. In taller flexural walls (three 
stories or higher), this region can be up to one storey high (usually located at the first storey 
level). In low-rise buildings, this length is smaller, but it does exist even in squat shear walls 
when they are subjected to combined effects of axial load and bending and show flexure-
dominated response. 
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The ability of a plastic hinge to sustain these plastic deformations will determine whether a 
structural member is capable of performing at a certain ductility level. The extent of the plastic 
hinge region is usually termed the plastic hinge length, pl , although in the case of vertical 
elements such as walls and columns, it would be more appropriate to refer to it as the plastic 
hinge height. The pl  value depends on the moment gradient, wall height, wall length, and the 
level of axial load. 
 
Note that the CSA S304.1-prescribed plastic hinge length values are intended for detailing 
purposes, and that smaller pl  values should be used for curvature and deflection calculations.  
There are a few different equations for estimating the value of pl  to be used in curvature 
calculations, and the recommended on is that proposed by Corley (1966): 

dhdl wp 032.05.0 +=  

where wld 8.0=  for rectangular walls 
 
CSA S304.1-04 provisions for plastic hinge length, to be used in detailing, are in line with the 
research findings and codes in other countries. For example, in the New Zealand Masonry 
Standard NZS 4230:2004 (SANZ, 2004), Cl. 7.4.3 prescribes the plastic hinge length to be the 
greater of wl , 6/wh , or 600 mm. Findings of a research study by Shing et al.(1990a) indicated 
that the plastic hinge length is in the order of 6/wh . 
 
CSA S304.1-04 plastic hinge length requirements for moderately ductile shear walls (Clause 
10.16.5.2.1) are the same as the corresponding CSA S304.1-94 requirements for shear walls 
with nominal ductility (Clause A5.1). 
 
Design and detailing of plastic hinge regions in ductile masonry shear walls is critical  
and will be discussed in the following sections. These regions are usually heavily reinforced, 
and it is critical to ensure proper anchorage of reinforcement. Open-end H-blocks may simplify 
construction in these regions. 
 
Plastic hinge regions of ductile masonry walls must be fully grouted. Observations from past 
damaging earthquakes (e.g. 1994 Northridge, California earthquake, Magnitude 6.7) that 
caused damage to masonry buildings, have shown that the quality of grout placement, and the 
bond of the grout to the masonry units and reinforcement have a strong influence on the 
performance of reinforced masonry structures. Some reinforced block walls with large voids 
around reinforcing bars suffered severe damage (TMS, 1994). CSA S304.1-04 grouting 
requirements for ductile masonry walls are the same as S304.1-94 requirements related to 
shear walls with nominal ductility (Clause A5.3). Grout in accordance with CSA A179-04, 
“Mortar and Grout for Unit Masonry”, offers sufficient strength. 
 
2.5.4.3 Ductility check 
 
10.16.4.1.4 
10.16.5.2.3 

 

 
CSA S304.1-04 prescribes the following two ductility requirements for reinforced masonry shear 
walls: 

1. the neutral axis depth/wall length ratio, wlc , should be within the following limits: 
a) For limited ductility shear walls (Cl.10.16.4.1.4):  

2.0<wlc  when 6<ww lh   
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b) For moderately ductile shear walls (Cl.10.16.5.2.3): 
2.0<wlc  when 4<ww lh  
15.0<wlc  when 84 <≤ ww lh  

      2.   if these requirements are not satisfied, the maximum compressive strain in the masonry 
in the plastic hinge region must be shown to not exceed 0.0025. 
 
Commentary 

 
For the purpose of the ductility check, the strain level in the masonry compression zone is 
limited to 0.0025. The intent is to limit deformations and the related damage in the highly 
stressed zone of a wall section.  
 
Whether a structural member is capable of sustaining inelastic deformations consistent with an 
expected displacement ductility ratio, Δμ , will depend on the ability of its plastic hinge region to 
sustain corresponding plastic rotations. Plastic hinge rotations will depend on available 
curvature ductility, ϕμ , and the expected plastic hinge length. Refer to Section B.2 for a detailed 
explanation of curvature ductility and the relationship between curvature ductility and  
displacement ductility ratio. 
 
It is important for a structural designer to have a sense for curvature ductility and its effect upon 
the ductile seismic performance. For example, a wall section shown Figure 2-24a is lightly 
reinforced and has a small axial compression (or tension) load. A small flexural compression 
zone will be required due to the light reinforcement, thus the neutral axis depth, 1c , will be small 
relative to the wall length (note the corresponding strain distribution - line 1 shown in Figure 
2-24b). As a result, curvature, which is the slope of line 1, will be large and usually adequate to 
accommodate the plastic hinge rotations imposed on a structure during a major earthquake. 
However, when the wall is heavily reinforced and has significant axial compression load, a large 
flexural compression zone will be required, thus resulting in a relatively large neutral axis 
depth, 2c , as shown in Figure 2-24b (note the corresponding strain distribution - line 2 on the 
same diagram). For the same maximum strain in the concrete, the curvature (given by the slope 
of line 2) is much less than for lightly loaded wall. Thus the curvature ductility of the lightly 
loaded wall is much greater than the heavily loaded wall. 
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Figure 2-24. Strain distribution in a reinforced masonry wall at the ultimate: a) wall section;  
b) strain distribution. 
 
Therefore, the ratio of neutral axis depth, c , relative to the wall length, wl , that is, wlc ratio, is an 
indicator of the curvature ductility in a structural component. The wlc limits for ductile shear 
walls prescribed by CSA S304.1-04 cover most cases and save designers from performing 
time-consuming ductility calculations. 
 
Where the wlc  limit is not satisfied for a specific design, the designer may undertake detailed 
calculations to confirm that the ductility requirements have been met. Refer to Section B.2 for 
further guidance on detailed calculations related to the ductility requirements, and also Example 
5a in Chapter 4 for a design application. In order to meet the S304.1-04 ductility requirements, 
the designer may want to consider an increase in the masonry strength or the wall thickness, or 
use flanged shear walls. Flanged wall sections will be discussed in Section 2.6.6.  
 
CSA S304.1-94 ductility check 
 
CSA S304.1-94 Clause A7 required a ductility check for shear walls with nominal ductility. The 
maximum masonry compression strain of 0.0025 was the same as the 2004 standard. The 
neutral axis depth requirement stated that 

2.0<wlc  when 3<ww lh  
It can be concluded that no significant changes were made to the ductility check in CSA S304.1-
04. The same wlc limit of 0.2 applies to both moderately ductile and limited ductility walls for 

ww lh ratio values in the order of 4.0 or less, which is characteristic of low- to medium-rise 
masonry buildings.  
 
As a reference, a discussion on the ductility check provisions of international standards is 
included in Section B.3.  
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2.5.4.4 Wall height-to-thickness ratio restrictions 
 
10.16.4.1.2 
10.16.5.2.2 
10.16.6.3 

 

 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limits for the compression 
zone in plastic hinge regions of ductile shear walls: 
1. Conventional construction  

Slenderness limits and design procedures for masonry walls need to be followed 
(Cl.10.7.3.3) - it is possible to design walls with tkh  ratio greater than 30 

2. Limited ductility shear walls (Cl.10.16.4.1.2):  
18)10( <+th  

3. Moderately ductile shear walls (Cl.10.16.5.2.2): 
14)10( <+th  

4. Moderately ductile squat shear walls (Cl.10.16.6.3): 
20)10( <+th (unless it can be shown for lightly loaded walls that a more slender wall is 

satisfactory for out-of-plane stability). 
Note that h  denotes the unsupported wall height (between the adjacent horizontal supports), 
kh denotes the effective buckling length, and t denotes the actual wall thickness (e.g. 140 mm, 
190 mm, 240 mm, etc.). 
 
Commentary 

 
The purpose of this provision is to prevent instability due to out-of-plane buckling of shear walls 
when subjected to combined effects of in-plane axial loads and bending moments, as shown in 
Figure 2-25. This phenomenon is associated not only with compression in the masonry, but also 
with the compression stresses in the flexural reinforcement that has previously experienced 
large inelastic tensile strains. According to Paulay (1986), this instability occurs when the neutral 
axis depth, c , is large, as illustrated in Figure 2-24 (see depth 2c ), and the plastic hinge region 
at the base of the wall (length pl ) is large (one storey high or more); this is characteristic of 
taller reinforced masonry shear walls. 

 
Figure 2-25. Out-of-plane instability in a shear wall subjected to in-plane loads (adapted from 
Paulay and Priestley, 1993, reproduced by permission of the American Concrete Institute). 
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A rational explanation for this phenomenon was first presented by Paulay (1986). When the wall 
experiences large curvature ductility, large tensile strains will be imposed on vertical bars placed 
at the extreme tension edge of the section. At this stage, uniformly spaced horizontal cracks of 
considerable width develop over the plastic hinge length (see Figure 2-26a). During the 
subsequent unloading, the tensile stresses in these bars reduce to zero. Change in the lateral 
load direction will eventually cause an increase in the compression stresses in these bars. 
Unless the cracks close, the entire internal compression within the section must be resisted by 
the vertical reinforcement, as shown in Figure 2-26b and d. At that stage, out-of-plane 
displacements may increase rapidly as the stiffness of the vertical steel to lateral deformation is 
small, thereby causing the out-of-plane instability. However, if the cracks close before the entire 
portion of the wall section previously subjected to tension becomes subjected to compression, 
masonry compressive stresses will develop in the section, the stiffness to lateral deformation is 
increased and the instability may be avoided (see Figure 2-26c and e). Refer to Section B.4 for 
a detailed discussion of the wall height-to-thickness ratio restrictions, and the analysis 
procedure developed by Paulay and Priestley (1992, 1993). 

 
Figure 2-26. Deformations and strain patterns in a buckled zone of a wall section (Paulay,1986, 
reproduced by permission of the Earthquake Engineering Research Institute). 

Implications for seismic design 
This provision was first introduced in the 1994 edition of CSA S304.1 (Cl.A5.2 related to 
“nominally” ductile walls) and it is identical to the current CSA S304.1-04 provision for 
“moderately” ductile walls. 
 
The height-to-thickness restrictions have significant effect on the required wall thickness in the 
plastic hinge region of a shear wall (usually located at the base of the wall). According to CSA 
S304.1-04, the clear (unsupported) height ( h ) limits for standard concrete block walls (190 mm 
nominal thickness) are as follows: 

1. Limited ductility shear walls: maximum ( ) 36001019018 =+=h mm 
2. Moderately ductile shear walls: maximum ( ) 28001019014 =+=h mm 
3. Moderately ductile squat shear walls: maximum ( ) 40001019020 =+=h mm 

The CSA S304.1-04 height-to-thickness restrictions for limited ductility and moderately ductile 
shear walls must be followed and cannot be relaxed according to the current version of CSA 
S304.1. However, Cl.10.16.6.3 states that the th  ratio limit for moderately ductile squat shear 
walls can be relaxed, if it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability. A possible solution involves the provision of flanges at wall 
ends. However, the out-of-plane stability of the compression zone, which includes the flange 
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and sometimes a portion of the web, must be adequate. This check is demonstrated in Example 
4c (Chapter 4), where a moderately ductile squat shear wall with the th  ratio of 33 and added 
flanges at its ends has been shown to satisfy the CSA S304.1 out-of-plane stability requirement. 
 
The following analysis presents one method of checking if the flanged wall provides sufficient 
stiffness to prevent out-of-plane instability. For the purpose of this check, a wall can be 
considered as lightly loaded when the compressive stress cf , due to the dead load 
(corresponding to the axial load, DLP ), is less than mf ′1.0 , that is, 

m
w

DL
c f

tl
P

f ′<= 1.0  

 
Consider a wall section with flanges added at both ends to enhance the out-of-plane stability 
shown in Figure 2-27a. The wall is subjected to the factored axial load fP , the bending moment 

fM , and is reinforced with both concentrated reinforcement of area cA , at each end, and 
distributed reinforcement along the wall length (total area dA ).  
 
The effective flange width, fb , can be initially estimated, and then revised if the out-of-plane 
stability is not satisfactory. A good initial minimum estimate would be 

tb f 2≈  
where t  denotes the wall thickness (see Figure 2-27b).  Note that this is an iterative procedure 
and the flange width may need to be increased to satisfy the stability requirements. 
 
The buckling resistance of the compression zone should be checked according to the procedure 
described below. 
 
First, the area of the compression zone LA  can be determined from the equilibrium of vertical 
forces shown in Figure 2-27a: 

0321 =−−++ mf CCTTP                                

where 
cys AfCT φ== 31  

dys AfT φ=2  

( ) Lmmm AfC '85.0 φ=  
thus 

mm

dysf
L f

AfP
A

'85.0 φ
φ+

=  

The area of the compression zone can be determined from the geometry shown in Figure 
2-27b, that is, 

ttbtaA fL *)(* −+=   
Thus, the depth of the compression zone a  can be found from the above equation as follows 

t
ttbA

a fL
2* +−

=  

The distance from the centroid of the masonry compression zone to the extreme compression 
fibre is equal to 
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( ) ( )
L

f

A
ttbat

x
2)(2* 22 −+

=  

 

a) b) 

Figure 2-27. Flanged wall section: a) internal force distribution; b) flange geometry. 

The compression zone of the wall may be either L-shaped or rectangular (non-flanged), 
however only the flange area will be considered for the buckling resistance check (the flange 
area is shown shaded in Figure 2-27b). This is a conservative approximation and it is 
considered to be appropriate for this purpose. The gross moment of inertia of the flange section 
around the axis parallel with the logitudinal wall axis can be determined from the following 
equation 

12
* 3

f
xg

bt
I =  

The use of gross moment of inertia, as opposed of partially or fully cracked one, is considered 
appropriate in this case, because the web portion of the compression zone and the effect of the 
reinforcement have been ignored.  
 
The buckling strength for the compression zone will be determined according to S304.1 Cl. 
10.7.4.3, as follows: 

( )( )2

2

5.01 kh
IE

P
d

mer
cr β

φπ
+

=   

where 
75.0=erφ   resistance factor for member stiffness 

0.1=k   effective length factor for compression members (equal to 1.0 for pin-pin support 
conditions – a conservative assumption which can be used for this application) 

0=dβ  ratio of factored dead load moment to total factored moment (equal to 0 when 100% live 
load is assumed) 

mE  - modulus of elasticity for masonry 
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The resultant compression force, including the concrete and steel component, can be 
determined as follows: 

cysmfb AfCP φ+=  
The out-of-plane buckling resistance is considered to be adequate when 

crfb PP <  
In some cases, it is not possible to use flanged wall sections due to architectural or other 
constraints. In such cases, structural designers may consider the following recommendations 
regarding the thickness restrictions for moderately ductile squat shear walls: 

• When the CSA S304.1 th limits for ductile walls spanning in vertical direction (i.e. 
between adjacent floor slabs) have not been met, vertical supports in the form of pilasters 
can be provided to overcome this restriction.  Clear span between adjacent pilasters should 
remain within the CSA S304.1 prescribed th  limits. For more details related to the pilaster 
design refer to Drysdale and Hamid (2005) and Hatzinikolas and Korany (2005). 
• The New Zealand Masonry Standard NZS4230:2004 (Cl.7.4.4.1) allows some relaxation 
for th  ratio provided that tc  and wlc  ratios are within certain limits. For shear walls of 
rectangular cross section shown in Figure 2-28a, the neutral axis depth needs to meet one 
of the following requirements (see Figure 2-28b): 

tc 4≤  
or 

wlc 3.0≤  
For flanged shear walls the neutral axis depth needs to meet the following requirement (see 
Figure 2-28c): 

tc 6≤   
where t6  is the distance from the inside of a wall return of minimum length h2.0 . Note that, 
in the case of a flanged wall section such as that shown in Figure 2-28c, the non-flanged 
wall end is more critical for out-of-plane instability (for more details refer to Section 2.6.6). 
This check gives conservative results, as shown in Example 5b in Chapter 4. 

 
Figure 2-28.  Neutral axis depth in ductile shear walls: a) rectangular (non-flanged) wall cross-
section; b) corresponding neutral axis depth limits; c) flanged wall. 
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Note that CSA S304.1-04 restricts the maximum compressive strain in masonry mε in the plastic 
hinge zone to 0.0025, while NZS4230:2004 permits a larger strain value of 0.003. 
 
2.5.4.5 Shear/diagonal tension resistance – seismic design requirements 
 
10.16.4.2.1 
10.16.5.3.1 
10.16.6.4 

 

 
CSA S304.1-04 general design provisions for shear (diagonal tension) resistance contained in 
Cl.10.10.1 were discussed in Section 2.3.2. Special seismic design provisions for the plastic 
hinge zone of the walls are as follows: 

1. Limited ductility shear walls (Cl.10.16.4.2.1):  
smr VVV +=  

(the same equation used for the non-seismic design) 
 

2. Moderately ductile shear walls (Cl.10.16.5.3.1): 
smr VVV += 5.0  

(50% reduction in the masonry shear resistance) 
 

3. Moderately ductile squat shear walls (Cl.10.16.6.4 and 10.10.1.3): 
smr VVV +=  

(the same equation used for the non-seismic design of squat shear walls) 
 
For moderately ductile squat shear walls, Cl.10.16.6.2 requires that the shear force be applied  
along the entire wall length, and not concentrated near one end. The purpose of this provision is 
to ensure that a top transfer beam, or an alternative provision (bond beam provided at the top of 
the wall), will enable the development of the desirable shear failure mechanism shown in Figure 
2-16a, and prevent the partial shear failure shown in Figure 2-16b. Shear failure mechanisms 
for squat shear walls were discussed in Section 2.3.2.2. 
 
Commentary 

 
Tests have shown that shear walls that fail in shear have a very poor cyclic response and 
demonstrate a sudden loss of strength. Also, walls that initially yield in flexure may fail in shear 
after several large inelastic cycles, with the resulting rapid strength degradation. Therefore, the 
shear steel (horizontal reinforcement) is usually designed to carry the entire shear load in the 
plastic hinge region of a wall (Anderson and Priestley, 1992). Seismic design provisions for 
ductile reinforced concrete shear walls (CSA A23.3 Cl.21.6.9) completely neglect the concrete 
contribution to the wall shear resistance in the plastic hinge zone. 
 
CSA S304.1-04 provisions permit the use of the entire masonry shear resistance for all wall 
classes, except for moderately ductile shear walls, where only 50% of the masonry shear 
resistance, mV , can be considered. CSA S304.1-94 Cl.A6.1. also contained the same reduction 
in the masonry shear resistance contribution for nominally ductile shear walls. 
 
The overall shear strength is assumed to decrease in a linear fashion as the displacement 
ductility ratio increases, as discussed by Priestley, Verma, and Xiao (1994). This concept is 
illustrated in Figure 2-29 (note that displacement ductility ratio μ  corresponds to the ductility-
related force modification factor dR ). A ductile flexural response is ensured if the lateral force 
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corresponding to the flexural strength is less than the residual shear strength, residualV . A brittle 
shear failure takes place when the lateral force corresponding to flexural strength is greater than 
the initial shear strength, initialV . When the lateral force corresponding to flexural strength is 
between the initial and residual shear strength, then shear failure occurs at a ductility 
corresponding to the intersection of the lateral force and shear force-displacement ductility plot. 
Anderson and Priestley (1992) recommended to allow 100% of the masonry shear strength up 
to ductility ratio of 2, and then to linearly decrease the masonry component of the shear strength 
to zero at the ductility ratio of 4. Note that CSA S304.1-04 allows 100 % of mV  up to 5.1=dR , 
which corresponds roughly to a displacement ductility ratio of 1.5, but reduces the mV  
contribution to 50 % at 0.2=dR . 

 
 

Figure 2-29. Interaction between the shear resistance and the displacement ductility ratio 
(adapted from Priestley, Verma, and Xiao, 1994, reproduced by permission of the ASCE1). 

 
2.5.4.6 Sliding shear resistance – seismic design requirements 
 
10.16.4.2.2 
10.16.5.3.2 
10.16.6.5 

 

CSA S304.1-04 general design provisions for sliding shear resistance in Cl.10.10.4 were 
discussed in Section 2.3.3. The special seismic design provisions for sliding shear resistance 
are as follows: 

1. Limited ductility shear walls (Cl.10.16.4.2.2) and moderately ductile squat shear walls 
(Cl.10.16.6.5):  

2PV mr μφ=  
The same equation is used for non-seismic design. 

2. Moderately ductile shear walls (Cl.10.16.5.3.2): 
In this case, only the reinforcement in the tension zone should be used for the 2P  
calculation. (The compressive reinforcement is assumed to have yielded in tension in a 

                                                 
1 This material may be downloaded for personal use only. Any other use requires prior permission of the 
American Society of Civil Engineers. This material may be found at 
http://cedb.asce.org/cgi/WWWdisplay.cgi?9403737 
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previous loading cycle and is now exerting a compressive force across the shear plane 
as it yields in compression.) 

 
Commentary 

 
The mechanism of sliding shear resistance was discussed in detail in the Commentary portion 
of Section 2.3.3. The sliding shear resistance mechanism for moderately ductile walls is 
illustrated in Figure 2-17b, and is unchanged from CSA S304.1-94 Clause 6.2. 
 
It should be noted that sliding shear often governs the shear strength of reinforced masonry 
walls, particularly for squat shear walls in low-rise masonry buildings. To satisfy the sliding 
shear requirement, an increase in the vertical reinforcement area is often needed. However, this 
increases the moment capacity and the corresponding shear force required to yield the ductile 
flexural system, so the sliding shear requirement is not satisfied. Dowels at the wall-foundation 
interface can improve sliding shear capacity but they may also increase the bending capacity if 
they are too long. Note that, for squat shear walls it is impossible to prevent sliding shear if the 
shear reinforcement is designed to meet the capacity design requirements. In that case, shear 
keys could be used to increase the sliding shear resistance. 
 
To minimize the chances of sliding shear failure, TCCMAR’s findings recommended roughening 
the concrete foundation surface at the base of the wall with the roughness ranging from 1.6 mm 
(1/16 in) to 3.2 mm (1/8 in). A more effective solution is to provide the shear keys at the base of 
the wall that are as wide as the hollow cores and 38 mm (1.5 in) deep, with sides tapered 20 
degrees. Tests have shown that these shear keys eliminate the wall slippage under severe 
loading (Wallace, Klingner, and Schuller, 1998). 
 
2.5.4.7 Seismic reinforcement requirements 
CSA S304.1-04 includes several requirements pertaining to the amount and distribution of 
horizontal and vertical wall reinforcement. It should be noted that shear walls with conventional 
construction do not require the special seismic detailing required for limited ductility and 
moderately ductile walls. These walls only need to be designed to resist the effect of factored 
loads, and to satisfy minimum seismic reinforcement requirements. Note that, according to 
NBCC 2005 Cl.4.1.8.1.1), seismic design needs to be considered when 12.0)2.0( >S . Also, it is 
possible to use unreinforced masonry constructions at sites where  ( ) 35.02.0 <aaE SFI  (S304.1-
04 Cl.4.5.1). Shear walls reinforcement requirements are summarized in Table 2-2, with a 
reference being made to pertinent CSA S304.1 clauses.
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Table 2-2. CSA S304.1-04 Wall Reinforcement Requirements: Loadbearing Walls and Shear 
Walls 

Non-seismic design 
requirements 

Additional seismic requirements 
for ( ) 35.02.0 ≥aaE SFI  

Clause 10.15.1.1 Clause 10.15.2.2 

Minimum area: 
vertical & 
horizontal 

reinforcement   

Minimum vertical reinforcement for 
loadbearing walls subjected to axial 
load plus bending shall be 

gAvA 0013.0min = for ts 4≤  

( )240013.0min tvA = for ts 4>  
S304.1 does not contain provisions 
regarding the minimum horizontal 
reinforcement area. 
 

Loadbearing walls (including shear walls) 
shall be reinforced horizontally and 
vertically with steel having a minimum total 
area of gAstotalA 002.0=  distributed with a 
minimum area in one direction of at least  

gAvA 00067.0min = (approximately one-third 
of the total area) 
 
Reinforcement equivalent to at least one 
15M bar shall be provided around each 
masonry panel and around each opening 
exceeding 1000 mm in width or height. 
Such reinforcement shall be detailed to 
develop the yield strength of the bars at 
corners and splices. 

Clause 10.15.3 

Maximum area:  
vertical & 
horizontal 

reinforcement 

Maximum horizontal or vertical reinforcement area  
gAsA 02.0max = for ts 4≤  

( )2402.0max tsA = for ts 4>  
 
Maximum vertical reinforcement for flexural walls under low axial load 
(Cl.10.7.4.6.5) 

yfd

c

+
≤

600

600
  or bρρ ≤  
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Non-seismic design 

requirements 
Additional seismic requirements 

for ( ) 35.02.0 ≥aaE SFI  
Clause 10.15.1.2 Clause 10.16.4.3.2 

Spacing: 
vertical 

reinforcement 

Where vertical reinforcement is 
required to resist flexural tensile 
stresses, it shall be 
a) continuous between lateral 

supports; 
b) spaced at not more than 2400 

mm along the wall; 
c) provided at each side of 

openings over 1200 mm long; 
d) provided at each side of 

movement joints, and  
e) provided at corners, 

intersections and ends of walls. 
 

Vertical seismic reinforcement shall be 
uniformly distributed over the length of the 
wall. Its spacing shall not exceed  the 
lesser of  
a) )10(6 +t mm 
b) 1200 mm 
c) 4wl  (for limited ductility or moderately 

ductile walls only) 
but it need not be less than 600 mm 
 
 

Clause 10.15.1.3 

Spacing: 
horizontal 

reinforcement  

Where horizontal reinforcement is 
required to resist effects of shear 
forces, it shall be:  
a) continuous between lateral 

supports; 
b) spaced not more than 2400 mm 

o/c  for bond beam 
reinforcement;  

c) spaced at not more than 600 
mm for joint reinforcement for 
50% running bond and 400 mm 
for other patterns; 

d) provided above and below each 
opening over 1200 mm high; 
and 

e) provided at the top of the wall 
and where the wall is 
connected to roof and floor 
assemblies. 

 
Outside plastic hinge regions 
(Cl.10.15.2.6): 
Horizontal seismic reinforcement shall be 
continuous between lateral supports. Its 
spacing shall not exceed 
a) 400 mm where only joint reinforcement 
is used; 
b) 1200 mm where only bond beams are 
used; or 
c) 2400 mm for bond beams and 400 mm 
for joint reinforcement where both are 
used. 
 
Plastic hinge regions (Cl. 10.16.4.3.3): 
Reinforcing bars are to be used in the 
plastic hinge region, at a spacing not more 
than 
a) 1200 mm or  
b) 2wl  

 
Notes: 

tAg ⋅=1000   denotes gross cross-sectional area corresponding to 1 m wall length (for vertical 
reinforcement), or 1 m height (for horizontal reinforcement) 
s   = bar spacing 
t   =  actual wall thickness 
wl  = wall length
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CSA S304.1-04 provisions related to detailing of reinforcement in ductile shear walls are 
summarized in Table 2-3. 

Table 2-3. CSA S304.1 Reinforcement Detailing Requirements for Ductile Shear Walls 

 
 Limited Ductility Shear 

Walls 
 

Moderately Ductile Shear Walls

Clause 10.16.5.4.1. 
Vertical 

reinforcement 

No special detailing 
requirements At any section within the plastic hinge 

region, no more than half of the area of 
vertical reinforcement may be lapped. 

Clause 10.16.4.3.3 Clause 10.16.5.4.2 

Horizontal 
reinforcement 

Horizontal reinforcement shall 
not be lapped within  
a) 600 mm or  
b) c  (the neutral axis depth) 
whichever is greater, from the 
end of the wall. 

Horizontal reinforcement shall be: 
a) provided by reinforcing bars only (no 
joint reinforcement!); 
b) continuous over the length of the wall 
(can be lapped in the centre), and  
c) have 180° hooks around the vertical 
reinforcing bars at the ends of the wall. 

 
CSA S304.1-04 minimum seismic reinforcement requirements for all classes of reinforced 
masonry shear walls are illustrated in Figure 2-30. To ensure desirable seismic performance of 
ductile shear walls, CSA S304.1-04 prescribes additional reinforcement requirements which are 
illustrated in Figure 2-31. 
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Figure 2-30. Reinforced masonry shear walls: CSA S304.1 minimum seismic reinforcement 
requirements. 
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Figure 2-31. Ductile reinforced masonry shear walls: additional CSA S304.1 minimum seismic 
reinforcement requirements.
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Commentary 
 
According to Cl.10.16.4.3.2, vertical seismic reinforcement shall be uniformly distributed over 
the length of the wall. Shear walls with distributed reinforcement have almost the same moment 
resistance as shear walls with reinforcement concentrated at the edges, but distributed 
reinforcement has a beneficial effect on controlling cracking and maintaining shear strength in 
these walls.  
 
Clause 10.16.4.3.3 requires that horizontal reinforcement laps not be within the greater of 

 600 mm or  
 the neutral axis depth c  

from the end of the wall, as shown in Figure 2-31. This requirement guards against lap splice 
failure in the end sections that may have either large masonry strains in the vertical direction, or 
masonry damage from previous cycles.  
 
According to Cl.10.16.5.4.1, at any section within the plastic hinge region of moderately ductile 
walls, no more than half of the area of vertical reinforcement may be lapped, that is, laps should 
be staggered. This provision guards against failure of an entire lap splice, helps increase the 
hinge length, and thereby decrease the masonry strain. 
 
Cl.10.16.5.4.2 prescribes the requirements for anchorage of horizontal shear reinforcement in 
moderately ductile shear walls. Adequate anchorage needs to be provided at each end of a 
potential diagonal crack. CSA S304.1-04 requires 180° hooks around the vertical reinforcing 
bars at the ends of the wall (see Figure 2-32a). Although this type of anchorage is most efficient, 
it may cause congestion at the end zone for narrow blocks. The New Zealand masonry design 
standard (NZS 4230:2004) C 10.3.2.9 recommends the use of 90° hooks bent downwards into 
the core as an alternative solution (see Figure 2-32b).  

 
Figure 2-32. Anchorage of horizontal reinforcement: a) 180° hooks; b) 90° hooks (reproduced 
from NZS 4230:2004 with the permission of Standards New Zealand under Licence 000725). 
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CSA S304.1-94 and S304.1-04 requirements – a comparison 
Most of the CSA S304.1-04 seismic requirements for shear wall reinforcement existed in the 
1994 edition of the standard. A comparison is summarized below: 
1. S304.1-94 Cl.5.2.2.2.2 contained the minimum seismic requirements related to 

reinforcement area in loadbearing walls and shear walls. These requirements remain 
unchanged, except that the 1994 requirements applied to the masonry structures located in 
seismic zone 2 or higher (this was compatible with NBCC 1995). The 2004 requirements 
apply to masonry structures located in areas where the seismic hazard 
index, ( ) 35.02.0 ≥aaE SFI . This may result in changes for some locations. 

 
Reinforcement spacing requirements have been somewhat expanded in S304.1-04. 
Spacing requirements for reinforcement are clarified in Cl. 10.15.2.5 and 10.15.2.6. 
Cl.10.16.4.3.2 requires that the vertical reinforcement spacing for the limited ductility shear 
walls has an additional limit of 4wl , but that it need not be less than 600 mm. 
 
S304.1-94 Clause A.8 included seismic reinforcement requirements for nominally ductile 
shear walls. The same requirements are now included in S304.1-04, Cls.10.16.4 and 
10.16.5, for limited ductility and moderately ductile shear walls. A few new requirements 
introduced in S304.1-04 are discussed below. 

2. S304.1-04 Cl.10.16.4.3.3 requires horizontal reinforcement in the form of reinforcing bars 
(no joint reinforcement) in the plastic hinge region of both limited ductility and moderately 
ductile walls (this is a new requirement). 

3. S304.1-04 Cl. 10.16.5.4.2  requires 180° end hooks for horizontal reinforcement bars in the 
plastic hinge region of moderately ductile walls. It also requires that lines of horizontal 
reinforcing be continuous (this is a new requirement). 
 

2.5.4.8 Reinforcement requirements for moderately ductile squat shear walls 
 
10.16.6.6  

 
CSA S304.1-04 introduced the following new requirements for the amount of reinforcement in 
moderately ductile squat shear walls: 
• Vertical reinforcement ratio vρ (Cl.10.16.6.6.1): 

( ) ywwffvs flbPV −≥ρφ  

• Horizontal reinforcement ratio hρ  (Cl.10.16.6.2) must be greater of 

ywwfvshs flbP+≥ ρφρφ  
and that the value determined in accordance with Cl.10.10 be based on the shear resistance 
requirements (see Section 2.3.2). 
 
Commentary 

 
The seismic design requirements for moderately ductile squat shear walls were introduced in 
the 2004 edition of S304.1. In general, the squat wall requirements are more relaxed than those 
pertaining to moderately ductile flexural shear walls, because shear failure in squat shear walls 
is not as critical as in taller flexural walls, and can provide some ductility. Thus the design and 
detailing requirements related to the flexural failure mechanism (e.g. ductility check) are not 
required for squat walls. 
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The reinforcement requirements in Cl.10.16.6.6 have been derived from the mechanism of a 
squat shear wall failing in the shear-critical mode shown in Figure 2-33a. Consider a squat 
shear wall subjected to the combined effect of factored shear force, fV , and the factored axial 
force, fP . The effect of these forces can be presented in the form of distributed shear stress, fv , 
and distributed axial stress, fp , as follows  

ww

f
f lb

V
v

⋅
=        (14) 

and 

ww

f
f lb

P
p

⋅
=       (15) 

 
The wall is reinforced with horizontal and vertical reinforcement, where the reinforcement ratios 

hρ  for horizontal reinforcement, and vρ  for vertical reinforcement, are given by 

ww

v
v lb

A
⋅

=ρ      and      
ww

h
h hb

A
⋅

=ρ  

where 
tbw =  overall wall thickness (referred to as “web width” in CSA S304.1) 

wl = wall length 

wh =  wall height 
 
If the yield stress of the reinforcement is given by yf , the factored unit capacity of the 
reinforcement in the two directions is yhs fρφ  and yvs fρφ . 
 
Once the shear force in the wall reaches a certain level, inclined shear cracks develop in the 
wall at a 45° angle to the horizontal axis, as shown in Figure 2-33b (note that this is an idealized 
model and that the angle may be different from 45°). The areas of masonry between these 
inclined cracks act as compression struts. Consider a typical unit length strut shown in Figure 
2-33c. This strut remains in equilibrium only if there is enough force in the vertical reinforcement 
to satisfy moment equilibrium about the base. Note that the force in both the vertical and 
horizontal bars that pass through the strut do not create any net force on the strut. 
 
Equilibrium of the strut requires that 

fyvsf vfp =+ ρφ         (16) 

When fv and fp equations (14) and (15) are substituted into equation (16), the vertical 
reinforcement ratio is 

yww

ff
vs flb

PV
⋅⋅

−
=ρφ  

Note that the above equation is presented in Cl.10.16.6.6.1. 
 
Equilibrium in the horizontal direction requires that the tensile capacity of the horizontal 
reinforcement, yhs fρφ , be (see Figure 2-33d) 

fyhs vf =ρφ        (17) 
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This equation can be presented in an alternative form useful for design purposes: 

ysww

f

ys

f
f flb

V
f

v
v

⋅⋅⋅
==

φφ
 

When the fv  expression is substituted from equation (17) into equation (16), it follows that 
yvsfyhs fpf ρφρφ +=  

This gives the following relationship between the horizontal and vertical reinforcement, which is 
also presented in Cl.10.16.6.6.2: 

yww

f
vshs flb

P
+= ρφρφ  

It is worth noting that the required ratios of horizontal and vertical reinforcement are equal for 
walls with low axial load, that is, 0≅fP . This scenario applies to low-rise masonry buildings with 
a light roof weight. 
 
Note that the vertical and horizontal reinforcement design should be based on flexure and shear 
requirements, but the designer should confirm that the minimum reinforcement requirements 
discussed in this section are also satisfied. 

 
Figure 2-33. Shear failure mechanism for a squat shear wall: a) wall subjected to shear and 
axial load; b) crack pattern; c) compression strut; d) free-body diagram. 
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2.5.5 Summary of Seismic Design Requirements for Reinforced Masonry 
Walls 

Table 2-4. Summary of the CSA S304.1-04 Seismic Design Requirements for Reinforced 
Masonry Walls 

Provision (guide 
reference section 
shown in the 
brackets)  

Shear walls 
with 
conventional 
construction 

Limited 
ductility 
shear walls 

Moderately 
ductile shear 
walls 

Moderately 
ductile squat 
shear walls 
( 1<ww lh ) 

Ductility factor dR =1.5 dR =1.5 dR =2.0 dR =2.0 

Cl.10.16.4.1.1 Cl.10.16.5.2.1 
pl = greater of  

2wl or 6/wh  
pl = greater of  

wl or 6/wh  
Cl.10.16.4.1.3 

Plastic hinge 
region (2.5.4.2) Not applicable 

Masonry within 
the plastic hinge 
region shall be 
fully grouted. 

Same as limited 
ductility walls 

Cl.10.16.4.1.4 Cl.10.16.5.2.3 

Ductility check 
(2.5.4.3) Not applicable 

1. 0025.0=mε  
2. 2.0<wlc  
when 6<wlwh  
 

1. Maximum 
compression strain:  

0025.0=mε  
 
2. Ductility limits: 

2.0<wlc  when       
4<wlwh  

and 
15.0<wlc  when 

84 << wlwh  

No special 
provisions 

Cl.10.7.3.3 Cl.10.16.4.1.2 Cl.10.16.5.2.2 Cl.10.16.6.3 

Wall height-to-
thickness ratio 
restrictions 
(2.5.4.4) 

Must meet non-
seismic 
slenderness 
requirements and 
design 
procedures 

18)10( <+th  14)10( <+th  20)10( <+th  
Unless it can be 
shown for lightly 
loaded walls that 
a more slender 
wall is 
satisfactory for 
out-of-plane 
stability 
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Provision 
(guide reference 
section shown 
in the brackets)  

Shear walls 
with 
conventional 
construction 

Limited 
ductility 
shear walls 

Moderately 
ductile shear 
walls 

Moderately 
ductile 
squat shear 
walls 
( 1<wlwh ) 

Cl.10.10.1 Cl.10.16.4.2.1 Cl.10.16.5.3.1 Cl.10.16.6.4 
Same as 
limited ductility 
walls 
Cl.10.16.6.2 

Shear/diagonal 
tension 
resistance 
(2.5.4.5) 

sVmVrV +=  

Same as non-
seismic design 

sVmVrV +=  

Same as non-
seismic design  

sVmVrV += 5.0  

50% reduction in 
the masonry shear 
resistance 

Shear force 
applied 
uniformly along 
the wall length 

Cl.10.10.4 Cl.10.16.4.2.2 Cl.10.16.5.3.2 Cl.10.16.6.5 Sliding shear 
resistance 
(2.5.4.6) 
 
 
 
 
 
 

2PV mr μφ=  
Same as non-
seismic design 
 
 

2PmrV μφ=  

Same as non-
seismic design 
 

2PmrV μφ=  

Only reinforcement 
in the tension zone 
to be taken into 
account for 2P  
calculation. 

Same as 
limited ductility 
walls 

Cl.10.15.2.2 
Minimum seismic reinforcement area requirements apply 
for all classes of ductile masonry walls (see Table 2-2) 
 

Cl.10.16.6.6 

Minimum  
seismic 
reinforcement 
area 
(2.5.4.7) 

Minimum seismic 
reinf. requirements 
(Cl.10.15.2.2) 
apply when  

( ) 35.02.0 ≥aSaFEI
otherwise apply 
minimum non-
seismic reinf. 
requirements 
(Cl.10.15.1.1) 

 
Additional 
reinforcement 
requirements 
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2.6 Special Topics 

2.6.1 Unreinforced Masonry Shear Walls 
S304.1-04 allows the use of unreinforced masonry construction for sites where the seismic 
hazard index, ( ) 35.02.0 <aaE SFI  (Cl.4.5.1). Seismic design provisions for unreinforced masonry 
shear walls are presented in this section. 
 
2.6.1.1 Shear/diagonal tension resistance (in-plane and out-of-plane) 
 
7.10.1 
7.10.2 

 

 
Design provisions for factored in-plane and out-of-plane diagonal tension shear resistance, rV , 
for unreinforced masonry shear walls are the same as those for reinforced masonry walls, 
except that there is no steel contribution term ( 0=sV ). The background for these provisions is 
discussed in detail in Sections 2.3.2 and 2.4.2. 
 
Commentary 

 
Diagonal tension is a brittle failure mode, characterized by the development of a major diagonal 
crack that forms when the masonry tensile resistance has been reached (see Section 2.3.1.2). 
This is an undesirable failure mechanism and should be avoided, preferably by providing 
horizontal reinforcement in masonry walls loaded in-plane and located in regions where 

( ) 35.02.0 >aaE SFI . 
 
2.6.1.2 Sliding shear resistance (in-plane and out-of-plane) 
 
7.10.4.1 
7.10.4.2 

 

 
Design provisions for in-plane and out-of-plane sliding shear resistance for unreinforced 
masonry walls are somewhat different from those for reinforced masonry, in that bed-joint 
sliding masonry resistance (in addition to the frictional resistance) is assigned to the wall. Note 
that in reinforced masonry walls only frictional resistance is considered, as discussed in Section 
2.3.3. 
 
The in-plane sliding shear resistance, rV , along bed joints between courses of masonry, also 
known as bed-joint sliding resistance, is given in Cl.7.10.4.1 as 

116.0 PAfV mucmmr μφφ +′=  
where 
μ   =  the coefficient of friction 

= 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 
= 0.7 for a masonry-to-smooth concrete or bare steel sliding plane 
= other (when flashings reduce friction that resists sliding shear, a reduced coefficient of 
friction accounting for the flashing material properties should be used) 

1P  = the compressive force in masonry acting normal to the sliding plane, normally taken as dP  
(equal to 0.9 times the dead load). For infill shear walls, an additional component, equal to 
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90% of the factored vertical component of the compressive force resulting from the diagonal 
strut action, should be added (see Figure 2-34c). 

ucA  = uncracked portion of the effective cross-sectional area of the wall that provides shear 
bond capacity (note that both out-of-plane loads and in-plane loads can cause cracking of 
the masonry wall) 

 
For the in-plane sliding shear resistance, ucA  should be determined as follows 

veuc dtA ⋅=  
where  

et  = effective wall thickness; et  is equal to the sum of two face shell thicknesses for hollow 
walls, and to the actual wall thickness t  for fully grouted walls 

vd  = effective wall depth, equal to wl8.0  
wl  = wall length 

 
For the out-of-plane sliding shear resistance, ucA  should be determined as follows 

weuc ltA ⋅=  
The sliding shear resistance at the base of the wall (along the bed joint between the support and 
the first course of masonry) is equal to (see Figure 2-34b) 

CV mr μφ=   

where C   is  compressive force in the masonry acting normal to the sliding plane, normally 
taken as dP  (equal to 0.9 times the dead load), since yT =0, that is,  

yd TPC +=      
Design equations for the out-of-plane sliding resistance stated in Cl.7.10.4.2 are the same as 
the equations for the in-plane sliding shear resistance presented above. 
 
Commentary 

 
The two forms of the sliding shear failure mechanism (bed-joint sliding and base sliding), are 
presented in Figure 2-34 a) and b). Sliding shear failure is likely to govern the design of 
masonry shear walls in low-rise buildings, due to the low axial load acting on these walls (see 
Commentary in Section 2.5.4.6). In unreinforced masonry walls, dowels can provide the 
required sliding shear resistance at the base, but it should be noted that a sliding shear failure 
can still take place at the section at the top of the dowels, which is undesirable. However, it 
should be noted that the sliding shear failure mechanism is a ductile one, and has been 
characterized by significant lateral deformations along the failure plane in major earthquakes.  
 
Note that in the equation for bed-joint sliding resistance, the first term represents the shear bond 
resistance of masonry mortar, while the second term represents the sliding shear resistance 
based on the Coulomb friction model. In determining the sliding shear resistance for the bed-
joint sliding mechanism for seismic design of unreinforced masonry walls, the first term in the 
equation should be ignored if the wall cracks due to either in-plane or out-of-plane bending. If 
the wall remains uncracked, the second term (shear friction resistance) should not be included. 
The smaller of the two values should be used in the design. 
 
For the sliding resistance at the base of the wall, sliding shear resistance is provided by the 
weight of the wall above and yielding of steel dowels. Note that the dowel contribution is 
possible only after a small shear slip at the base takes place and a horizontal crack forms at the 
wall-to-foundation interface. 
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Figure 2-34. Sliding shear failure mechanism: a) bed-joint sliding; b) sliding at the base of the 
wall; c) sliding shear in infilled masonry walls. 

 
The bed-joint sliding failure mechanism is also characteristic of infilled masonry walls, as shown 
in Figure 2-34c). Seismic design considerations for masonry infill walls are discussed in Section 
2.6.2. 
 
2.6.1.3 Flexural resistance due to combined axial load and bending 
 
7.2  

 
A masonry wall of length, wl , and thickness, t , subjected to factored axial load, fP , and 
factored bending moment, fM , has an eccentricity, e , equal to 

f

f

P
M

e =  

According to Cl.7.2.1, unreinforced masonry walls should be designed to remain uncracked 
when  
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wle 33.0≥   for in-plane bending, or 
te 33.0≥   for out-of-plane bending, 

but the maximum stresses must not exceed tm fφ  for tension and mm f ′φ  for compression 
(Cl.7.2.2), where tf  is the flexural tensile strength of masonry (see Table 5 of CSA S304.1-04). 
 
The maximum stresses at the wall ends can be calculated as follows: 

mm
e

f

e

f
c f

S
M

A
P

f ′≤+= φmax  

and 

tm
e

f

e

f
t f

S
M

A
P

f φ−≥−=max  

where 
fP  and fM  are the factored axial load and the factored bending moment acting on the wall 

section 
wee ltA ⋅=    effective cross-sectional area of masonry 

et  = effective wall thickness equal to the sum of two face shell thicknesses for hollow walls, and 
to the actual wall thickness t  for fully grouted walls 

6

2
we

e
lt

S
⋅

=   section modulus of effective wall cross-sectional area   

When  
wle 33.0<   for in-plane bending, or 

te 33.0<   for out-of-plane bending, 
an unreinforced masonry wall can be designed assuming cracked wall sections (Cl.7.2.3) using 
an equivalent rectangular stress block, as per Cl.10.2.6. 
 
The centroid of the compression zone must coincide with the load eccentricity, e , as shown in 
Figure 2-35b, and the compression capacity, rP , can then be determined from the following 
equation: 

( ) 2
2

85.0 ⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅′= e
l

tfP w
emmr χφ  

note that rP  must be greater than fP . 
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Figure 2-35. Stresses due to combined axial load and bending in an unreinforced masonry wall: 
a) uncracked wall; b) cracked wall. 

 

Commentary 
 
It is realistic to assume that unreinforced masonry wall sections will experience cracking under 
seismic conditions. Reports from the past earthquakes have shown that unreinforced masonry 
suffers extensive damage in earthquakes, e.g. 1994 Northridge, California earthquake 
(magnitude 6.7); for more details refer to TMS (1994). Despite the extensive damage, it should 
be noted that the building stock of unreinforced masonry block walls in California is very limited, 
since the provision for reinforcement in masonry structures started after the 1933 Long Beach 
earthquake. This cannot be said for most seismic zones in Canada. 
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2.6.2 Masonry Infill Walls 
 
7.13 
10.12 

 

 
Infill walls are masonry wall panels enclosed by reinforced concrete or steel frame members on 
all four sides. Infill walls are not listed as a wall class in NBCC 2005, and therefore fall under the 
classification of “other masonry SFRS(s)”,. They are only allowed in low seismic regions where 

( ) 20.02.0 <aaE SFI , and have 0.1== od RR  and a height limitation of 15 m. 
 
CSA S304.1 design provisions for masonry infill walls, introduced for the first time in the 2004 
edition of the code, are summarized below. 
 
General design requirements 

1. Masonry infill walls are treated as shear walls and should be designed to resist all in-
plane and out-of-plane loads (Cl.7.13.1). 

2. Masonry infill walls should be designed to resist any vertical loads transferred to them by 
the frame (Cl.7.13.2.4). 

3. The increased stiffness of lateral load-resisting elements that consist of masonry infill 
shear walls working with the surrounding frame, should be taken into account when 
distributing the applied loads to these elements (Cl.7.13.2.5).   

4. When a diagonal strut is used to model the infill shear wall according to Cl.7.13.3, an 
infill frame can be designed using a truss model (see the note to Cl.7.13.2.5). 

 
Design approaches for masonry infill walls 
CSA S304.1 offers three possible design and construction approaches for infill walls: 

1. Participating infill (diagonal strut approach) – when there are no openings or gaps 
between the masonry infill and the surrounding frame, but the infill is not tied or bonded 
to the frame, the infill should be modelled as a diagonal strut according to Cl.7.13.3. 
Where openings or gaps exist, the designer must show through experimental testing or 
special investigations that the diagonal strut action can be formed and all other structural 
requirements for the infill shear walls can be developed (Cl.7.13.2.3).  

2. Frame and infill composite action – when the infill shear wall is tied and bonded to the 
frame to create a composite shear wall, where the infill forms the web and the columns 
of the frame form the flanges of the shear wall (Cl.7.13.2.2).   

3. Isolated infill - it is also possible to design an isolated infill panel (a note to Cl.7.13.1 and 
Cl.7.13.2.3), which is separated from the frame structure by a gap created by vertical 
movement joints along the ends and a horizontal movement joint under the floor above 
or beam. In that case, masonry infill is a nonloadbearing wall and cannot be treated as a 
shear wall. Restraints must be provided at the top of the wall to ensure stability for out-
of-plane seismic forces. 

 
Diagonal strut model 
For structural design purposes, infill walls should be modelled as diagonal struts, as shown in 
Figure 2-36 (Cl.7.13.2.1). The key properties of the diagonal strut model are summarized below. 
 
Diagonal  strut width w  should be determined as follows (Cl.7.13.3.2): 

22
Lhw αα +=  

where 
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1
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4
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1
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⎛
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em
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hα  = vertical contact length between the frame and the diagonal strut 

Lα  = horizontal contact length between the frame and the diagonal strut 

mE , fE  = moduli of elasticity of the masonry wall and frame material, respectively 
h , l  = height and length of the infill wall, respectively 

22 lhls +=    length of the diagonal strut 

et  = sum of the thickness of the two face shells for hollow or semi-solid block units and the 
thickness of the wall for solid or fully grouted hollow or semi-solid block units 

cI , bI  = moments of inertia of the column and the beam of the frame respectively 
θ  = angle of diagonal strut measured from the horizontal, where 

l
h

=θtan  

Effective diagonal strut width, ew , to be used for the calculation of the compressive strength of 
the strut should be taken as (Cl.7.13.3.3) 

2wwe =  
or  

4se lw ≤  
whichever is the least. 
 
The design length of the diagonal strut dl  should be equal to (Cl.7.13.3.5) 

2wll sd −=  
Depending on the strut end conditions (fixed or pinned), an effective length can be calculated by 
multiplying the design length by the effective length factor for compression members, k  (see 
Annex B to CSA S304.1). 
 
The design length for the diagonal strut in reinforced infill walls should be determined as the 
smallest of the following (Cl.10.12.3):  
• design length dl  as defined above, or  
• infill wall height h  or length l , when minimum reinforcement and lateral anchorage are 
provided for the span in that direction. 
 
In-plane resistance of masonry infill walls 
According to CSA S304.1, masonry infills should be designed considering the following failure 
mechanisms: 
• Compression or buckling failure in diagonal strut, and  
• In-plane shear failure of the masonry infill. 
 
Diagonal strut – compression resistance (Cl.7.13.3.4) 
The compression strength of the diagonal strut, rP , is equal to the compression strength of the 
masonry times the effective cross-sectional area, that is, 
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( ) emmr AfP ⋅′= χφ85.0  
where 

eee twA *=  
Note that the masonry compressive strength should be reduced by 5.0=χ  (corresponding to 
the masonry strength for compression normal to the head joints). The concept of effective cross-
sectional area is addressed by S304.1-04 Cl.7.3 (unreinforced masonry walls) and Cl.10.3 
(reinforced masonry walls).  
 
Diagonal strut – buckling resistance 
In determining the compression resistance, rP , slenderness effects should be included in 
accordance with Cl.7.7.  
 
The designer should ensure that the horizontal component of the diagonal strut compression 
resistance, hP , is larger than the factored shear load, fV , acting on the infill (see Figure 2-36c). 
 
Shear resistance of infill walls (Cl.7.13.3.1 on unreinforced infills and Cl.10.12.4 on reinforced 
infills) 
In-plane sliding shear resistance (bed-joint sliding resistance) is the key shear resistance 
mechanism characteristic both of unreinforced and reinforced infill walls (Cl.7.10.4). See Section 
2.6.1.2 for a discussion on the bed-joint sliding mechanism. 
 
Infill shear walls should be designed so that a bed-joint sliding shear failure is prevented 
(Cl.7.13.3.1). This failure mechanism can lead to a knee-braced condition that could cause a 
premature failure of the column in the surrounding frame, as shown in Figure 2-39 a). 
 
The vertical component of the diagonal strut compression resistance, vP , must be considered in 
determining the sliding shear resistance, as shown in Figure 2-34 c) (see Note 2 to Cl.7.13.3.1). 
 
CSA S304.1 Cl.10.12.4 states that the reinforced masonry infills need to be designed to resist 
all applied shear loads in accordance with Cl.10.10.1, as they relate to the diagonal tension 
shear resistance discussed in Section 2.3.2 of this guide. However, it should be noted that the 
shear resistance corresponding to the diagonal tension cracking does not represent the limited 
or ultimate load condition for infill walls (see the discussion in the commentary part of this 
section). 
 
Reinforcement 
The reinforcement is required to resist tensile and shear stresses in infills (Cl.10.12.2). The 
minimum reinforcement requirements stated in Cl.10.15 should be followed (see Section 
2.5.4.7). 
 
Effect of masonry infill on frame members (Cl.7.13.3.1) 
Adjacent frame members and their connections should be designed to resist additional shear 
forces resulting from the diagonal strut action (see Note 3 to Cl.7.13.3.1). 
 
Commentary 

 
The infilling of frames is associated with the construction of medium- and high-rise steel and 
reinforced concrete (RC) buildings, where the frames carry gravity and lateral loads, and the 
infills provide the building envelope and internal partitions. Historically, the frames have been 
engineered according to the state of the knowledge of the time, with the infill panels considered 
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to be “nonstructural” elements (FEMA 306, 1999). However, recent damaging earthquakes in 
several countries (e.g. the 1999 Kocaeli earthquake in Turkey, the 2001 Bhuj earthquake in 
India, the 2001 Chi Chi earthquake in Taiwan, the 2003 Boumerdes earthquake in Algeria, etc.) 
revealed significant deficiencies and poor seismic performance of RC frame buildings with 
masonry infills, thereby causing significant human and economic losses (Murty, Brzev, et al. 
2006).  
 
The introduction of infills into frames changes the lateral-load transfer mechanism of the 
structure from a predominantly frame action to a predominantly truss action, as shown on Figure 
2-37 (Kaushik, Rai, and Jain, 2006). Masonry infills in RC or steel frame buildings are usually 
modelled as diagonal compression struts, so an infilled frame can be modelled as a braced 
frame with pin connections at beam-column joints. 
 
It should be recognized that the seismic response of infilled frames is very complex. At low level 
of seismic loads, the infill panels are uncracked and often cause a significant increase in the 
stiffness of the entire structure. In some cases, the stiffness of a RC frame with infills may be in 
the order of 20 times larger than that of the bare frame. At that stage, infills usually attract most 
of the lateral forces, but as the load increases, the infills crack and their stiffness drops. As a 
result, the stiffness of an infilled frame progressively decreases in each subsequent loading 
cycle, and more of the load is transferred to the frame. For that reason, the frames must have 
sufficient strength to avoid the collapse of the structure (Kaushik, Rai, and Jain, 2006). CSA 
S304.1 requires that the masonry infills should be able to resist the lateral seismic loads without 
any assistance from the frames (Cl.7.13.3.1).  
 
To safeguard frames from being designed for very low seismic forces, some building codes 
require that the frame alone be designed to independently resist at least 25% of the design 
seismic forces, in addition to the forces caused by gravity loads. CSA S304.1 Cl.7.13.3.1 (Note 
3) states that the frame members and their connections should be designed to resist additional 
shear forces introduced by the diagonal strut action. For example, the columns will have to 
resist a shear force equal to the horizontal component of the diagonal strut compression 
resistance, hP  (see Figure 2-36c).  
 
The following two analytical models can be considered in the design of infilled frames (see 
Figure 2-37):  

i) uncracked braced frame with diagonal struts; this model results in a high stiffness 
(corresponding to a short period) and small lateral deflections, and  

ii) bare frame with cracked frame members (assuming failed infills); this model results 
in a low stiffness (corresponding to a long period) and large deflections.   

It should be noted that the first model will give the maximum design forces, while the second 
one will give the maximum lateral deflections. The designer needs to consider both models in 
the analysis and use the most critical values for the design. 
 
Problems associated with seismic performance of infilled frame structures arise from 
discontinuities of infills along the building height, and the resulting vertical stiffness discontinuity 
(see the discussion on irregularities in Section 1.5.10). In such infilled frames, there is a high 
level of forces to be resisted by the frame components. In some cases, discontinuity of infills at 
the ground floor level results in a soft storey mechanism, which has caused the collapse of 
several buildings in past earthquakes (see Figure 2-38). In developing countries, construction 
quality combined with inadequate detailing of RC frame components may occur, which leads to 
a non-ductile seismic response of these structures.  
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Figure 2-36. Diagonal strut model: a) actual strut width; b) effective strut width; c) analytical 
model. 
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Figure 2-37. Masonry infills alter the seismic response of a frame structure: a) bare frame; 
 b) diagonal strut mechanism (Source: Murty, Brzev, et al. 20061). 
 

 

  a)      b)  

Figure 2-38. Soft storey mechanism: a) vertical discontinuity in masonry infills2 ; b) building 
damage in the 2003 Boumerdes, Algeria earthquake3.   

 
Infill walls may fail due to the effects of in-plane or out-of-plane seismic forces. The in-plane 
seismic response of masonry infills is generally governed by shear failure mechanisms. The 
response depends on several factors, including the relative stiffness of the infill and frame, the 
material properties, and the contact between the infill and frame. The following behaviour 
modes are characteristic of masonry infills subjected to in-plane seismic loads (Tomazevic 
1999; FEMA 306, 1999): 

1. Bed-joint sliding failure: this mechanism takes place along horizontal mortar joints and 
results in the separation of infill into two or more parts (see Figure 2-39 a and b). The 
separated parts of the masonry infill cause free column deformations, ultimately resulting 
in plastic hinging in the columns. This is a ductile, displacement-controlled mechanism, 
since the earthquake energy is dissipated through the friction along the bed joints. This 

                                                 
1 Reproduced by permission of the Earthquake Engineering Research Institute (EERI) 
2 Source: Murty, Brzev, et al., 2006, reproduced by permission of the EERI 
3 Source: S. Brzev 
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mechanism is likely to occur when the frame is strong and flexible. If the plane of 
weakness forms near the column mid-height, there is a chance for a short-column effect 
in the frame that can lead to a shear failure (see Figure 2-39 a). Note that when an infill 
panel experiences the bed-joint sliding failure, an equivalent diagonal strut may not form, 
so that sliding becomes the governing failure mechanism. 

2. Diagonal strut mechanism with corner compression failure: this mechanism takes place 
due to the high concentration of compression stresses in the diagonal strut. The 
formation of a diagonal strut is preceded by diagonal tension cracking in the infill shown 
in Figure 2-39c. These cracks start in the centre of the infill and run parallel to the 
compression strut. As the load increases, the cracks propagate until they extend to the 
corners of the panel. When the capacity of the diagonal strut has been reached, the 
crushing takes place over a relatively small region (see Figure 2-39 d). The onset of 
diagonal shear cracking should not be considered as the limiting or ultimate load 
condition for infill walls, because the ultimate load is governed by either the capacity of 
the diagonal strut or the bed-joint sliding shear resistance. 

 
 

 
Figure 2-39. Masonry infill behaviour modes: a) and b) bed-joint sliding1; c) diagonal tension2;  
d) corner compression2. 
 
The diagonal strut mechanism can account for the additional stiffness provided by infill panels. It 
has been adopted by some design codes and guidelines for over 30 years, based on the 
pioneering research done in the1960s.  It is the basis for the diagonal strut model proposed in 
CSA S304.1-04 (Stafford-Smith,1966), and its background has been further described in a more 
                                                 
1 Tomazevic, 1999, reproduced by permission of the Imperial College Press 
2 FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency 
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recent publication (Stafford-Smith and Coull, 1991). In this model, the effective strut width, ew , is 
a function of the relative flexural stiffness of the column/beam and the infill, the height/length 
aspect ratio of the infill panel, the stress-strain relationship of the infill material, and the 
magnitude of diagonal load acting on the infill. Diagonal strut properties prescribed by 
international codes vary significantly (Kaushik, Rai, and Jain, 2006). For example, New Zealand 
Masonry Code NZS 4230:2004 prescribes that ew  should be taken as 25% of the length of the 
diagonal. Eurocode 8 (1988) prescribes that ew  should be taken as 15% of the diagonal length 
of the infill. The ACI 530-11 diagonal strut provisions are currently under development, as 
discussed by Henderson, Bennett, and Tucker (2007).  
 
A key design parameter related to the diagonal strut model is the length of bearing (or contact) 
between the adjacent column and the infill (this parameter is denoted as hα  and Lα  in CSA 
S304.1 Cl.7.13.3.2, for the column-infill or beam-infill contact length respectively). Experimental 
studies have shown that the bearing length is governed by the flexural stiffness of the column 
relative to the in-plane bearing stiffness of the infill. The stiffer the column, the longer the length 
of bearing, and the lower the compressive stresses at the interface (Stafford-Smith and Coull, 
1991). This phenomenon is reflected in the CSA S304.1 equations used to determine hα  and 

Lα  values. Note that the CSA S304.1 provisions are unique in that they prescribe two contact 
lengths – other codes and design recommendations use only the column contact length 
(corresponding to hα  in CSA S304.1). 
 
Out-of-plane failure takes place due to ground shaking transverse to the plane of the wall. This 
mode of failure is more likely to occur at upper stories of a building, due to amplified 
accelerations, but it can also happen at lower stories due to concurrent in-plane loading that 
may damage the masonry. Arching is the prevalent mechanism in resisting out-of-plane seismic 
loads, because considerable out-of-plane strength can be developed even in cracked infills. 
This has been confirmed by several experimental studies (Dawe and Seah, 1989, and Abrams, 
Angel, and Uzarski, 1996). Note that the arching action is possible only for infills in direct 
contact with the frame (i.e. without a gap at the top). Out-of-plane strength estimates based on 
the flexural model of the infill acting as a vertical beam subjected to uniform load due to out-of-
plane seismic load are rather conservative. Note that CSA S304.1-04 does not contain 
provisions related to out-of-plane resistance of masonry infills. Proposed ACI 530-11 design 
provisions for infill walls (currently under development), include an empirical design equation for 
the out-of-plane resistance of masonry infills based on the arching action, as proposed by Dawe 
and Seah (1989). 
 
Isolated infill: when an infill panel is isolated from the frame, the gap (often called seismic gap), 
must be filled with a very flexible soundproof and fireproof material, e.g. boards of soft rubber or 
special caulking. The gap size (usually in the order of 20 to 40 mm) depends on the stiffness of 
the structure, the deformation sensitivity of the partition walls, and the desired seismic 
performance (Bachmann 2003). In addition to the gap on the sides and top of the panel, a 
restraint for out-of-plane resistance is required. This is typically provided in the form of clip 
angles or dowels at the top and/or sides that restrain out-of-plane motion only. These anchors 
should coincide with vertical and horizontal wall reinforcing (see CSA A370-04 for restraint 
information). 
 
The above discussion mainly pertains to solid infills. Perforations within infill panels are the most 
significant parameter affecting seismic behaviour of infilled systems. Openings located in the 
centre portion of the wall can lead to weak infill behaviour. On the other hand, partial height 
infills can be relatively strong. The frames are often relatively weak in column shear, and partial 
height infills could potentially lead to a short-column mechanism (FEMA 306, 1999). 
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2.6.3 Stack Pattern Walls 
Stack pattern is the arrangement of masonry units in which the head joints are vertically aligned 
(CSA S304.1 Cl.2.2.1). Stack pattern is not recommended for walls resisting seismic loads 
because, unlike a running bond pattern, the wall integrity provided by overlapping units is not 
available. The term stack pattern is now used, rather than stack bond, to highlight the lack of 
bond provided by this configuration of units. Stack pattern walls can be found in existing 
masonry buildings throughout Canada (see Figure 2-40a), and some older walls of this type are 
being demolished, as shown in Figure 2-40b. These walls act as a series of individual vertical 
columns, and the provision of horizontal reinforcement is essential to tie them together. 
 

 
 

a) 

 
b) 

Figure 2-40. Stack pattern walls: a) stack pattern wall in an existing masonry building1;  
b) demolished stack pattern wall2. 
 
CSA S304.1-04 provisions regarding stack pattern walls of relevance for the seismic design are 
summarized in this section. CSA S304.1-94 did not contain any specific design provisions 
related to stack pattern walls. 

                                                 
1 Credit: Svetlana Brzev 
2 Credit: Bill McEwen 
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2.6.3.1 Reinforcement requirements 
 
CSA A371-04 Cl.8.1.3  

 
Joint reinforcement or other horizontal reinforcement is required when structural or veneer 
masonry is laid in stack pattern, defined as less than a 50 mm overlap of masonry units. 
 
10.10.3  

 
Horizontal reinforcement for in-plane shear resistance in stack pattern walls shall be spaced at  

a) maximum 800 mm for bond beam reinforcing, and  
b) maximum 400 mm for wire joint reinforcing. 

 
10.15.1 
10.15.2 

 

 
Reinforced stack pattern walls need to meet the minimum horizontal and vertical reinforcement 
requirements for non-seismic condition contained in Cl. 10.15.1, and the additional minimum 
seismic requirements of Cl.10.15.2 (see Section 2.5.4.7 and Table 2-2). 
 
Commentary 

 
Provision of horizontal reinforcement is critical for enhancing continuity in stack pattern walls. 
CSA S304.1-04 permits the use of joint reinforcement spaced at 400 mm or less, in addition to 
the bond beam reinforcement provided at a maximum spacing of 2400 mm (Cl.10.15.1.3). 
Codes in other countries, e.g. the U.S. masonry code ACI 530-08 (2008) Cl.1.11 states that the 
horizontal reifnforcement shall be placed at a maximum spacing of 48 in. (1219 mm) on center 
in horizontal mortar joints or in bond beams. Commentary to Cl. 1.11 states that “the use of 
horizontal reinforcement to enhance continuity in stack pattern walls is generally practical only 
by the use of bond beams”.  
 
Note that gross cross-sectional area gA  for minimum area of vertical reinforcement according to 
Cl.10.15.1.1, should be calculated based on the effective compression zone width b  discussed 
in Section 2.6.3.3. 
 
2.6.3.2 In-plane shear resistance 
 
10.10.3  

 
The maximum factored vertical in-plane shear resistance in stack pattern walls shall not exceed 
that corresponding to the shear friction resistance of the continuous horizontal reinforcing used 
to tie the wall together at the continuous head joints (see Section 2.6.3.1 for horizontal 
reinforcement requirements). 
 
Shear friction resistance shall be taken as 

hmr CV μφ=        

where 
μ  = 0.7  is the shear friction coefficient 
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hC  = compressive force in the masonry acting normal to the head joint. It is normally taken as 
the factored tensile force at yield of the horizontal reinforcement crossing the joint. This 
reinforcement must be detailed to develop its yield strength on both sides of the vertical joint. 
 
Commentary 

 
In-plane shear resistance of stack pattern walls is less than that of walls built in running bond. 
There is no masonry contribution to the shear resistance, so the resistance depends exclusively 
on the reinforcement crossing the vertical head joint. This is similar to the treatment of shear 
resistance at wall intersections prescribed in Cl.7.11.4 (see Section C.2). 
 
Shear friction resistance, rV , is proportional to the coefficient of friction,μ , and the clamping 
force, hC , acting perpendicular to the wall height, h  (see Figure 2-41). hC  is equal to the sum of 
tensile yield forces developed in reinforcement bars of area bA , spaced at the distance s , that 
is: 

 
 
 

Reinforcing bars providing the shear friction resistance should be distributed uniformly across 
the vertical joint. The bars should be long enough so that their yield strength can be developed 
on both sides of the joint. Note that, in theory, a sliding shear plane can form along any vertical 
joint in a stack pattern wall. 

 
Figure 2-41. In-plane shear resistance of stack pattern walls. 

shAfC bysh φ=
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2.6.3.3 Out-of-plane shear resistance 
 
10.10.2  

 
Out-of-plane shear resistance of stack pattern walls is determined according to the same 
provisions for walls built in running bond (see Section 2.4.3). Note that, for the purpose of shear 
resistance calculations, b  includes the width of the cell and webs at a vertical bar within the 
length of the reinforced unit. 
 
Commentary 

 
Unless horizontal reinforcement is provided in sufficient amount (size and spacing), out-of-plane 
shear resistance of stack pattern walls is similar to that of a series of isolated vertical columns. 
In Figure 2-42 some stacks are not reinforced with vertical bars and so it is important to have 
adequate horizontal reinforcement to tie the stacks together. 
 
2.6.3.4 Design for the combined axial load and flexure 
The design approach for reinforced stack pattern walls for combined axial load and flexure is 
similar to that presented in Sections 2.3.4 and 2.4.4 for running bond. In determining the out-of-
plane flexural resistance, the flexural tensile strength tf  should be taken equal to 0 for tensile 
resistance parallel to bed joints (S304.1 Cl.5.2.1). Also, the effective compression zone width b  
should be taken according to Cl.10.6.1.  
 
10.6.1  

 
For the case of out-of-plane loading (or “minor axis bending” as referred to in S304.1), the 
effective compression zone width,b , used with each vertical bar in the design of stack pattern 
walls with vertical reinforcement shall be taken as the lesser of 
a) spacing between vertical bars, s , or 
b) the length of the reinforced unit. 
 
Figure 2-42 shows a portion of a reinforced stack pattern wall. In this example the length of the 
reinforced units is less than the spacing between bars and so the compression zone width,b , to 
be used with such bar is equal to the block length. 

 
Figure 2-42. Effective compression zone width b  for out-of-plane seismic effects in stack 
pattern walls. 



4/1/2009   2-71

 
2.6.3.5 Seismic requirements – plastic hinge region 
 
10.16.4.1.3  

 
CSA S304.1-04 permits the use of stack pattern in plastic hinge regions of ductile shear walls, 
however these regions must be solidly grouted and constructed of open-ended H-blocks. 
 
Commentary 

 
In addition to the proper amount and detailing of horizontal and vertical reinforcement in plastic 
hinge regions, the extent and continuity of grout is critical for the satisfactory seismic 
performance of reinforced masonry walls (see Section 2.5.4.2 for a detailed discussion on 
plastic hinge regions). Some codes, such as the New Zealand masonry code (NZS 4230:2004), 
do not permit the use of stack pattern walls in plastic hinge regions of the masonry walls, while 
the U.S. masonry code ACI 530-08 (2008) does (see Cl.1.17.3.2.6.e).. 
 
2.6.3.6 Unreinforced stack pattern walls 
CSA S304.1 does not contain any provisions related to unreinforced stack pattern walls. 
Cl.7.10.3 for unreinforced walls is identical to Cl.10.10.3 for the in-plane seismic resistance of 
reinforced stack pattern walls. 
 
Commentary 

 
The seismic performance of stack pattern walls without closely spaced horizontal reinforcement 
has been much less satisfactory than for walls constructed in running bond. The presence of 
horizontal reinforcement is critical for tying together vertical columns formed by stacked blocks 
(NZS 4230:2004). 
 
Unreinforced stack pattern walls located in regions with moderate to high seismic risk are 
considered to be vulnerable to seismic effects and should be either retrofitted or demolished. It 
is suggested that unreinforced stack pattern walls not be used in seismic regions. 

2.6.4 Nonloadbearing Walls 
Nonloadbearing walls resist the effects of their own dead load and any out-of-plane wind and 
earthquake loads. This includes partitions and exterior walls that do not support floors and roofs 
(S304.1 Cl.2.2). However, walls that do not support floors and roofs, but resist the in-plane 
forces from wind and earthquake loads are considered loadbearing shear walls (see Section 
2.5.4.7 for a detailed discussion on seismic reinforcement requirements for shear walls). 
 
10.15.2.3 
10.15.2.4 

 

 
Minimum seismic reinforcement requirements for nonloadbearing walls are summarized below: 
1. If ( ) 35.02.0 ≤aaE SFI  

Minimum seismic reinforcement is not required per CSA S304.1-04. 
2. If ( ) 75.02.035.0 ≤≤ aaE SFI  (Cl.10.15.2.4) 

Nonloadbearing walls shall be reinforced in one or more directions with reinforcing steel 
having a minimum total area of  
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gstotal AA 0005.0=   
The reinforcement may be placed in one direction, provided that it is located to 
reinforce the wall adequately against lateral loads and that it spans between lateral 
supports. 

3. If ( ) 75.02.0 ≥aaE SFI  (Cl.10.15.2.3) 
Nonloadbearing walls shall be reinforced horizontally and vertically with steel having a 
minimum total area of  

gstotal AA 001.0=  distributed with a minimum area in one direction of at least  

gv AA 00033.0min = (approximately one-third of the total area). 

gA  denotes gross cross-sectional area corresponding to unit wall length (for vertical 
reinforcement), or unit height (for horizontal reinforcement). Note that this minimum total 
area is one half of that required for loadbearing walls. 

 
10.15.2.6  

 
Horizontal seismic reinforcement must be continuous between lateral supports in both 
loadbearing and nonloadbearing walls. Its spacing cannot exceed 

(a) 400 mm where only joint reinforcement is used; 
(b) 1200 mm where only bond beams are used; or 
(c) 2400 mm for bond beams and 400 mm for joint reinforcement where both are used. 

 
In terms of seismic design, the effect of out-of-plane seismic loads is likely going to govern the 
design of nonloadbearing walls. The approach for out-of-plane flexural design is similar to that 
presented in Section 2.4.4 for reinforced masonry walls. For unreinforced nonloadbearing walls, 
the design procedure presented in Section 2.6.1.3 should be followed. 
 
Reinforced nonloadbearing walls include masonry enclosing elevator shafts and stairways, walls 
used as exterior cladding (not veneers), and masonry partitions which exceed 200 kg/m2 in 
mass or are over 3 m in height, and are located at the sites where ( ) 75.02.0 >aaE SFI  (Cl.4.6.1). 
Seismic requirements for nonloadbearing walls in CSA S304.1-94 were similar to the current 
code requirements. Cl.6.3.3.1 stated that minimum seismic reinforcement is required for 
nonloadbearing walls located in velocity or acceleration-related seismic zones 2 or higher.  
Minimum seismic reinforcement requirements stated in Cl.5.2.2.3 and 5.2.2.4 of CSA S304.1-94 
are the same as the current requirements (S304.1-04 Cl.10.15.2.3 and 10.15.2.4) in terms of 
reinforcement area.  S304.1-94 reinforcement spacing requirements were similar to those stated 
in Cl.10.15.2.6 of S304.1-04. Note that the item c) in Cl.10.15.2.6 of S304.1-04 covering the 
case of a combination of bond beams and joint reinforcement did not exist in the previous 
standard. 

2.6.5 Masonry Veneers and their Connections 
 
2.6.5.1 Background 
In some applications and exposure conditions, the need for better control over rain penetration 
led to the incorporation of an air space or cavity in traditional masonry walls to provide a 
capillary break between two wythes. This type of two-stage wall can be referred to as a 
rainscreen wall, when the air space behind the outermost element is drained and ventilated to 
the exterior and an effective air barrier is included in the backup assembly. Masonry veneer, an 
important component of a modern rainscreen wall, is a nonloadbearing masonry facing attached 
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to, and supported laterally by a structural backing. The structural backing may be structural 
masonry, concrete, metal stud or wood stud. A section of a typical rainscreen wall is shown in 
Figure 2-43. 
 
While masonry veneers of brick, block or stone are nonloadbearing components, there are 
structural issues to be addressed if they are to perform satisfactorily. Veneers must be 
connected adequately to a structural backing by means of metal ties to ensure effective transfer 
of lateral loads due to wind and earthquakes. Steel angles are usually used to support veneers 
across openings (lintels), and to provide horizontal movement joints (shelf angles). For more 
information related to masonry veneers refer to the Masonry Technical Manual by MIBC (2008). 
 
Veneer design is addressed by CSA S304.1-04 Cl.9 and CSA A370-04 Connectors for 
Masonry.  

 
Figure 2-43. Key components of a masonry veneer (MIBC, 2008, reproduced by permission of 
the Masonry Institute of BC). 

2.6.5.2 Ties 
Ties are the key components that connect a veneer to a structural backing to ensure effective 
lateral load transfer. Tie requirements are outlined in CSA A370-04 Connectors for Masonry. 
The older kinds of ties, such as strip ties and Z-ties (now referred to as “Prescriptive Ties“), are 
seldom used in modern commercial construction, and cannot be used where the seismic hazard 
index, ( ) 35.02.0 >aaE SFI . The newer, 2-piece, adjustable, engineered ties that are now in 
common use are now simply referred to as “Ties”. CSA A370-04 contains strict design 
requirements for the corrosion resistance, strength, deflection and free play of ties.  
 
CSA A370-04 requires stainless steel ties for masonry over 13 m high (formerly “buildings” over 
11 m in CSA A370-94) for areas subject to high wind-driven rain. Hot dipped galvanized 
coatings are the acceptable minimum corrosion protection for walls 13 m or lower in these 
areas, and for all walls in drier areas. The standard provides wind-driven rain data for locations 
across Canada in Annex E, in terms of their Annual Driving Rain Index (aDRI). 
 
The maximum tie spacing is prescribed by S304.1-04 Cl.9.1.3 and A370-04 Cl.7.1 as follows 
• 600 mm vertically, and  
• 820 mm horizontally 
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Note that S304.1-04 and A370-04 prescribe different value for horizontal tie spacing – the value 
of 820 mm prescribed by S304.1-04 is stated here because it better reflects construction 
dimensions. 
 
While these tie spacings may be feasible for stiff backups like block and concrete, in most cases 
they cannot be achieved under the calculation method specified for flexible stud backups. The 
wind load lateral deflection limit for flexible stud backups supporting masonry veneer is 
span/360.   
 
The factored resistance of a tie ( rP ) is addressed by A370-04 Cl.9.4.2.1.2, and can be 
determined from the following equation 

ultr PP *φ=  
where φ  is the the resistance factor, which can assume the following values 

φ  = 0.9 for tie material strength 
φ  = 0.6 for embedment failure, failure of fasteners, or buckling failure of the connection. 

ultP  denotes the ultimate tie strength. A370-04 requires that the ultimate strength of a masonry 
tie be not less than 1000 N. 
 
2.6.5.3 Seismic load provisions for ties 
Seismic load provisions for ties apply in areas in which the seismic hazard index 

( ) 35.02.0 >aaE SFI , and for all post-disaster buildings (NBCC 2005 Cl.4.1.8.17.2). 
 
Ties are designed to resist the lateral wind and seismic loads acting perpendicular to the veneer 
surface, based on the tributary tie area. Seismic lateral loads on ties are determined from the 
provisions for elements and components of buildings and their connections (NBCC 2005 Cl. 
4.1.8.17). The seismic tie load pV  is determined from the following equation: 
 

( ) ppEaap WSISFV 2.03.0=  
where  

( )2.0aS = 5 % damped spectral response acceleration for a 0.2 sec period (depends on the 
site location; values for various locations in Canada from NBCC 2005 Appendix C) 

aF = foundation factor, which is a function of site class (soil type) and )2.0(aS  (see Section 
1.5.2)  

EI = building importance factor equal to1.0, except 1.3 for schools and community centres, 
and 1.5 for post-disaster buildings  

pxrpp RAACS =      (where 0.47.0 << pS )    
pS = horizontal force factor for part or portion of a building and its anchorage (see NBCC 

2005, Table 4.1.8.17, Case 8) 
pC  = seismic coefficient for a particular nonstructural component (equal to 1.0 for ties)  
rA  = response amplification factor to account for the type of attachment (equal to 1.0 for 

ties) 
nxx hhA 21+=  amplification factor to account for variation of response with the height of the 

building (maximum 3.0 for the worst case at top of wall for ties). Note that 3=xA  is the 
worst case for a tall building that may have higher mode contribution to accelerations in the 
top part of the building; thus 3=xA  would be used for the entire top floor. For a single-
storey building this doesn’t make much sense. However, the accelerations will be higher at 
the top of a wall where the capacity is reduced because of low vertical load on the bricks, so 

3=xA  may be  reasonable for the top row of ties. This could be reduced in the lower part of 
the wall, but for construction simplicity it would be better to maintain one spacing on most 
projects. 

pR  = element or component response modification factor (equal to 1.5 for ties).  
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So, the pS  value for tie design is 
      0.25.10.30.10.1 =⋅⋅=pS  

pW  = tributary weight for a specific tie, equal to the unit weight of the veneer masonry 
(typically taken as 1.8 kN/m2 for brick and cored block) times the tributary area (equal to the 
product of tie spacing for each direction).  

The tie design load depends on the type of veneer backup (rigid/flexible), as per S304.1 
Cl.9.1.3.3: 
• For rigid backups (e.g. concrete block walls), the tie force is equal to the seismic load pV  
corresponding to the tributary area weight pW . 

• For flexible backups (e.g. steel or wood stud walls), a tie must resist  40% of the tributary 
lateral load on a vertical line of ties. However, a tie must also be able to resist the load from 
double the tributary area on the tie. 

 
The new formula from the NBCC 2005 may result in lower lateral seismic loads than the NBCC 
1995 and may result in wind loads governing in more cases. 
 
Factored tie capacities rV  are normally provided by test data from the manufacturers. The tie 
capacity is considered to be adequate provided that 

rp VV ≤  
If this is not a case, the tributary area and resulting tie spacing can be reduced until the above 
requirement is satisfied, or a stronger tie can be considered. In many cases, the design will 
begin with a given tie strength, with the resulting spacing calculated and assessed (see design 
Example 7 in Chapter 4). 

2.6.6 Boundary Elements and Flanged Shear Walls 
CSA S304.1-04 does not contain any specific seismic provisions regarding boundary elements 
in reinforced masonry shear walls. Boundary elements are thickened and specially reinforced 
sections provided at the ends of shear walls (see Figure 2-44a). The practice of using boundary 
elements is common for reinforced concrete ductile shear walls, with the related seismic design 
provisions included in CSA A23.3-04. In tall shear walls subjected to significant bending 
moments at their base, boundary elements provide an additional space to accommodate 
confinement and additional vertical flexural reinforcement. Boundary elements also provide 
stability against lateral out-of-plane buckling in thin wall sections (this was discussed in Section 
2.5.4.4). To sustain high flexural and normal stresses, vertical reinforcement in the boundary 
elements must be well confined using properly anchored transverse reinforcement. This applies 
particularly to the plastic hinge regions of shear walls. Since seismic bending moments in 
reinforced masonry shear walls in low- and medium-rise buildings are not as high as those 
expected in RC shear walls in high-rise buildings, the provision of boundary elements may not 
be required.  
 
It is of interest to note that U.S. masonry design standard ACI 530-08 (Clauses 3.3.6.5.1 to 
3.3.6.5.5) contains provisions for boundary elements in reinforced masonry shear walls. 
However, Cl.3.3.6.5.1 states that it is expected that boundary elements will not be required in 
lightly loaded walls (e.g. mgf fAP '1.0≤ for symmetrical wall sections), in walls that are either 
short (squat) or moderate in height (aspect ratio 0.1<wff lVM ), or in walls subjected to 
moderate shear stresses. It is expected that most masonry shear walls in low- to medium-rise 
buildings would not develop high enough compressive strains to warrant special confinement.  
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Boundary elements may be required in shear walls to satisfy height-to-thickness requirements, 
or in walls in which flexural failure governs with the wlc  ratio exceeding certain limit (similar to 
the ductility check procedure discussed in Section 2.5.4.3). For more details refer to ACI 530-08 
Cl.3.3.6.5.3 and the commentary. 
 
Flanged shear walls are discussed in Section C.2. A typical L-shaped flanged wall section is 
shown in Figure 2-44b. CSA S304.1-04 does not contain any specific seismic provisions related 
to flanged shear walls. Flanged shear walls are required to resist earthquake forces in both 
principal directions.  

 
Figure 2-44. Boundary elements and flanges in reinforced masonry shear walls: a) boundary 
elements; b) flanged shear walls. 

Paulay and Priestley (1992) proposed effective overhanging flange widths for reinforced 
concrete and reinforced masonry shear walls. For tension flanges, it is assumed that vertical 
forces due to shear stresses introduced by the web of the wall into the flange spread out at a 
slope of 1:2. For reinforced concrete flanged shear walls, the flexural strength of wall section 
with the flange in compression is insensitive to the effective flange width as the neutral axis is 
probably in the flange. After significant tension yield excursion in the flange, the compression 
contact area becomes rather small after load reversal, with outer bars toward the tips of the 
flange still in tensile strain. 
 
As a result, the suggested the following overhanging flange width Tb  to be used in seismic 
design for the flanges under tension and compression are as follows: 
• Tension flange: wh5.0  
• Compression flange: wh15.0  
where wh  denotes the wall height. Note that these Tb  values are different than the overhanging 
flange widths prescribed by CSA S304.1-04 for non-seismic design (see Table C-1 and Figure 
C-10 in Appendix C). 
 
Shear walls with unsymmetrical flanges will have different flexural resistances, depending on 
whether flange acts in tension or in compression. Research studies on T-section walls have 
shown that such walls can exhibit larger ductility when the flanges are in compression. 
However, T- and L-section walls may have limited ductility when flanges are in tension (Paulay 
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and Priestley, 1992; Priestley and Limin, 1995). Their experiments have shown that wall failure 
was sudden and brittle, and was initiated by a compression failure of the non-flange end of the 
wall, as shown in Figure 2-45 b). This was principally due to the large compression force 
needed to balance the large tension capacity of the reinforcement in the flange section. 
 
In walls with unsymmetrical flanges, such as the T-section wall shown in Figure 2-45, the 
designer should be careful when applying the capacity design approach to determine flexural 
and shear capacity. The flexural capacity of the wall section is reached when the flange is in 
compression and the axial load is at minimum, minfP ,as shown in Figure 2-45a. However, the 
maximum shear occurs when the flange is in tension and the axial load is at maximum, maxfP , 
as shown in Figure 2-45b (this will result in a significantly higher flexural strength). A similar 
approach should be taken when the capacity design approach is applied to shear walls with 
pilasters. 

 
Figure 2-45. T-section flanged shear wall: a) flexural design scenario: web in tension; b) shear 
design scenario: web in compression. 

The importance of web-to-flange connection for effective shear transfer in flanged shear walls is 
discussed in Section C.2. CSA S304.1-04 (clauses 7.11.1 to 7.11.3) prescribes three alternative 
approaches to achieve the effective shear transfer. Seismic studies in the U.S. under the 
TCCMAR research program resulted in recommendations related to horizontal reinforcement at 
the web-to-flange intersections (Wallace, Klingner, and Schuller, 1998). To ensure the effective 
shear transfer, horizontal reinforcement in bond beams needs to be continued from one wall into 
other, for a distance of 600 mm (2 feet) or 40 bar diameters, whichever is greater. The grout 
must be continued across the intersection by removing the face shells of the masonry units in 
one of the walls, as illustrated in Figure 2-46. Note that ACI 530-08 (Cl.1.17.3.2.6) requires that 
bond beams in ductile walls be provided at a vertical spacing of 1200 mm (4 feet).  
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Figure 2-46. Horizontal reinforcement at the web-to-flange intersection: TCCMAR 
recommendations. 

As an alternative to boundary elements, the New Zealand masonry standard NZS 4230:2004 
Cl.7.4.6.5 prescribes the use of horizontal confining plates in ductile reinforced masonry walls. 
These thin perforated metal plates (made either of stainless steel or galvanized steel) are 
placed in mortar bed joints in the compression zone of rectangular walls. The confining plates 
are effective in increasing the maximum masonry compressive strain in plastic hinge regions to 
0.008 (this value is significantly higher than the 0.0025 value prescribed by CSA S304.1-04 for 
unconfined walls). Provision of confining plates in the New Zealand masonry standard is based 
on the research done by Priestley (1982). 

2.6.7 Wall-to-Diaphragm Anchorage 
 
CSA A370-04  

 
Masonry shear walls should be adequately anchored to floor and roof diaphragms.  
 
The maximum anchor spacing between walls and horizontal lateral supports must not exceed 
ten times the nominal wall thickness (t+10 mm) (Cl.7.2.2). Anchors must be fully embedded in 
reinforced bond beams or reinforced vertical cells.   
 
When the unfactored load applied normal to a wall is greater than 0.24 kPa, the ultimate 
strength of a wall anchor must not be less than 1,600 N (Cl.8.2.1). 
 
Commentary 

 
Anchorage is one of the most important, and in many cases the most vulnerable, components of 
existing masonry buildings exposed to earthquake effects. Many failures of masonry buildings 
result from wall-diaphragm failure that allows an out-of-plane wall failure, followed by a 
diaphragm failure. 
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Wall anchors must be effective in resisting the horizontal design forces from in-plane and out-of 
plane seismic loads. According to the capacity design approach, anchors should be designed to 
remain elastic in a seismic event (no yielding). This can be achieved by designing the anchor 
capacity based on the wall capacity, or on the elastic wall forces (corresponding to od RR  of 
1.0).  
 
The anchors need to resist tension and shear forces, as shown in Figure 2-47. 

 
Figure 2-47. Tension and shear anchors at the wall-to-diaphragm connection. 

Seismic load provisions for nonstructural components and their connections (including anchors) 
are provided in NBCC 2005 Cl.4.1.8.17. 

2.6.8 Constructability Issues 
Most of the information provided in this section has been adapted from the Masonry Technical 
Manual prepared by the Masonry Institute of BC (2008). 
 
2.6.8.1 Reinforcement 
Reinforced masonry is basically another form of reinforced concrete. However, reinforcing and 
grouting details should consider the core configuration of the masonry units. Care should be 
taken to disperse the rebar throughout the wall, and to avoid congestion in individual vertical 
cells. The cell size of the masonry units will dictate the size and number of bars that can be 
effectively grouted. A  reinforcement arrangement, such as the one shown in Figure 2-48, is 
unsuitable and should be avoided. Typical reinforced masonry makes use of 15M or 20M bars. 
Units of 125, 150 and 200 mm nominal width should not contain more than one vertical bar per 
cell (2 bars at splices). 25M bars are occasionally used, but are more difficult to handle and 
require long laps. Vertical bars are typically placed in one layer in the centre of the wall. Site 
coordination is required to ensure that rebar dowels are installed to coincide with reinforced 
masonry cell locations. 
 
Horizontal rebar is placed in bond beam courses using special bond beam blocks that have 
depressed or knock-out webs. Bond beams are typically spaced at 2400 mm vertically, but may 
also be positioned to coincide with lintel courses over openings. Joint reinforcement is often 
used in addition to bond beam bars. It is a ladder of 9 gauge (3.7 mm) galvanized wire installed 
in the mortar bed joint, which positions a wire in the centre of each block face shell. It is spaced 
at a maximum of 400 mm when used as seismic reinforcement. Joint reinforcement resists wall 
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cracking and can contribute to the horizontal steel area in the wall. If joint reinforcement is not 
used, the maximum spacing of bond beams is 1200 mm for seismic detailing. 
 

 
Figure 2-48. An example of inappropriate reinforcement arrangement: 2 bars vertically and 2 
bars horizontally in a 20 cm wall are almost impossible to grout, particularly at splices where the 
steel is doubled (MIBC, 2008, reproduced by permission of the Masonry Institute of BC). 
In addition to flexural, shear and minimum seismic steel, reinforcing is also required around 
openings over 1000 mm in loadbearing walls, at each side of control joints, and at the corners, 
ends, intersections and tops of walls. CSA S304.1-04 (Clause 4.6.1) allows unreinforced 
masonry partitions if they are less than 200 kg/m2 in mass and 3 m in height, but only for 
seismic hazard indices ( ) 75.02.0 <aaE SFI .  
 
Nonloadbearing masonry partitions must have adequate top anchorage to avoid out-of-plane 
collapse. Dowels or angle clips must align with cells containing vertical bars (see CSA A370-04 
for anchorage details). Bond beams at the tops of walls constructed under slabs or beams 
should be located in the second course below the slab to allow effective grouting of that course. 
Cells in the top course containing vertical bars can be dry packed with grout as they are laid 
with open-end units.    
 
2.6.8.2 Masonry grout 
Masonry grout, or “blockfill”, must flow for long distances through relatively small cells to anchor 
wall reinforcement. It is therefore placed at a much higher slump than regular concrete – in the 
range of 200 to 250 mm. While this water content would be problematic in cast-in-place 
concrete, in masonry the extra water necessary for placement is absorbed into the masonry 
units, thereby reducing the in-place water/cement ratio and providing adequate strength in the 
wall. Standard compressive strength tests using non-absorbent cylinders provide misleading 
data, as the extra water is trapped in the cylinder. Testing has shown the actual grout strength 
to be at least 50% higher than cylinder results. This situation is recognized in CSA S304.1 by 
basing masonry strength requirements on grout strengths of only 12.5 MPa by cylinder test. In 
some cases, a higher cement content grout (20 MPa) may be preferred for pumping reasons. 
 
The most commonly used type of grout is Course Grout, which has a maximum aggregate size 
of 12 mm. Fine Grout uses coarse sand for aggregate and is usually used in small core units 
such as reinforced brick. Grout is supplied either by ready-mix truck or mixed on site, with 
quality control data available from the supplier or field test cylinders. 
 
While grouting, care must be taken to completely fill the reinforced cores and to ensure that all 
bars, bolts and anchors are fully embedded. Vibration is usually not practical, but bars can be 
shaken to “puddle” the grout. Grout is often pumped in 2.4 m pours from bond beam to bond 
beam. The maximum pour height for “high-lift grouting” in CSA A371-04 Masonry Construction 
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for Buildings is 4.5 m, but this should only be considered for H-block or 250 and 300 mm units. 
For total grout pours of 3 m or more, the grout must be placed in lifts of 2 m or less.  
 
Sample base specification:  
 Grout to meet CSA A179-04 requirements 
 Minimum compressive strength 12.5 MPa at 28 days by cylinder test under the property 

specification 
 Maximum aggregate size 12 mm diameter 
 Grout slump 200 to 250 mm 

 
2.6.8.3 Masonry mortar 
Unlike reinforcing and grout, there are few issues in the specification, preparation and 
installation of mortar for structural masonry. CSA A179-04 covers mortar types and mixing, with 
Type S mortar almost always used for structural masonry. It provides the balance of mortar 
strength and bond that is required for good seismic performance. Unlike most cement-based 
products, compressive strength is not the dominant material criteria. Good bond results from 
mortar properties such as workability, adhesion, cohesion and water retention. Adequate bond 
binds the units together to provide structural integrity, tensile and shear capacity, and moisture 
resistance. In a mortar mix, Portland cement provides compressive strength and durability, while 
mortar cement, masonry cement or lime provides the properties that lead to good bond.     
 
Most mortar is mixed on-site, and can be checked against the proportions specified in CSA 
A179-04. There are also pre-manufactured dry and wet mortars. The compressive cube 
strength required in CSA A179-04 for these products can be confirmed by plant or site test data. 
Site inspection of mortar mixing is generally not a significant concern for designers, because the 
bricklayer and the specifier are both looking for workable, well-proportioned mixes that provide 
installation efficiency for the mason, and long term performance for the designer. Mortar joints 
should be well filled and properly tooled for good performance. Concave tooled joints are the 
best shape for both structural and weather resistance. 
 
Mortar joints compensate for minor dimensional variations in the masonry units, and provide 
coursing adjustment that may be necessary to meet required dimensions. Mortar joints also 
contribute to the architectural quality of the masonry assembly through colour and modularity. 
 
2.6.8.4 Unit sizes and layout 
Concrete masonry units are made in various sizes and shapes to fit different construction 
needs. Each size and shape is also available in various profiles and surface treatments. 
Concrete unit sizes are usually referred to by their nominal dimensions. Thus a unit known as 
20 cm or 200x200x400 mm, will actually measure 190x190x390 mm to allow for 10 mm joints 
(see Figure 2-49). Standard nominal widths are 100, 150, 200, 250 and 300 mm, with 200 mm 
being the most common size for structural walls. 
 
Working to a 200 mm module will minimize cutting, and maintain the alignment of vertical cells 
for rebar, as illustrated in Figure 2-50. Where possible, piers, walls and openings should be 
dimensioned in multiples of 200 mm. Foundation dowels must also be laid out to match the 
module of vertically reinforced cells. 
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Figure 2-49. A typical 200 mm block unit (Hatzinikolas and Korany, 2005, reproduced by the 
authors’ permission). 

 
 

 
 

 
 
 
 

Figure 2-50. Examples of good and poor masonry layout (MIBC, 2008, reproduced by 
permission of the Masonry Institute of BC). 

2.6.8.5 Other construction issues 
In “high-lift grouting” (over 1.5 m), clean-out/inspection holes at the base of the reinforced cells 
may facilitate the removal of excessive mortar droppings and, more importantly, can confirm 
that grout has reached the bottom of the core. Clause 8.2.3.2.2 of CSA A371-04 allows the 
common practice of waiving the requirement for clean-out/inspection holes by the designer 
when the masonry contractor has demonstrated acceptable performance, or where the walls are 
not structurally critical. In some cases, the designer may require the initial walls to have clean-
outs, pending demonstrated performance, and then waive them for the remaining walls.  
 
Vertical movement joints in reinforced masonry walls are required to accommodate thermal and 
moisture movements, and possible foundation settlement. They are typically specified at a 
maximum spacing of 15 m.  
 
Masonry walls should be installed to meet the requirements and tolerances of CSA A371-04 
standard. 

Good layout with 
no cut units 

Many cut units reduce 
productivity, increase waste and 
may interfere with vertical rebar 
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3 Summary of Changes in NBCC 2005 and CSA S304.1-04 
Seismic Design Requirements for Masonry Buildings 

3.1 Introduction 
This chapter summarizes the differences in seismic design provisions contained in the 1995 and 
2005 editions of the NBCC, and the 1994 and the 2004 editions of CSA S304.1. Chapter 1 
provides background on the seismic response of structures, seismic analysis methods, and the 
key NBCC 2005 seismic provisions of relevance for masonry design. Appendix A presents the 
NBCC 1995 seismic provisions and discusses changes in the two editions of the code. Chapter 
2 provides an overview of the CSA S304.1 seismic design requirements for reinforced masonry 
walls. 
  
This chapter also presents the results of a case study of a hypothetical warehouse building 
located in three Canadian cities characterized by different seismic risk (Vancouver, Calgary, and 
Toronto), based on both the NBCC 1995 and NBCC 2005.  

3.2 Comparison of the Seismic Load Requirements of the 2005 and 
1995 Editions of NBCC 
NBCC 1995 and 2005 classified masonry shear walls based on their seismic performance 
requirements, as summarized in  
Table 3-1. 

Table 3-1. Classes of Reinforced Masonry Walls Based on Seismic Performance Requirements 

NBCC 1995 Table 4.1.9.1.B 
and 

CSA S304.1-94 

NBCC 2005 Table 4.1.8.9 
and 

CSA S304.1-04 

Comments 

Unreinforced masonry  
R =1.0  

dR =1.0 oR =1.0  Slight difference in where 
unreinforced masonry could 
be used 

Reinforced masonry 
R =1.5 

Shear walls with conventional 
construction 

dR =1.5 oR =1.5 

No major changes in 
seismic design 
requirements in S304.1-04 

Not defined 
Limited ductility shear walls 

dR =1.5 oR =1.5 
New class introduced in 
NBCC 2005 and S304.1-04 

Reinforced masonry with 
nominal ductility 
R =2.0 

Moderately ductile shear 
walls 

dR =2.0 oR =1.5 

No major changes in 
seismic design 
requirements in S304.1-04 

Not defined 
Moderately ductile squat 
shear walls 

dR =2.0 oR =1.5 

New class introduced in 
NBCC 2005 and S304.1-04 

 
Note that squat shear walls (height/length ratio less than unity) are common in low-rise masonry 
buildings, such as warehouses, schools and fire halls. Some of these buildings (e.g. fire halls), 
are defined as post-disaster facilities by NBCC 2005. A new restriction has been introduced in 
NBCC 2005 (Cl.4.1.8.10.2), that requires post-disaster facilities to have an SFRS with a dR  of 
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2.0 or higher. This provision means that squat masonry shear walls in post-disaster buildings 
must be designed to the CSA S304.1-04 provisions for “moderately ductile squat shear walls”.  
A comparison of NBCC 1995 and NBCC 2005 seismic design provisions is presented in Table 
3-2. 

Table 3-2. Comparison of NBCC 1995 and NBCC 2005 Seismic Design Provisions - Equivalent 
Static Force Procedure 

 
Provision 

 
NBCC 1995 NBCC 2005 

Cl.4.1.9.1.(7c) Cl.4.1.8.7 

Analysis method 
Static method is the default 
method. Dynamic method may 
allow a decrease in the base 
shear. 

Dynamic method is the default 
method; static method is restricted to 
certain structures and seismic hazard.

Cl.4.1.9.1.(4,5) Cl.4.1.8.11 
Seismic force  

V = vS(T)IFW / (R/U) 
 

V =S(T)MvIeW / (RdRo) 

Cl.4.1.9.1.(6) Cl.4.1.8.4 
Base response 
spectrum 

v S 
v – amplitude  
S – shape, dependent on ratio 
of Za/Zv 

S(T)=FaSa(T) or FvSa(T) 
 

Sa(T) based on UHS 
 

Cl.4.1.9.1.(11) Cl.4.1.8.4 
Site conditions F 

Independent of T and v 
Fa or Fv 

Depends on T and Sa 

Cl.4.1.9.1.(10) Cl.4.1.8.5   Importance of 
structure I IE 

Same as NBCC1995 
Cl.4.1.9.1.(8,9) Cl.4.1.8.9 

Inelastic response R/U 
Implied overstrength 

RdRo 
Explicit overstrength 

Cl.4.1.9.1.(6) Cl.4.1.8.11 
MDOF  
Forces from higher 
modes 

Increase S in long period range
S decreases slowly with T 
beyond 0.5 seconds 

Mv multiplier on base shear 
Depends on period, type of structure 
and shape of Sa(T) 
 

Cl.4.1.9.1.(13) Cl.4.1.8.11.(6) MDOF 
Distribution of 
forces 

Ft 
Higher force in top storey 

Ft 
Same as NBCC 1995 

Cl.4.1.9.1.(23) Cl.4.1.8.9.(7) MDOF 
Overturning forces J 

Moment reduction factor 
J 

Revised for consistency with Mv 
Cl.4.1.9.1.(28) Cl.4.1.8.11.(8,9,10) 

Eccentricity 
 
Tx=Fx(1.5ex±0.1Dnx) or  
Tx=Fx(0.5ex±0.1Dnx) 
 

 
Tx=Fx(ex±0.1Dnx) 
 
Must determine torsional sensitivity 

Cl.4.1.9.3 Cl.4.1.8.6 
Irregularities Mainly height restrictions and 

some specific restrictions on 
masonry 

Irregularities better defined with more 
stringent requirements 
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3.3 Comparison of the Seismic Design Requirements of the 2004 
and 1994 Editions of CSA S304.1 

3.3.1 Summary of New Seismic Design Provisions in CSA S304.1-04 
The classification of masonry walls has been expanded, and new definitions introduced in 
NBCC 2005 and CSA S304.1-04, as shown in Table 3.1. These changes provide similar 
definitions for masonry and concrete walls in the new standards.  
 
NBCC 2005 imposes more height limitations than NBCC 1995. Walls with “limited ductility” are a 
new classification with the same Rd and Ro values as “conventional construction”. This 
classification allows design of limited ductility walls in taller buildings, however more stringent 
detailing is provided. 
 
Moderately ductile squat shear walls are a new classification with an Rd = 2.0. They have less 
severe restrictions on height to thickness ratios, and require additional checks on horizontal 
reinforcement. 

3.3.2 Comparison of the Seismic Design and Detailing Requirements for 
Reinforced Masonry Walls in CSA S304.1-04 and CSA S304.1-94 

This section compares the seismic design and detailing requirements for classes of walls in the 
1994 and 2004 editions of CSA S304.1 standard. The following classes of walls can be 
compared: 

• “Moderately ductile shear walls” (S304.1-04) and “reinforced masonry with nominal 
ductility” (S304.1-94) – see Table 3-3, and 
• “Shear walls with conventional construction” (S304.1-04) and “reinforced masonry” 
(S304.1-94). 

  
The “limited ductility shear walls” and “moderately ductile squat shear walls”, did not exist in 
previous editions of CSA S304.1, so a comparison is not possible. For information on the 
seismic requirements for these wall classes see Table 2-4. 
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Table 3-3. Comparison of Seismic Design Requirements for Moderately Ductile Shear Walls 
(S304.1-04) and Reinforced Masonry with Nominal Ductility (S304.1-94) 

Provision CSA S304.1-94 
Reinforced masonry with 
nominal ductility 

CSA S304.1-04 
Moderately ductile shear walls 

Ductility level R =2.0 dR =2.0 oR =1.5 

Clause A5.2 Clause 10.16.5.2.1 Plastic hinge 
region 

pl = greater of  

wl or 6/wh  
Unchanged 

Clause A.7 Clause 10.16.5.2.3 Ductility check 
1. 0025.0=mε  

2. 2.0<wlc  when 3<ww lh  
 

1. 0025.0=mε  

2. 2.0<wlc  when   4<ww lh  

    15.0<wlc  when 84 << ww lh  

Clause A5.2 Clause 10.16.5.2.2 Wall height-to-
thickness ratio 
restrictions 

14)10( <+th  Unchanged 

Clause A6.1 Clause 10.16.5.3.1 Shear/diagonal 
tension 
resistance smr VVV += 5.0  

(50% reduction in the masonry 
shear resistance) 

 
Unchanged 

Clause A6.2 Clause 10.16.5.3.2 Sliding shear 
resistance 

2PV mr μφ=  
only the reinforcement in the 
tension zone should be taken into 
account for 2P  calculation. 

Unchanged 

Clause A5.3 Clause 10.16.4.1.3 Grouting 
Masonry within the plastic hinge 
region shall be fully grouted. Unchanged 

Clause 5.2.2 Clause 10.15.2.2 Minimum 
seismic 
reinforcement 
requirements 

Minimum seismic reinforcement 
requirements apply Unchanged 

 
Note that shear walls with conventional construction (S304.1-04) and reinforced masonry walls 
(S304.1-94) do not require the special seismic detailing like limited ductility and moderate 
ductility walls. These walls need to be designed to resist the effect of factored loads, and to 
satisfy the minimum seismic reinforcement requirements summarized in Table 3-4. Under the 
NBCC 2005 Cl.4.1.8.1.1, seismic design requirements need to be considered when 

12.0)2.0( ≥S . However, it is possible to use unreinforced masonry at sites where  
( ) 35.02.0 <aaE SFI  (S304.1-04 Cl.4.5.1). 
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Table 3-4.  Comparison of CSA S304.1-94 and S304.1-04 Seismic Reinforcement 
Requirements for Shear Walls 

 CSA S304.1-94 CSA S304.1-04 
 

Clause 6.3.3.1 Clause 4.6.1 Applicability 
of minimum 
seismic 
reinforcement 
requirements 

In velocity- or acceleration-related 
seismic zones of 2 and higher, 
reinforcement conforming to 
Clause 5.2.2 shall be provided for 
masonry construction in 
loadbearing and lateral load-
resisting masonry 

At sites where the seismic hazard index 
( ) 35.02.0 ≥aaE SFI , reinforcement 

conforming to Clause 10.15.2 shall be 
provided for masonry construction in 
loadbearing and lateral load-resisting 
masonry 

Clause 5.2.2.2 Clause 10.15.2.2 Minimum 
area: vertical 
& horizontal 
Reinforcement  

Loadbearing walls and shear 
walls shall be reinforced 
horizontally and vertically with 
steel having a minimum total area 
of gA002.0  distributed as 
follows: 

αgv AA 002.0=  

( )α−= 1002.0 gh AA  
Where 

vA = area of vertical steel 

hA = area of horizontal steel 
α = distribution factor between 
0.33 and 0.67, at the discretion of 
the designer. 

(Same requirements in different terms) 
 
Loadbearing walls (including shear 
walls) shall be reinforced horizontally 
and vertically with steel having a 
minimum total area of  

gstotal AA 002.0=  
distributed with a minimum area in one 
direction of at least 

gv AA 00067.0min = (approximately 
one-third of the total area) 
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 CSA S304.1-94 

 
CSA S304.1-04 

Clause 5.2.2.2 Clause 10.16.4.3.2 Spacing: 
vertical 
reinforcement 

Vertical reinforcement shall 
be spaced at not more than 
a) 6 times the wall 

thickness or 
b) 1200 mm 
 

Vertical seismic reinforcement shall be 
uniformly distributed over the length of the 
wall. Its spacing shall not exceed  the lesser 
of  
a) )10(6 +t mm 
b) 1200 mm 
c) 4wl  (for limited ductility or moderately 

ductile walls only) 
but it need not be less than 600 mm 
 
 

Clause 5.2.2.2 Spacing: 
horizontal 
reinforcement 

Horizontal reinforcement 
shall be spaced at not more 
than 
c) 6 times the wall 

thickness or 
d) 1200 mm 
When joint reinforcement is 
provided, the spacing should 
not exceed 400 mm (this is 
not clearly specified by 
S304.1). 
 

Outside plastic hinge regions (Cl.10.15.2.6): 
Horizontal seismic reinforcement shall be 
continuous between lateral supports. Its 
spacing shall not exceed 
a) 400 mm where only joint reinforcement is 
used; 
b) 1200 mm where only bond beams are 
used; or 
c) 2400 mm for bond beams and 400 mm 
for joint reinforcement where both are used. 
 
Plastic hinge regions (Cl. 10.16.4.3.3): 
Reinforcing bars are to be used in the 
plastic hinge region, at a spacing not more 
than 
a) 1200 mm or  
b) 2wl  
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3.4 Comparison of Masonry Wall Design for Different Design Codes 
and Site Locations 

3.4.1 Building Description 
Two typical shear walls, one squat and one flexural (non-squat), are considered for a single-
storey reinforced masonry warehouse. The reinforcement required by NBCC 2005 and CSA 
304.1-04 is compared to the reinforcement required by NBCC 1995 and CSA 304.1-94. The 
example warehouse is 64 m long and 27 m wide, with a wall height of 6.6 m. Masonry walls are 
located around the perimeter, with steel columns in the interior. The roof structure consists of 
steel beams, open web steel joists, and a composite steel and concrete deck. The design is 
presented for: Vancouver, BC; Calgary, AB; and Toronto, ON. 

3.4.2 Design Criteria 
1. Lateral seismic forces are calculated using the NBCC 2005 and NBCC 1995 (wind loads 

were not considered) 
2. Masonry walls are designed to CSA S304.1-94 and CSA S304.1-04 for in-plane seismic 

loads (slenderness effects not checked in the design) 
3. Masonry properties: 190 mm hollow concrete block units, block strength 15 MPa, and Type 

S mortar 
4. Reinforcement properties: Grade 400 steel for vertical reinforcement and horizontal bond 

beam reinforcement, and ladder-type wire (No.9 ASWG) joint reinforcement 

3.4.3 NBCC Seismic Load Calculations 
The seismic weight (W) is calculated as 7370 kN, and includes the dead load and 25% of the 
snow load. For consistency, the same seismic weight has been taken for all locations, despite 
the difference in actual design snow loads. The upper half of the walls is included in the seismic 
weight calculation, and they are assumed to be fully grouted (conservative assumption for the 
weight calculation only). The fundamental period has different values depending on the code: 
NBCC 2005 gives a period of 0.2 sec, while NBCC 1995 gives 0.07 sec and 0.11 sec for the 
main directions. 
 
The roof diaphragm is considered to be rigid in the design. The building is symmetrical in plan 
with regard to both principal axes. The effects of accidental torsion are taken into account by 
increasing the in-plane seismic force along the sides of the building by 10%.  
 
NBCC 1995 and NBCC 2005 seismic design parameters used for this study are summarized in 
tables below. 
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Table 3-5. An Overview of the NBCC 1995 and NBCC 2005 Design Parameters 

Code NBCC 1995 NBCC 2005  
Ductility Level Reinforced masonry 

 
R = 1.5 

Shear walls with conventional 
construction 

dR = 1.5 oR = 1.5 

Soil conditions F= 1.5 Site Class D 
Building 
Importance 

Normal importance- all other 
buildings (Cl.4.1.9.1.10)  
I  = 1.0     

Normal importance (Table 4.1.2.1) 

EI =1.0 

 

Table 3-6. NBCC 2005 Seismic Design Parameters (Site Class D) 

 
Location 

)2.0(aS   
(Table C-2, 
Appendix C) 

aF  
(Table 4.1.8.4B) 

Seismic hazard 
index ( )2.0aaE SFI  

Vancouver 0.96 1.1 1.06 >0.35 
Toronto 0.28 1.3 0.36>0.35 
Calgary 0.15 1.3 0.20<0.35 

 

Table 3-7. NBCC 1995 Seismic Design Parameters (Foundation factor F=1.5) 

Location 
aZ  vZ  va ZZ  S  FS ⋅  v  

Vancouver 4 4 1 3 3 0.2 
Toronto 1 0 1 3 3 0.05 
Calgary 0 1 <1 2.1 3 0.05 

3.4.4 Shear Wall Design 
The dimensions of the typical squat and flexural shear walls are shown in Figure 3-1. The 
dimensions and material properties are the same for all three locations. The axial loads are 
slightly different (150 kN for the flexural wall and 230 kN for the squat wall). Note that the 
height/length aspect ratios are equal to 0.83 and 2.20 for the squat and flexural walls 
respectively. 
 
The following material properties were used in the design: 
• 200 mm nominal width concrete masonry units (190 mm actual) 
• Masonry compressive strength: mf ′ = 9.8 MPa for hollow ungrouted masonry, and mf ′ =7.5 
MPa for fully grouted masonry (15 MPa block) 
• Steel yield strength: yf = 400 MPa (used both for Grade 400 steel bars and joint 
reinforcement) 
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Figure 3-1. Wall dimensions and loading scheme. 

The wall design parameters and key results are summarized in the following tables. Note that 
the vertical reinforcement is specified in terms of the number of bars of a specific size; this is 
different from a typical design specification, where the same information would be presented in 
terms of bar size and spacing.  
 

Table 3-8. Design Results – Squat Shear Wall 

 
Shear Force fV  

(kN) 
Vertical and Horizontal Reinforcement  

 
 
Location 

NBCC 
1995 

NBCC 
2005 

NBCC 1995 
S304.1-94 

NBCC 2005 
S304.1-04 

Vancouver 
531 630  V:14-15M (*) vρ =0.18%  

H:15M@600 hρ =0.18% 

V:16-15M     (*)         vρ =0.21% 

H:15M@600             hρ =0.18% 

Toronto 

133 185 V:4-15M (***) vρ =0.05%       

H: none         hρ =0 

V:8-15M        (*,**)    vρ =0.11%        

H:15M@2400+         hρ =0.10% 
 9 ga. joint reinf @200  

Calgary 
133 100 V:4-15M (***) vρ =0.05% 

H: none          hρ =0       

V:4-15M    (***)          vρ =0.05% 

H: none                      hρ =0 

Notes: 
V – vertical reinforcement      vρ = vertical reinforcement ratio 

H – horizontal reinforcement  hρ = horizontal reinforcement ratio 
*-fully grouted wall based on shear design 
** - minimum seismic reinforcement requirements govern, corresponding to totalρ =0.2% (S304.1-04 
Cl.10.15.2.2) 
***-minimum reinforcement requirements for loadbearing walls govern (S304.1-04 Cl.10.15.1.2) 
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Table 3-9. Design Results – Flexural Shear Wall 
 

Shear Force 
fV  (kN) Vertical and Horizontal Reinforcement 

 
 
Location 

NBCC 
1995 

NBCC 
2005 

NBCC 1995 
S304.1-94 

NBCC 2005 
S304.1-04 

Vancouver 
152 180  V: 13-15M (*,**)   vρ =0.5% 

H:15M@1200      hρ =0.09% 

V: 15-15M (*,**) vρ =0.5% 

H: 15M@1200   hρ =0.09%

Toronto 
38 55 V: 2-15M              vρ =0.07% 

H: none                hρ =0 

V: 4-15M           vρ =0.14% 

H: 15M@1200  hρ =0.09% 

Calgary 
38 30 V: 2-15M              vρ =0.07% 

H: none                hρ =0 

V: 2-15M           vρ =0.07% 

H: none             hρ =0 

Notes: V – vertical reinforcement   H – horizontal reinforcement     

vρ = vertical reinforcement ratio   hρ = horizontal reinforcement ratio 
*-fully grouted wall based on shear design 
** - minimum seismic reinforcement requirements govern, corresponding to totalρ =0.2% (S304.1-04 
Cl.10.15.2.2) 

3.4.5 Discussion 
3.4.5.1 Design to NBCC 2005 and CSA S304.1-04 
CSA S304.1-04 Cl.4.6.1 requires that minimum seismic reinforcement be provided  when the 
seismic hazard index ( ) 35.02.0 ≥aaE SFI  (Cl.10.15.2.2) (see Table 3-4). This applies to the wall 
designs for Vancouver and Toronto, but not Calgary. However, since these are loadbearing 
walls, the Calgary design must meet the minimum reinforcement requirements for loadbearing 
walls (Cl.10.15.1.1).  Reinforcement requirements for the walls at the three locations are 
summarized in Table 3-10. 
 

Table 3-10. CSA S304.1-4 Requirements for Shear Wall Reinforcement 

Location Unreinforced 
masonry 
 
Cl.4.6.1 

Minimum reinf. 
required if 
walls are 
loadbearing 
Cl.10.15.1 

Minimum seismic 
reinf. requirements 
 
Cl.10.15.2 

Beyond 
minimum 
seismic reinf. 
requirements 

Vancouver 

Not possible 
 

No, must meet 
seismic 
reinforcement 
requirements 

Yes Depends on 
the specific 
design 

Toronto 

Possible in some 
locations depending 
on site soil class 

Yes, if 
reinforcement is 
required by 
design 

Yes,  
if 

( ) 35.02.0 ≥aaE SFI

Depends on 
the specific 
design 

Calgary 

Possible for most 
locations 
 

Yes, if 
reinforcement is 
required by 
design 

Yes,  
if 

( ) 35.02.0 ≥aaE SFI

Depends on 
the specific 
design 
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3.4.5.2 Design to NBCC 1995 and CSA S304.1-94 
CSA S304.1-94 Cl.6.3.3.1 required that minimum seismic reinforcement be provided  for 
velocity- or acceleration-related seismic zones of 2 and higher (Cl.5.2.2) (see Table 3-4). This 
applies to the Vancouver design, but not  to the Calgary or Toronto designs. However, since 
these shear walls are also loadbearing walls, the Toronto and Calgary designs must meet the 
minimum reinforcement requirements for loadbearing walls (Cl.5.2.1). It should be noted that 
S304.1-94 permitted the use of unreinforced masonry for Calgary and Toronto designs, 
provided that the tensile and compressive stresses were less than the permitted values. 
 
3.4.5.3 Key Differences in the Designs 
Squat wall (Table 3-8): 
• Minor difference for Vancouver vertical reinforcement (16-15M bars for the NBCC 2005 
design versus 14-15M bars for the NBCC 1995 design)  
• An increase in vertical reinforcement for Toronto (8-15M bars for NBCC 2005 design versus 
4-15M bars for NBCC 1995 design), plus the need to provide horizontal reinforcement to meet 
minimum S304.1-04 seismic reinforcement requirements (15M@2400 mm bond beam 
reinforcement and joint reinforcement at 200 mm spacing) 
• No difference for Calgary 
 
Flexural (non-slender) shear wall (Table 3-9): 
• No difference for Vancouver 
• An increase in vertical reinforcement in Toronto (4-15M bars for the NBCC 2005 design 
versus 2-15M bars for the NBCC 1995 design), plus the need to provide horizontal 
reinforcement to meet minimum S304.1-04 seismic reinforcement requirements (15M@1200 
mm bond beam reinforcement versus 2-15M@2400 mm (note that S304.1-04 limits horizontal 
reinforcement spacing to maximum 1200 mm in the plastic hinge region) 
• No difference for Calgary 
 
3.4.5.4 Influence of Site Class and Building Importance 
CSA S304.1-04 minimum seismic reinforcement requirements must be satisfied at locations 
where the seismic hazard index ( ) 35.02.0 ≥aaE SFI  (Cl.4.6.1). The provision of minimum 
seismic reinforcement at a particular location is governed by the site class and the building 
importance (expressed through seismic importance factor EI ). Site classes B to E are 
considered as the most relevant for design purposes. Note that the fundamental period (T) is 
taken equal to 0.2 sec, which is typical for low-rise masonry buildings. The results for the three 
locations are summarized in Tables 3-11 to 3-13. 
 
Note that the shaded cells indicate designs for which the S304.1-04 minimum seismic 
reinforcement requirements apply.  
 
The following observations relate to the seismic hazard index values and the resulting seismic 
reinforcement requirements for parameters considered in this study: 
• Vancouver site requires minimum S304.1-04 seismic reinforcement for all site classes and 
building importance levels 
• Toronto site chosen for this study requires minimum S304.1-04 seismic reinforcement for 
many cases; note that the Toronto site chosen for this study has higher seismicity ( )2.0(aS  of 
0.28) compared to some other sites in the Metro Toronto region (see Table 3-6), and that the 
results might be different for sites characterized by lower seismicity (more similar to Calgary) 
• Calgary site does not require minimum seismic reinforcement for most cases (except for the 
site class E for higher importance buildings) 
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Table 3-11. Vancouver: Seismic Hazard Index ( )2.0aaE SFI  for Different Site Classes and 
Building Importance Factors ( )2.0(aS = 0.96) 

Seismic Hazard Index Site 
Class aF  

EI =1.0 EI =1.3 EI =1.5 
B 1.0 0.96 1.25 1.44 
C 1.0 0.96 1.25 1.44 
D 1.1 1.06 1.38 1.59 
E 0.9 0.86 1.12 1.29 

 

Table 3-12. Toronto: Seismic Hazard Index ( )2.0aaE SFI  for Different Site Classes and Building 
Importance Factors ( )2.0(aS = 0.28) 

Seismic Hazard Index Site 
Class aF  

EI =1.0 EI =1.3 EI =1.5 
B 0.8 0.22 0.29 0.34< 0.35 
C 1.0 0.28 0.36 0.42 
D 1.3 0.36 0.47 0.54 
E 2.0 0.56 0.73 0.84 

 

Table 3-13. Calgary: Seismic Hazard Index ( )2.0aaE SFI  for Different Site Classes and Building 
Importance Factors ( )2.0(aS = 0.15) 

Seismic Hazard Index Site 
Class aF  

EI =1.0 EI =1.3 EI =1.5 
B 0.8 0.12 0.16 0.18 
C 1.0 0.15 0.20 0.23 
D 1.3 0.20 0.26 0.30 
E 2.1 0.32<0.35 0.42 0.48 
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4 Design Examples 
 
EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBCC 2005 
 
Consider a single-storey warehouse building located in Mississauga, Ontario. The building plan 
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure 
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70 
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the 
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil 
at the building site is classed as a Site Class D per NBCC 2005. 
 
Calculate the seismic base shear force for this building to NBCC 2005 seismic requirements 
(considering the masonry walls to be detailed as “conventional construction”). Next, determine 
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity. 
Assume that the roof acts like a rigid diaphragm. 
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SOLUTION: 
 
1.  Calculate the seismic weight  W  (NBCC 2005 Cl.4.1.8.2) 
a) Roof loads: 
- Snow load (Mississauga, ON)                      sW   = 0.25*(1.1*0.8+0.4)= 0.32 kPa 
(25% of the total snow load is used for the seismic weight) 
- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete 
topping)                                                                     DW  = 2.60 kPa 
Total roof seismic weight  roofW = (0.32kPa+2.60kPa)(64.0m*27.0m)= 5046 kN 
b) Wall weight: 
Assume solid grouted walls                                 w = 4.0 kN/m2 
(this is a conservative assumption and could be changed later if it is determined that partially 
grouted walls would be adequate) 
The usual assumption is that the weight of all the walls above wall midheight is part of the 
seismic weight (mass) that responds to the ground motion and contributes to the total base 
shear. 
Tributary wall surface area: 

- North face elevation   = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m2 
- South face elevation (same as north face elevation)        = 181.1 m2 
- East face elevation   = 0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m)  =   81.4 m2 
- West face elevation (same as east face elevation)         =   81.4 m2 

Total tributary wall area                                                                          Area   = 525.0 m2 
                                                            ________________________________________ 
Total wall seismic weight      AreawWwall *= =  4.0*525.0= 2100 kN 
 
The total seismic weight is equal to the sum of roof weight and the wall weight, that is, 

wallroof WWW += = 5046+2100= 7146 kN ≈ 7150 kN 
 
2. Determine the seismic hazard for the site (see Section 1.5.2). 
• Location: Mississauga, ON   

)2.0(aS = 0.31  (NBCC 2005 Appendix C, page C-21)                    
)5.0(aS = 0.15 
)0.1(aS = 0.055 
)0.2(aS = 0.017 

• Foundation factors 
aF = 1.28 for )2.0(aS =0.31 and Site Class D (by interpolation from Table 1-10 or NBCC 

2005 Table 4.1.8.4.B, since aF = 1.3 for ≤)2.0(aS  0.25 and aF = 1.2 for =)2.0(aS  0.50 

vF = 1.4 for )0.1(aS = 0.055 and Site Class D (from Table 1-11 or NBCC 2005 Table 
4.1.8.4.C), since vF = 1.4 for ≤)0.1(aS  0.1 

• Site design spectrum ( )TS   (see Section 1.5.2) 
For T =0.2 sec:  ( ) ( )2.02.0 aa SFS = = 1.28*0.31=0.40       ( )2.0S =0.40   
For T =0.5 sec:   use the smaller of;      
  ( ) ( )5.05.0 av SFS = =1.4*0.15=0.21                        or  
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  ( ) ( )2.05.0 aa SFS = =1.28*0.31=0.40,    thus ( )5.0S =0.21 

For T =1 sec:  ( ) ( )0.10.1 av SFS = =1.4*0.055=0.08              ( )0.1S =0.08 

For T =2 sec:  ( ) ( )0.20.2 avSFS = =1.4*0.017=0.024           ( )0.2S =0.024 
 

The site design spectrum ( )TS  is shown below. 

 
• Building period (T ) calculation (see Section 1.5.4 and NBCC 2005 Cl.4.1.8.11.(3).c) for  
wall structures) 

nh = 6.6 m   building height 

( ) 4305.0 nhT = = 0.21 sec 
Then interpolate between ( )2.0S  and ( )5.0S to determine the design spectral acceleration: 
( )TS = ( )21.0S = 0.39 

 
3. Compute the seismic base shear (see Section 1.5.4) 
The base shear is given by the expression (NBCC 2005 Cl.4.1.8.11) 

                         
( ) W

RR
IMTSV

od

Ev=  

where 
EI = 1.0   (building importance factor, equal to 1.0 for normal importance, 1.3 for high 

importance, and 1.5 for post-disaster buildings) 
vM = 1.0 (higher mode factor, equal to 1.0 for ≤T 1.0 sec, that is, most low-rise masonry 

buildings) 
Building SFRS description:  masonry structure – conventional construction (see Table 1-13 or 
NBCC 2005 Table 4.1.8.9), hence   dR = 1.5 and  oR = 1.5      
 
The design base shear V  is given by: 

( )
WWW

RR
IMTS

V
od

Ev 17.0
5.1*5.1

0.1*0.1*39.0
===  

but not less than  
 

( )
WW

RR
WIMS

V
od

Ev 0011.0
5.1*5.1

0.1*0.1*024.00.2
min ===  

and need not be taken more than  
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( ) WW
RR
WISV

od

E 12.0
5.1*5.1

0.1
3

40.0*2
3

2.02
max =⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= , provided 5.1≥dR .      

The upper limit on the design seismic base shear governs and therefore 
8608587150*12.012.0 ≈=== WV   kN 

Note that the upper limit on the base shear is often going to govern for low-rise masonry 
structures which have low fundamental periods. The lower bound value would generally only 
apply to very tall buildings. 
 
4. Determine if the equivalent static procedure can be used (see Section 1.5.3 and NBCC 
2005 Cl. 4.1.8.7). 
According to the NBCC 2005, the dynamic method is the default method of determining member 
forces and deflections, but the equivalent static method can be used if the structure meets any 
of the following criteria:  
(a) is located in a region of low seismic activity where the seismic hazard index 

( ) 35.02.0 <aaE SFI . 
In this case, the seismic hazard index is ( )2.0aaE SFI =1.0*1.28*0.31=0.40 > 0.35 
and so this criterion is not satisfied. 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction.  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-15 
of Section 1.5.10.1. A single storey structure by definition will not have any irregularities of Type 
1 to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7 
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on 
the torsional sensitivity.  
(c) has any type of irregularity, other than Type 7, and is less than 20 m in height with 
period T < 0.5 seconds in either direction.  
This structure satisfies the height and period criteria. 
 
Since the criterion c) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure. It will be shown later that, even when using a conservative assumption, the 
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For 
structures with the lateral resisting elements distributed around the perimeter walls the B value 
will almost always be less than 1.7. 
 
5. Distribute the base shear force to the individual walls. 
In this example, the structure is symmetric in each direction and so the centre of mass, MC , and 
the centre of resistance, RC ,  coincide at the geometric centre of the structure. One might argue 
that in this simple system with walls at only each side of the building, the system is statically 
determinate in each direction and the total shear on each side can be determined using statics. 
However, how much shear goes to each of the walls on a side depends on the relative stiffness 
of the walls, although once yielding occurs the force on each wall depends on the yield strength 
of the wall.  
 
a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to 
act through the centre of resistance) 
Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in 
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height, 
length, thickness) and mechanical properties and it can be concluded that these walls have the 
same stiffness.  
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As a result, equal shear force will be 
developed at each side. The force per 
side is equal to (see the figure): 

430860*5.05.0 ==V  kN 
So, shear force in each of the two 
walls in the N-S direction is equal to: 

215
2

430
2
5.0

===
VVV  kN 

 
 
b) Seismic forces in the N-S direction taking into account the effect of accidental torsion 
The building is symmetrical in plan and so the centre of mass MC  coincides with the centre of 
resistance RC   (see Section 1.5.9 for more details on torsional effects). Therefore, there are no 
actual torsional effects in this building. However, NBCC 2005 Cl.4.1.8.11.(8) requires that 
torsional moments (torques) due to accidental eccentricities must be taken into account in the 
design. The forces due to accidental torsion can be determined by applying the seismic force at 
a point offset from the RC  by an accidental eccentricity nxa De 1.0= , thereby causing the 
torsional moments equal to  

( ) 5504)0.64*1.0(*8601.0 ±=±=±= nxx DVT  kNm 
Note that 0.64=nxD  m (equal to the total length of the structure in the East/West direction). 
 
As a result of the accidental torsion, seismic shear forces resisted by each side of the building 
are different. These forces can be calculated by taking the sum of moments around the RC  
(torsional moment created by force must be equal to the sum of moments created by the side 
forces). The resulting end forces are equal to V6.0  and V4.0 , thereby indicating an increase in 
the end forces by V1.0  due to accidental torsion. 
 
It should be noted that, in this example, accidental torsion would cause forces in the E-W walls 
as well because of the rigid diaphragm. But a conservative approach is to ignore the 
contribution of E-W walls and take all the torsional forces on the N-S walls. 
 
The shear force in each N-S wall from accidental torsion is equal to: 

43
2

645504
2

=== nx
T

DT
V  kN 

 
Thus the maximum shear force in each of the two walls is the sum of the lateral component plus 
the torsional force, 

25843215 =+=+= TVW VVV  kN 
 
Note that the same result could be obtained by 
applying the lateral load through a point equal to 
the accidental eccentricity to one side of the 
centre of rigidity and then solving for the wall 
forces using statics (see the figure). This would 
show that  

2586.0*
2

8606.0*
2

===
VVW  kN 
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Therefore, even though this building is symmetrical in plan, the accidental torsion causes 
increased seismic shear force in each wall of 43 kN, corresponding to a 20% increase 
compared to the design without torsion. However, this is based on the assumption that the N-S 
walls resist all the torsion. Walls in the E-W direction would also resist the torsional forces, and 
in this example the contribution to total torsional stiffness would be roughly the same for the E-
W and N-S walls. Thus one could reduce the torsional forces on the N-S walls by roughly one 
half. 
 
c) Seismic forces in the E-W walls 
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and 
consequently the same stiffness, the shear force will be equal at the East and West side. The 
force per side is equal to 

430860*5.05.0 ==V  kN 
• Seismic forces in the E-W walls – torsional effects ignored 
Shear force in each E-W wall is equal to (there are seven walls per side): 

61
7

430
7
5.0

===
VVV  kN 

• Seismic forces in the E-W walls – torsional effects considered: 

746.0*
7

8606.0*
7

===
VVW  kN 

 
6. Check whether the structure is torsionally sensitive (see Section 1.5.9.2). 
NBCC 2005 Cl. 4.1.8.11.(9) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey, to the 
average displacement of that storey. Torsional sensitivity is determined in a similar manner as 
the effect of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of 

nxD1.0±  from the centre of mass MC . In case of a rigid diaphragm, displacements are 
proportional to the forces developed in the walls. Therefore, B  can be determined by 
comparing the forces at the sides of the building with/without the effect of accidental torsion. 
 
The maximum displacement would be proportional to 0.6V, while the displacement on the other 
side would be proportional to 0.4V. Thus the average displacement is proportional to 0.5V. Thus 

2.1
5.0
6.0

==
V
VB  

Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would 
have also been allowed under criterion b) as discussed in step 4 above. 
 
7. Discussion 
It was assumed at the beginning of this example that the roof structure can be modeled like a 
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S 
wall would be equal to 0.5V.  From a reliability point of view, it does not seem quite right that the 
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around. 
On the other hand, the flexible diaphragm may have a longer period and the forces would be 
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models). 
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBCC 2005 
 
A typical floor plan and vertical elevation are shown below for a four-storey mixed use 
(commercial/residential) building located near the intersection of Granville Street and 41st 
Avenue in Vancouver, BC. The ground floor is commercial with a reinforced concrete slab 
separating it from the residential floors, which have lighter floor system consisting of steel joists 
supporting a composite steel and concrete deck. The front of the building is mostly glazing, 
which has no structural application.  
 
First, determine the seismic force for this building according to the NBCC 2005 equivalent static 
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and 
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that 
the strong N-S walls can resist the torsion. 
 
Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the 
seismic forces obtained with and without torsional effects. 
 
For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for  
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a 
preliminary design) and the compressive strength mf ′  is 10.0 MPa. Grade 400 steel has been 
used for the reinforcement. The building is of normal importance and is supported on Class C 
soil. Consider “limited ductility” reinforced masonry shear walls. 
 
Movement joints are not to be considered in this example. Note that movement joints in the N-S 
walls would have caused slight changes in the stiffness values of these walls. 
 
Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and 
glazing): 
4th floor (roof level) = 3 kPa    Note: 1 kPa = 1 kN/m2 
2nd and 3rd floor = 4 kPa 
1st floor (concrete floor) = 6 kPa 
25% snow load = 0.4 kPa 
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SOLUTION: 
 
1.  Design assumptions 
• Rigid diaphragm 
• All walls are solid grouted 
 
2.  Calculate the seismic weight  W  (see Table 1-12 and NBCC 2005 Cl.4.1.8.2) 
Wall weight: 
N-S walls - 200 mm thick                 w = 4.18 kPa 
E-W walls – 300 mm thick           w = 6.38 kPa 
Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while 
the length of an E-W wall is 10.0 m. 
 
Seismic weight 1W : 

( ) ( )( ) kNmmkPamkPamkPammW 357920*200.60.10*2*38.620*2*18.4
2
0.3

2
0.5

1 =++⎟
⎠
⎞

⎜
⎝
⎛ +=  

Seismic weight 2W : 

( ) ( )( ) kNmmkPamkPamkPammW 248420*200.40.10*2*38.620*2*18.4
2
0.3

2
0.3

2 =++⎟
⎠
⎞

⎜
⎝
⎛ +=  

Seismic weight 3W  (same as 2W ) : 
kNW 24843 =  

Seismic weight 4W : 

( ) ( )( ) kNmmkPakPamkPamkPamW 180220*204.00.30.10*2*38.620*2*18.4
2
0.3

4 =+++⎟
⎠
⎞

⎜
⎝
⎛=

Note that the seismic weight for each floor level is the sum of the wall weights and the floor 
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height 
(below and above a certain floor level) was considered in the wall area calculations. 
The total seismic weight is equal to 

kNWWWWW 1035018022484248435794321 ≅+++=+++=  
 
3.  Calculate the seismic base shear force (see Section 1.5.4). 
a) Find seismic design parameters used to determine seismic base shear. 
• Location: Vancouver, BC (Granville and 41st Avenue)   

)2.0(aS = 0.95 (NBCC 2005 Appendix C, page C-13)                    
)5.0(aS = 0.65 
)0.1(aS = 0.34 
)0.2(aS = 0.17 

• Foundation factors 
Site Class C: aF = 1.0 (Table 1-10 or NBCC 2005 Table 4.1.8.4.B) and vF = 1.0 (Table 1-
11 or NBCC 2005 Table 4.1.8.4.C) 

• EI = 1.0 (normal importance building) 
• vM = 1.0 (higher mode factor, equal to 1.0 for ≤T 1.0 sec) 
• Building SFRS description:  masonry structure – limited ductility shear walls for building 
height of 14 m (see Table 1-13 or NBCC 2005 Table 4.1.8.9), hence  
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dR = 1.5 and  oR = 1.5      
• Building period (T ) calculation (NBCC 2005 Cl.4.1.8.11.3.c) –  wall structures 

nh = 14.0 m   building height 

( ) 4305.0 nhT = = 0.36 sec 
• Site design spectrum ( )TS   (see Section 
1.5.2) 
Since the soil is characterized as Site Class C, 

)()( TSTS a=  
 For T =0.2 sec:   

( ) ( )2.02.0 aa SFS = = 1.0*0.95=0.95 ( )2.0S =0.95
         

 For T =0.5 sec:   
( ) ( )5.05.0 av SFS = =1.0*0.65=0.65 ( )5.0S =0.65                             

or (smaller value governs) 
( ) ( )2.05.0 aa SFS = =1.0*0.95=0.95 

 For T =1 sec:      
( ) ( )0.10.1 av SFS = =1.0*0.34=0.34 ( )0.1S =0.34  

  
 For T =2 sec:      

( ) ( )0.20.2 avSFS = = 1.0*0.17=0.17 ( )0.2S =0.17 
  
Building period T = 0.36 sec, so interpolate between ( )2.0S  and ( )5.0S , hence  ( )TS = 0.79 
 
b) Compute the design base shear (NBCC 2005 Cl.4.1.8.11). 
The design base shear V  is determined according to the following equation: 

( )
WWW

RR
IMTS

V
od

Ev 35.0
5.1*5.1

0.1*0.1*79.0
===  

Check the lower and upper bounds for the V  value. 
• Lower bound ( minV ) value (must be exceeded) 

( )
WW

RR
WIMS

V
od

Ev 075.0
5.1*5.1

0.1*0.1*17.00.2
min ===   

• Upper bound ( maxV ) value (base shear need not exceed this value) 

( ) WWW
RR
WISV

od

E 35.028.0
5.1*5.1

0.1
3

95.0*2
3

2.02
max <=⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=         <=   Governs 

Note that the upper bound base shear value can be used only when 5.1≥dR . 
Therefore, the design seismic base shear is equal to 

2900289810350*28.028.0 ≈=== WV   kN 



4/1/2009 4-11

 
4. Determine if the equivalent static procedure can be used (see Section 1.5.7 and NBCC 
2005 Cl. 4.1.8.7). 
According to the NBCC 2005, the dynamic method is the default method, but the equivalent 
static method can be used if the structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where ( ) 35.02.0 <aaE SFI , 
In this case, seismic hazard index ( )2.0aaE SFI =1.0*1.0*0.95=0.95 > 0.35 and so this criterion is 
not satisfied. 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction,  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
To confirm that this structure is regular, the designer needs to review the irregularities discussed 
in Section 1.5.10.1. It can be concluded that this building does not have any of the irregularity 
types identified by NBCC 2005 and so this criterion is satisfied. 
(c) has any type of irregularity (other than Type 7 that requires the dynamic method if  
B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either direction  
This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5 
sec. The torsional sensitivity B  should be checked to confirm that B < 1.7 (see Section 1.5.9.2). 
 
Since the criterion b) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure.  
 
5. Seismic force distribution over the building height (see Section 1.5.7). 
According to NBCC 2005 Cl. 4.1.8.11.(6), the total lateral seismic force, V ,  is to be distributed 
over the building height in accordance with the following formula (see Figure 1-15): 

where 
xF  – seismic force acting at level x   

tF  – a portion of the base shear to be applied in addition to force nF  at the top of the building. 
In this case, tF = 0 since the fundamental period is less than 0.7 sec. 
Interstorey shear force at level x  can be calculated as follows: 

∑+=
n

x
itx FFV  

Bending moment at level x  can be calculated as follows: 

( )∑
=

−=
n

xi
xiix hhFM  

These calculations are presented in Table 1. 

( )
∑
=

⋅−= n

i
ii

xx
tx

hW

hW
FVF

1
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Table 1. Distribution of Seismic Forces over the Wall Height 
 
Level 

xh   
(m) 

xW   
(kN) 

xxhW  xF   
(kN) 

xV  
(kN) 

xM  
(kNm) 

4 14.0 1802 25228 810 810 0 
3 11.0 2484 27324 877 1687 2430 
2 8.0 2484 19872 638 2325 7492 
1 5.0 3579 17895 575 2900 14468 

∑   10349 90319 2900  28968 

 
Distribution of seismic forces over the building height and the corresponding shear and moment 
diagrams are shown on the figure below. 

 
It is important to confirm that the sum of seismic forces xF  over the building height is equal to 
the base shear  

==VVb  2900 kN 
The bending moment at the base of the building, also called the base bending moment, is equal 
to  

bM = 28968 ≈ 29000 kNm. 
 
6. Find the seismic forces in the E-W walls – torsional effects ignored. 
Due to asymmetric layout of the E-W walls, the centre of mass MC  in the building under 
consideration does not coincide with the centre of resistance RC , hence there are torsional 
effects in all walls. However, since the N-S walls are significantly more rigid compared to the E-
W walls, it can be assumed that the N-S walls will resist the torsional effects (see step 8 for a 
detailed discussion). As a consequence, it can be assumed that the base shear force in the E-W 
direction is equally divided between the two E-W walls (see the figure on the next page), that is, 
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1450
2

2900
2

===
VVxo  kN 

 
Similarly, the base bending moment in each wall is equal 
to 

14500
2

29000
2

=== b
bx

M
M  kNm 

 
7. Find the seismic forces in the E-W walls – 
torsional effects considered (see Section 1.5.9). 
To determine the wall forces from the torsional forces a 
3-D analysis should be made. Even though the walls are 
considered uniform over the entire height, the contribution of shear deformation relative to 
bending deformation is different over the height. An approximate method that does not require a 
3-D analysis is to consider the structure 
as an equivalent  single-storey structure. 
The entire shear is applied at the 
effective height, eh , defined as the 
height at which the shear force fV   must 
be applied to produce the base moment 

fM , that is, 

0.10
2900
29000

===
f

f
e V

M
h  m 

This model, although not strictly correct, 
will be used to determine the elastic 
distribution of the torsional forces as 
well as the displacements. The top 
displacement of the wall is assumed to 
be 1.5 times the displacement at the eh  
height (see step 8 for displacement calculations).  
 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ), which will be calculated in the following 
tables. 
 
First, the centre of mass will be determined, as shown on the figure on the next page. The 
calculations are summarized in Table 2. 
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Table 2. Calculation of the Centre of Mass ( MC ) 
 

Wall iw  
(kN) 

ix  
(m) 

iy  
(m) 

ii xw *  ii yw *  

1X  733.7 10.00 20.00 7337 14674 

2X  733.7 10.00 13.33 7337 9780 

1Y  961.4 0 10.00 0 9614 

2Y  961.4 20.00 10.00 19228 9614 

Floors 6960 10.00 10.00 69600 69600 

∑  10350   103502 113282 

 
The MC  coordinates can be determined as follows: 

00.10
10350
103502

*
===

∑
∑

i
i

i
ii

CM w

xw
x  m           94.10

10350
113282

*
===

∑
∑

i
i

i
ii

CM w

yw
y  m 

  
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 3, although because there are only two equal walls in each direction the RC  will lie 
between the walls. 
 
Table 3. Calculation of the Centre of Resistance ( RC ) 
 

Wall 
t   
(m) wlh * )( tEK m ⋅ ** xK x103 

(kN/m) 
yK x103 

(kN/m) 
ix  

(m) 
iy  

(m) 
iy xK ⋅  

*103 
ix yK ⋅  

*103 

1X  0.29 1.0 0.143 352.5   20.
00 

 7050.0 

2X  0.29 1.0 0.143 352.5   13.
33 

 4699.0 

1Y  0.19 0.5 0.5  807.5 0  0  

2Y  0.19 0.5 0.5  807.5 20.
00 

 16150.0  

∑     705.0 1615.0   16150.0 11750.0 

Notes: 
* - ehh = = 10.0 m effective wall height 
** - see Table D-3 
 
Note that the elastic uncracked wall 
stiffnesses K  for individual walls have been 
determined from Table D-3, by entering 
appropriate height-to-length ratios. In this 
design, all walls and piers have been 
modelled as cantilevers (fixed at the base 
and free at the top) – see Section C.3 for 
more details regarding wall stiffness 
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calculations. The modulus of elasticity for masonry is =mE 8.5*106 kPa (corresponding to mf ′  of 
10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure): 

10
10*1615
10*16150

*

3

3

===
∑
∑

i
yi

i
iyi

CR K

xK
x  m 

67.16
10*705
10*11750

*

3

3

===
∑

∑

i
xi

i
ixi

CR K

yK
y  m 

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W 
walls, we need to determine the actual eccentricity in the y direction ( ye ), that is, 

73.594.1067.16 =−=−= CMCRy yye  m 
In addition, the accidental eccentricity needs to be considered, that is, 

0.220*1.01.0 ±=±=±= nya De  m 
The total maximum eccentricity in the y-direction is equal to 

73.70.273.51 =+=+= ayty eee  m 
or 

73.30.273.52 =−=−= ayty eee  m 
Note that the latter value does not govern and will not be considered in further calculations. 
 
Torsional moment is determined as a product of the shear force and the eccentricity, that is, 

2241773.7*2900* 1 === tyeVT  kNm 
Torsional effects are illustrated on the figure below. 

 
Seismic force in each wall has two components: translational (no torsional effects) and torsional, 
that is, 

itioi VVV +=  
where 

∑
=

i

i
io K

K
VV *   translational component  

and 
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i
i

it K
J

cT
V *

*
=   torsional component 

622 10*169=⋅+⋅= ∑∑ yiyixixi cKcKJ   torsional stiffness (see Table 4) 

xic , yic  - distance of the wall centroid from the centre of resistance ( RC ) (see the figure below) 

 
Translational and torsional force components for the individual walls are shown below. 

 
 
Calculation of translational and torsional forces is presented in Table 4. 
 
Table 4.  Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction 
 

Wall 
xK *103 

(kN/m) 
yK *103 

(kN/m) 
ic  

(m) 

2
ii cK ⋅∑ *106 

∑ x

x

K
K

 

xoV  
(kN) 

xtV  
(kN) 

totalV  
(kN) 

1X  352.5  -3.33 3.84 0.5 1450 -154 1296  

2X  352.5  3.33 3.84 0.5 1450  154 1604 

1Y   807.5 -10.00 80.80   -1070 -1070 

2Y   807.5 10.00 80.80   1070 1070 

∑  705.0 1615.0  169.0     
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It can be concluded from the above table that the maximum force in the E-W direction is equal 
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained 
ignoring torsional effects. 
 
It can be noted that the contribution of E-W walls to the overall torsional moment T  of 22417 
kNm is not significant (see Table 4). 

kNmmkNmkNT WE 10173.3*1543.3*154 ≅+=−  
because 

%5045.022417/1017 ≈==− TT WE  
this shows that the E-W walls contribute only 5% to the overall torsional moment. 
 
The contribution of N-S walls to the overall torsional moment is as follows: 

kNmmkNmkNT SN 2140010*107010*1070 =+=−  
and 

%9522417/21400 ≈=− TT SN  
and 

kNmTTT SNWE 22417214001017 ≈+=+= −−   (this is also a check for the torsional forces) 
 
Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable, 
since these walls contribute approximately 95% to the overall torsional resistance. 
 
8. Calculate the displacements at the roof level (consider torsional effects). 
Approximate deflections in the E-W walls can be determined according to the procedure 
outlined below. It should be noted that the force distribution calculations have been performed 
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to 
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the 
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K ) 
value to account for the effect of cracking. 
 
a) The reduced stiffness to account for the effect of cracking (see Section C.3.5) 
The reduced stiffness for walls 1X  and  2X  will be determined according to equation (15) from 
Section C.3.5, that is, 

c
em

f

y
ce K

Af
P

f
K )100(

′
+=    

where 
cK  is elastic uncracked stiffness 

1513)0.60.4*20.3)(67.6*67.6*2( =++=fP  kN   (axial force due to dead load in wall 2X ) 

( 43 10*2900.10*)10*290 ==eA mm2   (effective cross sectional area for 290 mm block wall, 
solid grouted, length 10.0 m; see Table D-1 for eA  values for the unit wall length) 

mf ′ =10.0 MPa 
400=yf  MPa (Grade 400 steel) 

thus 

ccce KKK 3.0)
10*290*0.10

10*1513
400
100( 4

3

=+=  
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b) The translational displacement in the walls 1X  and  2X  
can be calculated as follows 
 

mm
mkN

kN
K

V

X

oX
X 7.13

/10*5.352*3.0
1450

3.0 3
2

2
20 ===Δ  

According to NBCC 2005 Cl. 4.1.8.13, these deflections need to 
be multiplied by the Eod IRR  ratio (see Section 1.5.11). In this 
case, EI = 1.0, and so 

( ) mmRRmm odX 8.305.1*5.1*7.137.1320 ===Δ  
 
Since the previous analysis assumed that the seismic force 
acts at the effective height eh , the displacement at the top 
of the wall will be larger (see the figure). The top 
displacement can be calculated by deriving the 
displacement value at the tip of the cantilever; alternatively, 
an approximate factor of 1.5 can be used as follows: 

mmmmx
top

X 468.30*5.1*5.1 220 ≈=Δ=Δ  
Since this is a rigid diaphragm, it can be assumed that the 
translational displacements are equal at a certain floor 
level – let us use point A at the South-East corner as a 
reference (see the figure). 
 
c) The torsional displacements can be calculated as follows: 
Torsional rotation of the building θ  can be determined as 
follows, considering the reduced torsional stiffness to account 
for cracking (same as discussed in step a) above): 

4
6 10*421.4

10*169*3.0
22417 −===

kNm
J
Tθ rad 

where (see the step 7 calculations) 
22417=T  kNm     torsional moment 

610*169=J           elastic torsional stiffness 
The maximum torsional displacement at the South-East corner 
in the X direction (see point A on the figure): 

mmmYCRt
A 4.767.16*10*421.4* 4 ===Δ −θ  

 
Similarly as above, these displacements need to be multiplied 
by Eod IRR  and also by 1.5 to determine the displacement at 
the top of the roof, and so 

mmRR od
top

t
A 0.25*4.7*5.1 ≈=Δ  

 
d) Finally, the total maximum displacement at the roof level (at point A) is equal to:  

mmtop
t

Atop
X

A 7125462max =+=Δ+Δ=Δ  
 
9. Check whether the building is torsionally sensitive. 
NBCC 2005 Cl. 4.1.8.11.(9) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey to the 
average displacement of that storey (see Section 1.5.9.2 and Figure 1-19). This should be done 
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for every storey, but in this case will only be done for the one storey as the remaining storeys 
will have similar B  values because of the vertical uniformity of the walls. Torsional sensitivity is 
determined in a similar manner like the effect of accidental torsion, that is, by applying a set of 
lateral forces at a distance of nxD1.0±  from the centre of mass MC . Since the purpose of this 
evaluation is to compare deflections at certain locations relative to one another, it is not critical 
to use cracked wall stiffnesses. 
 
In this case, the total maximum displacement at point A was determined in step 8 above, that is, 

mmA 71max =Δ  
We need to determine the displacement at other corner (point B), that is, the minimum 
displacement. This can be done as follows: 
Translational component: 

mmtop
X

B 46200 =Δ=Δ  
Torsional component: 

mmmcXt 5.13.3*10*421.4* 4
1 ≈==Δ −θ  

These displacements need to be multiplied by Eod IRR  
and also by 1.5 to determine the displacement at the top 
of the roof, and so 

mmRR odt
B 5*5.1*5.1 ==Δ  

Since the direction of torsional displacements is opposite 
from the translational displacements, it follows that 

mmt
B

o
BB 41546min =−=Δ−Δ=Δ  

The average displacement at the roof level in the E-W 
direction (see the figure showing the displacement 
components): 

mm
BA

ave 56
2

4171
2

minmax =
+

=
Δ+Δ

=Δ  

 

27.1
0.56
0.71max ==

Δ
Δ

=
ave

B  

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with 
the main force resisting elements located around the exterior of the building will not be 
torsionally sensitive.  
 
10. Discussion 
A couple of important issues related to this design example will be discussed in this section. 
 
a) Why should the N-S walls be considered to resist entire torsional effects? 
The distribution of forces to the various elements in the structure is generally based on the 
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible 
and then the forces are distributed on the basis of contributory masses. The present example 
structure with four floors of concrete construction can be considered as having rigid diaphragms, 
and an elastic analysis was performed to determine the wall forces due to the torsional effects. 
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely 
separated, it is expected that they will resist most of the torque from the eccentricity. However, 
since we are designing the structures to respond inelastically, the distribution of forces from an 
elastic analysis should always be questioned. An argument is presented below to show that if 
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the forces in the E-W walls are designed to be equal, they will not contribute to the torsional 
resistance.  
 
The elastic torsional analysis for the forces in the E-W direction result in additional forces of 
±154 kN in the E-W walls and ±1070 kN in the N-S walls (see Table 4). If all the torque is 
resisted by the N-S walls, the force in 
these walls would be ±1120 kN (an 
increase of only 50 kN). 
 
For the earthquake load in the E-W 
direction the E-W walls must resist the 
total base shear in this direction and so 
they will have reached their yield 
strength and progressed along the flat 
portion of the shear/displacement curve 
as shown in the figure (assuming they 
have equal strength). The torsional load 
will have caused a small rotation of the 
diaphragms and so wall 2X  will have a 
slightly larger displacement than wall 1X , as shown on the figure. Had the walls remained 
elastic, the shear in wall 2X  would then be greater than wall 1X  and this would contribute to 
the torsional resistance. However in the nonlinear case, they both have the same shear 
resistance and so do not contribute to the torsional resistance. Thus in this example, all the 
torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the 
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W 
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two 
directions would occur at the same time, and practice has been to consider only 30% of the 
loads in one direction when combining with the loads in the other direction. Thus the forces in 
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the 
yield level on one side, but the torsional displacement on the other side would be in the opposite 
direction, so the wall force would be much reduced in the other direction. The two N-S forces 
then provide a torque to resist the torsional motion. Although this resisting torque may not be as 
large as the elastic analysis would predict, the result would not be failure, but only slightly larger 
torsional displacements. 
 
b) Application of the “100%+30%” rule 
In the calculation of total wall seismic forces including the torsional effects (see step 7 above), 
the effect of seismic loads in E-W direction only was taken into consideration when calculating 
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that 
requires the forces in any element that arise from 100% of the loads in one direction be 
combined with 30% of the loads in the orthogonal direction (for more details refer to NBCC 
4.1.8.8.(1)c and the commentary portion in Section 1.5.9.3 of this document). 
 
Let us determine the forces in one of the E-W walls, e.g. wall 2X , by applying the 
“100+30%”rule. If only 100% of the force in the E-W direction is considered, the total force in the 
wall is equal to (see Table 4): 

kNVVV tXoX
WE

X 16041541450222 =+=+=−  
If the seismic load is applied in the N-S direction, the torsional moment would be determined 
based on the accidental eccentricity ae  (since the building is symmetrical in that direction), and 
so the torsional force in the wall 2X  can be prorated by the ratio of torsional eccentricities in the 
E-W and N-S directions as follows, 

Δ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V

X1 X2
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kN
m
m

e
e

VV
y

a
tX

SN
X

408.39
73.7
0.2*154*22

≈===−  

The total seismic force in the wall 2X  due to 100% of the load in E-W direction and 30% of the 
load in the N-S direction can be determined as 

kNVVV SN
X

WE
XX 161640*3.016043.0 222 =+=+= −−  

It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule 
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant. 
 
However, it can be shown that the “100+30%” rule would significantly influence the forces in the 
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall 

1Y ) due to torsional effects is equal to (see Table 4)  
kNV WE

Y 10701 =−  
When the seismic force acts in the N-S direction, the total force in the wall 1Y  (including the 
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on 
accidental torsion) 

kNVV SN
Y

17402900*6.0*6.0
1

===−  
So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the 
force in the E-W direction the resulting total force is equal to 

kNVVV WE
Y

SN
YY 20611070*3.017403.0 111 =+=+= −−  

In this case, it can be concluded that the difference between the force of 2061 kN (when the 
“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant 
(around 18%). This is illustrated on the figure below.  
 
For those cases where there is a large eccentricity in one direction and the torsional forces are 
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can 
be significant. 
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and 
flexible diaphragm alternatives 
 
Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The 
building plan and relevant elevations are shown on the figure below. The building has an open 
north-west façade consisting mostly of glazing. The roof elevation is at 4.8 m above the 
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel 
columns on the north-west side. Masonry properties should be determined based on 20 MPa 
block strength and Type S mortar (use mf ′  of 10.0 MPa). Grade 400 steel has been used for the 
reinforcement. 
 
Masonry walls should be treated as “conventional construction” according to NBCC 2005 and 
CSA S304.1. A preliminary seismic design has shown that the total seismic base shear force for 
the building is equal to 700=V  kN. This force was determined based on the total seismic 
weight W of 2340 kN and the seismic coefficient equal to 0.3, that is, WV 3.0= .  
 
This example will determine the seismic forces in the N-S walls ( 1Y  to 3Y ) due to seismic force 
acting in the N-S direction for the following two cases: 
a) Rigid roof diaphragm (consider torsional effects), and 
b) Flexible roof diaphragm. 
 
Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be 
discussed. 
 
Note that both flexible and rigid diaphragms are considered to have the same weight, although 
this would be unlikely in a real design application. Also, the columns located on the north-west 
side are neglected in the seismic design calculations. 
 
Specified loads: 
roof  = 3.5 kPa 
25% snow load = 0.6 kPa 
wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption) 
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SOLUTION: 
 
a) Rigid diaphragm 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ). The coordinates of the centre of mass 
will be determined taking into account the influence of wall masses, the upper half of which are 
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the 
centroid of the roof area is determined by dividing the roof plan into two rectangular sections. 
 
Table 1. Calculation of the Centre of Mass ( MC ) 

Wall 
 

iW  
(kN) 

iX  
(m) 

iY  
(m) 

ii XW *
 

ii YW *  
 

X1 387 15.00 0.00 5810 0 
X2 116 25.50 18.00 2963 2092 
Y1 232 21.00 9.00 4880 2092 
Y2 52 30.00 2.00 1548 103 
Y3 116 30.00 13.50 3486 1569 

Roof 1 1107 15.00 4.50 16605 4982 
Roof 2 332 25.50 13.50 8466 4482 

  2343     43759 15319 
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The MC  coordinates have been determined from the table as follows (see the figure below): 

68.18
86.2343
02.43757

*
===

∑
∑

i
i

i
ii

CM W

XW
x  m 

 

54.6
86.2343
38.15324

*
===

∑
∑

i
i

i
ii

CM W

YW
y  m 

 
Next, the coordinates of the 
centre of resistance ( RC ) will 
be determined. Wall 1X  has 
several openings and the 
overall wall stiffness is 
determined using the method 
explained in Section C.3.3 by 
considering the deflections of 
the following components for a 
unit load (see the figure on the 
next page):  
• solid wall with 4.8 m height 
and 30 m length – cantilever 
( solidΔ ) 
• an interior strip with 1.6 m 
height (equal to the opening 
height) and 30 m length – 
cantilever ( stripΔ ) 
• piers A, B, C, and D – cantilevered ( ABCDΔ )  (the stiffness of the piers A, B, C, and D is 
summed and the inverse taken as ABCDΔ ) 
 
The stiffness of each component is based on the following equation for the cantilever model by 
using appropriate height-to-length ratios (see Section C.3.2), that is, 
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The overall wall deflection is determined from the combined pier deflections, as follows: 

ABCDstripsolidX Δ+Δ−Δ=Δ 1  
Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced with the deflection 
of the four piers. 
 
Finally, the stiffness of the wall 1X  is equal to the reciprocal of the deflection (see Table 2), as 
follows 

71.11

1
1 =

Δ
=

X
XK  

 
Table 2. Wall 1X  Stiffness Calculations 
 

Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions lh  )*( tEK  Displacement )*( tEK final

Solid 0.24 4.8 30.0 cant 0.160 2.015 0.496   
Opening 
strip 0.24 1.6 30.0 cant 0.053 6.226 -0.161   
X1A 0.24 1.6 6.2 cant 0.258 1.186     
X1B 0.24 1.6 6.2 cant 0.258 1.186     
X1C 0.24 1.6 6.2 cant 0.258 1.186     
X1D 0.24 1.6 3.0 cant 0.533 0.453     

          ∑ (ABCD) 4.012 0.249   
              0.585 1.709 

 
The stiffness of wall 1Y  is determined in the same manner (see the figure below). The 
calculations are summarized in Table 3. 
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Table 3. Wall 1Y  Stiffness Calculations 
 
Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions

lh  )*( tEK Displacement )*( tEK final

Solid 0.24 4.8 18 cant 0.267 1.142 0.876   
Opening 
strip 0.24 2.4 18 cant 0.133 2.442 -0.409   
Pier E 0.24 2.4 8 cant 0.300 0.992     
Pier F 0.24 2.4 9 cant 0.267 1.142     
          sum(EF) 2.134 0.469   
              0.935 1.070 

 
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 4. 
 
Table 4. Calculation of the Centre of Resistance ( RC ) 
 
Wall 

 
t  

(m) 
h  

(m) 
l  

(m)
End 

cond. 
lh  

tE
K
*

 xK  
(kN/m) 

yK  
(kN/m) 

iX  
(m) 

iY  
(m) 

iy XK *  ix YK *  

X1 0.24         1.709* 3.49E+06 0 15 0   0.00E+00
X2 0.24 4.8 9 cant 0.53 0.453 9.24E+05 0 25.5 18   1.66E+07
Y1 0.24         1.070** 0 2.18E+06 21  0 4.58E+07   
Y2 0.24 4.8 4 cant 1.20 0.095 0 1.94E+05 30  0 5.82E+06   
Y3 0.24 4.8 9 cant 0.53 0.453 0 9.24E+05 30  0 2.77E+07   
              4.41E+06 3.30E+06     7.94E+07 1.66E+07

Notes: 
* - see Table 2 
** - see Table 3 
 
Note that all walls and piers in this example were modeled as cantilevers (fixed at the base and 
free at the top). For more discussion related to modelling of masonry walls and piers for seismic 
loads see Section C.3. The modulus of elasticity for masonry is taken as =mE 8.5*106 kPa 
(corresponding to mf ′  of 10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure below): 

05.24
10*30.3
10*94.7

*

6

7

===
∑
∑
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yi

i
iyi
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xK
x m 

77.3
10*41.4
10*66.1

*
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7

===
∑

∑

i
xi

i
ixi

CR K

yK
y  m 

 
Next, the eccentricity needs to be determined. Since we are considering the seismic load effects 
in the N-S direction, we need to determine the actual eccentricity in the x-direction ( xe ), that is, 

37.568.1805.24 =−=−= CMCRx xxe  m 
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In addition, an accidental eccentricity needs to be considered, as follows: 
0.330*1.01.0 ±=±=±= nxa De  m 

 
The total maximum eccentricity in 
the x-direction assumes the 
following two values depending on 
the sign of the accidental 
eccentricity, that is, 

37.80.337.51 =+=+= axx eee  m 
37.20.337.52 =−=−= axx eee  m 

 
The torsional moment is determined 
as a product of the shear force and 
the eccentricity, that is, 

586037.8*700* 11 ≈== xeVT  kNm 
166037.2*700* 22 ≈== xeVT kNm 

 
The seismic force in each wall can be determined as the sum of the two components: 
translational (no torsional effects) and torsional, that is, 

itioi VVV +=  
where 

∑
=

i

i
io K

K
VV *   translational component  

i
i

it K
J

cT
V *

*
=   torsional component 

822 10*97.2=⋅+⋅= ∑∑ yiyixixi cKcKJ    torsional rigidity (see Table 5) 

xic , yic  - distance of the wall 
centroid from the centre of 
resistance ( RC ) 
 
The calculation of translational 
and torsional forces is presented 
in Table 5. Translational and 
torsional force components due 
to the eccentricity 1xe  and the 
torsional moment 1T  are shown 
on the figure. Note that the 
torque 1T  causes rotation in the 
same direction like the force V 
(showed by the dashed line) 
around point RC  (this is 
illustrated on Figure 1-18). The 
wall forces shown on the 
diagram are in the directions to 
resist the shear V and torque 1T , 
thus on wall Y1 the translational 
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in 
the opposite direction. The calculation of the forces is presented in Table 5 where the sign 
convention has horizontal wall forces positive to the left and vertical forces positive down, 
resulting in negative values for the torsional forces in walls X1, Y2 and Y3. 
 
Table 5.  Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction 
 

Wall 
iK  

(kN/m) 
ic  

(m) 

2* ii cK  ∑ yy KK  oV  
(kN) 

tV1  
(kN) 

totalV1  
(kN) 

tV2  
(kN) 

totalV2  
(kN) 

governV  

(kN) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

X1 3.49E+06 -3.77 4.96E+07     -260 -260 -74 -74 260 
X2 9.24E+05 14.23 1.87E+08     260 260 74 74 260 

∑ xK  4.41E+06                   
Y1 2.18E+06 3.05 2.03E+07 0.66 463 131 594 37 500 594 
Y2 1.94E+05 -5.95 6.87E+06 0.06 41 -23 18 -6 35 35 
Y3 9.24E+05 -5.95 3.27E+07 0.28 196 -109 87 -31 165 165 

∑ yK  3.30E+06     1.00 700           

  
2* ii cK∑  2.97E+08       

 
It should be noted that there are two total seismic forces for each wall in the N-S direction 
(corresponding to torsional moments 1T  and 2T ) – see columns (8) and (10) in Table 5. The 
governing force to be used for design is equal to the larger of these two forces, as shown in 
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and 
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3. 
 
b) Flexible diaphragm 
It is assumed in this example that flexible diaphragms are not capable of transferring significant 
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the 
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act 
as beams spanning between the walls, as shown on the figure below. The diaphragm loads 
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia 
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic 
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example). 
 
Shear forces in the walls aY1  and 2Y  (diaphragm D1): 
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall 1X  inertia 
load: 

[ ] kNkPammkPakPammVD 44838.5*30*4.2)6.05.3(*)30*9(*3.01 =++=  
The diaphragm is considered as a beam with the reactions at the locations of walls aY1  and 2Y , 
that is, 

kNmmkNR aY 747915*4481 ==  
and  

kNRVR aYDY 299747448112 −=−=−=  (opposite direction from aYR 1  is required to satisfy  
equilibrium) 
 
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 
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kNkPammVRV waYaY 78238.5*9*4.2*3.074711 =+=+=  
kNkPammVRV wYY 28438.5*4*4.2*3.029922 −=+−=+=  (note: this force has opposite 

direction from force aYV 1 ) 

 
Shear forces in the walls bY1  and 3Y  (diaphragm D2): 
Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall 2X  inertia 
load: 

[ ] kNkPammkPakPammVD 5.13438.5*9*4.2)6.05.3(*)9*9(*3.02 =++=  
The diaphragm is considered as a beam with the reactions at the locations of walls bY1  and 3Y , 
that is, 
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kNRR YbY 3.672/5.13431 ===  
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 

kNkPammVRV wbYbY 10238.5*9*4.2*3.06711 =+=+=  
kNkPammVRV wYY 10238.5*9*4.2*3.06733 =+=+=  

 
Total shear force in wall 1Y : 
The total seismic force in the wall 1Y  is equal to 

kNVVV bYaYY 884102782111 =+=+=  
 
Shear forces in walls 2Y  and 3Y : 
The total shear force in the combined walls 2Y  and 3Y  is equal to 

kNVVV YYY 1821022843223 −=+−=+=  
This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the 
wall stiffnesses are presented in Table 4): 

kNV
KK

KV Y
YY

Y
Y 32)182(*17.0)182(*

10*24.910*94.1
10*94.1* 55

5

23
32

2
2 −=−=−

+
=

+
=  

kNVVV YYY 150)32(1822233 −=−−−=−=  
 
The comparison  
Shear forces in the walls 1Y  to 3Y  obtained in parts a) and b) of this example are summarized 
on the figure below. A comparison of the shear forces is presented in Table 6. 

 
 
Table 6. Shear Forces in the Walls 1Y  to 3Y  for Rigid and Flexible Diaphragms 
 

Shear forces (kN)  
Wall Rigid diaphragm 

(part a) 
Flexible diaphragm 
(part b) 

1Y  594 972 (884) 

2Y  35 35 (32) 

3Y  165 165 (150) 
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These 
values are increased by 10 % to account for accidental eccentricity. 
 
It can be observed from the table that the flexible diaphragm assumption results in the same 
seismic forces for the walls 2Y  and 3Y , and an increase in the wall 1Y  force. 
 
Deflection calculations 
A fundamental question related to diaphragm design is: when should a diaphragm be modeled 
as a rigid or a flexible one? This is discussed in Section 1.5.9.4. A possible way for comparing 
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid 
and flexible diaphragm case are presented below. 
 
• Rigid diaphragm (see Example 2, step 8 for a similar calculation) 
The deflection will be calculated for point A as this should be the maximum.  First, a reduction in 
the wall stiffness to account for the effect of cracking will be determined following the approach 
presented in Section C.3.5. The reduced stiffness will be determined for wall 2Y  according to 
equation (15) from Section C.3.5, that is, 

c
em

f

y
ce K

Af
P

f
K )100(

′
+=    

where 
cK  is the elastic uncracked stiffness  

( ) 1425.3*20.9*0.9 ==fP  kN   (axial force due to dead load in wall 2X ) 

( 43 10*2160.9*)10*240 ==eA mm2   (effective cross sectional area for 240 mm block wall, 
solid grouted, length 9.0 m; see Table D-1 for eA  values for the unit wall length) 

mf ′ =10.0 MPa 
400=yf  MPa (Grade 400 steel) 

thus 

ccce KKK 26.0)
10*216*0.10

10*142
400
100( 4

3

=+=  

Next, the translational displacement at point A can be calculated as follows: 

mm
mkN

kN
K

V

Y

A 82.0
/10*3.3*26.0

700
26.0 60 ===Δ
∑

 

Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the 
building θ  can be found from the following equation: 

5
6 10*59.7

10*297*26.0
5860 −===

kNm
J
Tθ rad 

where (see the torsional calculations performed in part a) of this example) 
5860=T  kNm     torsional moment 

610*297=J           elastic torsional stiffness (this value is reduced by 0.5 to take into account 
the cracking in the walls) 
The torsional displacement at point A: 

mmmxAt
A 82.105.24*10*59.7* 5 ===Δ −θ  
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The total displacement at point A is can be found as follows (note that the displacements need 
to be multiplied by Eod IRR  ratio, where EI = 1.0): 

( ) ( ) mmRR odt
AAA 0.65.1*5.1*82.182.0*0max =+=Δ+Δ=Δ  

 
• Flexible diaphragm 
As a first approximation the calculation will consider a 21 m long diaphragm portion as a 
cantilever beam subjected to the total shear force equal to: 

[ ] kNkPammkPakPammVD 31438.5*21*4.2)6.05.3(*)21*9(*3.0 =++=  
and the equivalent uniform load is equal to 

0.15== LVv DD  kN/m 
where 

0.21=L  m  diaphragm length for the cantilevered portion 
The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at 
the wall 1Y , and walls 1Y , 2Y , and 3Y  also deflect; both effects provide some rotation at the fixed 
end of the cantilever. 
 
Consider a plywood diaphragm with the following properties: 

1500=E  MPa plywood modulus of elasticity 
600=G  MPa  plywood shear modulus 

4.25=Dt  mm  (1” plywood thickness) 
23.00254.0*0.9* === mmtbA D  m2 

 
Let us assume that the two courses of grouted bond beam block act as a chord member, as 
shown on the figure. The roof-to-wall connection is achieved by means of nails driven into the 
anchor plate and hooked steel anchors welded to the plate embedded into the masonry. The 
corresponding moment of inertia around the centroid of the diaphragm can be found as follows: 

89.3
2
0.9*096.0*2

2
**2

22

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

bAI c  m4 

where 
096.0)2.0*24.0(*2 == mmAc  m2       chord area (two grouted 240 mm blocks) 

kPaEm
610*5.8=       masonry modulus of elasticity based on mf ′ = 10.0 MPa (solid grouted 20 

MPa blocks and Type S mortar) 
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The total displacement at point A is equal to the combination of flexural and shear component, 
that is, 

( ) ( ) mmm
GA
LV

IE
Lv DDA 4010*4010*0.290.11

10*600*23.0*2
0.21*314*2.1

89.3*10*5.8*8
0.21*0.15

**2
*2.1

*8
* 33

36

44

==+=+=+=Δ −−

The total displacement at point A is can be found by multiplying the above displacement by 
Eod IRR  ratio, that is, 

mmRR od
AA 905.1*5.1*40*max ==Δ=Δ  

 
A quick check of the additional deflection caused by rotation at the fixed end of the cantilever 
indicates that an additional 50 mm could be expected at point A. Thus the total displacement 
would be about 140 mm. 
 
By comparing the displacements for the rigid and flexible diaphragm model, it can be observed 
that the difference is significant: 

mmA 6max =Δ     rigid diaphragm model 
mmA 90max =Δ   flexible diaphragm model 

 
Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to: 

9.1019.0
4800
90max ===

Δ
=

wh
DR  % 

The drift is within the NBCC 2005 limit of 2.5% (see Section 1.5.11); however, a flexible 
diaphragm would not be an ideal solution for this design – a rigid diaphragm would be the 
preferred solution. 
 
Discussion 
In this example, seismic forces were determined for the N-S walls due to seismic load acting in 
the N-S direction. It should be noted, however, that there is a significant eccentricity causing 
torsional effects in the E-W walls due to seismic load acting in the E-W direction – these 
calculations were not included in this example.  
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall 
 
Determine minimum seismic reinforcement according to CSA S304.1-04 for a loadbearing 
masonry shear wall located in an area with a seismic hazard index ( )2.0aaE SFI  of 0.66. The 
wall is subjected to axial dead load (including its own weight) of 230 kN. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG)  
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 
 
 
 
 

 
SOLUTION: 
The purpose of this example is to demonstrate how the minimum seismic reinforcement area 
should be determined and distributed in horizontal and vertical direction. Once the 
reinforcement has been selected in terms of its area and distribution, the flexural and shear 
resistance of the wall will be determined and the capacity design issues discussed, as well as 
the seismic safety implications of vertical and horizontal reinforcement distribution.  
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

yf = 400 MPa  
s

φ = 0.85 
Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it 
will be ignored for the small area included. 
Masonry: 

mφ = 0.6 
Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table 
4 of S304.1-04 that 

mf ′ = 9.8 MPa  
Based on Note 3 to Table 4, this mf ′  value is normally used for hollow block masonry but can 
also be used for partially grouted masonry if the grouted area is not considered. 
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.5.4.7 and 
Table 2-2). 
Since ( )2.0aaE SFI =0.66 > 0.35, minimum seismic reinforcement must be provided (S304.1 
Cl.10.15.2.2). 
 
Seismic reinforcement area 
Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel 
having a minimum area of  

gs AA 002.0min =  = 0.002*(190*103 mm2/m) = 380 mm2/m 
for 190 mm block walls, where 

gA =(1000mm)*(190mm)=190*103 mm2/m gross cross-sectional area for a unit wall length of 1 
m 
Minimum area in each direction (one-third of the total area): 

127
3

380
3

00067.0 min
minmin ====′=′ s

gvh
A

AAA  mm2/m 

Thus the minimum total vertical reinforcement area 
wv lA *127min =  = (127 mm2/m)(8 m) = 1016 mm2  

 
In distributing seismic reinforcement, the designer may be faced with the dilemma: should more 
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3rd of the total 
amount of reinforcement can be placed in one direction and the remainder in the other direction. 
In this example, less reinforcement will be placed in the vertical direction, and more in the 
horizontal direction. The rationale for this decision will be explained later in this example. 
 
Vertical reinforcement (area and distribution) (see Table 2-2): 
According to S304.1 Cl.10.16.4.3.2, spacing of vertical reinforcing bars shall not exceed the 
lesser of: 
• )10(6 +t =6(190+10)=1200 mm 
• 1200mm 
• 4wl =8000/4=2000 mm 
Therefore, the maximum permitted spacing of vertical reinforcement is equal to  
=s 1200 mm. 

 
Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note 
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so 

vA = 8*200 =1600 mm2 
(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the 
upper limit prescribed by CSA S304.1). 
 
The corresponding vertical reinforcement area per metre length is 

1000*
w

v
v l

A
A =′  = 200 mm2/m > minvA′ =127 mm2/m       OK 
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Horizontal reinforcement (area and distribution) (see Table 2-2): 
Let us consider a combination of joint reinforcement and bond beam reinforcement. According 
to S304.1 Cl.10.15.2.6, where both types of reinforcement are used, the maximum spacing of 
bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement 
arrangement is considered: 
• 9 Ga. ladder reinforcement @ 400 mm spacing, and  
• 2-15M bond beam reinforcement @ 2200 mm (1/3rd of the overall wall height). The area of 
ladder reinforcement (2 wires) is equal to 22.4mm2, and the area of a 15M bar is 200 mm2. So, 
the total area of horizontal reinforcement per metre of wall height is 

=⎟
⎠
⎞

⎜
⎝
⎛ +=′ 1000*

2200
400

400
4.22

hA 238 mm2/m > minhA′ =127 mm2/m       OK 

 
So, the total area of horizontal and vertical reinforcement is 

238200 +=′+′= hvs AAA =438 mm2/m   > minsA =380 mm2/m         OK 
 
Note that the total area (438 mm2/m) exceeds the S304.1 minimum requirements (380 mm2/m)   
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also 
a reserve in reinforcement area provides additional safety for seismic effects. 
 
3. Check whether the vertical reinforcement meets the minimum requirements for 
loadbearing walls (S304.1 Cl. 10.15.1.1 – see Table 2-2). 
Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements 
would need to be checked, however the check is omitted from this example since it does not 
govern in seismic zones. 
 
4.  Determine the flexural resistance of the wall section (see Section C.1.1.2). 
Design for combined effects of axial load and flexure will be performed by considering uniformly 
distributed vertical reinforcement. Based on the above discussion, the total area of vertical 
reinforcement is 

vtA = 1600 mm2  
At the base the wall is subjected to axial load fP = 230 kN. 
 
The in-plane moment resistance for the wall section can be determined approximately from the 
following equations: 

85.01 =α           8.01 =β  

061.0
190*8000*8.9*6.0

1600*400*85.0
'

===
tlf

Af

wmm

vtys

φ
φ

ω  

026.0
190*8000*8.9*6.0

10*230
'

3

===
tlf

P

wmm

f

φ
α  

( ) 8688000
8.0*85.0061.0*2

026.0061.0
2 11

=
+
+

=
+
+

= wlc
βαω

αω
 mm    neutral axis depth 
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8000
8681

1600*400*85.0
10*2301

1000
8000*1600*

1000
400*85.0*5.0115.0

3

wvtys

f
wvtysr l

c
Af

P
lAfM

φ
φ

2762=rM   kNm 
 
5.  Find the diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 
Cl.10.10.1). 
Find the masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

5.0=gγ   partially grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.5 MPa 

Note that a conservative assumption 
vf

f

dV
M

=1.0 has been made in the above equation.  

gdvwmmm PdbvV γφ )25.0( += = 0.6(0.5*190*6400+0.25*207*103)*0.5 = 198 kN     

Steel shear resistance sV : 

8.608*85.0*6.06.0 =⎟
⎠
⎞

⎜
⎝
⎛= ∑ s

d
fAV v

yvss φ = 310 kN 

where the shear reinforcement includes 9 Ga. joint reinforcement spaced at 400 mm, and 2-
15M bond beam reinforcement at 2200 mm spacing, and so 

2200
6400*400*

1000
400

400
6400*400*

1000
4.22

+=∑ s
d

fA v
yv = 608.8 kN 

The total diagonal shear resistance is equal to 
508310198 =+=+= smr VVV  kN 

This is a squat shear wall because 0.1825.0
8000
6600

≤==
w

w

l
h

. 

Maximum shear allowed on the section is (S304.1 Cl.10.10.1.3): 

537)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN    

Since 
rr VV max<   OK 

 
6. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 1600 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*1600*400 = 544 kN  

dP  = 207 kN 
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yd TPP +=2  = 207+544 = 751 kN 

2PV mr μφ= = 0.6*1.0*751=451 kN 
 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. Seismic design philosophy considers that it is desirable to 
design structural members such that the more ductile flexural failure takes place before the 
more brittle shear failure has been initiated. This is known as capacity design approach and is 
discussed in detail in Section 2.5.2.  
 
In this case, the factored moment resistance is equal to 

2762=rM   kNm 
 
The nominal moment resistance can be estimated as follows 

3249
85.0

2762
===

s

r
n

MM
φ

 kNm 

 
Shear force at the top of the wall that would cause the overturning moment equal to nM  is 
equal to 

===
6.6

3249

w

n
nb h

M
V  492 kN 

 
To ensure that flexural failure takes place before the diagonal shear failure, it is required that 
(see Figure 2-22) 

rnb VV ≤  
 
Since 

508492 =<= rnb VV  kN 
 
the capacity design criterion has been satisfied. It should be noted that CSA S304.1-04 does not 
formally require that capacity design approach be applied to all categories of reinforced 
masonry walls – it is mandatory only for “ductile walls” (limited ductility and moderately ductile 
shear walls). However, it is a good practice to consider the capacity design approach in 
designing all reinforced masonry walls in areas where seismic design is required by NBCC 2005 
(note that this approach is followed in CSA A23.3 reinforced concrete design standard). 
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8. Design summary 
The reinforcement arrangement for the wall under consideration is summarized below. 

 
 
9. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 492=nbV  kN shear force corresponding to flexural failure 
b) 508=rV  kN diagonal tension shear resistance 
c) 451=rV  kN sliding shear resistance 
Since the sliding shear resistance value is the lowest, it can be concluded that the sliding shear 
mechanism is critical for this case, which is common for seismic design of squat shear walls. 
 
As discussed at the beginning of this example, CSA S304.1 permits the minimum seismic 
reinforcement to be distributed in different ways. The solution presented above proposed that 
minimum reinforcement be placed in the vertical direction so that the capacity design criterion 
could be satisfied. Had the designer decided that more vertical reinforcement is required for 
meeting the flexural design requirements, (s)he could have used 10-15M bars instead of 8-15M 
bars (this would result in a 25% increase in the amount of vertical reinforcement). The 
corresponding amount of horizontal reinforcement could be reduced: 1-15M at 2200 mm 
spacing for bond beam reinforcement and 9 Ga. joint reinforcement at 400 mm spacing. This 
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combination would meet the minimum seismic reinforcement requirements (250 mm2/m vertical 
reinforcement and 146 mm2/m horizontal reinforcement, with a total of 397 mm2/m). For this 
arrangement of reinforcing the moment and shear resistance would be: 3195=rM   kNm (a 
16% increase compared to the previous value 2762=rM   kNm) and 571=nbV  kN shear force 
corresponding to flexural failure; however, 392=rV  kN (diagonal tension shear resistance). 
Since rnb VV >  the capacity design criterion would not be met. As a result, this wall would be 
expected to fail in a shear (diagonal tension) mode characterized by a brittle failure, which is 
undesirable. Alternatively, the wall might fail in shear sliding mode, which is more desirable than 
the diagonal shear failure and often governs in low-rise reinforced masonry shear walls. 
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EXAMPLE 4b: Seismic design of a squat shear wall of conventional construction 
 
Design a single-storey squat concrete block shear wall shown in the figure below according to 
NBCC 2005 and CSA S304.1 seismic requirements for conventional construction. The building 
site is located in Ottawa, ON on Site Class C soil, and the seismic hazard index ( )2.0aaE SFI  is 
0.66. The wall is subjected to a total dead load of 230 kN (including the wall self-weight) and an 
in-plane seismic force of 630 kN. Consider the wall to be solid grouted. Neglect the out-of-plane 
effects in this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 
 
 
 
 
 
 
 

SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6  
S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf ′ = 7.5 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
• fP = 230 kN axial load 

• fV = 630 kN seismic shear force 

• hVM ff *=  = 630*6.6 ≈ 4160 kNm overturning moment at the base of the wall 
Note that, according to NBCC 2005 Table 4.1.3.2, load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
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3. Minimum CSA S304.1 seismic reinforcement (see Section 2.5.4.7 and Table 2-2) 
Since ( )2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (S304.1 
Cl.10.15.2.2). See Example 4a for a detailed calculation of the S304.1 minimum seismic 
reinforcement. 
 
4.  Design for the combined axial load and flexure 
A design for the combined effects of axial load and flexure will be performed using two different 
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering 
concentrated and distributed reinforcement. 
 
Distributed wall reinforcement (see Section C.1.1.2) 
This procedure assumes uniformly distributed vertical reinforcement over the wall length. The 
total vertical reinforcement area can be estimated, and the estimate can be revised until the 
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical 
reinforcement was determined as  

vtA = 3200 mm2 > 1016 mm2 (minimum seismic reinforcement) - OK 
Try 16-15M bars for vertical reinforcement. 
The wall is subjected to axial load 

fP = 230 kN  
The approximate moment resistance for the wall section is given by: 

85.01 =α           8.01 =β  

159.0
190*8000*5.7*6.0

3200*400*85.0
'

===
tlf

Af

wmm

vtys

φ
φ

ω  

034.0
190*8000*5.7*6.0

10*230
'

3

===
tlf

P

wmm

f

φ
α  

( ) 15478000
8.0*85.0159.0*2

034.0159.0
2 11

=
+
+

=
+
+

= wlc
βαω

αω
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⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
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⎜
⎜
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⎛
+=

8000
15441

3200*400*85.0
10*2301

1000
8000*3200*

1000
400*85.0*5.0115.0

3

wvtys

f
wvtysr l

c
Af

P
lAfM

φ
φ

4253=rM   kNm > 4160=fM   kNm       OK 
 
Distributed and concentrated wall reinforcement (see Section C.1.1.1) 
 
This procedure assumes the same total reinforcement area, but the concentrated reinforcement 
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length. 

vtA = 3200 mm2 
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Concentrated reinforcement area at 
each wall end (3-15M bars in total, 
1-15M in last 3 cells): 

cA = 600 mm2 
 
Distributed reinforcement 

=dA 3200-2*600=2000 mm2 
 
Distance from the wall end to the 
centroid of concentrated 
reinforcement 

300=′d  mm  
 
The compression zone depth a :  

190*5.7*6.0*85.0
2000*400*85.010*230

'85.0

3 +
=

+
=

tf
AfP

a
mm

dysf

φ
φ

    = 1252 mm 

 
The masonry compression resultant rC :   

( )( ) 910)1252*190)(5.7*6.0*85.0('85.0 ==⋅= atfC mmm φ kN 
 
The factored moment resistance rM  will be determined by summing up the moments around 
the centroid of the wall section as follows (see equation (3) in Section C.1.1.1) 

( )( )[ ] 610*'222)( −−+−= dlAfalCM wcyswmr φ  

( )( )[ ] 63 10*30028000600*400*85.0*22)12528000(*10*910 −−+−= 4580=rM   kNm 
 
The second procedure was used as a reference (to confirm the results of the first procedure). 
Both procedure give similar rM  values (4253 kNm and 4580 kNm by the first and second 
procedure respectively).  
 
5.  Find the diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 
Cl.10.10.1). 
Masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.44 MPa 

4.6*630
4160

=
vf

f

dV
M

= 1.03 ≈ 1.0 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     
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Steel shear resistance sV  (2-15M bond beam reinforcement at 1200 mm spacing): 

1200
6400*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 435 kN 

Total shear resistance 
787435352 =+=+= smr VVV  kN     

Since 
787=rV kN > 630=fV kN       OK 

This is a squat shear wall because 0.1825.0
8000
6600

≤==
w

w

l
h

. Maximum shear allowed on the 

section is (S304.1 Cl.10.10.1.3) 

939)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN   

Since 
rr VV max<      OK 

Note that a solid grouted wall is required, that is, 0.1=gγ . A partially grouted wall would have 
5.0=gγ , so its shear capacity would not be adequate for this design. 

 
6. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 3200 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*3200*400 = 1088 kN  

dP  = 207 kN 

yd TPP +=2  = 207+1088 = 1295 kN 

2PV mr μφ= = 0.6*1.0*1295=777 kN 
777=rV kN > 630=fV kN       OK 

 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. It is a good seismic design practice to design structural 
members so that a ductile flexural failure takes place before a shear failure has been initiated, 
that is, to follow the capacity design approach discussed in Section 2.5.2. Note that CSA 
S304.1-04 does not formally require that capacity design approach be applied to reinforced 
masonry walls of conventional construction – it is mandatory only for “ductile walls”. 
 
In this case, the factored moment resistance is equal to 

4253=rM   kNm 
The nominal moment resistance can be estimated as follows 

5004
85.0

4253
===

s

r
n

M
M

φ
 kNm 

The shear force at the top of the wall that would cause an overturning moment equal to nM  is 



4/1/2009 4-45

===
6.6

5004

w

n
nb h

M
V  758 kN 

To ensure that a flexural failure takes place before the diagonal shear failure, it is required that 
(see Figure 2-22) 

rnb VV ≤  
Since 

787758 =<= rnb VV  kN 
the capacity design criterion is satisfied (see discussion in Example 4a). 
 
8. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to 
ensure uniform shear transfer along the entire length (see Section 2.3.2.2). 

 
 
10. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
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a) 758=nbV  kN shear force corresponding to flexural failure 
b) 787=rV  kN diagonal tension shear resistance 
c) 777=rV  kN sliding shear resistance 
 
Since the shear force corresponding to flexural resistance is smallest of the three values, it can 
be concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
 
Note that CSA S304.1-04 Cl.10.2.8 prescribes the use of a reduced effective depth d  for the 
flexural design of squat shear walls. This example deals with seismic design, and the wall 
reinforcement is expected to yield in tension, this provision was not followed since it would lead 
to a non-conservative design; instead, the actual effective depth was used for flexural design. 
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EXAMPLE 4c: Seismic design of a squat shear wall of moderate ductility 
 
Design a single-storey squat concrete block shear wall shown on the figure below according to  
NBCC 2005 and CSA S304.1 seismic requirements for moderately ductile squat shear walls 
(note that the same shear wall was designed in Example 4b as a conventional construction). 
The building site is located in Ottawa, ON and the seismic hazard index ( )2.0aaE SFI  is 0.66. 
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher dR  value of 2.0 that can be used for walls 
with moderate ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in 
this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 
t = 190 mm thickness 
 

 
 
SOLUTION: 
Since  

0.1825.0
8000
6600

≤==
w

w

l
h

 

this is a squat shear wall (S304.1 Cl.4.6.6). The wall is to be designed as a moderately ductile 
squat shear wall, and NBCC 2005 Table 4.1.8.9 specifies the following dR  and oR  values (see 
Table 1-13): 

dR = 2.0 and oR = 1.5      
The seismic shear force of 470 kN for a wall with moderate ductility ( 0.2=dR ) was obtained by 
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with 
conventional construction ( 5.1=dR ), as follows 

 470
0.2
5.1*630 ≈=fV  kN 

 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   

Note that the h/t ratio exceeds the 
S304.1 limit of 20 for moderately 
ductile squat shear walls 
(Cl.10.16.6.3).
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Masonry: 
mφ = 0.6    

From S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 
mf ′ = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
• fP = 230 kN axial load 

• fV = 470 kN seismic shear force 

• hVM ff *=  = 470*6.6 ≈ 3100 kNm overturning moment at the base of the wall 
Note that, according to NBCC 2005 Table 4.1.3.2, the load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
 
3. Minimum CSA S304.1 seismic reinforcement (see Section 2.5.4.7 and Table 2-2) 
Since ( )2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (Cl.10.15.2.2). See 
Example 4a for a detailed calculation of the S304.1 minimum seismic reinforcement. 
 
4.  Design for the combined axial load and flexure (see Section C.1.1.2). 
A design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as 

vtA = 2200 mm2  > 1016 mm2 (minimum seismic reinforcement) - OK 
and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area 
of 2200 mm2). 
 
The wall is subjected to axial load fP = 230 kN. Note that the load factor for the load 
combination with earthquake load is equal to 1.0. 
 
The moment resistance for the wall section can be determined from the following equations (see 
Example 4b): 

85.01 =α   8.01 =β   109.0=ω   034.0=α   1273=c  mm  
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3290≅rM   kNm > 3100=fM   kNm       OK 

 
5. Height/thickness ratio check (see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in moderately ductile squat shear walls (Cl.10.16.6.3): 

20)10( <+th , unless it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability. 
 
For this example, 
h = 6600 mm (unsupported wall height) 
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t = 190 mm actual wall thickness 
So, 

( ) 2033101906600)10( >=+=+th  
The height-to-thickness ratio for this wall exceeds the CSA S304.1 limits by a significant margin. 
However, CSA S304.1 permits the height-to-thickness restrictions for moderately ductile squat 
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability 
is satisfactory.  
 
This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which 
corresponds to the compressive stress of 

15.0
190*8000
10*230 3

===
tl

P
f

w

f
c  MPa 

This stress corresponds to only 2% of the masonry compressive strength mf ′  which is equal to 
7.5 MPa. In general, a compressive stress below 0.1 mf ′  (equal to 0.75 MPa in this case) is 
considered to be very low. 
 
The recommendations included in the commentary to Section 2.5.4.4 will be followed here.  A 
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of 
the compression zone must be confirmed for this case. 
 
Try an effective flange width 390=fb mm.  The wall section and the internal force distribution is 
shown on the figure below.  

 
 
This procedure assumes the same total reinforcement area vtA  as determined in step 4, but the 
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is 
distributed over the wall length. 

vtA = 2200 mm2 
Concentrated reinforcement area (2-15M bars at each wall end): 
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cA = 400 mm2 
Distributed reinforcement area: 

=dA 2200-2*400=1400 mm2 
Distance from the wall end to the centroid of concentrated reinforcement cA : 
 100=′d  mm  
• Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*846.1
5.7*6.0*85.0

1400*400*85.010*230
'85.0

=
+

=
+

=
mm

dysf
L f

AfP
A

φ
φ

 mm2 

The depth of the compression zone a : 

772
190

190)190*390(10*846.1* 252

=
+−

=
+−

=
t

ttbA
a fL  mm 

The neutral axis depth: 

965
8.0
==

ac  mm 

The centroid of the masonry compression zone: 
( ) ( )

326
2)(2* 22

=
−+

=
L

f

A
ttbat

x  mm 

In this case, the compression zone is L-shaped, however only the flange area will be considered 
for the buckling resistance check (see the shaded area shown on the figure below). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
 
Gross moment of inertia for the flange only: 

8
33

10*39.9
12

390*190
12
*

=== f
xg

bt
I  mm4 

 
The buckling strength for the compression zone will be 
determined according to S304.1 Cl. 10.7.4.3, as follows: 

( )( )
1017

5.01 2

2

=
+

=
kH
IE

P
d

mer
cr β

φπ
 kN 

where 
75.0=erφ    

0.1=k  pin-pin support conditions 
0=dβ   assume 100% seismic live load  
6600=H  mm wall height 

6375850 =′= mm fE  MPa modulus of elasticity for masonry 
• Find the resultant compression force (including the concrete and steel component). 

842400*400*85.010*706 3 =+=+= cysmfb AfCP φ  kN 
where 

( ) 706)10*846.1)(5.7*6.0*85.0('85.0 5 === Lmmm AfC φ  kN 
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• Confirm that the out-of-plane buckling resistance is adequate. 
Since  

842=fbP kN < 1017=crP  kN 
it can be concluded that the out-of-plane buckling resistance is adequate and so the flanged 
section can be used for this design. This is in compliance with S304.1 Cl.10.16.6.3, despite the 
fact that the th  ratio for this wall is 33, which exceeds the CSA S304.1-prescribed limit of 20. 
 
4a. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 5 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

( ) ( ) ( ) )10028000(*400*400*85.0*2)32628000(*10*706)2(22 3 −+−=′−+−= dlAfxlCM wcyswmr φ

365510*3655 6 == NmmM r   kNm 
Since 

3655=rM   kNm > 3100=fM   kNm       OK 
 
6.  The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
64008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 207 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.44 MPa 

4.6*470
3100

=
vf

f

dV
M

= 1.03 ≈ 1.0 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV : 
Assume 2-15M bond beam reinforcement at 1200 mm spacing, so 

400=vA  mm2 
1200=s  mm 

Horizontal reinforcement area per metre: 

3331000*
1200
4001000* ===′

s
A

A v
h  mm2/m 

 

1200
6400*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 435 kN 

Total diagonal shear resistance 
787435352 =+=+= smr VVV  kN     
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787=rV  kN > 470=fV  kN       OK 
Maximum shear allowed on the section is (S304.1 Cl.10.10.1.3) 

939)2(4.0max =−′=
w

w
gvwmmr l

h
dbfV γφ  kN      

Since 
rr VV max<    OK 

 
Note that CSA S304.1 Cl.10.16.6.2 requires that the method by which the shear force is applied 
to the wall shall be capable of applying shear force uniformly over the wall length. This can be 
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section 
2.3.2.2 (see Figure 2-16). 
 
7. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2200 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*2200*400 = 748 kN  

dP  = 207 kN 

yd TPP +=2  = 207+748 = 955 kN 

2PV mr μφ=  = 0.6*1.0*955 = 573 kN 
573=rV  kN > 470=fV  kN       OK 

Note that 573=rV  kN < 787=nbV  kN (this indicates that the sliding shear resistance governs 
over the diagonal tension shear resistance). 
 
8. Reinforcement requirements for moderately ductile squat shear walls (see Section 
2.5.4.8) 
CSA S304.1-04 Cl.10.16.6.6 introduced the following new requirements for the amount of 
reinforcement in moderately ductile squat shear walls: 
 
Vertical reinforcement ratio vρ  
Actual vertical reinforcement ratio vflexρ  based on the flexural design requirements (see step 4): 

310*447.1
190*8000

2200
*

−===
tl

A

w

vt
vflexρ  

Minimum minvρ  value set by CSA S304.1 Cl.10.16.6.6.1: 

=
−

=
⋅⋅⋅

−
≥

400*8000*190*85.0
10*23010*470 33

min
ywws

ff
v flb

PV
φ

ρ 0.464*10-3 

Since  
vflexρ = 1.447*10-3 > minvρ = 0.464*10-3 

Therefore, the amount of vertical reinforcement determined based on the flexural design 
requirements (11-15M) is OK. 
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Horizontal reinforcement ratio hρ   

hρ  should be greater of  
a) the minimum value set by CSA S304.1 Cl.10.16.6.6.2: 

=+=+≥ −

400*8000*190
10*23010*644.4*85.0

3
4

min
yww

f
vshs flb

P
ρφρφ 0.773*10-3 

(note that the vertical reinforcement ratio used in this relation is the one that governed above, 
that is, minvv ρρ = = 4.644*10-4) 
and  
b) the value determined in accordance with Cl.10.10 based on the shear resistance 
requirements 

310*44.1
6600*190
2131*85.0

*
−===

ww

hs
hshears hb

Aφ
ρφ  

where hA  is the total area of horizontal reinforcement along the wall height, that is, 
=′= vhh dAA * 333*6.4=2131 mm2 

333=′hA  mm2/m  (see step 6) 
 
In this case, 

minhsρφ =0.773*10-3 <  hshearsρφ =1.44*10-3 

This indicates that the CSA S304.1 shear resistance requirement governs. The amount of 
horizontal reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is 
adequate. 
 
9. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry 
shear walls be designed so that flexural failure takes place before shear failure has been 
initiated, that is, to follow the capacity design approach (see Section 2.5.2 for more details).  
In this case, the factored moment resistance is equal to 

3655=rM   kNm 
The nominal moment resistance can be estimated as follows 

4300
85.0

3655
===

s

r
n

M
M

φ
 kNm 

The shear force at the top of the wall that would cause an overturning moment equal to nM  is 

===
6.6

4300

w

n
nb h

M
V  652 kN 

In order to ensure that flexural failure takes place before the diagonal shear failure, it is required 
that (see Figure 2-22) 

rnb VV ≤  
Since 

787652 =<= rnb VV  kN 
the capacity design criterion is satisfied (see discussion in Example 4a). 
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10. Shear resistance at the web-to-flange interface (see Section C.2 and Cl.7.11.4). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear: 

31.0
8000*190
10*470 3

===
we

f
f lt

V
v  MPa 

where et = 190 mm (effective wall thickness) 
Vertical shear (caused by the resultant compression force fbP  calculated in Step 5): 

67.0
6600*190
10*842

*

3

===
ww

fb
f hb

P
v  MPa           governs 

Masonry shear resistance: 
44.0=mv  MPa (see step 6) 

Since 
67.0=fv MPa > 26.0=mmvφ MPa 

shear reinforcement at the web-to-flange interface is required. Since the horizontal 
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the 
flange (90° hook), and so 

60.0
190*1200

400*200*2*85.0
==

⋅
=

e

ybs
s ts

fA
v

φ
MPa 

The total shear resistance 
86.060.026.0 =+=+= smmr vvv φ MPa 

Since  
67.0=fv MPa < 86.0=rv MPa 

the shear resistance at the web-to-flange interface is satisfactory. 
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12. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solid grouted. 

 
13. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 652=nbV  kN shear force corresponding to flexural failure 
b) 787=rV  kN diagonal tension shear resistance 
c) 573=rV  kN sliding shear resistance 
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Since the sliding shear resistance value is smallest, it can be concluded that the sliding shear 
mechanism is critical in this case, which is common for seismic design of squat shear walls. 
Sliding shear resistance can be increased by roughening the wall-to-foundation interface (in 
which case the frictional coefficient can be increased to μ  = 1.4) or by providing shear keys. 
Alternatively, additional dowels could be provided at the base of the wall, however this would 
result in an increase in the moment resistance. The designer would need to ensure that the 
capacity design criterion discussed in step 9 is satisfied. 
 
Note that CSA S304.1-04 Cl.10.2.8 prescribes the use of reduced effective depth d  for flexural 
design of squat shear walls. Since this example deals with seismic design and essentially all the 
wall reinforcement is expected to yield in tension, this provision was not used as it is expected 
to result in additional vertical reinforcement, which would increase the moment capacity and 
possibly lead to a more brittle diagonal shear failure. 
 
Note that the S304.1 ductility check is not prescribed for moderately ductile squat shear walls 
(this requirement applies to the narrower flexural shear walls of moderate ductility per 
Cl.10.16.5.2.3). 
 
This example shows that an addition of flanges can be effective in preventing the out-of-plane 
buckling of moderately ductile squat shear walls. This is in compliance with S304.1 
Cl.10.16.6.3, despite the fact that the th  ratio for this wall is 33, which exceeds the CSA 
S304.1-prescribed limit of 20. 
 
The last two examples provide an opportunity for comparing the total amount of vertical 
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a 
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall 
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction 
(16-15M bars); this reduction amounts to approximately 30%. 
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EXAMPLE 5a: Seismic design of a flexural shear wall of limited ductility 
 
Perform the seismic design of a shear wall 1X , which is a part of the building discussed in 
Example 2. The wall is four storeys high, with the total height of 14 m, and due to its height must 
be designed either as a “limited ductility” or a “moderate ductility” shear wall per NBCC 2005 
Table 4.1.8.9 (same as Table 1-13 in Chapter 1 of this document). 
 
The section at the base of the wall is subjected to the total dead load of 1800 kN, the in-plane 
seismic shear force of 1450 kN, and the overturning moment of 14500 kNm. Select the wall 
dimensions (length and thickness) and the reinforcement such that the CSA S304.1 Cl.10.16.4 
seismic design requirements for limited ductility shear walls are satisfied. Due to architectural 
constraints, the wall length should not exceed 10 m, and a rectangular (unflanged) wall section 
should be used. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
 
Note: the wall dead load was calculated based on the tributary area (3.4 m by 13.4 m) at each 
floor level (see a typical floor plan shown in Example 2), plus the wall self-weight. 

 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
S304.1 Table 4, 20 MPa concrete blocks and Type S mortar: 
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mf ′ = 10.0 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
• fP = 1800 kN axial load 

• fV = 1450 kN seismic shear force 

• fM  = 14500 kNm overturning moment 
 
According to S304.1 Cl.4.6.4, this is a flexural shear wall because wh = 14000 mm height and 

wl = 10000 mm length, and  

0.14.1
10000
14000

>≥≥
w

w

l
h

 

and so the CSA S304.1 seismic design requirements for limited ductility (flexural) shear walls 
should be followed.  
 
3. Determine the required wall thickness based on the S304.1 height-to-thickness 
requirements (Cl.10.16.4.1.2, see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in limited ductility shear walls: 

18)10( <+th  
For this example, 
h = 5000 mm (the largest unsupported wall height) 
So, 

2681018 =−≥ ht  mm 
Therefore, in this case the only possible wall thickness is 

290=t  mm 
Alternatively, the designer may wish to consider a flanged wall section with smaller thickness. 
This is possible, except that (s)he would need to prove that the out-of-plane wall stability is not a 
concern (see Example 5b). 
 
4. Determine the wall length based on the shear design requirements. 
Designers may be requested to determine the wall dimensions (length and thickness) based on 
the design loads. In this case, the thickness is governed by the height-to-thickness ratio 
requirements, and the length can be determined from the maximum shear resistance for the 
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304.1 
Cl.10.10.1.1): 

gvwmmrr dbfVV γφ ′=≤ 4.0max  

0.1=gγ   solid grouted wall (required for plastic hinge zone) 

290=wb  mm overall wall thickness 

wv ld 8.0≈  effective wall depth 
Set  

1450== fr VV  kN 
and so 
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8235
0.1*8.0*290*10*6.0*4.0

10*1450
)8.0(4.0

3

==
′

>
gwmm

f
w bf

V
l

γφ
 mm 

Therefore, based on the shear design requirements the designer could select the wall length of 
8.4 m. However, a preliminary capacity design check indicated that a minimum wall length of 
nearly 10 m was required, thus try 

10000=wl  mm 
which gives 

1760max =rV  kN   
 
5. Minimum CSA S304.1 seismic reinforcement requirements (see Table 2-2) 
Since ( )2.0aaE SFI = 0.95 > 0.35, it is required to provide minimum seismic reinforcement 
(S304.1 Cl.10.15.2.2). See Example 4a for a detailed discussion on the S304.1 minimum 
seismic reinforcement requirements. 
 
6.  Design for the combined axial load and flexure (see Section C.1.1.2). 
Design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as follows 

vtA = 6000 mm2  
20-20M reinforcing bars can be used for vertical reinforcement in this design, and the average 
spacing is equal to  

516
19

20010000
=

−
≤s   mm  

Since the amount of vertical reinforcement is significant, it is required to check the maximum 
reinforcement area per S304.1 Cl.10.15.3 (see Table 2-2). 
Since mms 516=  < mmt 1160290*44 ==  

5800)10*290(02.002.0 3
max === gs AA  mm2/m 

This corresponds to the total reinforcement area of approximately 58000 mm2 for a 10 m long 
wall; this is significantly larger than the estimated area of vertical reinforcement. 
 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01 =α   8.01 =β    12.0=ω   1.0=α   2400≈c  mm 
 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

10000
24001

6000*400*85.0
10*18001

1000
10000*6000*

1000
400*85.0*5.0115.0

3

wvtys

f
wvtysr l

c
Af

P
lAfM

φ
φ  

14600=rM   kNm > 14500=fM   kNm       OK 
 
7. Perform the CSA S304.1 ductility check (see Section 2.5.4.3).  
To satisfy the CSA S304.1 ductility requirements for limited ductility shear walls (Cl.10.16.4.1.4), 
neutral axis depth ratio ( wlc ) should be less than the following limit: 

2.0<wlc  when 6<ww lh   
In this case, the neutral axis depth  
c = 2400 mm 
and so 
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2.024.0100002400 >==wlc  
Therefore, the CSA S304.1 ductility requirement is not satisfied. However, Cl.10.16.4.1.4 also 
states that the maximum compressive strain in masonry in the plastic hinge zone shall be 
shown to not exceed 0.0025 at the desired ductility level. 
 
At this point, the designer can use one of the following two alternative approaches to check 
whether the ductility is adequate per CSA S304.1 Cl.10.16.4.1.4: 
 
1) Find the required wall length such that the wlc  limit prescribed in the CSA S304.1 
ductility criteria is satisfied. 
The wall length can be estimated from Table D-2, which provides wlc  ratios for different input 
parameters (α  and ω ). By inspection, it can be concluded that 2.0<wlc   when 1.0≤α . Let 
us try to estimate the wall length based on this criterion. 
Since  

tlf
P

wm

f

'
*1667

=α  

set 
1.009.0 <=α  

and so 

11496
290*09.0*0.10

1800*1667
**'

*1667
===

tf
P

l
m

f
w α

 mm 

Therefore, we can select an increased wall length 11600=wl  mm. 
 
2) Calculate the masonry strain in the extreme compression fibre based on the given 
design loads, and prove that its value is less than 0.0025. 
This check will be performed based on the procedure explained in Section B.2 (see Figure B-5). 
The maximum displacement in the wall 1X  at the roof level was determined in Example 2 (step 
8), that is, 

mm46max =Δ  
Note that the above value includes only translational displacement component. Since the wall 

1X  is located close to the centre of resistance, the torsional displacement component is not 
significant. In the case of wall 1X , torsional displacement has a different direction from the 
translational displacement and (if included) the total displacement would be less than the 
translational one. 
 
The maximum displacement maxΔ  is equal to the sum of elastic displacement at the onset of 
steel yielding yΔ  and the plastic (post-yield) displacement pΔ , that is, 

py Δ+Δ=Δmax  
The yield curvature (corresponding to the onset of yielding in steel reinforcement) can be 
estimated as follows 

710*5.3
10000

0035.00035.0 −===
w

y l
ϕ The elastic displacement at the effective height can be 

estimated as  
( )( ) mm

hey
ye 7.11

3
1000010*5.3

3

272

===Δ
−ϕ
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The elastic displacement at the top of the wall is equal to (see the discussion in Example 2, step 
8) 

mmyey 5.177.11*5.1*5.1 ==Δ=Δ  
So, the plastic displacement can be determined as 

mmyp 5.285.1746max =−=Δ−Δ=Δ  

The plastic rotation pθ  can be found from the plastic displacement at the top and assuming that 
the plastic hinge has developed at the base is equal to (see the figure below) 

310*48.2

2
500014000

5.28

2

−=
−

=
−

Δ
=

p
w

p
p l

h
θ  rad 

where the plastic hinge length to be used for ductility calculations has been estimated as 
mmll wp 500010000*5.05.0 ===  

 
The maximum curvature can be determined from the following relationship between the rotation 
and the curvature: 

( ) pyup l*ϕϕθ −=  
and so 

7
3

10*96.4
5000

10*48.2 −
−

===−
p

p
yu l

θ
ϕϕ  

The ultimate curvature can then be determined as 
777 10*46.810*5.310*96.4 −−− =+=uϕ  

The maximum compressive strain in masonry can be determined from the following equation 

c
m

u
ε

ϕ =  

where 
2400=c  mm   neutral axis depth (see step 6) and so 

002.0)2400)(10*46.8(* 7 ≈== −cum ϕε  
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It should be noted that this procedure uses an assumption that the neutral axis depth c  has the 
same value at the onset of yielding (corresponding to strain yε ) and at the ultimate 
(corresponding to strain mε ); this is not true, however it does not significantly influence the 
accuracy of numerical results. 
 
Since 0025.0002.0 <=mε  it can 
be concluded that the wall 
satisfies the CSA S304.1 ductility 
requirements and that it is not 
necessary to increase its length. 
Therefore, the wall length 

10000=wl  mm will be used in 
the next steps. It should be noted 
that a larger wall length obtained 
from the first approach 
( 11600=wl  mm) would have 
resulted in a reduced amount of 
vertical and horizontal 
reinforcement for the same flexural and shear design requirements, and would be a viable 
design solution had the wall length not been limited to 10 m due to architectural constraints. 
 
8.  The diagonal tension shear resistance and capacity design check (see Section 2.3.2 
and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

290=wb  mm overall wall thickness 
80008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 1620 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.51 MPa 

Since 

0.8*1450
14500

=
vf

f

dV
M

= 1.25 > 1.0  

use 0.1=
vf

f

dV
M

 

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.51*290*8000+0.25*1620*103)*1.0 = 953 kN     

S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry shear walls be designed according 
to the capacity design approach (see Section 2.5.2 for more details). According to that 
approach, the shear capacity should exceed the shear corresponding to the nominal moment 
resistance (see Figure 2-22), as follows 

17176
85.0

14600
===

s

r
n

M
M

φ
 kNm 

where   
14600=rM   kNm     the factored moment resistance (see Step 6). 
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Shear force acts at the effective height eh , that is, distance from the base of the wall to the 
resultant of all seismic forces acting at floor levels. eh  can be determined as follows 

0.10==
f

f
e V

M
h  m 

The shear force nbV  that would cause the overturning moment equal to nM  can be found as 
follows 

===
0.10

17176

e

n
nb h

M
V  1718 kN 

This is less than the maximum shear allowed on the section (S304.1 Cl.10.10.1.1) 
17604.0max =′= gvwmmr dbfV γφ  kN    OK 

Thus the required steel shear resistance is 
7659531718 =−=−= mrs VVV  kN 

The required amount of reinforcement can be found from the following equation 

47.0
8000*400*85.0*6.0

10*765
6.0

3

===
vys

sv

df
V

s
A

φ
 

Try 2-15M bond beam reinforcing bars at 800 mm spacing ( 400=vA  mm2   and  800=s  mm): 

5.0
800
400

==
s
Av  > 0.47    OK 

Steel shear resistance sV : 

800
8000*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 816 kN 

Total diagonal shear resistance: 
1769816953 =+=+= smr VVV  kN     

Since 
1769=rV kN > 1450=fV kN       OK 

In conclusion, both the shear design requirements and the capacity design requirements have 
been satisfied. 
 
9. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 6000 mm2 total area of vertical wall reinforcement 

yssy fAT φ=  = 0.85*6000*400 = 2040 kN 

fd PP 9.0= = 1620 kN  

yd TPP +=2  = 1620+2040 = 3660 kN 

2PV mr μφ=  = 0.6*1.0*3660 = 2196 kN 
2196=rV  kN > 1450=fV  kN       OK 

Also,  
2196=rV  kN > 1718=nbV  kN     (capacity design check)     
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10. CSA S304.1 seismic detailing requirements for limited ductility walls – plastic hinge 
region 
According to Cl.10.16.4.1.1, the required height of the plastic hinge region for limited ductility 
shear walls (for which special detailing is required) must be greater than (see Table 2-4) 

0.520.102/ === wp ll  m  
or 

3.26/0.146/ === wp hl  m 

(note that wh  denotes the total wall height) 
Thus, 

0.5=pl  m governs 
 
Reinforcement detailing requirements for the plastic hinge region of limited ductility shear walls 
are: 
1. The wall in the plastic hinge region must be solid grouted (Cl.10.16.4.1.3, see Table 2-

4). 
 
2. Horizontal reinforcement requirements (see Figure 2-31) 
a) Reinforcement spacing should not exceed the following limits (Cl.10.16.4.3.3), see Table 2-2: 

1200≤s mm or  
50002100002 ==≤ wls  m 

Since the lesser value governs, the maximum permitted spacing is  
1200≤s  mm 

According to the design (see step 8), the horizontal reinforcement consists of 2-15M bars at 
800 mm spacing - OK 

b) Detailing requirements (Cl.10.16.4.3.3), see Table 2-3: 
Horizontal reinforcement shall not be lapped within  

 600 mm or  
 c = 2400 mm (the neutral axis depth) 

whichever is greater, from the end of the wall. In this case, the reinforcement should not be 
lapped within the distance c = 2400 mm from the end of the wall. The horizontal reinforcement 
can be lapped at the wall half-length. 
 
3. Vertical reinforcement requirements (see Table 2-3). 
There are no special detailing requirements for vertical reinforcement in limited ductility shear 
walls. 



4/1/2009 4-65

 
11. Design summary 
Reinforcement arrangement for the wall under consideration is summarized on the figure below. 
Note that the shear wall of limited ductility must be solid grouted in plastic hinge region, but it 
may be partially grouted outside the plastic hinge region (this depends on the design forces). 

 
 
12. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three shear resistance values need to be considered: 
a) 1718=nbV  kN shear force corresponding to flexural failure 
b) 1769=rV  kN diagonal tension shear resistance 
c) 2196=rV  kN sliding shear resistance 
 
Since the shear force corresponding to the flexural resistance is smallest of the three values, it 
can be concluded that the flexural failure mechanism is critical in this case, which is desirable 
for the seismic design. 
 
Had the design specified a shear wall of conventional construction, the same amount of vertical 
and horizontal reinforcement would have been required, but none of the special detailing 
discussed in step 10 would have been required. Also, the CSA S304.1 ductility check discussed 
in step 7 is not required for shear walls of conventional construction. 
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EXAMPLE 5b: Seismic design of a flexural shear wall of moderate ductility 
 
Perform the seismic design of a shear wall 1X  located at the rear side of the building discussed 
in Example 2 and Example 5a. Try to use the same wall dimensions as in Example 5a, that is, 
10 m length and 290 mm thickness. 
 
The section at the base of the wall is subjected to the total dead load of 1800 kN (including the 
wall self-weight), the in-plane seismic shear force of 1090 kN, and the overturning moment of 
10900 kNm.  The design should meet the CSA S304.1 Cl.10.16.5 requirements for shear walls 
of moderate ductility. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 

 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
S304.1 Table 4, 20 MPa concrete blocks and Type S mortar: 

mf ′ = 10.0 MPa (assume solid grouted masonry) 
 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
• fP = 1800 kN axial load 
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• fV = 1090 kN seismic shear force 

• fM  = 10900 kNm overturning moment 
 
This is a moderate ductility shear wall, and NBCC 2005 Table 4.1.8.9 specifies the following dR  
and oR  values (see Table 1-13): 

dR = 2.0 and oR = 1.5      
The seismic shear force of 1090 kN for a wall with moderate ductility ( 0.2=dR ) was obtained 
by prorating the force of 1450 kN from Example 5a which corresponded to a shear wall with 
limited ductility ( 5.1=dR ), as follows 

 1090
0.2
5.1*1450 ≈=fV  kN 

 
3. Height/thickness ratio check (Cl.10.16.5.2.2, see Section 2.5.4.4) 
CSA S304.1-04 prescribes the following height-to-thickness ( th ) limit for the compression zone 
in moderate ductility shear walls: 

14)10( <+th  
For this example, 
h = 5000 mm (the largest unsupported wall height) 
So, 

3471014 =−≥ ht  mm 
This exceeds the maximum possible wall thickness of 290 mm, which was used in Example 5a. 
 
Commentary to Section 2.5.4.4 contains the following two alternative approaches for verifying 
the out-of-plane stability of ductile masonry shear walls: 
 
1) Provide flanges at the wall ends and prove that the out-of-plane stability of the 
compression zone is satisfactory. 
Try the effective flange width 

690=fb  mm   
The wall section and the internal force distribution is shown on the figure.  
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This procedure assumes that the concentrated reinforcement (area cA ) is provided at the wall 
ends, while the remaining reinforcement (area dA ) is distributed over the wall length. After a few 
trial estimates, the total area of vertical reinforcement vtA  was determined as follows 

vtA = 2800 mm2 
Concentrated reinforcement area (2-15M bars at each wall end): 

cA = 400 mm2 
Distributed reinforcement area: 

=dA 2800-2*400=2000 mm2 
Distance from the wall end to the centroid of concentrated reinforcement cA : 

145=′d  mm  
 
• Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 
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The depth of the compression zone a : 
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The neutral axis depth: 
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The centroid of the masonry compression zone: 
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In this case, the compression zone is L-shaped, however only 
the flange area will be considered for the buckling resistance 
check (see the shaded area shown on the figure). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
Gross moment of inertia for the flange only: 
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The buckling strength for the compression zone will be determined according to S304.1 Cl. 
10.7.4.3, as follows: 
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where 
75.0=erφ  

0.1=k  pin-pin support conditions 
0=dβ   assume 100% seismic live load 

5000=H  mm unsupported wall height 
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8500850 =′= mm fE  MPa modulus of elasticity for masonry 
• Find the resultant compression force (including the concrete and steel component). 

2620400*400*85.010*2480 3 =+=+= cysmfb AfCP φ  kN 
where 

( ) 2480)10*86.4)(0.10*6.0*85.0('85.0 5 === Lmmm AfC φ  kN 
• Confirm that the out-of-plane buckling resistance is adequate. 
Since  

2620=fbP kN < 19983=crP  kN 
it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section 
can be used for this design. 
 
2) Prove that the compression zone of the wall is small and the adjacent vertical strips 
are able to stabilize it. 
For flanged wall sections, the neutral axis depth needs to meet one of the following requirement 
(see Figure 2-28c): 

1740290*66* ==≤ tc  mm 
Note that t6  denotes the distance from the inside of a wall flange to the point of zero strain. So, 
the total neutral axis depth (distance from the extreme compression fibre to the point of zero 
strain) is equal to 

20302901740* =+=+= tcc  mm 
The neutral axis depth was determined above, as follows 

1595=c  mm < 2030 mm  
 
Based on these two checks, the out-of-plane wall stability should not be a concern when a 
flanged section is used for the design, and so the CSA S304.1 height-to-thickness restrictions 
for moderate ductility shear walls will be relaxed. 
 
4. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 3 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

( ) ( ) ( ) )145210000(*400*400*85.0*2)520210000(*10*2480)2(22 3 −+−=′−+−= dlAfxlCM wcyswmr φ  
 

12431=rM   kNm > 10900=fM   kNm       OK 
 
5. Perform the CSA S304.1 ductility check (see Section 2.5.4.3).  
To satisfy the CSA S304.1 ductility requirements for moderate ductility shear walls 
(Cl.10.16.5.2.3), neutral axis depth ratio ( wlc ) should be less than the following limit: 

2.0<wlc  when 4<ww lh   
In this case,  

44.11000014000 <==ww lh   and mmc 1595=  
thus 

2.016.0100001595 <==wlc  
Therefore, the CSA S304.1 ductility requirement is satisfied. 
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6.  The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1)           
Masonry shear resistance ( mV ): 

290=wb  mm overall wall thickness 
80008.0 =≈ wv ld  mm    effective wall depth 

0.1=gγ   solid grouted wall 

fd PP 9.0= = 1620 kN  

m
vf

f
m f

dV
M

v ′−= )2(16.0 = 0.51 MPa 

0.8*1090
10900

=
vf

f

dV
M

= 1.25 > 1.0     

gdvwmmm PdbvV γφ )25.0( +=  = 0.6(0.51*290*8000+0.25*1620*103)*1.0 = 953 kN     

To find the steel shear resistance sV , assume 2-15M bond beam reinforcing bars at 600 mm 
spacing (this should make some allowance in the shear strength to satisfy capacity design), 
thus 

400=vA  mm2 
600=s  mm 

600
8000*400*

1000
400*85.0*6.06.0 ==

s
d

fAV v
yvss φ  = 1088 kN 

 
According to Cl.10.16.5.3.1, there is a 50% reduction in the masonry shear resistance 
contribution for moderate ductility shear walls, and so 

15651088953*5.05.0 =+=+= smr VVV  kN    > 1090=fV kN       OK 
 
Maximum shear allowed on the section is (S304.1 Cl.10.10.1.1) 

17604.0max =′= gvwmmr dbfV γφ  kN  > rV       OK 
 
7. Capacity design check (see Section 2.5.2) 
At this point, both the moment resistance rM  and the diagonal shear resistance rV  for the wall 
section have been determined. S304.1 Cl.10.16.3.3 requires that ductile reinforced masonry 
shear walls be designed so that flexural failure takes place before shear failure has been 
initiated, that is, to follow the capacity design approach (see Section 2.5.2 for more details).  
 
In this case, the factored moment resistance is equal to 

12431=rM   kNm 
The nominal moment resistance can be estimated as follows 
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Shear force acts at the effective height eh , that is, distance from the base of the wall to the 
resultant of all seismic forces acting at floor levels. eh  can be determined as follows 

0.10==
f

f
e V

M
h  m 
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The shear force nbV  that would cause the overturning moment equal to nM  is as follows 

===
0.10

14625

e

n
nb h

M
V  1528 kN  1463=< rV  kN  OK 

 
8. Shear resistance at the web-to-flange interface (Cl.7.11.4, see Section C.2). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear can be determined as follows: 
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10000*290

10*1090 3

===
we

f
f lt

V
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where et = 290 mm (effective wall thickness) 
Vertical shear over the entire wall height (caused by the resultant compression force fbP  
calculated in Step 3): 

64.0
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Masonry diagonal tension shear strength: 
51.0=mv  MPa (see step 6) 

Since 
64.0=fv  MPa > 31.0=mmvφ  MPa 

it is required to provide shear reinforcement at the web-to-flange interface. Since the horizontal 
reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement); both bars 
can be extended into the flange (90° hook), and so 
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400*200*2*85.0
==

⋅
=

e

yss
s ts

fA
v

φ
 MPa 

The total shear resistance 
09.178.031.0 =+=+= smmr vvv φ  MPa > 64.0=fv  MPa    OK 

 
9. Sliding shear resistance (see Section 2.5.4.6) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 
For moderate ductility shear walls, only the vertical reinforcement in the tension zone should be 
accounted for in the yT  calculations (Cl.10.16.5.3.2), and so (see Figure 2-17b)  
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fAT φ  = 800 kN 

dP  = 1620 kN 

yd TPP +=2  = 1620+800 = 2420 kN 

2PV mr μφ=  = 0.6*1.0*2420 = 1452 kN 
1452=rV  kN > 1090=fV  kN       OK 
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10. CSA S304.1 seismic detailing requirements for moderate ductility walls – plastic 
hinge region 
According to Cl.10.16.5.2.1, the required height of the plastic hinge region for moderate ductility 
shear walls must be greater than (see Table 2-4) 

0.10== wp ll  m   
or 

3.26/0.146/ === wp hl  m 

(note that wh  denotes the total wall height) 
So, 0.10=pl  m governs 
 
Reinforcement detailing requirements for the plastic hinge region of limited ductility shear walls 
are as follows: 
1. The wall in the plastic hinge region must be solid grouted (Cl.10.16.4.1.3,  
      see Table 2-4). 
2. Horizontal reinforcement requirements (see Figure 2-31) 

a) Reinforcement spacing should not exceed the following limits (Cl.10.16.4.3.3), see Table 
2-2: 

1200≤s  mm or  
50002100002 ==≤ wls  m 

Since the lesser value governs, the maximum permitted spacing is  
1200≤s  mm 

According to the design (see step 7), the horizontal reinforcement spacing is 600 mm, 
hence OK. 

b) Detailing requirements (see Table 2-3) 
 Horizontal reinforcement shall not be lapped within (Cl.10.16.4.3.3) 

  600 mm or  
  c = 1595 mm (the neutral axis depth) 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within the distance c = 1595 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.10.16.5.4.2): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 
All these requirements will be complied with, as shown on the design summary drawing. 

3. Vertical reinforcement requirements (Cl.10.16.5.4.1) 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (see Table 2-3 and Figure 2-31). 
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11. Design summary 
Reinforcement arrangement for the wall under consideration is summarized on the next page. 
Note that the shear wall of limited ductility must be solid grouted in plastic hinge region, but it 
may be partially grouted outside the plastic hinge region (this depends on the design forces). 
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12. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three shear resistance values need to be considered: 
a) 1463=nbV  kN shear force corresponding to flexural failure 
b) 1565=rV  kN diagonal tension shear resistance 
c) 1452=rV  kN sliding shear resistance 
Since the sliding shear resistance value is smallest, it can be concluded that the sliding shear 
mechanism is critical in this case. Sliding shear resistance can be increased by roughening the 
wall-to-foundation interface (in which case the frictional coefficient can be increased to μ  = 1.4) 
or by providing shear keys. Alternatively, additional dowels could be provided at the base of the 
wall, however this would result in an increase in the moment resistance. The designer would 
need to ensure that the capacity design criterion discussed in step 7 is satisfied. 
 
At this point, it is of interest to compare the designs for limited ductility shear wall (Example 5a) 
and the moderate ductility shear wall (Example 5b). The walls are very similar, and have the 
same height, length, and thickness. The wall from this example has a flanged section, while the 
wall from Example 5a has a rectangular section. The walls are subjected to the same seismic 
hazard, but differ depending on the dR  and oR  values required for the respective designs. The 
comparison of the two designs is presented in the table below. 
 
Table 1. A Comparison of the Limited Ductility and Moderate Ductility Shear Wall Designs 
 
 Limited ductility shear wall 

(Example 5a) 
Moderate ductility shear wall 
(Example 5b) 

Actual height/thickness ratio 
for the plastic hinge zone 
(CSA S304.1 limit) 

17.2 (18) 17.2 (14) – flanges used to 
stabilize compression zones at 
wall ends 

Vertical reinforcement  6000 mm2 
(20-20M) 

2800 mm2 
(14-15M) 

Horizontal reinforcement 2-15M@800 mm bond beam 
reinforcement 

2-15M@600 mm bond beam 
reinforcement 

Plastic hinge length pl  5 m 10 m 

Horizontal reinforcement 
detailing (Table 2-3) 

Minimal requirements More extensive detailing 
requirements (see step 10) 

Vertical reinforcement 
detailing (Table 2-3) 

No special requirements Lapping requirement (see step 
10) 

 
The key differences in these designs can be summarized as follows: 
1. Moderate ductility shear wall requires less vertical reinforcement (by approximately 50%) 
since the dead load provides proportionally more of the moment resistance. 
2. Moderate ductility shear wall requires more horizontal reinforcement (by approximately 30%) 
as only 50% of the masonry shear strength can be utilized. 
3. Moderate ductility shear wall requires a substantially larger plastic hinge zone (10 m high) 
as compared to the limited ductility shear wall (5 m high) – the wall needs to be solid grouted 
and special detailing requirements apply in this zone, although the limited ductility shear wall 
may also need to be solid grouted for a height greater than 5 m. 
4. Moderate ductility shear wall has more extensive horizontal and vertical reinforcement 
detailing requirements.  
5. Moderate ductility shear wall requires flanges in order to satisfy the CSA S304.1 
height/thickness requirements. 
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects 
 
Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane 
loads in Example 4b, according to NBCC 2005 and CSA S304.1 requirements. The wall is a 
part of a single-storey warehouse building located in Ottawa, ON, with soil corresponding to Site 
Class C. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN 
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15 
MPa unit strength, Type S mortar, and  solid grouting. The wall is reinforced with 15M Grade 
400 vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in CSA 
S304.1 will not be considered in this design. 

 
 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry:  

mφ = 0.6    
S304.1 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf ′ = 7.5 MPa (assume solid grouted masonry) 
 
2. Determine the out-of-plane seismic load according to NBCC 2005 (see Section 2.6.5.3). 
This design requires the calculation of seismic load pV  for parts of buildings and nonstructural 
components according to NBCC 2005 Cl.4.1.8.17. First, seismic design parameters need to be 
determined as follows: 
• Location: Ottawa, ON   

)2.0(aS = 0.66 (NBCC 2005 Appendix C, page C-22)                    
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• Foundation factors  
aF = 1.0 for )2.0(aS =0.66 and Site Class C (from Table 1-10 or NBCC 2005 Table 

4.1.8.4.B) 
• EI = 1.0  normal importance building 
Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBCC 
2005, Table 4.1.8.17, Case 1) 

0.1=pC    0.1=rA   5.2=pR   0.3=xA  ( nx hh =   top floor) 

 2.15.20.30.10.1 =⋅⋅== pxrpp RAACS       

 0.47.0 << pS    O.K. 

• pW  = 4.0 kN/m2 unit weight of the 190 mm block wall (solid grouted) 

Seismic load pV  can be calculated as follows: 

( ) ppEaap WSISFV 2.03.0= =0.3*1.0*0.66*1.0*1.2*(4.0 kN/m2) = 0.95 kN/m2 ≈ 1.0 kN/m2 
 
3. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
According to S304.1 Cl.10.6.1, the effective compression zone width (b ) should be taken as the 
lesser of the following two values (see Figure 2-19): 

600== sb  mm   spacing of vertical reinforcement 
or 

760190*44 === tb  mm 
All design calculations in this example will be performed considering a vertical wall strip of width 

600=b  mm. 
 
4. Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin 
supports at the base and top. The loads on the wall 
consist of axial load due to roof load and wall self-
weight, plus the seismic out-of-plane load. The roof 
load and wall self-weight create moments due to 
minimum axial load eccentricity. 
• Axial load per wall width equal to 600=b  mm: 

0.1725.176.0*
8

230* ≈===
m
kNb

l
PP
w

f  kN 

• Minimum eccentricity (S304.1 Cl.10.7.2)  
== te 1.0min  0.019 m 

• Out-of-plane seismic load per wall width equal to 
600=b  mm: 

6.06.0*0.1 ==pv  kN/m 
• Design bending moment (at the midheight): 

8
6.6*6.0019.0*17

8
*

*
22

min +=+= wp
f

hv
epM  

        = 3.59 ≈ 3.6 kNm 
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5. Check whether the wall resistance for the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
This can be verified from a P-M interaction diagram which can be developed using the EXCEL© 
software (or commercially available masonry design software). Relevant tables used to develop 
the diagram are presented below, while the detailed theoretical background is outlined in 
Section C.1.2. Note that the design width is equal to mmb 600= . 
 
Table 1. Design Parameters 
 
Design parameter Unit Symbol Value 
Wall thickness  mm t 190 
Design width mm b 600 
Masonry maximum strain    EPSm 0.003 
Masonry strength MPa f'm 7.5 
Steel yield strength MPa fy 400 
Steel modulus of elasticity  MPa Es 200000
Effective depth mm d 95 
(c/d)balanced     0.6 
Reinforcement area mm^2/b As 200 
Material resistance-
masonry   Fim 0.6 
Material resistance-steel   Fis 0.85 
X- factor   X 1 
BETA1   BETA1 0.8 
Effective area mm^2 Ae 114000

 
In this case, the reinforcement is placed at the centre of the wall and so 

95
2

190
2

===
td  mm 

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and 
maximum compressive strain in masonry) can be determined from the following proportion 

y

m

b

b

cd
c

ε
ε

=
−

 

For 003.0=mε  and 002.0=yε  it follows that 

dcb 6.0=  
The area of vertical reinforcement per width 600=b  mm can be determined as follows: 

200600*
600
200* === b

s
A

A b
s  mm2    (15M@ 600 mm reinforcement) 

 
To determine whether the wall can carry the combined effect of axial load and bending moment, 
it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction 
diagram). The P-M interaction diagram for this example was developed using Microsoft 
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EXCEL® spreadsheet, but other methods or computer programs are also available. The results 
of the calculations are presented in Table 2. 
 
Table 2. P-M Interaction Diagram Values 
 

  c/d c Cm EPSs Tr Mr Pr   
      mm N   N kNm kN 

  0.01 0.95 1744.2 0.02 68000 0.16504 -66.256 
  0.1 9.5 17442 0.02 68000 1.59071 -50.558 
  0.2 19 34884 0.02 68000 3.04886 -33.116 
  0.3 28.5 52326 0.02 68000 4.37445 -15.674 
  0.4 38 69768 0.02 68000 5.56749 1.768 
  0.5 47.5 87210 0.02 68000 6.62796 19.21 

Points controlled 
by steel c<cb  

  0.6 57 104652 0.02 68000 7.55587 36.652 
  0.6 57 104652 0.002 68000 7.55587 36.652 
  0.7 66.5 122094 0.00129 43714.3 8.35123 78.3797 
  0.8 76 139536 0.00075 25500 9.01403 114.036 

Points controlled 
by masonry c>cb 

  0.9 85.5 156978 0.00033 11333.3 9.54426 145.645 
  1 95 174420 0 0 9.94194 174.42 
  1.2 114 209304 -0.0005 -17000 10.3396 209.304 
  1.3 123.5 226746 -0.0007 -23538 10.3396 226.746 
  1.5 142.5 261630 -0.001 -34000 9.94194 261.63 
  1.7 161.5 296514 -0.0012 -42000 9.01403 296.514 

Full section under 
compression 

  2 190 348840 -0.0015 -51000 6.62796 348.84 
Pure compression             0 348.84 

 
The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated 
on the figure below. For more detailed explanation related to the development of P-M interaction 
diagrams refer to Section C.1.2. 
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The P-M interaction diagram showing the point of interest ( 6.3=fM  kNm and 17=fP  kN) is 
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-
plane bending is adequate for the given design loads and the reinforcement determined in 
Example 4b. 
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Wall P-M Interaction Diagram
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6. Check whether the out-of-plane shear resistance of the wall is adequate (Cl.10.10.2, 
see Section 2.4.2). 
Design shear force at the support per wall width 600=b  mm: 

0.2
2

6.6*6.0
2
*

≈== wp
f

hv
V  kN 

According to S304.1 Cl.10.10.2, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV +⋅⋅= φ       

where 

mm fv ′= 16.0 = 0.44 MPa  ( mf ′ = 7.5 MPa for solid grouted 15 MPa block) 
95=d  mm    effective depth (to the block mid-depth) 
600=b  mm  effective compression zone width 

The axial load dP  can be determined as 
 5.1525.17*9.09.0 === fd PP  kN 
(note that the load has been prorated in proportion to the effective compression zone width b ). 
So, 

4.17)15500*25.095*600*44.0(*6.0 =+=rV  kN 
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Since 
0.2=fV  kN < 4.17=rV  kN    OK 

Maximum shear allowed on the section is 
)( 5.37)95*600(*5.7*6.0*4.0*4.0max ==′= dbfV mmr φ  kN          OK         

 
7. Check the sliding shear resistance (see Section 2.4.3). 
The factored out-of-plane sliding shear resistance rV  is determined according to S304.1 
Cl.10.10.4.2, as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement per wall width 600=b  mm  

yssy fAT φ=  = 0.85*200*400 = 68 kN  

5.159.0 == fd PP  kN 

yd TPP +=2  = 15.5+68 = 83.5 kN 

2PV mr μφ= = 0.6*1.0*83.5= 50.0 kN 
0.50=rV kN > 0.2=fV kN       OK 

Note that the sliding shear resistance does not govern in this case, however this mechanism 
often governs the in-plane shear resistance. 
 
8. Conclusion 
It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall 
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design 
governs (this is a common scenario in design practice). 
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects 
 
Consider the same masonry wall discussed in Example 6a, but in this example treat is as a 
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm 
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane 
seismic resistance of the wall according to NBCC 2005 and CSA S304.1 seismic requirements.  
 
Consider the following two cases: 
a) unreinforced wall, and 
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design). 
 
Use the seismic load determined in Example 6a, that is, 0.1=pv  kN/m2. 
 
SOLUTION: 
 
Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
φ = 0.85  yf = 400 MPa   
Masonry: 

mφ = 0.6    
Compresion resistance (S304.1 Table 4, 15 MPa concrete blocks and Type S mortar): 

mf ′ = 9.8 MPa (ungrouted, or partially grouted ignoring grout area)  
Tension resistance normal to bed joint (S304.1 Table 5): 

tf = 0.4 MPa (ungrouted) 
 
Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall 
height is 6.6=wh  m. A unit wall strip (width 1000=b  mm) will be considered for this design.  
 
The forces on the wall consist of the axial load due to the wall self-weight and the bending 
moment due to seismic out-of-plane load (NBCC 2005 load combination 1xD+1xE). 
• Factored axial load per width b  of 1.0 m: 
wall weight w = 2.46 kN/m2 (ungrouted 190 mm block wall) 

1.80.1*
2
6.6*)46.2(*

2
* === b

h
wP w

f  kN/m 

• Out-of-plane seismic load per width b  of 1.0 m: 
0.1=pv  kN/m 

• Factored bending moment (at the midheight): 

5.5
8

6.6*0.1
8
* 22

≈== wp
f

hv
M  kNm/m 

• Factored shear force (at the support): 

3.3
2

6.6*0.1
2
*

≈== wp
f

hv
V  kN/m 
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a) Unreinforced wall 
 
Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section 2.6.1.3). 
Find the load eccentricity: 

mmm
kN
kNm

P
M

e
f

f 68068.0
1.8

5.5
====  

According to S304.1 Cl.7.2.1, an unreinforced masonry wall is to be designed as uncracked if 
te 33.0>  

where t   denotes the wall thickness ( mmt 190= ) 
mmt 63190*33.033.0 ==  

In this case, 
mmtmme 6333.0680 =>=  

so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the 
allowable value) according to S304.1 Cl.7.2.2. The design procedure is explained in Section 
2.6.1.3. 
 
First, we need to determine properties for the effective wall section for a width 1000=b  mm. 
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows: 

310*4.75=eA  mm2/m  effective cross-sectional area 
610*66.4=eS  mm3/m section modulus of effective cross-sectional area 

 
The maximum compression stress at the wall face can be calculated as follows: 

MPa
S

M
A
P

f
e

f

e

f
c 29.118.1107.0

10*66.4
10*5.5

10*4.75
10*1.8max 6

6

3

3

=+=+=+=  

The allowable value is equal to 
MPafmm 9.58.9*6.0 ==′φ  

Since 
MPaMPafc 9.529.1max <=  

it follows that the maximum compression stress is less than the allowable value. 
 
Find the maximum tensile stress as follows: 

MPa
S

M
A
P

f
e

f

e

f
t 07.118.1107.0

10*66.4
10*5.5

10*4.75
10*1.8max 6

6

3

3

−=−=−=−=  

 The allowable value is equal to 
MPaftm 24.04.0*6.0 −=−=−φ  

Since 
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MPaMPaft 24.007.1max −<−=  
it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable. 
 
In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is 
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also, 
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where 
the seismic hazard index ( )2.0aaE SFI =1.0*1.0*0.66=0.66 > 0.35.  Therefore, the design will 
proceed considering a reinforced nonloadbearing wall. 
 
b) Reinforced wall 
 
1. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.6.4). 
According to S304.1 Cl.10.15.2.4, if ( ) 75.02.035.0 ≤≤ aaE SFI  nonloadbearing walls shall be 
reinforced in one or more directions with reinforcing steel having a minimum total area of  

gstotal AA 0005.0=   
The reinforcement may be placed in one direction, provided that it is located to reinforce the wall 
adequately against lateral loads and spans between lateral supports. 

gstotal AA 0005.0=  = 0.0005*(190*103 mm2) = 95 mm2/m 
where 

gA =(1000mm)*(190mm)=190*103 mm2 gross cross-sectional area per metre of wall length 
Let us choose 15M vertical reinforcement (area 200 mm2 ) at 1200 mm spacing which is the 
maximum spacing allowed (1200 mm). 
The area of reinforcement per metre of wall length is 

167
1200
1000*200 ==sA mm2/m  > 95 mm2/m   OK 

 
2. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm, 
as follows: 

7.9
0.1
2.1*1.8 ==fP  kN 

6.6
0.1
2.1*5.5 ==fM  kNm 

0.4
0.1
2.1*3.3 ==fV  kN 

 
3. Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
Since this is a partially grouted wall, its flexural resistance will be determined using a T-section 
model.  
 
According to S304.1 Cl.10.6.1, the effective compression zone width (b ) should be taken as the 
lesser of the following two values (see Figure 2-19): 

1200== sb  mm  
or 

760190*44 === tb  mm 
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Therefore, 760=b  mm will be used as the width of the masonry compression zone. 
 
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38 
mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1, 
considering the case of an ungrouted 200 mm block wall. 

 
Since the reinforcement is placed at the centre of the wall, the effective depth is equal to 

95
2

190
2

===
td  mm 

The reinforcement area used for the design needs to be determined as follows: 
200== bs AA  mm2 

The internal forces will be determined as follows (see Figure C-8): 
68000200*400*85.0 === sysr AfT φ  N 

Since 
77700680009700 =+=+= rfm TPC  N 

and 
( )( )abfC mmm ⋅= '85.0 φ  

the depth of the compression stress block a can be determined as follows 

20
760*8.9*6.0*85.0

77700
'85.0

===
bf

C
a

mm

m

φ
 mm  

Since 
mmtmma f 3820 =<=  

the neutral axis is located in the face shell (flange). The moment resistance around the centroid 
of the wall section can be determined as follows 

6.6)22095(*77700)2( =−=−= adCM mr  kNm 
Since  

6.6=rM  kNm = 6.6=fM  kNm 
it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could 
be reduced to s =1000 mm to allow for an additional safety margin (the revised moment 
resistance calculations are omitted from this example). 
 
4. Check whether the out-of-plane shear resistance of the wall is adequate (see Section 
2.4.2). 
According to S304.1 Cl.10.10.2, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV +⋅⋅= φ      where 
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mm fv ′= 16.0 = 0.50 MPa 
95=d  mm    effective depth 
200≈b  mm  web width - equal to the grouted cell width (156 mm) plus the thickness of the 

adjacent webs (26 mm each) 
The axial load dP  can be determined as 
 7.87.9*9.09.0 === fd PP  kN 
Thus, 

0.7)8700*25.095*200*50.0(*6.0 =+=rV  kN 
Since 

0.4=fV  kN < 0.7=rV  kN    OK 
Maximum shear allowed on the section is 

)( 3.14)95*200(*8.9*6.0*4.0*4.0max ==′= dbfV mmr φ  kN          OK         
 
5. Check the sliding shear resistance (see Section 2.4.3). 
The factored in-plane sliding shear resistance rV  is determined according to S304.1 
Cl.10.10.4.2, as follows: 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement at 1.2 m spacing 

yssy fAT φ=  = 0.85*200*400 = 68.0 kN  

dP  = 8.7 kN 

yd TPP +=2  = 8.7+68.0 = 76.7 kN 

2PV mr μφ= = 0.6*1.0*76.7 = 46.0 kN 
0.46=rV kN > 0.4=fV kN       OK 

 
6. Conclusion 
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is 
satisfactory. It should be noted that the flexural resistance governs in this design. The required 
amount of vertical reinforcement (15M@1200 mm) corresponds to the following area per metre 
length  

1671000* ==
s

AA bs  mm2 

which is significantly larger than the minimum seismic reinforcement prescribed by CSA S304.1, 
that is, 95=stotalA  mm2/m. Note that 15M@1200 mm is also the minimum vertical reinforcement 
that meets the minimum spacing requirements using typical15M bars. 
 
Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was 
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at 
400 mm spacing could be considered to improve the overall seismic performance of the wall.  
 
It should be noted that, in exterior  walls the mortar-bedded joints could be significantly affected 
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints); 
some of the grooves are up to 10 mm deep. The designer should consider this effect in the 
calculation of the compression zone depth. 
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EXAMPLE 7: Seismic design of masonry veneer ties 
 
Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a 
school gymnasium in Montréal, Quebec. The building is founded on rock. The design should be 
performed to the requirements of NBCC 2005, CSA S304.1-04, and CSA A370-04. Consider the 
following two types of the veneer backup: 
a) Concrete block wall (a rigid backup), and 
b) Steel stud wall with 400 mm steel stud spacing (a flexible backup). 
c) Evaluate the minimum tie strength requirements for the rigid and flexible backup. 
 
SOLUTION: 
 
This design problem requires the calculation of seismic load pV  for nonstructural elements 
according to NBCC 2005 Cl.4.1.8.17 (for more details see Section 2.6.5.3). Note that the wind 
load could govern in a tie design for many site locations in Canada, however wind load 
calculations were omitted for this seismic design example. 
 
First, seismic design parameters need to be determined as follows: 
• Location: Montréal, Quebec   

)2.0(aS = 0.69 (NBCC 2005 Appendix C, page C-26)                    
• Foundation factors 

Site Class = B (rock)    
aF = 0.88 for )2.0(aS =0.69 and Site Class B (by interpolation from Table 1-10 or NBCC 

2005 Table 4.1.8.4.B), since 
aF = 0.8 for =)2.0(aS  0.50 

aF = 0.9 for =)2.0(aS  0.75 
• EI = 1.3   school (high importance building) 
At this point, it would be appropriate to check whether the seismic design of ties is required for 
this design. According to NBCC 2005 Cl.4.1.8.17.2, seismic design of ties is required when the 
seismic hazard index ( ) 35.02.0 ≥aaE SFI  (and also for post-disaster buildings in lower seismic 
regions). 
In this case, 

( )2.0aaE SFI = 1.3*0.88*0.69=0.79 ≥  0.35 
Therefore, seismic design is required. 
• Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBCC 
2005, Table 4.1.8.17, Case 8) 

0.25.10.30.10.1 =⋅⋅== pxrpp RAACS       
where 

0.321 =+= nxx hhA  for top of wall worst case 
Since 0.47.0 << pS    O.K. 

• pW  = 1.8 kN/m2 unit weight of the veneer masonry (concrete blocks) 

Seismic load pV  can be calculated as follows: 

( ) ppEaap WSISFV 2.03.0= =0.3*0.88*0.69*1.3*2.0*(1.8 kN/m2) =0.85 kN/m2 

Note that the above load is determined per m2 of the wall surface area.  
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a) Concrete block backup (rigid) 
Assume the maximum tie spacing permitted according to CSA S304.1 Cl.9.1.3 of 600 mm 
vertically and 820 mm horizontally (see Section 2.6.5.2), resulting in a tributary tie area for a 
concrete backup wall of  
A = 0.82*0.60 = 0.49 m2 
The required factored tie capacity should exceed the factored tie load, that is, 

AVV pf *≥ = (0.85 kN/m2)*(0.49 m2) = 0.42 kN 
Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum 
tributary area calculated from pV  and the factored tie capacity fV , that is, 

pf VVA ≤  
 
b) Steel stud backup (flexible) 
Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral 
load on a vertical line of ties (S304.1 Cl.9.1.3.3, see Section 2.6.5.3): 

tpf AVV **4.0≥ = 0.4*(0.85 kN/m2)*(1.92m2) = 0.65 kN 

where tA = 0.4m*4.8m = 1.92 m2 is tributary area on a vertical line of ties based on a probable 
0.4 m horizontal tie spacing, and 4.8 m wall height 
 
According to the same S304.1 clause, the tie must also be able to resist a load corresponding to 
double the tributary area on a tie, that is, 

AVV pf **2= = 2*(0.85 kN/m2)*(0.4m*0.6m) = 0.41 kN 
Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie 
spacing of 0.6 m prescribed by S304.1 Cl. 9.1.3.1. 
 
In conclusion, the tie design load for the flexible veneer backup is fV = 0.65 kN. 
 
c) Minimum strength requirements 
 CSA A370-04 Cl.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In 
order to obtain the ultimate tie strength, the factored strength needs to be divided by the 
resistance factor φ . According to CSA A370-04 Cl.9.4.2.1.2, the resistance factor is 0.9 for tie 
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the 
connection. It is conservative to use lower resistance factor in determining the ultimate tie 
strength ultV .  
• For the steel stud backup: 

=≥ fr VV 0.65 kN 
thus the ultimate strength can be determined as follows 

08.1
6.0
65.0

===
φ

r
ult

VV  kN 

This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.  
• For the concrete block backup: 

=≥ fr VV 0.42 kN 
thus the ultimate strength can be determined as follows 

7.0
6.0
42.0

===
φ

r
ult

V
V  kN 

This value is less than the minimum of 1 kN, so the minimum requirement governs.  
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EXAMPLE 8: Seismic design of a masonry infill wall 
 
A single-storey reinforced concrete frame structure is shown in the figure below. The frame is 
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the 
frame. The wall is built using 190 mm hollow blocks and Type S mortar.  
 
a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions 
according to CSA S304.1 assuming the infill-frame interaction. 
 
b) Assuming that the infill wall provides the total lateral resistance, determine the maximum 
lateral load that the infilled frame can resist. Consider the following three failure mechanisms: 
strut compression failure, diagonal tension resistance, and sliding shear resistance. 

 
Given: 

fE  =25000 MPa concrete frame modulus of elasticity  

mf ′  = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4, 
CSA S304.1) 
 
SOLUTION: 
 
a) Find the diagonal strut properties. 
 
• Key properties for the masonry wall and the concrete frame 
Concrete frame: 

fE  =25000 MPa 
Beam and column properties: 

9
4

10*133.2
12

)400(
=== cb II  mm4 

Masonry: 
83308.9*850850 ==′= mm fE  MPa 

Effective wall thickness (face shells only): 
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75=et  mm (Table D-1, 200 mm hollow block wall) 
• Diagonal strut geometry (see Section 2.6.2 and S304.1 Cl.7.13) 

3000=h  mm 
3600=l  mm 

Find θ  (angle of diagonal strut measured from the horizontal): 

833.0
3600
3000)tan( ===

l
hθ                o8.39=θ  

Length of the diagonal strut: 

468636003000 2222 =+=+= lhls   mm 
 
Find the strut width (see Figure 2-36): 

( ) 1587
8.39*2sin*75*8330
3000*10*133.2*25000*4

22sin
4

2

4
1

94
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

o

π
θ

πα
em

cf
h tE

hIE
 

 

( ) 3322
8.39*2sin*75*8330
3600*10*133.2*25000*4

2sin
4 4

1
94

1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

o
π

θ
πα

em

bf
L tE

lIE
 

Strut width: 

( ) ( ) 368233221587 2222 =+=+= Lhw αα   mm 
 
Effective diagonal strut width ew  for the compressive resistance calculation should be taken as 
the least of (Cl.7.13.3.3) 

1841236822 === wwe  mm 
or 

1172446864 === se lw  mm 
thus 

11701172 ≈=ew  mm 
The design length of the diagonal strut dl  should be equal to (Cl.7.13.3.5) 

28452368246862 =−=−= wll sd  mm 
 
b) Determine the maximum lateral load which the infilled frame can resist assuming that 
the infill wall provides the total lateral resistance. 
 
• Diagonal strut: compression resistance (Cl.7.13.3.4 and Section 2.6.2) 
The compression strength of the diagonal strut maxrP  is equal to the compression strength of 
masonry times the effective cross-sectional area, that is, 

( ) emmr AfP ⋅′= χφ85.0max  
where 

mφ = 0.6 
5.0=χ  the masonry compressive strength parallel to bed joints  

877501170*75* === eee wtA   mm2 the effective cross-sectional area  
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3.21987750*8.9*6.0*5.0*85.0max ==rP  kN 
 
The corresponding lateral force is equal to the horizontal component of the strut compression 
force hP , that is, (see the figure below) 

0.168)8.39cos(*3.219)cos(*max === θrh PP  kN 

 
Before proceeding with the design, slenderness effects should also be checked. First, the 
slenderness ratio needs to be determined as follows (Cl.7.7.5): 

0.15
190

2845*0.1*
==

t
lk d  

where 
0.1=k  assume pin-pin support conditions 

2845=dl  mm  design length for the diagonal strut 
190=t  mm  overall wall thickness 

The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account, 
that is, 

19*1.021 === tee  mm 
Since 

0.15
*

=
t
lk d > 5.65.310 21 =− ee  and 0.30

*
<

t
lk d  

the slenderness effects need to be considered. 
 
The critical axial compressive force for the diagonal strut crP  will be determined according to 
S304.1 Cl.7.7.6.3 as follows: 

( )( )
1380

5.01 2

2

=
+

=
dd

effmer
cr kl

IE
P

β

φπ
 kN 

where 
65.0=erφ    

0=dβ   assume 100% seismic live load 
8330=mE  MPa modulus of elasticity for masonry 

610*2094.0 == oeff II  mm4 
where 
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[ ] 6
33

10*522
12

)4.75190(190*1170
=

−−
=oI  mm4 moment of inertia of the effective cross-

sectional area based on the effective diagonal strut width 1170=ew  mm and the effective wall 
thickness 4.75=et mm (face shells only). 
 
Since 

3.219max =rP  kN < 1380=crP  kN 
it follows that compression failure governs over buckling failure. 
 
• The diagonal tension shear resistance (see Section 2.3.2 and CSA S304.1 Cl.10.10.1). 
Find the masonry shear resistance ( mV ): 

190=wb  mm overall wall thickness 
28808.0 =≈ wv ld  mm    effective wall depth 

5.0=gγ   ungrouted wall 

0=dP  (ignore self-weight) 

mm fv ′= 16.0 = 0.5 MPa 

gdvwmmm PdbvV γφ )25.0( += = 0.6(0.5*190*2880+0)*0.5 ≈ 82.0 kN     

This is a squat shear wall because 0.183.0
3600
3000

<==
w

w

l
h

. In this case, there is no need to find 

the maximum permitted shear resistance per S304.1 Cl.10.10.1.3 rVmax  because it is not 
going to control for an unreinforced wall without gravity load. 
 
• Sliding shear resistance (see Section 2.6.1 and Cl.7.10.4) 

116.0 PAfV mucmmrs μφφ +′=  

The factored in-plane sliding shear resistance rV  is determined as follows. 
μ  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

2160002880*75 ==⋅= veuc dtA  mm2    uncracked portion of the effective wall cross-sectional 
area  
The compressive force in masonry acting normal to the sliding plane is normally taken as dP  
plus an additional component, equal to 90% of the factored vertical component of the 
compressive force resulting from the diagonal strut action vP  (see the figure on the previous 
page).  

vd PPP *9.01 +=  
where 

)tan(* θrsv VP =  
thus 

)tan(*9.001 θrsVP +=  
The sliding shear resistance can be determined from the following equation 

))tan(*9.0(16.0 θμφφ rsmucmmrs VAfV +′=  
or 
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0.118
)8.39tan(*9.0*0.1*6.01

216000*8.9*6.0*16.0
)tan(*9.0**1

16.0
=

−
=

−

′
=

oθμφ
φ

m

ucmm
rs

Af
V  kN 

 
• Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three lateral forces should be considered: 
a) 168=hP  kN shear force corresponding to the strut compression failure 
b) 82=mV  kN diagonal tension shear resistance 
c) 118=rsV  kN sliding shear resistance 
It could be concluded that the diagonal tension shear resistance governs, however once 
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum 
shear force developed in an infill wall corresponds either to the strut compression resistance or 
the sliding shear resistance (see the discussion in Section 2.6.2). In this case, sliding shear 
resistance governs and so 118max == rsr VV kN. 
 
It should be noted that the maximum shear force developed in the infill maxrV  will be transferred 
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not 
the scope of the masonry design, however the designer should always consider the entire 
lateral load path and the force transfer between the structural components. 
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A  Comparison of NBCC 1995 and NBCC 2005 Seismic 
Provisions 
 
This appendix provides a review of the NBCC 1995 seismic design provisions, and 
compares the base shear force and bending moments for a shear wall structure for both 
the 1995 and 2005 codes. It provides a means of assessing the changes in the seismic 
design provisions in the two codes, and is organized so that the sections in this appendix 
follow the same order as the sections in Section 1.5 of Chapter 1.  

A.1 NBCC 1995 Seismic Hazard 
         Section 1.5.1, Chapter 1 
 
4.1.9.1.6)  

 
The seismic hazard in NBCC 1995 is given by the product Sv ⋅ , where S  is a shape 
function shown in Figure A-1, and v  is the zonal velocity ratio. The product Sv ⋅  is very 
much like an acceleration response spectrum, as it provides a measure of hazard for 
different structural periods. The magnitude of v and the shape of S  are based on 
estimates of the peak ground velocity and peak ground acceleration, for a 10% in 50 
year probability of non-exceedance (1/475 per year probability). The v  value is based 
directly on the peak ground velocity, while the shape of the S function is based on the 
ratio of the peak ground acceleration (expressed in terms of g ) to the peak ground 
velocity (expressed in m/sec). For code purposes, these values are represented by the 
parameters aZ  and  vZ , which are used to define the seismic zones set out in the 1995 
code. Eastern sites located on the Canadian Shield have high va ZZ  ratios, because 
hard rock transmits high frequency waves more readily than does the soil and fractured 
rock of Western Canada, which generally has va ZZ ≤1. The result is that the seismic 
hazard is dependent on two site parameters with a 1/475 per year probability. 
 
Note that Sv ⋅  does not represent the true seismic hazard as the long period values 
have been increased to account for higher mode effects in structures. S  decreases as 

T1  in the longer period range, while )(TSa  in NBCC 2005, which better represents a 
true spectrum, decreases much more rapidly (as a function of T1  beyond 2 seconds). 
The higher mode effects in structures in NBCC 2005 are explicitly accounted for by use 
of the vM   factor. 
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Figure A-1. S  function according to NBCC 1995. 

A.2 Effect of Site Soil Conditions 
         Section 1.5.2, Chapter 1 
 
4.1.9.1.11)  

 
The site soil amplification procedure in NBCC 1995 is considerably simpler that that in 
NBCC 2005. There is only one parameter that multiplies the S   function, although there 
are limits on the amplification in the short period region for some sites.  
 
F  denotes the foundation factor which is given in Table A-1. It is applied as a multiplier 
to S , with the restriction that 

0.3≤⋅ SF  where Za ≤ Zv, and  
2.4≤⋅ SF  where Za > Zv, 

i.e., the foundation factor need not increase the short period end of the S  function 
except when Za < Zv. 
 

Table A- 1. NBCC 1995 Foundation Factors 

 
                                                   Foundation Factors 
Category Type and Depth of Soil Measured from the Foundation or Pile Cap Level F  

1 Rock, dense and very dense coarse-grained soils, very stiff and hard fine-
grained soils; compact coarse-grained soils and firm and stiff fine-grained 
soils from 0 to 15 m deep 

1.0 

2 Compact coarse-grained soils, firm and stiff fine-grained soils with a depth 
greater than 15 m; very loose and loose coarse-grained soils and very soft 
and soft fine-grained soils from 0 to 15 m deep 

1.3 

3 Very loose and loose coarse-grained soils with depth greater than 15 m 1.5 
4 Very soft and fine-grained soils with depth greater than 15 m 2.0 
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A.3 Methods of Analysis 
         Section 1.5.3, Chapter 1 
 
4.1.9.1.13.b)  

 
NBCC 1995 does not prescribe a specific method of seismic analysis for building 
structures. However, Cl.4.1.9.1.13.b) related to vertical force distribution, states that the 
total lateral seismic force V shall be distributed by means of an equivalent static analysis 
procedure (part a), or by dynamic analysis with the seismic effects scaled so that the 
base shear from the dynamic analysis equals V (part b). Commentary J to the NBCC 
1995 (NRC, 1996) states that the application of dynamic analysis pertains “especially to 
buildings with significant irregularities either in plan or elevation, and buildings with 
setbacks or major discontinuities in stiffness or mass. Performing a dynamic analysis will 
lead to a better representation of modal contribution in tall buildings.” 

A.4 Base Shear Calculations 
          Section 1.5.4, Chapter 1 
 
4.1.9.1.4)  

 
The formula for the design base shear V according to the NBCC 1995 is: 

U
R
V

V e ⎟
⎠
⎞

⎜
⎝
⎛=  

where  
WFISvVe ⋅⋅⋅⋅=    

represents the elastic shear force. 
 
The design parameters used in the NBCC 1995 base shear equation are explained in 
Table A-2. A comparison of V  between the 1995 and 2005 codes is presented in 
Section A.12. 
 
NBCC 1995 (Cl.4.1.9.1.7) prescribes the following relations for the fundamental period 
T  of wall structures: 
a)   sn DhT 09.0=  
where  

nh  (m) is building height from the base i.e. top of foundations to the roof level,  
sD  (m) is the length of wall or braced frame which constitutes the main lateral load-

resisting system in a direction parallel to the applied forces. When the length of the 
lateral load resisting system is not well defined, then the Code requires that D  , the 
length of building in the direction parallel to the applied forces, shall be used instead of 

sD . 
 
b) other established methods of mechanics; with the restriction that the value of eV  used 
for design shall be not less than 0.80 of the value computed using the period calculated 
in a). 
 
The period given by the formula (a), which is based on measured values, is a 
conservative (low) estimate from the data, and generally is smaller than that found using 
method (b), particularly if the length D  is used in the calculation. The code adopted this 
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low estimate as it leads to higher, more conservative, forces. The limit prescribed in (b) 
is applied to the base shear and not to the period, as the base shear is very sensitive to 
period in some areas.  
 

Table A- 2. NBCC 1995 Seismic Design Parameters 

 
v  = zonal velocity ratio for the site from the climatic data table in Appendix C of NBCC 

1995, based on ground motion associated with a 10% probability of exceedance in 50 
years (475 year earthquake).   

S  = the seismic response factor, dependent on the va ZZ ratio for the site and the period 
T of the structure (see Section A.1). 

I  = Importance factor for the structure, equal to I=1.5 for “post-disaster” structures, 1.3 for 
schools, and 1.0 for ordinary structures; 

F  = Foundation factor related to soil conditions (see Section A.2 and Table A-1) 
W  = dead weight plus some portion of live load that would move laterally with the structure. 

Live loads considered are 25% of the snow load, 60% of storage loads for areas used 
for storage, and the full contents of any tanks. 100% of the live loads are not used as 
the probability of that occurring at the same time as the earthquake is small. Also, live 
loads such as people or cars would not move with the same motion as the building. 

R  = force modification factor that represents the capability of a structure to dissipate 
energy through cyclic inelastic (ductile) behaviour. For masonry structures designed 
and detailed according to CSA S304.1-94: R = 2.0 for reinforced walls with nominal 
ductility, 1.5 for regular reinforced masonry and 1.0 for unreinforced masonry. 

U  = 0.60, and is described as a “factor representing level of protection based on 
experience”. U  was introduced so as to make the design base shear for the 1995 
code similar to that in previous codes. Some persons later thought of U  as being an 
overstrength factor, recognizing that the structure has strength higher than the 
nominal yield strength, but this was not the basis for the introduction of U . 

 

A.5 Force Reduction Factor R 
         Section 1.5.5, Chapter 1 
 
4.1.9.1.8)  

 
NBCC 1995 had only one R  factor, equivalent to the dR  factor in NBCC 2005. NBCC 
1995 Table 4.1.9.1.B allows 2=R  for reinforced masonry with nominal ductility, 5.1=R  
for regular reinforced masonry, and 1=R  for unreinforced masonry. These values are 
equivalent to walls with moderate ductility, conventional construction and unreinforced 
masonry, respectively, in NBCC 2005. Height limitations, and some other provisions that 
required reinforced masonry, were given in Clause 4.1.9.3 Special Provisions NBCC 
1995. 

A.6 Higher Mode Effects 
          Section 1.5.6, Chapter 1 
 
NBCC 1995 does not explicitly mention higher mode effects in calculating the base 
shear V, but the S function has been set artificially high in the long period region to 
account for the contribution from the higher modes. Higher mode effects are considered 
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in the distribution of forces along the height of the structure, see Section A.7, and in 
calculating the overturning moments, Section A.8. 
 
Note that in contrast to NBCC 2005, the higher mode effects in the 1995 code make no 
distinction between walls or frames. 

A.7 Vertical Distribution of Seismic Forces 
          Section 1.5.7, Chapter 1 
 
4.1.9.1.13.a)  

 
The distribution of the inertial forces to the floors in NBCC 1995 is essentially the same 
as in NBCC 2005, and is summarized below 

where 
xF  – seismic force acting at level x  
xW - portion of W  that is assigned to level x  

xh  – height from the base of the structure up to the level x  
tF  – a portion of the base shear to be applied as an additional force to nF  at the top of 

the building, and is given by 
0=tF                  for  aT  < 0.7 sec 

VTF at 07.0=      for 0.7 < aT  < 3.6 sec 
VFt 25.0=         for aT  > 3.6 sec 

where aT  is the fundamental lateral period. 
 
Once the forces at each floor are established, the total storey shears can simply be 
calculated using statics.  

A.8 Overturning Moments (J factor) 
          Section 1.5.8, Chapter 1 
 
4.1.9.1.23-27  

 
In NBCC 1995, the overturning moment, M , at the base of the structure, shall be 
reduced by the factor J , where 
 1=J                     for sT 5.0<  
            TJ 2.01−=          for sTs 5.15.0 <<  
            8.0=J                  for sT 5.1>  
The overturning moment xM  at any level x  shall be multiplied by xJ , where 

( )( )31 nxx hhJJJ −+=  
where nh  is the height to the top of the structure. 
 
Unlike NBCC 2005, the J  factor in NBCC 1995 is not dependent on the structure type 
or the site conditions. 

( )
∑
=

⋅−= n

i
ii

xx
tx

hW

hWFVF

1
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A.9 Torsion 
          Section 1.5.9, Chapter 1 
 
4.1.9.1.28)  

 
At each storey level throughout the building, the torsional moment applied is taken as 
one of the following four cases: 
i)   ( )nxxxx DeFT 1.05.1 +=  
ii)  ( )nxxxx DeFT 1.05.1 −=  
iii) ( )nxxxx DeFT 1.05.0 +=  
iv) ( )nxxxx DeFT 1.05.0 −=  
where 

xF  is lateral force at the thx  floor level, 
xe  is the eccentricity at level x , and is distance between the centre of mass and the 

centre of rigidity in the direction perpendicular to the direction of xF , and  
nxD  is a plan dimension of the building at level x  perpendicular to the direction of xF . 

Note that nxD1.0  is termed the accidental eccentricity. 
 
Each element in the building must be designed for the most severe effect of the above 
load cases.  
 
Note that it is necessary to explicitly determine the value of xe . However, if a static 3-D 
structural analysis program is available, it is possible to use a combination of two 
analyses to determine ( )xx eF 5.1  and ( )xx eF 5.0  without explicitly determining the xe . 
 
Alternately, if a 3-D dynamic analysis is carried out the effects of accidental eccentricity 
should be accounted for by combining the dynamic analysis element forces with the 
results from a static analysis of either of the two cases of accidental torques given by: 

( )nxxx DFT 1.0+= , or 
 

( )nxxx DFT 1.0−=  
 
In all of the above analyses, xF  represents the storey force from the static analysis 
described earlier. 

A.10  Irregularities and Restrictions 
            Section 1.5.10, Chapter 1 
 
4.1.9.3)  

 
NBCC 1995 has very few restrictions regarding irregularities. Masonry is specifically 
mentioned as requiring reinforcement if aZ  or vZ   is 2 or higher, but there are no height 
limitations based on irregularities as found in NBCC 2005. 
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A.11  Displacements 
            Section 1.5.11, Chapter 1 
 
4.1.9.2.1-3)  

 
In NBCC 1995, displacements are to be calculated using the reduced design forces as 
given by V, and then multiplied by R to give realistic values. Since V is given by 

U
R
V

V e ⎟
⎠
⎞

⎜
⎝
⎛=  ,  

this would imply that the displacements are the elastic displacements reduced by the 
factor U, which has been a somewhat controversial issue. One difference in the codes, 
is that Ve in the 1995 code is multiplied by the importance factor I, while in NBCC 2005 
the displacements are not dependent on the importance factor.  
 
The drift ratio limits in NBCC 1995 are 0.01 for post-disaster buildings and 0.02 for all 
other structures. This is essentially the same as NBCC 2005, except for ordinary 
structures which can have a drift ratio of 0.025. Overall, the drift limits in NBCC 2005 are 
tighter than in the 1995 code. 

A.12 Shear and Moment Comparison 
 
This section provides a comparison of the base shear and base moment for ductile 
masonry walls under the NBCC 1995 and NBCC 2005 codes, for periods ranging from 
very short to four seconds. For ductile masonry shear walls, Toronto and Vancouver 
have been selected to investigate the effect of the different spectral shapes between 
eastern and western Canada. 
 
Figure A-2a shows the shear comparison for a site in Toronto, and Figure A-2b for 
Vancouver. It is assumed that both sites are on firm ground with no soil amplification 
(site Class C per NBCC 2005). The following force modification factors were used: 
 R=2 and U=0.6 for the NBCC 1995 code calculation, and  
Rd=2 and Ro=1.5 for the NBCC 2005 values  
 
In each plot, the line titled ‘NBC 2005 spectral shape’ represents the V/W ratio for the 
2005 code, for the same values of Rd and Ro used in the design calculations, but without 
considering the upper and lower bounds on V per NBCC 2005, and with Mv=1 for all 
periods.  
 
The comparison for Toronto in Figure A-2a shows that there is not much difference in 
the design level base shear between the codes, with the 2005 code values being lower 
in the short and long period ranges, but higher for intermediate periods. At a period of 2 
seconds, the Mv value is equal to 2.5 for Toronto. The effect of this in increasing the 
shear is very apparent at the longer periods when compared to the NBCC 2005 spectral 
shape. Also, it is apparent that without the short period cutoff, the short period shears 
from NBCC 2005 would be much larger than the NBCC 1995 values.  
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The comparison for Vancouver in Figure A-2b shows that the NBCC 2005 design base 
shear is larger than the NBCC 1995 base shear over the entire period range, especially 
around 0.5 seconds. The Mv factor for Vancouver is equal to 1.2 at the period of 2 
seconds, and so has little effect on the long period base shear. 
 
In general, it appears that the base shear from NBCC 2005 is larger than that from 
NBCC1995. However, because the periods given by the two codes may be different, and 
because the limit placed on using a longer calculated period is more liberal in the short 
period end in NBCC 2005, it may be that in some cases there may be a smaller 
difference in design base shear than the figures indicate. 
 
Since wall size and reinforcement are mainly governed by the wall moments, a moment 
comparison of the two codes may be more meaningful than a shear comparison. 
 
Figure A-3 compares the base bending moment for NBCC 1995 and NBCC 2005 for the 
same cases as shown in Figure A-2. The units are not particularly meaningful, but allow 
a comparison to be made between the two codes. In the short period range less than 1.0 
seconds, the moment comparisons are essentially the same as the shear comparisons. 
But for longer periods, particularly for Toronto, the small value of J  at  periods of 2.0 s 
and greater for NBCC 2005 substantially reduces the moments, resulting in much 
smaller design moments at the longer periods compared to the NBCC 1995 code, as 
shown in Figure A-3a. For Vancouver, the J  factor is larger and does not have as much 
an effect, but it does bring the design moments from the two codes into close agreement 
in the longer periods.  
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a) 

 
b) 
 
Figure A-2. Base shear comparison for NBCC 1995 and NBCC 2005:  
a) Toronto; b) Vancouver.  
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a) 

 

 
 
b) 
 
Figure A-3. Base bending moment comparison for NBCC 1995 and NBCC 2005:  
a) Toronto; b) Vancouver. 
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B  Research Studies and Code Background Relevant to 
Masonry Design 
This appendix contains additional background material relevant to the aspects of masonry 
design discussed in Chapter 2. Findings of some relevant research studies, as well as the 
discussion on provisions of masonry design codes from other countries, are included. This 
information may be useful to readers interested in gaining a more detailed insight into the 
subject. However, it should be noted that designers may use alternative design provisions in 
situations where CSA S304.1 is silent on a specific issue.  The design provisions contained in 
design standards from other countries cannot supersede the provisions of pertinent Canadian 
standards. 

B.1 Shear/Diagonal Tension Resistance 
Axial compression: 
An experimental study on reinforced masonry wall specimens by Voon and Ingham (2006) 
showed that an increase in axial compression stress from 0 to 0.5 MPa resulted in an increase 
in the maximum wall shear resistance of more than 20%. However, walls subjected to higher 
axial compression had a reduced post-cracking deformation capacity, resulting in a more brittle 
failure pattern. The presence of higher axial stress also delayed the onset of diagonal cracking 
in the walls from the lateral loads, as the vertical stress reduced the principal stress that leads to 
cracking.  
 
The latest edition of New Zealand Masonry Standard NZS 4230:2004 (SANZ, 2004) prescribes 
a different method for calculating the axial load contribution to masonry shear resistance than 
CSA S304.1-04 for low aspect walls. This contribution (equal to αtan9.0 N ), results from a 
diagonal strut mechanism, which is based on an assumption that axial compression load N  
must effectively form a compression strut at an angle α  to the axis (see  Figure B-1). The axial 
load must be transmitted through the flexural compression zone, while the horizontal component 
of the strut force resists the applied shear force (Priestley et al., 1994). This model implies that 
the shear strength of squat walls under axial loads should be greater than that of more slender 
walls, and higher than that prescribed in CSA S304.1-04. According to this model, the axial load 
contribution is limited to gm AfN ′≤ 1.0 .  

 
Figure B-1. Contribution of axial load to wall shear strength (reproduced from NZS 4230:2004 
with the permission of Standards New Zealand under Licence 000725). 
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Grouting pattern: 
Experimental studies have reported a significant reduction in shear resistance for partially 
grouted walls compared to otherwise identical fully grouted walls, however partially grouted 
masonry is a viable lateral load resisting system for regions of low to moderate seismic risk. 
Schultz (1996) tested a series of six partially grouted reinforced block wall specimens under in-
plane cyclic loads. Only the outermost vertical cores and a single course bond beam at 
midheight were grouted. The mechanism of shear resistance in partially grouted walls is 
characterized by the development of vertical cracks between ungrouted and grouted masonry 
due to stress concentrations or planes of weakness (this mechanism is different than the one 
expected to develop in solidly grouted masonry walls). It was also reported that an increase in 
horizontal reinforcement ratio did not have a significant effect on the overall shear resistance. 
 
An experimental study by Voon and Ingham (2006) showed that the shear strength of a solidly 
grouted wall specimen was approximately 110% higher than an otherwise identical specimen 
with 30% grouted cores. Also, the specimen with 55% grouted cores had more than a 50% 
higher shear strength compared to the specimen with 30% grouted cores.  However, the 
difference is smaller when the shear stress is compared using the net wall area.  
 
Wall aspect ratio: 
The findings of several experimental studies, e.g. Matsumura (1987), Okamoto et al. (1987), 
and Voon (2007) confirmed that masonry walls with lower aspect ratios exhibited shear 
strengths that were larger than those for more slender masonry walls. The researchers 
concluded that the shear strength enhancement was due to the more prominent role of arching 
action in masonry walls with low aspect ratios, in which shear was mainly resisted by 
compression struts (see Figure 2-16a).Voon and Ingham (2006) reported that the shear 
resistance decreased by 15% when the wall aspect ratio increased from 1.0 to 2.0. A squat wall 
specimen with an aspect ratio of approximately 0.6 showed a significant increase in shear 
resistance (by over 100%) as compared to a specimen with aspect ratio of 1.0. The findings of 
an experimental study by Okamoto et al. (1987) confirmed that the wall shear strength 
increased by 20 to 30% when the aspect ratio decreased from 2.3 to 1.6 and from 2.3 to 0.9 
respectively. A study of partially grouted masonry block walls by Schultz (1996) showed that a 
decrease in the wall aspect ratio was reported to have a beneficial effect on the shear 
resistance, that is, squat walls are expected to have larger shear resistance than flexural walls 
of the same height. However, squat wall specimens also showed a reduced deformation 
capacity and increased strength deterioration. 
 
Steel shear resistance sV : 
Shear reinforcement in masonry walls does not seem to be as effective as in concrete walls. 
A possible explanation is that the reinforcing bars located where the inclined crack crosses near 
the end of the bar are unable to develop their full yield strength in the masonry walls. To 
account for this phenomenon, the New Zealand Masonry Standard NZS 4230:2004 (SANZ, 
2004) prescribes a coefficient of 0.8 in the sV  equation, while CSA S304.1-04 uses a 0.6 factor. 
This phenomenon is particularly pronounced in short walls where it is likely that the length of the 
shear reinforcement is insufficient to fully develop its yield strength. 
 
It should be acknowledged that horizontal reinforcement in masonry walls usually does not have 
as good anchorage as the corresponding reinforcement in concrete walls. Anderson and 
Priestley (1992) have noticed that straight bars or 90° hooks were used in some experimental 
studies (see Figure B-2a), whereas the horizontal reinforcement in concrete walls is usually 
anchored in a more effective way, that is, by means of 180° hooks. The type and extent of 
anchorage are expected to influence the effectiveness of shear reinforcement. Anderson and 
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Priestley also found that shear strength didn’t show any correlation with the vertical 
reinforcement ratio. 
 
According to some researchers (Shing et al., 1990; Tomazevic, 1999; Voon, 2007), a fraction of 
the wall shear resistance can be attributed to the presence of vertical reinforcement.  Dowel 
action in vertical reinforcing bars enables shear transfer across a diagonal crack by the localized 
kinking in reinforcing bars due to their relative displacement (see Figure B-2b) (note that 
compression kinks cancel out some of the tension kinks). However, once the vertical 
reinforcement yields, as it would in the plastic hinge zone of ductile walls, its contribution to the 
shear resistance drops significantly, so CSA S304.1 ignores its contribution to the wall shear 
resistance. 

 
Figure B-2. Wall reinforcement contributing to shear resistance: a) horizontal reinforcement 
acting in tension; b) dowel action in vertical reinforcement (Tomazevic, 1999, reproduced by 
permission of the Imperial College Press). 

B.2 Ductile Seismic Response 
A prime consideration in seismic design is the need to have a structure that is capable of 
deforming in a ductile manner when subjected to several cycles of lateral loading well into the 
inelastic range. This section explains a few key terms related to ductile seismic response, 
including ductility ratio, curvature, plastic hinge, etc. It is very important for a structural designer 
to have a good understanding of these concepts before proceeding with the seismic design and 
detailing of ductile masonry walls according to CSA S304.1. 
 
Ductility is a measure of the capacity of a structure or a member to undergo deformation beyond 
yield level, while maintaining most of its load-carrying capacity. Ductile structural members are 
able to absorb and dissipate earthquake energy by inelastic (plastic) deformations that are 
usually associated with permanent structural damage. These inelastic deformations are 
concentrated mainly in regions called plastic hinges. In general, plastic hinges develop in shear 
walls responding in the flexural mode and are typically formed at their base. An example of a 
plastic hinge formed in a reinforced masonry wall subjected to seismic loading is shown in 
Figure 2-8a. The concept of ductility and ductile seismic response was introduced in Section 
1.4.3. 
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A common way to quantify ductility in a structure is through the displacement ductility ratio Δμ . 
This is the ratio of the maximum lateral displacement experienced by the structure at the 
ultimate ( uΔ ), to the displacement at the onset of inelastic response ( yΔ ) (see Figure 1-5c).  
 

y

u

Δ
Δ

=Δμ  

 
Next, the concept of curvature will be explained by an example of a reinforced masonry shear 
wall subjected to bending due to a shear force applied at the top, as shown in Figure B-3a. 
Consider a wall segment ABCD of unit height. This segment deforms due to bending moments, 
so sections AB and CD rotate by a certain angle relative to their original horizontal position 
(these deformed sections are denoted as A’B’ and C’D’). Rotation between the ends of the 
segment defines the curvature ϕ , as shown in Figure B-3b. Curvature represents relative 
section rotations per unit length. It should be noted that curvature is directly proportional to the 
bending moment at the wall section under consideration, if the section remains elastic. 
 
Consider any section CD that undergoes curvatureϕ , as shown in Figure B-3c. Strain 
distribution along the wall section is defined by the product of curvature and the distance from 
the neutral axis, located by the depth c . The maximum compressive strain in masonry mε is 
given by 
 

cm ⋅= ϕε  
 

 
 

Figure B-3. Curvature in a shear wall subjected to flexure: a) wall elevation; b) deformed wall 
segment ABCD; c) strain distribution along the section CD.  
For the seismic design of reinforced masonry walls, it is of interest to determine curvatures at 
the following two stages: the onset of steel yielding and at the ultimate stage. Consider a 
reinforced masonry wall section subjected to axial load and bending shown in Figure B-4a.  



4/1/2009 B-6

Yield curvature yϕ corresponds to the onset of yielding characterized by tensile yield strain yε  
developed in the end rebars, as shown in Figure B-4b, where  
 

cdlw

y
y −′−
=

ε
ϕ  

Ultimate curvature uϕ corresponds to the ultimate stage, when the maximum masonry 
compressive strain mε  has been reached. The maximum mε  value has been limited to 0.0025 
by CSA S304.1-04 (see Figure B-4c) to prevent damage to the outer blocks in the plastic hinge 
region. Note that the neutral axis depth c  is going to decrease as more of the reinforcement has 
yielded (see Figure B-4c). 

 
Figure B-4. Curvature in a reinforced masonry wall section: a) wall cross section; b) yield 
curvature; c) ultimate curvature; d) moment-curvature relationship. 

The curvature value depends on the load level, the section geometry, the amount and 
distribution of reinforcement, and the mechanical properties of steel and masonry. An actual 
moment-curvature relationship for ductile sections is nonlinear, however it is usually idealized by 
elastic-plastic (bilinear) relationship, as shown in Figure B-4d. 
 
Once the curvatures at the critical stages have been determined, the curvature ductility ratio ϕμ  
can be found as follows 
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y

u

ϕ
ϕμϕ =  

 
When the curvature distribution along a structural member (e.g. shear wall) is defined, rotations 
and deflections can be calculated by integrating the curvatures along the member. This can be 
accomplished in several ways, including the moment area method.  
 
Rotations and deflections in a masonry shear wall at the ultimate state can be determined 
following the approach outlined above. Consider a cantilevered shear wall of length wl and 
height wh , and the plastic hinge length pl (see Figure B-5a). The wall is subjected to a seismic 
shear force at the top, which results in a corresponding bending moment diagram as shown in 
Figure B-5b. The curvature diagram shown in Figure B-5c has two distinct portions: an elastic 
portion, with the maximum curvature equal to the yield curvature yϕ , and the plastic portion with 
the maximum curvature equal to the ultimate curvature uϕ . Note that the elastic portion of the 
curvature diagram has the same shape as the bending moment diagram (since the curvatures 
and bending moments are directly proportional). The actual curvature distribution in the plastic 
region varies in a nonlinear manner, as shown in Figure B-5c. For design purposes, the 
curvature can be taken as constant over the plastic hinge length pl  (note that the areas under 
the actual and the equivalent plastic curvature are set to be equal). The elastic rotation eθ and 
the plastic rotation pθ  are presented in Figure B-5d. The plastic rotation can be determined as 
the area of the equivalent rectangle of width yu ϕϕ −  and height pl , as shown in Figure B-5c. 
These rotations can be calculated from the curvature diagram as follows: 

peu θθθ +=  
where 

2
wy

e

h⋅
=
ϕ

θ  

( ) pyup l⋅−= ϕϕθ  
 
The maximum deflection uΔ  at the top of the wall is shown in Figure B-5d. This deflection has 
two components: elastic deflection yΔ corresponding to the yield curvature yϕ , and the plastic 
deflection pΔ  due to a rigid body rotation, since bending moments do not increase once the 
yielding has taken place. Deflection values can be found by taking the moment of the curvature 
area around point A, as follows: 
 

33
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( ) ( )pwpyup lhl 5.0−⋅−=Δ ϕϕ  

 
pyu Δ+Δ=Δ  
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Figure B-5. Shear wall at the ultimate: a) wall elevation; b) bending moment diagram;  
c) curvature diagram; d) deflections. 
 
The above equations can be used to determine the displacement ductility ratio Δμ , in terms of 
the curvature ductility ϕμ  and other parameters, as follows: 
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Alternatively, the curvature ductility ratio ϕμ can be expressed in terms of the displacement 
ductility ratio, as follows: 
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It should be noted that Δμ  and ϕμ  values are different for the same member. Once the yielding 
has taken place, the deformations concentrate at the plastic hinges, so the curvature ductility ϕμ  
is expected to be larger than the displacement ductility Δμ . This difference is more pronounced 
in walls with larger displacement ductility ratios. 
 

B.3 Ductility Check 
CSA S304.1-04 prescribes ductility check for certain classes of ductile masonry shear walls, as 
discussed in Section 2.5.4.3 of this document. Masonry design standards in other countries also 
contain ductility check provisions. For example, the New Zealand Masonry Standard NZS 
4230:2004 (SANZ, 2004) Cl. 7.4.6 prescribes the wlc limit of 0.2 for limited ductile cantilever 
walls (provided that 3<ww lh ). The same limit was prescribed by the 1994 version of CSA 
S304.1. (Note that limited ductility walls according to the NZS 4230 are characterized by the 
displacement ductility of 2.0). It should be noted that the NZS 4230 prescribes maximum strain 
limits for unconfined and confined masonry of 0.003 and 0.008 respectively. The standard also 
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includes a provision for confining plates in plastic hinge regions as a means of confining the 
compression zone of the wall section and enhancing its ductile performance (NZS 4230:2004 
Cl.7.4.6.5). The seismic design provisions for reinforced concrete shear walls in CSA A23.3-04 
also prescribe wlc limits for shear walls at different ductility levels. 

B.4 Wall Height-to-Thickness Ratio Restrictions 
Paulay and Priestley (1992, 1993) developed an analytical model, which offers a means to find 
the minimum wall thickness required to avoid out-of-plane instability. This thickness depends on 
several parameters, including the vertical reinforcement ratio, desired curvature and 
displacement ductility ratios, plastic hinge length, and the mechanical properties of steel and 
masonry. Paulay and Priestley also performed an experimental study to confirm their analytical 
model. They tested a few reinforced concrete shear wall specimens and a concrete masonry 
wall specimen. The masonry wall specimen failed by out-of-plane buckling at a very large 
displacement ductility Δμ  of around 14. 
 
The application of this procedure will be illustrated on an example of a reinforced masonry wall. 
The equation for the critical wall thickness cb  is as follows (Paulay and Priestley, 1992) 

ϕμwc lb 022.0=                

Curvature ductility, ϕμ , is related to displacement ductility, Δμ , as shown in Section B.3. The 
plastic hinge length pl is taken equal to 6wh , and so the equation can be simplified as follows 
 

( )12.2 −= Δμμϕ  
 
The displacement ductility ratio Δμ can be considered equal to dR prescribed by NBCC 2005 for 
different SFRSs (note that Δμ values in the range from 2.0 to 3.0 are considered in this 
example). By following the above procedure, it is possible to obtain the wc lb ratios 
corresponding to different Δμ values. The results are summarized in Table B-1. 
 
For example, if the wall length wl is equal to 5,000 mm, the corresponding critical thickness cb is 
equal to 150 mm for Δμ = 2.0, or 230 mm for Δμ = 3.0. Paulay and Priestley suggest that the 
critical wall thickness should be expressed as a fraction of the wall length rather than its height. 
 

Table B-1. Critical Wall Thickness cb  Versus the Displacement Ductility Ratio Δμ  

Δμ  ϕμ  cw bl  

2.0 2.2 31 
2.5 3.3 25 
3.0 4.4 22 

 
Findings of this research were incorporated in the seismic design provisions for reinforced 
concrete shear walls in New Zealand and Canada (CSA A23.3 first introduced these provisions 
in its 1994 edition). The New Zealand masonry design standard (NZS 4230:2004) also includes 
provisions, which restrict the thickness of reinforced masonry shear walls; however these 
provisions are somewhat less stringent than the current Canadian provisions. NZS 4230:2004 
prescribes the following minimum thicknesses for limited ductility walls ( Δμ of 2.0) and ductile 
walls ( Δμ of 4.0): 
1. For walls up to 3 storeys high (Cl.7.4.4.1 and 7.3.3), minimum thickness t  should not be 

less than 20nL  (or nL05.0 ), where nL denotes clear vertical distance between lines of 
effective horizontal support or clear horizontal distance between lines of effective vertical 
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support. Commentary to Cl.7.3.3 states that “for a given wall thickness, t , and the case 
when lines of horizontal support have a clear vertical spacing of tLn 20> , then vertical lines 
of support having a clear horizontal spacing of tLn 20< shall be provided.” 

2. For walls more than 3 storeys high (Cl.7.4.4.1) minimum thickness t  shall not be less than 
3.13nL  (or nL075.0 ). However, a larger wall thickness can be used provided that one of 

the following conditions is satisfied (maximum strain in masonry uε is equal to 0.003 
according to NZS 4230:2004) (see Figure 2-28): 

a) tc 4≤  or 
b) wlc 3.0≤  or 
c) tc 6≤ from the inside of a wall return of a flanged wall, which has a minimum length 

nL2.0 . 
The relaxed thickness requirement applies to the cases where the neutral axis depth is small, 
and so the compressed area may be so small that the adjacent vertical strips of the wall will be 
able to stabilize it. This is likely the case with rectangular walls subjected to low axial 
compression. (The same criteria for relaxed thickness restrictions are included in the seismic 
provisions for reinforced concrete design CSA A23.3-04 Cl.21.6.3.) 
 
Commentary to NZS 4230 Cl.7.4.4.1 states that it is considered unlikely that failure due to 
lateral instability of the wall will occur in structures less than 3 storeys high, because of the rapid 
reduction in flexural compression with height. This is also in line with the statement made by 
Paulay (1986), that out-of-plane stability is likely to take place in walls with large plastic hinge 
length (one storey or more). According to CSA S304.1 Cl.10.16, plastic hinge length is related to 
the wall height (on the order of 6/wh ), and so a large plastic hinge length would not be 
expected in shear walls found in low-rise masonry buildings.   
 
Paulay and Priestley (1992) stated that “where the wall height is less than three storeys, a 
greater slenderness should be acceptable. In such cases, or where inelastic flexural 
deformations cannot develop, the wall thickness t  need not be less than nL05.0 ” (where 

nL denotes clear wall length between the supports).  
 
FEMA 306 (1999) also discusses the issue of wall instability. This document also refers to the 
procedure by Paulay and Priestley (1993) and provides the following recommendation for 
minimum wall thickness in ductile walls ( Δμ of 4.0):  
 

24wlt ≤  or 18ht ≤  
 
Note that the above requirement, which applies to the walls with displacement ductility ratio 
( Δμ ) equal to 4.0, is the same as the CSA S304.1-04 requirement for limited ductility walls with 

dR  equal to 1.5. 
  
FEMA 306 (1999) also points out that “the lack of evidence for this type of failure in existing 
structures may be due to the large number of cycles at high ductility that must be achieved – 
most conventionally designed masonry walls are likely to experience other behaviour modes 
such as diagonal shear before instability becomes a problem.”  

B.5 Grouting 
Limited experimental research evidence indicates that fully grouted reinforced masonry walls 
demonstrate higher ductility and strength under cyclic lateral loads than otherwise similar 
partially grouted specimens. Ingham et al. (2001) reported the results of an experimental study 
of twelve full-scale reinforced masonry wall specimens subjected to an in-plane cyclic lateral 
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load. Of the twelve specimens, nine were partially grouted, and three were fully grouted. The 
walls were reinforced with 12 mm diameter vertical reinforcing bars spaced at 800 mm on centre 
(25% grouted cores), with a bond beam at the top of the wall. The wall thickness varied from 90 
mm to 190 mm, which resulted in height/length aspect ratios ranging from 0.57 to 1.33. The 
walls were not subjected to any external axial load. The walls were designed to fail in the 
diagonal shear mode. The test results showed that the fully grouted wall specimens 
demonstrated significantly higher displacement ductility (on the order of 6.0) than the otherwise 
identical partially grouted specimens (4.0). It should be noted that all of the partially grouted 
specimens achieved a displacement ductility of 2.0 or higher. A possible reason for the higher 
ductility in the fully grouted wall specimens is that they ultimately failed in the sliding shear 
mode, which is characterized by large deformations at the base of the wall. The partially grouted 
specimens failed in the shear/diagonal tension mode. Force-displacement responses for a 
partially grouted Wall 2 and a fully grouted Wall 3 specimen are shown in Figure B-6. Note that 
the specimen dimensions were identical: 2600 mm length x 2400 mm height x 100 mm nominal 
thickness.  
 
It is important to note that none of the twelve specimens exhibited a sudden failure, as is 
typically associated with conventional (diagonal tension) shear failure; instead, gradual strength 
degradation was observed. The findings of related experimental studies by Voon and Ingham 
(2006) and Schultz (1996) were reported in Section B.1. 
 

 
 

Figure B-6. Force-displacement responses for partially grouted (left) and fully grouted (right) 
wall specimens (Ingham et al., 2001, reproduced by permission of the Masonry Society). 
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C Relevant Design Background  
This appendix contains additional information relevant for masonry design as discussed in 
Chapter 2, but it is not directly related to the seismic design provisions of CSA S304.1-04. 
Applications of design methods and procedures presented in this appendix can be found in 
Chapter 4, which contains several design examples. The appendix addresses in detail a few 
topics of interest to masonry designers, e.g., the calculation of in-plane wall stiffness including 
the effect of cracking, and force distribution in perforated shear walls. However, modeling and 
analysis of multi-storey perforated shear walls have not been covered in this document. 

C.1  Design for Combined Axial Load and Flexure 

C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading 
 
10.2  

 
Seismic shear forces acting at floor and roof levels cause overturning bending moments in a 
shear wall, which reach a maximum at the base level. In general, shear walls are subjected to 
the combined effects of flexure and axial gravity loads. The theory behind the design of masonry 
wall sections subjected to effects of flexure and axial load is well established, and is essentially 
the same as that of reinforced concrete walls. A typical reinforced masonry wall section is 
shown in Figure C-1a, along with the distribution of internal forces and strains arising from the 
axial load and moment. According to CSA S304.1-04, the strain distribution along the wall 
length is based on the assumptions that the wall section remains plane and that the maximum 
compressive masonry strain mε  is equal to 0.003 (see Figure C-1b). Figure C-1c shows the 
distribution of internal forces on the base of the wall, as well as the axial load, fP  and the 
bending moment, fM . In the compression zone, the equivalent rectangular stress block has a 
depth a , and a maximum stress intensity of mm f '85.0 χφ . Note that the χ factor assumes the 
value of 1.0 for members subjected to the compression perpendicular to the bed joints, such as 
structural walls (S304.1 Cl.10.2.6). Each reinforcing bar develops an internal force (either 
tension or compression), equal to the product of the factored stress and the corresponding bar 
area. The internal vertical forces must be in equilibrium with fP , and the factored moment 
capacity rM  can be determined by taking the sum of moments of the internal forces around the 
centroid of the section. 
 
The following three design scenarios and the related simplified design procedures will be 
discussed in this section: 

1. Wall reinforcement (both concentrated and distributed) and axial load are given – find 
moment capacity 

2. Wall is reinforced with distributed reinforcement only – find moment capacity 
3. Wall reinforcement needs to be estimated (factored bending moment and axial force are 

given) 
 
The first two are applicable for the common situations where a designer assumes the minimum 
seismic reinforcement amount and desires to find its moment capacity. 
 
Approximate design approaches that can be used to assist designers in each of these scenarios 
are presented below. For detailed analysis and design procedures, the reader is referred to 
Drysdale and Hamid (2005) and Hatzinikolas and Korany (2005). 
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Figure C-1. A reinforced masonry shear wall under the combined effects of axial load and 
flexure: a) plan view cross section; b) strain distribution; c) internal force distribution.  

 
C.1.1.1 Moment capacity for the section with concentrated and distributed 

reinforcement 
 
Rectangular section 
A simplified wall design model is shown in Figure C-2. The wall reinforcement can be divided 
into: 
• Concentrated reinforcement at the ends (area cA  at each end), and 
• Distributed reinforcement along the wall length (total area dA ). 
It is assumed that the concentrated wall reinforcement yields either in tension or in compression 
at the wall ends. Also, it is assumed that the distributed reinforcement yields in tension. 
 
A procedure to find the factored moment capacity rM  for a shear wall with a given vertical 
reinforcement (size and spacing) is outlined below. 
 
From the equilibrium of vertical forces (see Figure C-2b), it follows that  

0321 =−−++ mf CCTTP                               ( 1)         

where 
cys AfCT φ== 31  

dys AfT φ=2  

( )( )atfC mmm ⋅= '85.0 φ  
The compression zone depth, a , can be determined from equation 1 as follows 

tf
AfP

a
mm

dysf

'85.0 φ
φ+

=     ( 2) 
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8.01 =β  when 20' <mf MPa (note that 1β  value decreases when 20' >mf MPa, as prescribed 
in S304.1 Cl.10.2.6) 
 
The neutral axis depth, c , measured from the extreme compression fibre to the point of zero 
strain is given by  
 1βac =  
Next, the factored moment capacity, rM , can be determined by summing up the moments 
around the centroid of the wall section (point O) as follows 

( )⎥⎦⎤⎢⎣
⎡ −+−= '222)( dwlcAyfsawlmCrM φ                 ( 3) 

where d ′  is the distance from the extreme compression fibre to the centroid of the concentrated 
compression reinforcement.  
 

 
Figure C-2. A simplified design model for rectangular wall section: a) plan view cross-section 
showing reinforcement; b) internal force distribution. 

 
10.2.8  

In case of squat shear walls, CSA S304.1-04 prescribes the use of a reduced effective depth 
d for flexural design, i.e. 
 

hld w 7.067.0 ≤=  
As a result, the moment capacity should be reduced by taking a smaller lever arm for the tensile 
steel, as follows 
 

( ) ( )⎥⎦⎤⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ −+−= 2'22)( wldcAyfsdwlcAyfsawlmCrM φφ                 ( 4) 
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Note that the reinforcement area cA  in squat walls should be increased to provide more than 
one reinforcing bar, since the end zone constitutes a larger portion of the overall wall length in 
these cases. 
 
The CSA S304.1-04 provision for the reduced effective depth in squat walls contained in 
Cl.10.2.8 is intended to account for the effect of the deep beam behaviour of squat walls. This 
provision makes more sense for non-seismic design, and it should not be used if the tension 
steel yields in seismic conditions. 
 
Flanged section 
In case of the flanged wall section shown in Figure C- 3, the factored moment capacity rM  can 
be determined by summing up the moments around the centroid of the wall section (point O) as 
follows 

( ) ( ) )2(22 dlAfxlCM wcyswmr ′−+−= φ  
where 

t
ttbA

a fL
2* +−

=  

( ) ( )
L

f

A
ttbat

x
2)(2* 22 −+

=  

LA  is the area of the compression zone.  

 
Figure C- 3. A simplified design model for flanged wall section. 
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C.1.1.2 Moment capacity for rectangular wall sections with distributed vertical  

reinforcement 
The previous section discussed a general case of a shear wall with both concentrated and 
distributed vertical reinforcement. In low- to medium-rise concrete and masonry wall structures, 
the provision of distributed vertical reinforcement is often sufficient to resist the effects of 
combined flexure and axial loads (see Figure C-4a). The factored moment capacity for walls 
with distributed vertical reinforcement can be determined based on the approximate equation 
proposed by Cardenas and Magura (1973), which was originally developed for reinforced 
concrete shear walls. The equation was derived based on the assumption that the distributed 
wall reinforcement shown in Figure C-4b can be modeled like a thin plate of length wl  (equal to 
the wall length), and the thickness is such that the total area vtA  is the same as that provided by 
distributed reinforcement along the wall length (see Figure C-4b). The factored moment capacity 
can be determined as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

wvtys

f
wvtysr l

c
Af

P
lAfM 115.0

φ
φ                          (5) 

where 

vtA - the total area of distributed vertical reinforcement 
c - neutral axis depth 
 

tlf
Af

wmm

vtys

'φ
φ

ω =  

tlf
P

wmm

f

'φ
α =  

 

112 βαω
αω

+
+

=
wl
c

 

 
85.01 =α   and   8.01 =β  

 

 
Figure C-4. Shear wall with distributed vertical reinforcement: a) vertical elevation; b) actual 
cross section; c) equivalent cross-section. 
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C.1.1.3  An approximate method to estimate the wall reinforcement 
Consider a wall cross-section shown in Figure C-5a. In design practice, there is often a need to 
produce a quick estimate of wall reinforcement based on the given factored loads. In this case, 
the loads consist of the factored bending moment fM and axial force fP acting at the centroid 
of the wall section (point O).  
 
The goal of this procedure is to find the total area of wall reinforcement sA . To simplify the 
calculations, an assumption is made that the reinforcement yields in tension and that the 
resultant force rT  acts at the centroid of the wall section, that is, (see Figure C-5b) 

sysr AfT φ=                        ( 6) 
An initial estimate for the compression zone depth a can be made as follows 

wla 3.0≅  

 
Figure C-5. Reinforcement estimate: a) plan view wall cross-section; b) distribution of internal 
forces. 

Next, compute the sum of moments of all forces around the centroid of the compression zone 
(point C), as follows 

02)(2)( =−−−− alTalPM wrwff  
From the above equation it follows that  

2)(
2)(

al
alPM

T
w

wff
r −

−−
=                    ( 7) 

The area of reinforcement can then be determined from equation (7) as follows 
ysrs fTA φ=  

 
The area of reinforcement can be chosen to be equal to or larger than that estimated by this 
procedure. A uniform reinforcement distribution over the wall length is recommended for seismic 
design, since research studies have shown that shear walls with uniform reinforcement 
distribution show better seismic response in the post-cracking range. In addition, the seismic 
detailing requirements for vertical reinforcement need to be followed. 
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C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading 
Masonry walls are subjected to the effects of seismic loads acting perpendicular to their surface 
– this is called out-of-plane seismic loading.  For design purposes, wall strips of a predefined 
width are treated as beams spanning vertically or horizontally between lateral supports. When 
the walls span in the vertical direction, floor and/or roof diaphragms provide the lateral supports.  

 
Walls can also span 
horizontally, in which case the 
lateral supports need to be 
provided by cross walls or 
pilasters, as shown in Figure C-
6. Note that support on four 
edges is very efficient, since 
these walls behave as two-way 
slabs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure C-6. Masonry walls under out-of plane seismic loads: a) spanning vertically between 
floor/roof diaphragms; b) spanning horizontally between pilasters. 
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Consider a reinforced concrete masonry wall subjected to the effects of factored axial load 
fP and bending moment fM , as shown in Figure C-7a. The wall is reinforced vertically, with 

only the reinforced cores grouted. It is assumed that the size and distribution of vertical 
reinforcement are given. The notation used in Figure C-7b is explained below: 
       t  - overall wall thickness (taken as actual block width, e.g. 140 mm, 190 mm, etc.) 
      ft - face shell thickness 

b - effective width of the compression zone (see Section 2.4.2 and Figure 2-19) 
d - effective depth, that is, distance from the extreme compression fibre to the centroid of 
the wall reinforcement; typically, the reinforcement is placed in the middle of the wall section, 
so  

2td =  

sA - total area of steel reinforcement placed within the effective width b  
 
It is assumed that the steel has yielded, that is, ys εε ≥ , and the corresponding stress in the 
reinforcement is equal to the yield stress, yf . This is a reasonable assumption for low-rise 
masonry buildings, since the axial load is low and the walls are expected to fail in the steel-
controlled mode. The design procedure is outlined below. 
 
• The resultant forces in steel rT and masonry mC  can be determined as follows: 

sysr AfT φ=  

( )( )abfC mmm ⋅= '85.0 φ  
• The equation of equilibrium of internal forces gives (see Figure C-7d) 

rfm TPC +=  
• The depth of the compression stress block a  is equal to 

bf
Ca

mm

m

'85.0 φ
=   ( 8) 

• The moment resistance can be found from the following equation 

)2(' adCM mr −=   (9) 

 



4/1/2009 C-10

 
Figure C-7. A wall under axial load and out-of-plane bending: a) vertical section showing 
factored loads; b) plan view of a wall cross-section; c) strain distribution; d) internal force 
distribution. 

For partially grouted wall sections (where only reinforced cores are grouted), the designer needs 
to confirm that 

fta ≤  
When the above relation is correct, then the compression zone is rectangular, as shown in 
Figure C-8a. Note: in solidly grouted walls, the compression zone is always rectangular! 
 
When fta ≥ , the compression zone needs to be treated as a T-section and an additional 
calculation is required to determine the a value. The following equations can be used to 
determine the moment resistance in sections with a T-shaped compression zone: 
• The resultant force in the steel rT  can be determined as follows: 

sysr AfT φ=  
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• The resultant force in the masonry, mC ,  acts at the centroid of the compression zone and 
can be determined from the equation of equilibrium of internal forces, that is, 

rfm TPC +=  
Once the compression force in the masonry is found, the area of the masonry compression 
zone, mA  (see Figure C-8b), is given by 

( ) mmmm AfC ⋅= '85.0 φ  
• The depth of the compression stress block a  can be found from the following equation 

( ) wffm btatbA ⋅−+⋅=  
where 

wb = width of the grouted cell plus the adjacent webs 
• The distance from the extreme compression fibre to the centroid of the compression zone a  
is equal to 

)( ( )

m

f
fff

A

ta
ttatb

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⋅−+⋅

=
2

22

    (10) 

 
 

Figure C-8. Masonry compression zone: a) rectangular shape; b) T-shape; c) effective width 
and tributary width. 



4/1/2009 C-12

• The moment resistance can be found from the following equation 

( )adCM mr −='   (11)  

Note that rM '  denotes the moment capacity for a wall section of width b . It is usually more 
practical to convert the rM '  value to a unit width equal to 1 metre (see Figure C-8c), as follows 

( )sMM rr 0.1'=   (12) 

where  
s  - spacing of vertical reinforcement expressed in metres (where sb ≤ ) 

rM  - factored moment capacity in kNm/m. 
 
The design of masonry walls subjected to the combined effects of axial load and bending is 
often performed using P-M interaction diagrams. The axial load capacity is shown on the vertical 
axis of the diagram, while the moment capacity is shown on the horizontal axis. The points on 
the diagram represent the combinations of axial forces and bending moments corresponding to 
the capacity of a wall cross-section. An interaction diagram is defined by the following four 
distinct points and/or regions: i) balanced point, ii) points controlled by steel yielding, iii) points 
controlled by masonry compression, and iv) pure compression (zero eccentricity). A conceptual 
wall interaction diagram is presented in Figure C-9. 

 
Figure C-9. P-M interaction diagram. 

 
1. Balanced point 
At the load corresponding to the balanced point, the steel has just yielded, that is, ys εε = . The 
position of the neutral axis bc  can be determined from the following proportion (see Figure C-7 
c): 

y

m

b

b

cd
c

ε
ε

=
−

 

or  

)(
ym

m
b dc

εε
ε
+

=  
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For 400=yf  MPa and 002.0=yε  it follows that 

dcb 6.0=  
 
2. Points controlled by steel yielding 
For bcc < , the steel will yield before the masonry reaches its maximum useful strain (0.003). 
Since the steel is yielding, it follows that ys εε > .  The designer needs to assume the neutral 
axis depth ( c ) value so that bcc < . The compression zone depth can then be calculated as 

cca 8.01 == β   (this is valid for MPafm 20<′  according to S304.1 Cl.10.2.6). Combinations of 
axial force and moment values corresponding to an assumed neutral axis depth can be found 
from the following equations of equilibrium (see Figure C-7d) 

rmr TCP −=  
where 

sysr AfT φ=      (note that the stress in the steel is equal to yf  since the steel is yielding) 
 
Moment resistance depends on the shape of the masonry compression zone, that is, on 
whether the section is partially or solidly grouted. 
• For a solidly grouted section or a partially grouted section with the compression zone in the 
face shells only: 

)2(' adCM mr −=    
where 

( )( )abfC mmm ⋅= '85.0 φ  
• For a partially grouted section with the compression zone extending into the grouted cells: 

( )adCM mr −='    
where 

( ) mmmm AfC ⋅= '85.0 φ  
 
3. Points controlled by masonry compression 
For bcc > , the steel will remain elastic, that is, ys εε <  and ys ff < , while the masonry reaches 
its maximum strain of 0.003.  The designer needs to assume the neutral axis depth ( c ) value so 
that bcc > , and the strain in steel can then be determined from the following proportion (see 
Figure C-7 c): 

cdd
sm

−
=

εε
 

thus 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
c

cd
ms εε  

The stress in the steel can be determined from Hooke’s Law as follows 
sss Ef ε*=    (note that steel stress ys ff < ) 

where sE  is the modulus of elasticity for steel. The equations of equilibrium are the same as 
used in part 2 above, except that 

sssr AfT φ=  
The point corresponding to 2tc =  is considered as a special case. At that point, the strain 
distribution is defined by the following values 

003.0=mε  and 0=sε  
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thus 
0=rT  

 
4. Pure compression (zero eccentricity) 
In the case of pure axial compression (S304.1 Cl.10.4) the axial load resistance for untied 
sections can be determined as follows: 

emmr AfP ′= φ85.0  actual axial compression resistance 
and 

rr PP 8.0max =  design axial compression resistance 
According to S304.1 Cl.10.2.7, when the steel bars are tied by means of joint reinforcement, 
then the steel contribution can be considered for the compression resistance. The design 
equation for tied wall sections is as follows: 

syssemmr AfAAfP φφ +−′= )(85.0  
and 

rr PP 8.0max =  

C.2 Wall Intersections and Flanged Shear Walls 
Flanged shear wall configurations are encountered when a main shear wall intersects a cross-
wall (or transverse wall). Examples of flanged walls in masonry buildings are very common, 
since the bearing wall systems often consist of walls laid in two orthogonal directions. Also, in 
medium-rise wood frame apartment buildings, elevator shafts are usually of masonry 
construction, and the intersecting masonry walls that form the core can be considered as 
flanged walls. 
 
10.6.2  

 
In flanged shear walls, a portion of the cross wall is considered to act as the flange, while the 
main shear wall acts at the web. Depending on the cross-wall configuration, flanged shear walls 
may be of I, T- or L-section. An I-section is characterized by the two end flanges, similar to that 
in Figure C-10 (left), a T-section is characterized with one flanged end and other rectangular/ 
non-flanged end, while a L-section is characterized by one flanged end (similar to that shown in 
Figure C-10 right), and other rectangular-shaped (non-flanged) end. Design codes prescribe the 
maximum effective flange width that may be considered in the shear wall design.  The CSA 
S304.1 requirements for overhanging flange widths for these wall sections are summarized in 
Table C-1 and Figure C-10. For masonry buildings with substantial flanges the height ratio limits 
will usually govern.  



4/1/2009 C-15

 

Table C-1. Overhanging Flange Width Restrictions for T- and L- Section Walls per CSA S304.1 
Cl.10.6.2 

T-sections ( Tb ) L-sections ( Lb ) 
  ≤Tb  the smallest of: 

a) actualb  
b) 2wa  
c) t⋅6  
d) 12wh  

≤Lb  the smallest of: 
a) actualb  
b) 2wa  
c) t⋅6  
d) 16wh  

where 
actualb  - actual overhang/flange width 

wa - clear distance between the 
adjacent cross walls 
t - actual flange thickness 

wh - wall height 

 

 
Figure C-10. CSA S304.1 flange width requirements. 

 
7.11 
10.11 

 

 
Flanges do not contribute significantly to the shear resistance of flanged walls, but they 
generally enhance the in-plane flexural capacity. However, flanges can be considered to be 
effective in resisting the applied loads only if the web-to-flange joint is capable of transferring the 
vertical shear. According to CSA S304.1 Cl.7.11, the following alternative approaches can be 
used to ensure the effective shear transfer across the web-to-flange connection in both 
unreinforced and reinforced masonry walls (see Figure C-11): 

a) Bonded intersections - 50% of the units of one wall embedded at least 90 mm in the 
other wall (Cl.7.11.1). 

b) Mechanical connection with steel connectors (e.g. anchors, rods, or bolts) at a maximum 
spacing of 600 mm (Cl.7.11.3), and 

c) Fully grouted keyways or recesses, with a minimum of two 3.65 mm diameter steel wires 
from joint reinforcement spaced at 400 mm vertically (Cl.7.11.2).  
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d) Fully grouted bond beam intersections with15M reinforcing bars spaced as required; this 
is not explicitly prescribed by CSA S304.1-04, but it is in line with the approach c) 
outlined in Cl.7.11.3. The bars should be detailed to develop the full yield stress on each 
side of the intersection. 

Note that Cl.10.11.2 does not permit the use of rigid anchors (approach b) for portions of 
reinforced masonry shear walls in which the flanges contain tensile steel and are subject to axial 
tension, but alternative solutions are permitted. 
 
Vertical shear resistance of the flanged walls must be checked by one of the following methods: 
• For bonded intersections achieved by approach a), vertical shear at the intersection shall 
not exceed the out-of-plane masonry shear resistance (Cl.7.10.2). 
• For flanged sections with the mechanical steel connectors (approach b), the connectors 
must be capable of resisting the vertical shear at the intersection. The connector resistance 
should be determined according to CSA A370-04. 
• For flanged sections with the horizontal reinforcement (approaches c and d), the 
reinforcement must be capable of resisting the vertical shear at the intersection. 

 
 
 
Figure C-11. Masonry wall intersections: a) bonded intersections; b) mechanical connection;  
c) horizontal joint reinforcement; d) horizontal reinforcing bars (bond beam reinforcement). 
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7.11.4  
 
Where wall intersections are not bonded and rigid steel connectors are not used, the factored 
shear resistance of the web-to-flange joint shall be based on the shear friction resistance taken 
as 

hmr CV μφ=       

where 
μ   = 1.0  coefficient of friction for the web-to-flange joint 

hC   = compressive force in the masonry acting normal to the head joint, normally taken as the 
factored tensile force at yield of the horizontal reinforcement that crosses the vertical section. 
The reinforcement must be detailed to enable it to develop its yield strength on both sides of the 
vertical masonry joint, which may be hard to achieve in practice. 
 
Commentary 

 
The provisions related to flanged shear walls have not changed in CSA S304.1-04 from the 
1994 edition, with the exception of the new Cl.7.11.4 related to the shear friction resistance of 
wall intersections. 
 
For flanged walls with horizontal reinforcement, resistance to vertical shear sliding is provided 
by the frictional forces between the sliding surfaces, that is, the web and the flange of the wall. 
The shear friction resistance rV  is proportional to the coefficient of friction μ , and the clamping 
force hC  acting perpendicular to the joint of height h  (see Figure C-12a).  
 

hC  is equal to the sum of the tensile yield forces developed in reinforcement of area bA  spaced 
at the distance s , that is, 

shAfC bysh φ=  

In case of a flanged shear wall with openings, shear friction resistance rV  is provided by wall 
segments between the openings, as shown in Figure C-12b.  
 
Reinforcement providing the shear friction resistance should be distributed uniformly across the 
joint. The bars should be long enough so that their yield strength can be developed on both 
sides of the vertical joint, as shown in Figure C-13b. 
 
Clauses 7.11.1 to 7.11.3 list three approaches (a, b, and c) that can be used to ensure shear 
transfer at the web-to-flange interface. In addition to the three approaches stated in CSA 
S304.1-04, it is a common practice in Canada to use 15M reinforcing bars from intersecting 
bond beams to provide shear resistance if needed (approach d). U.S. masonry design standard 
ACI 530-08 Cl.1.9.4.2.5 c) prescribes intersecting bond beams in intersecting walls at maximum 
spacing of 1200 mm (4 ft) on centre. The bond beam reinforcement area shall not be less than 
200 mm2 per metre of wall height (0.1 in2/ft), and the reinforcement shall be detailed to develop 
the full yield stress at the intersection. 
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Figure C-12. Shear friction resistance at the web-to-flange intersection: a) resistance provided 
by the reinforcement; b) flanged shear wall with openings. 
 
When the shear resistance of the web-to-flange interface relies on masonry only (see Figure C-
13a), the horizontal shear stress fv , due to shear force fV , can be given by: 

we

f
f lt

V
v =  

where 
et - effective web width 

wl - wall length 
The designer should also find the vertical shear stress caused by the resultant compression 
force fbP : 

ww

fb
f hb

P
v

*
=  

The larger of these two values governs. The factored shear stress should be less than the 
factored masonry shear resistance, mmvφ , as follows 

mmf vv φ≤  
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where  

mm fv '16.0=   
If the above condition is not satisfied, horizontal reinforcement needs to be provided 
(see Figure C-13b), and the following shear resistance check should be used 

smmf vvv +≤ φ  
where sv  is the factored shear resistance provided by the steel reinforcement, which can be 
determined as follows: 

e

ybs
s ts

fA
v

⋅
=
φ

 

where bA  is area of horizontal steel reinforcement crossing the web-to-flange intersection at the 
spacing s . 
 
Note that the reinforcement that crosses the vertical section has to be detailed to develop yield 
strength on both sides of the vertical masonry joint (see Figure C-13b). 

 
Figure C-13. Shear resistance of the web-to-flange interface: a) bonded masonry intersection; 
b) horizontal reinforcement at the intersection.  
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C.3 Wall Stiffness Calculations 
The determination of wall stiffness is one of the key topics in the seismic design of masonry 
walls. Although this topic has been covered in other references (e.g. Drysdale and Hamid, 2006, 
and Hatzinikolas and Korany, 2006), a few key concepts are discussed in this section. Section 
C.3.2 derives expressions for the in-plane lateral stiffness of walls under the assumption that the 
walls are uncracked. For seismic analysis it is expected that the walls will be pushed into the 
nonlinear range, and so cracking will occur and the reinforcement will yield. The stiffness to be 
used in seismic analysis should not be the linear elastic (uncracked) stiffness but some effective 
stiffness that reflects the effect of cracking up to the yield capacity of the wall. Section C.3.5 
gives some suggestions for the effective stiffness of shear walls responding in shear-dominant 
and flexure-dominant modes.  

C.3.1 Lateral Load Distribution 
The distribution of lateral seismic loads to individual walls can be performed once the storey 
shear forces have been determined from the seismic analysis. The flexibility of floor and/or roof 
diaphragms is one of the key factors influencing the load distribution (for more details, see 
Section 1.5.9 and Example 3 in Chapter 4). In the case of a flexible diaphragm, the lateral 
storey forces are usually distributed to the individual walls based on the tributary area. In the 
case of a rigid diaphragm, these forces are distributed in proportion to the stiffness of each wall. 
In calculating the wall forces, torsional effects must be considered, as discussed in Section 
1.5.9. The distribution of lateral loads (without torsional effects) in a single-storey building with a 
rigid diaphragm is shown in Figure C-14. 

 
Figure C-14. Distribution of lateral loads to individual walls. 

Wall stiffness is usually determined from the elastic analysis, and depends on wall height/length 
aspect ratio, thickness, mechanical properties, extent of cracking, size and location of openings, 
etc.  
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C.3.2 Wall Stiffness: Cantilever and Fixed-End Model 
Wall stiffness depends on the end support conditions, that is, whether a wall or pier is fixed or 
free to move and/or rotate at its ends. Two models for wall stiffness include the cantilever model 
and the fixed-end model shown in Figure C-15.  In the cantilever model, the wall is free to rotate 
and move at the top in the horizontal direction – this is usually an appropriate model for the 
walls in a single-storey masonry building.  
 
The stiffness can be defined as the lateral force required to produce a unit displacement, but it 
is determined by taking the inverse of the combined flexural and shear displacements produced 
by a unit load. It should be noted that flexural displacements will govern for walls with an aspect 
ratio of 2 or higher. For example, the contribution of shear deformation in a wall with a 
height/length aspect ratio of 2.0, is 16% for the cantilever model and 43% for the fixed-end 
model. The stiffness equations presented in this section take into account both shear and 
flexural deformations.  
 
The stiffness of a cantilever wall or a pier can be determined from the following equation (see 
Figure C-15 a): 
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The stiffness of a wall or a pier with the fixed ends can be determined from the following 
equation (see Figure C-15 b): 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3

1
* 2

ww

m

l
h

l
htE

K
       ( 14) 

where 
h  - wall height (cantilever model) or clear pier height (fixed-end model) 
wl  - wall or pier length 

mm fE ′= 850   modulus of elasticity for masonry 
The following assumptions have been taken in deriving the above equations: 

mm EG 4.0=      modulus of rigidity for masonry (shear modulus) 

12
* 3

we lt
I =  uncracked wall moment of inertia 

6
**5 we

v
lt

A =       shear area (applies to rectangular wall sections only ) 

where et = effective wall thickness. 
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Figure C-15. Wall stiffness models: a) cantilever model, and b) fixed-end model. 

The wall stiffnesses for both models for a range of height/length aspect ratios are presented in 
Table D-3. Note that the derivation of stiffness equations has been omitted since it can be found 
in other references (see Hatzinikolas and Korany, 2005). 

C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls 
In most real-life design applications, walls are perforated with openings (doors and windows). 
The seismic shear force in a perforated wall can be distributed to the piers in proportion to their 
stiffnesses. This approach is feasible when the openings are very large and the stiffness of lintel 
beams is small relative to the pier stiffnesses, or if the lintel beam is very stiff so that connected 
piers act as fixed-ended walls. Figure C-16 illustrates the distribution of wall shear force V  to 
individual piers in direct proportion to their stiffness. Note that, according to this model, the wall 
shear force is equal to the sum of shear forces in the piers, that is,  

∑= iVV  
where 

iii KV Δ= *  force in the pier i  
Thus 

)*( iiKV Δ= ∑  
If the floor diaphragm is considered to be rigid, it can be assumed that the lateral displacement 
in all piers is equal toΔ , that is, 

Δ=Δ=Δ=Δ CBA  
and so 

Δ= ∑ *)( iKV  
Thus 

∑
=Δ

iK
V

 

where 
∑= iKK  

denotes the overall wall stiffness for the system. 
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Therefore, the force in each pier is proportional to its stiffness relative to the sum of all pier 
stiffnesses within the wall, as follows 

∑∑
==Δ=

i

i

i
iiii K

K
V

K
VKKV ***  

This means that stiffer piers are going to attract a larger portion of the overall shear force. This 
can be explained by the fact that a larger fraction of the total lateral force is required to produce 
the same deflection in a stiffer wall as in a more flexible one.  

 
 

Figure C-16. Shear force distribution in a wall with a rigid diaphragm: a) wall in the deformed 
shape: b) pier forces. 
An approximate approach for determining the stiffness of a solid shear wall in a multi-storey 
building is to consider the structure as an equivalent single-storey structure, as shown in Figure 
C-17. The entire shear force is applied at the effective height, eh , defined as the height at which 
the shear force fV   must be applied to produce the base moment fM , that is, 

f

f
e V

M
h =  

The wall stiffness is found to be equal to the reciprocal of the deflection at the effective height 
eΔ , as follows 
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e

K
Δ

=
1

 

This model, although not strictly correct, can be used to determine the elastic distribution of the 
torsional forces as well as the displacements, as illustrated in Example 2 in Chapter 4. 

 
Figure C-17. Vertical combination of wall segments with different stiffness properties. 

Several different elastic analysis approaches can be used to determine the stiffness of a wall 
with openings. A simplified approach suitable for the stiffness calculation of a perforated wall in 
a single-storey building can be explained with the help of an example of the wall X1 shown in 
Figure C-18 (see also Example 3 in Chapter 4). For a unit load applied at the top, the wall 
stiffness calculation involves the following steps: 
• First, calculate the deflection at the top for a cantilever wall, considering the wall to be solid 
( solidΔ ). 
• Next, calculate the deflection for the strip containing openings ( stripΔ ), considering the full 
wall length (i.e. ignore openings). 
• Finally, calculate the deflection for the piers A, B, C, and D ( ABCDΔ ) assuming that all piers 
have the same deflection. 
Note that the deflections for individual components are calculated as the inverse of their 
stiffness values, and that the pier stiffnesses are determined assuming either the cantilever or 
fixed-end models. In most cases, the use of the cantilever model is more appropriate. 

 
Figure C-18. An example of a perforated wall. 

The overall wall deflection can be determined by combining the deflections for these 
components, as follows: 

ABCDstripsolid Δ+Δ−Δ=Δ  
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Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced by the four 
segments. 
 
Finally, the wall stiffness is equal to the reciprocal of the deflection, as follows 

Δ
=

1K  

C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls 
with Openings 

The approximate approach based on elastic analysis presented in Section C.3.3 is appropriate 
for determining the lateral force distribution in masonry walls. However, that method is not 
adequate for predicting the strengths in perforated reinforced masonry shear walls (walls with 
openings). Openings in a masonry shear wall alter its behaviour and add complexity to its 
analysis and design. When the openings are relatively small, their effect can be ignored, 
however in most walls the openings need to be considered. The following two design 
approaches can be used to design walls with openings: 

1) Plastic analysis method, and 
2) Strut-and-tie method.  

These two approaches have been evaluated by experimental studies and have shown very 
good agreement with the experimental results (Voon, 2007; Elshafie et al., 2002; Leiva and 
Klingner, 1994). The key concepts will be outlined in this section. 
 
C.3.4.1 Plastic analysis method 
The plastic analysis method, also known as limit analysis, can be used to determine the ultimate 
load-resisting capacity for statically indeterminate structures. A masonry wall with an opening as 
shown in Figure C-19a can be modeled as a frame (see Figure C-19b). The model is subjected 
to an increasing load until the flexural capacity of a specific section is reached and a plastic 
hinge is formed at that location. (The plastic hinge is a region in the member that is assumed to 
be able to undergo an infinite amount of deformation, and can therefore be treated as a hinge 
for further analysis.) With further load increases, plastic hinges will be formed at other sections 
as their flexural capacity is reached. This process continues until the system becomes statically 
determinate, at which point the formation of one more plastic hinge will result in a collapse 
under any additional load. This is called a collapse mechanism, and an example is shown in 
Figure C-19c. There is usually more than one possible collapse mechanism for a statically 
indeterminate structure, and the mechanism that gives the lowest capacity is closest to the 
ultimate capacity, as this is an upper bound method. 
 
For specific application to perforated masonry walls, the wall is idealized as an equivalent 
frame, where piers are modeled as fixed at the base and either pinned or fixed at the top, while 
lintels are modeled as fixed at the ends. A failure state is reached when plastic hinges form at 
member ends, and the collapse mechanism forms. The sequence of plastic hinge formation 
depends on the relative strength and stiffness of the elements. In this approach, structural 
members must be designed to behave mainly in a flexural mode, while a shear failure is 
avoided by applying the capacity design approach. 
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Figure C-19. An example of a plastic collapse mechanism for a frame system: a) perforated 
masonry wall; b) frame model; c) plastic collapse mechanism. 

The following two mechanisms are considered appropriate for the plastic analysis of reinforced 
masonry walls with openings, as shown in Figure C-20 (Leiva and Klingner, 1994; Leiva et al. 
1990): 
 

1) pier mechanism, and 
 
2) coupled wall mechanism. 

 
 
      
 
 
 
 
 

     a) 
 

 
 
                                   b)          

 
 
                                c) 

Figure C-20. Plastic analysis models for perforated walls: a) actual wall; b) pier model;              
c) coupled wall model (Leiva and Klingner, 1994, reproduced by permission of the Masonry 
Society). 
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A pier mechanism is a collapse mechanism with flexural hinges at tops and bottoms of the piers. 
A pier-based design philosophy visualizes a perforated wall as a ductile frame. Horizontal 
reinforcement above and below the openings is needed to transfer the pier shears into the rest 
of the wall. A drawback of the pier mechanism is that the formation of plastic hinges at the top 
and bottom of all piers at a story level can lead to significant damage to the piers, which are the 
main vertical load-carrying elements.  
 
A coupled wall mechanism is a collapse mechanism in which flexural hinges are formed at the 
base of the wall and at the ends of the coupling lintels. A perforated wall is modeled as a series 
of ductile coupled walls; this concept is similar to that used for seismic design of reinforced 
concrete shear walls.  The vertical reinforcement in each pier must be designed so that the 
flexural capacity of the piers exceeds the flexural capacity of the coupling beams. To achieve 
this, additional longitudinal reinforcement is placed in the piers, but cut off before it reaches the 
wall base. The shear reinforcement in the coupling beams is designed based on the flexural and 
shear capacity of the piers. Since masonry walls are usually long in plan, the formation of plastic 
hinges at their bases produces large strains in the wall longitudinal reinforcement. Plastic hinges 
must have adequate rotational capacity to allow the complete mechanism to form; this can be 
achieved in wall structures with low axial load. To ensure the successful application of the 
plastic analysis method, the wall reinforcement must be detailed to develop the necessary 
strength and inelastic deformation capacity. 
 
Figure C-21 shows a simple single-storey wall that is analyzed for the two mechanisms.  
Ultimate shear forces corresponding to the pier and coupled wall mechanisms can be 
determined from the equations of equilibrium assuming that the moments at the plastic hinge 
locations are known. These equations are summarized in Figure C-21 (Elshafaie et al., 2002). 
 
The plastic analysis method has a few advantages: stiffness calculations are not required, and 
the designer can choose the failure mechanism which ensures a desirable ductile response. 
The designer needs to have a general background in plastic analysis, which is covered in 
several references, e.g. Bruneau, Uang, and Whittaker (1998) and Ferguson, Breen, and Jirsa 
(1988). This method is also used for the seismic analysis of concrete and steel structures, and 
is referred to as nonlinear static analysis or pushover analysis. 
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    a) 

 
    b) 

Figure C-21. Ultimate wall forces according to the plastic analysis method: a) pier mechanism; 
b) coupled wall mechanism (Elshafaie et al., 2002, reproduced by permission of the Masonry 
Society). 

 
C.3.4.2 Strut-and-Tie Method 
The strut-and-tie method essentially follows the truss analogy approach used for shear design 
of concrete and masonry structures. Pin-connected trusses consist of steel tension members 
(ties), and masonry compression members (struts). The masonry compression struts develop 
between parallel inclined cracks in the regions of high shear. The essential feature of this 
approach is that the designer needs to find a system of internal forces that is in equilibrium with 
the externally applied loads and support conditions. A further essential feature is that the 
designer must ensure that the steel and masonry tie members provided adequately resist the 
forces obtained from the truss analysis. 
 
The design of tension ties is particularly important. If a ductile response is to be assured, the 
designer should choose particular tension chords in which yielding can best be accommodated.  
Other ties can be designed so that no yielding will occur by using the capacity design approach. 
The magnitudes of the forces in critical tension ties can be determined from statics, 
corresponding to the overturning moment capacity of the wall using the nominal material 
properties (rather than the factored ones). The remaining forces are then determined from the 
equilibrium of nodes (conventional truss analysis). Compression forces developed in masonry 
struts are usually small due to the small compression strains and do not govern the design. 
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Careful detailing of the wall reinforcement is necessary to ensure that the actual structural 
response will correspond to that predicted by the analytical model.  
 
The designer needs to use judgement to simplify the force paths that are chosen to represent 
the real structure – these differ considerably depending on individual judgement.  
 
An example of a strut-and-tie model for a two-storey perforated masonry wall subjected to 
seismic lateral load is shown in Figure C-22 (note that gravity load also needs to be considered 
in the analysis, however it is omitted from the figure). It can be seen that two different models 
are required to account for the alternate direction of seismic load. The examples show the 
seismic load being applied as a compressive load to the building; however, these loads should 
be applied to the floor levels, depending on the diaphragm-to-wall connection. The designated 
tie members in one model will become struts in the other model (when the seismic load changes 
direction). An advantage of the reversible nature of seismic forces is that a significant fraction of 
the inelastic tensile strains imposed on the end strut members is recoverable due to force 
reversal, thereby providing hysteretic energy dissipation. A detailed solution for this example is 
presented in the User’s Guide by NZCMA (2004). 
 

 
Figure C-22. Strut-and-tie models for a masonry wall corresponding to different directions of 
seismic loading (NZCMA, 2004, reproduced by the permission of the New Zealand Concrete 
Masonry Association Inc.). 

Strut-and-tie models are used for design of masonry walls in New Zealand, and this approach is 
explained in more detail by Paulay and Priestley (1992). The New Zealand Masonry Standard 
NZS 4230:2004 (SANZ, 2004) recommends the use of strut-and-tie models for the design of 
perforated reinforced masonry shear walls. In Canada, strut-and-tie models are used to design 
discontinuous regions of reinforced concrete structures according to the Standard CSA A23.3-
04 Design of Concrete Structures. The design concepts and applications of strut-and-tie models 
for concrete structures in Canada are covered by McGregor and Bartlett (2000).   
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C.3.5 The Effect of Cracking on Wall Stiffness 
The behaviour of masonry walls under seismic load conditions is rather complex, and depends 
on the failure mechanism (shear-dominant or flexure-dominant), as discussed in Section 2.3.1. 
Figure C-23 shows the hysteretic response of shear-dominant and flexure-dominant walls. The 
effective stiffness discussed in this section reflects the secant stiffness up to first crack in the 
brittle shear-dominant walls, and the stiffness for an elastic-perfectly-plastic model that would 
approximate the strength envelope of the hysteretic plot in the ductile flexure-dominant walls.  
 
For the shear-dominant mechanism, the response is initially elastic until cracking takes place, at 
which point there is a substantial drop in stiffness. This is particularly pronounced after the 
development of diagonal shear cracks. After a few major cracks develop, the load resistance is 
taken over by the diagonal strut mechanism, and the shear stiffness can be estimated by an 
appropriate strut model. However, the stiffness drops significantly shortly after the strut 
mechanism is formed, and can be considered to be zero for most practical purposes (see Figure 
C-23a). It is expected that an increase in the quantity of vertical and horizontal steel and/or the 
magnitude of axial compressive stress causes a reduced crack size and an increase in the 
shear stiffness (Shing et al., 1990).  

 
                                                                       a) 

 
                                                                       b) 

Figure C-23. Cracking pattern and load-displacement curves for damaged masonry wall 
specimens: a) shear-dominant response, and b) flexure-dominant response (Shing et al., FEMA 
307, reproduced by permission of the Federal Emergency Management Agency). 
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For the flexure-dominant mechanism, a drop in the stiffness immediately after the onset of 
cracking is not very significant. As can be seen from Figure C-23b, the stiffness drops after the 
yielding of vertical reinforcement takes place, and continues to drop with increasing inelastic 
lateral deformations (this depends on the ductility capacity of the wall under consideration). The 
specimen for which the results are shown in Figure C-23b showed yielding of vertical 
reinforcement and compressive crushing of masonry at the wall toes (Shing et al., 1989). 
 
Note that the height of wall test specimens shown in Figure C-23 was 1.8 m (6 feet), thus a 
2.5% drift ratio permitted by the NBCC 2005 for regular buildings corresponds to 1.8 inch 
displacement. It can be seen that the displacements and drift in these specimens are very low, 
particularly so for the shear-dominant specimen shown in Figure C-23a. 
 
Evidence from studies that focus on quantifying the changes in in-plane wall stiffness under 
increasing lateral loading are limited, so CSA S304.1 and other masonry codes do not provide 
guidance related to this issue. Shing et al. (1990) tested a series of 22 cantilever block masonry 
wall specimens that were laterally loaded at the top, with a height/length aspect ratio of 1.0. 
Based on the experimental test data, they have recommended the following empirical equation 
for the lateral stiffness of a wall with a shear-dominant response 
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 is the shear stiffness of a wall/pier 

h = wall height 

wl = wall length 

et = effective wall thickness 

cf  = axial compressive stress (MPa) 
The above equation is based on the force/displacement measurements taken just after the first 
diagonal crack developed, in specimens with a height/length ratio of 1.0. For seismic 
applications where the walls are expected to yield in flexure before failing in shear, and the 
lateral stiffness is used to estimate the fundamental period of the structure and to determine the 
seismic displacements, it is more appropriate to determine the effective stiffness from a cracked 
section analysis at first yield of the tension reinforcement.  
 
A study by Priestley and Hart (1989), based on the cracked transformed section stiffness at first 
yield of the tension reinforcement, recommends that the effective moment of inertia, eI , of a wall 
can be approximated by: 
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where 
yf = steel yield strength (MPa) 

fP  = factored axial load 

eA  = effective cross-sectional area for the wall 

mf ′  = masonry compressive strength, and 
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I =  is the gross moment of inertia of the wall.  

Note that the first term in the bracket, yf100 , is equal to 0.25 for 400=yf  MPa (Grade 400 
steel). The second term is a ratio of axial compressive stress in the wall, equal to ef AP , and 
the masonry compressive strength, mf ′ .  
 
The above relation is based solely on consideration of flexural stiffness, and is a best fit 
relationship for several different values of height/length ratio ( wlh ), steel strength, vertical 
reinforcement ratio and axial load. Other considerations are whether the vertical reinforcement 
is uniformly distributed across the wall length or concentrated at the ends, and the effect of 
tension stiffening. The vertical reinforcement ratio is not included in the above expression, and 
as a result, the wall stiffness is overestimated for lightly reinforced walls and underestimated for 
heavily reinforced walls. 
 
If it is assumed that wall cracking causes the same proportional decrease in the effective shear 
area as it does for the moment of inertia, then the stiffnesses can be combined to give the 
following equation for the reduced wall stiffness, ceK ,  
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is the combined stiffness of an uncracked cantilever wall or pier, considering both the flexural 
and shear deformation components (refer to Section C.3.2 for the wall stiffness equations). 
 
The terms in the large right hand bracket of the cK  equation give the comparative value of 
flexural deformation to shear deformation. At a wlh  ratio of 1.0, flexure contributes 4/7 of the 
total deformation and shear 3/7, while at a wlh  ratio of 0.5, shear contributes ¾ of the total 
defection. 
 
The Priestley and Hart equation was obtained using experimental data related to cantilever wall 
specimens, however it may also be used for fixed-end walls. The stiffness equation for these 
walls, feK ,  is the same as for the cantilever walls, that is, 
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A comparison of the proposed equations for a masonry block wall under axial compressive 
stress is presented in Figure C-24. The following values were used in the calculations: 

400=yf  MPa, ef AP  = 1 MPa, and mf ′  = 10 MPa.  
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Note that the Shing equation is only shown for wlh  up to 1.5 as it is based entirely on shear 
deformation. Since the Shing equation represents stiffness at first diagonal cracking, it is 
expected to give higher stiffness values than the Priestley-Hart equation. Use of the Priestley-
Hart stiffness equation is recommended since it is valid for all wlh  ratios. 
 
The elastic uncracked stiffness could be used to distribute lateral seismic load to individual walls 
and piers, but the reduced cracked stiffness should be used for period estimation and deflection 
calculations.  
 
The wall design deflections can be found from the following equation: 

E

od
eldesign I

RR *
*Δ=Δ  

where 
elΔ = elastic deflections calculated using the reduced wall stiffness ( ceK  or feK ) and the 

factored design forces, and 

E

od

I
RR *

= deflection multiplier to account for the effects of ductility, overstrength, and the 

building importance factor (see Section 1.5.11) 
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Figure C-24. A comparison of the stiffness values obtained using the Shing and Priestley-Hart 
equations. 
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D Design Aids  
Table D-1.  Properties of Concrete Masonry Walls (per metre or foot length)1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             

1 Source: Masonry Technical Manual (MIBC, 2008, reproduced by permission of the Masonry Institute of 
BC) 
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Table D-2.  wlc ratio, yf  = 400 MPa 

 
 

Input parameters: 
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Units: 
 

fP  (kN) 
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Table D-3. Wall Stiffness Values ( )tEK m *  
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mm fE ′= 850   Modulus of elasticity 

mEG 4.0=      Modulus of rigidity (shear modulus) 
65AAv =       Shear area 

Cantilever model: 
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E    Notation 
 

maxa  = maximum acceleration 

a  = depth of the compression zone (equivalent rectangular stress block) 

wa  = clear distance between the adjacent cross walls 

bA  = area of reinforcement bar 

cA  = area of concentrated reinforcement at each end of the wall 

dA  = area of distributed reinforcement along the wall length  

eA = effective cross-sectional area of masonry  

gA = gross cross-sectional area of masonry 

LA  = area of the compression zone (flanged wall section) 

rA  = response amplification factor to account for the type of attachment of equipment or veneer ties 

ucA  = uncracked area of the cross-section 

vA  = area of horizontal wall reinforcement 

vtA  = total area of the distributed vertical reinforcement 

vA = shear area of the wall section 

xA  = amplification factor at level x to account for variation of response with the height of the building 

(veneer tie design) 

b  = effective width of the compression zone 

actualb  = actual flange width 

cb  = critical wall thickness  

Tb = overhanging flange width  

wb  = overall web width (shear design) 

B  = torsional sensitivity factor 

c  = neutral axis depth (distance from the extreme compression fibre to the neutral axis) 

C   = compressive force in the masonry acting normal to the sliding plane 

mC  = the resultant compression force in masonry 

hC  = compressive force in the masonry acting normal to the head joint 

pC  = seismic coefficient for a nonstructural component (veneer tie design) 

d  =  effective depth (distance from the extreme compression fibre to centroid of tension reinforcement) 
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vd  = effective wall depth for shear calculations 

d ′  = distance from the extreme compression fibre to the centroid of the concentrated compression 

reinforcement 

nxD = plan dimension of the building at level x  perpendicular to the direction of seismic loading being 

considered 

e  = load eccentricity  

ae  = accidental torsional eccentricity 

xe  = torsional eccentricity (distance measured perpendicular to the direction of earthquake loading 

between the centre of mass and the centre of rigidity at the level being considered) 

fE  = modulus of elasticity of the frame material (infill walls) 

mE  = modulus of elasticity of masonry 

tf  = flexural tensile strength of masonry (see Table 5 of CSA S304.1-04) 

mf ′  = compressive strength of masonry normal to bed joints at 28 days (see Table 4 of CSA S304.1-04) 

yf  = yield strength of reinforcement 

F   = force  

tF  = a portion of the base shear V  applied at the top of the building  

elF  = elastic force  

aF  = acceleration-based site coefficient 

vF  = velocity-based site coefficient 

xF  = seismic force applied to level x   

yF  = yield force 

G = modulus of rigidity for masonry (shear modulus) 
 
h  = unsupported wall height/height of the infill wall 

wh  = total wall height 

nh  = building height 

sh  = storey height 

xh  = height from the base of the structure up to the level x  

bI  = moment of inertia of the beam 
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cI = moment of inertia of the column 

EI  = earthquake importance factor of the structure 

J  = numerical reduction coefficient for base overturning moment 

k  = effective length factor for compression member 

K  = stiffness 

l  = length of the infill wall 

dl  = design length of the diagonal strut (infill wall) 

pl  = plastic hinge length  

sl  = length of the diagonal strut 

wl  = wall length 

nL  = clear vertical distance between lines of effective horizontal support or clear horizontal distance 

between lines of effective vertical support 

M   = mass 

fM = factored bending moment  

rM = factored moment resistance  

nM = nominal moment resistance  

pM = probable moment resistance  

vM  = factor to account for higher mode effect on base shear 

N  = axial load arising from bending in coupling beams or piers 

fp = distributed axial stress  

dP  = axial compressive load on the section under consideration 

crP  = critical axial compressive load 

DLP  = dead load  

fbP  = the resultant compression force (flanged walls) 

rP  = factored axial load resistance 

1P  = compressive force in the unreinforced masonry acting normal to the sliding plane 

2P  = compressive force in the reinforced masonry acting normal to the sliding plane 

hP  = horizontal component of the diagonal strut compression resistance (infill walls) 
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vP = the vertical component of the diagonal strut compression resistance (infill walls) 

ultP  = ultimate tie strength 

dR  = ductility-related force modification factor 

oR  = overstrength-related force modification factor 

pR  = element or component response modification factor (veneer tie design) 

s  = reinforcement spacing 

( )TS  = design spectral acceleration 

)(TSa  = 5% damped spectral response acceleration 

eS  = section modulus of effective wall cross-sectional area 

pS = horizontal force factor for part or portion of a building and its anchorage (veneer tie design) 

t  = overall wall thickness 

et  = effective wall thickness 

ft  = face shell thickness 

T  = fundamental period of vibration of the building 

xT  = torsional moment at level  x  

rT  = the resultant force in steel reinforcement 

yT  = factored tensile force at yield of the vertical reinforcement 

fv  = distributed shear stress 

mv  = masonry shear strength 

maxv  = maximum velocity  

V  = lateral earthquake design force at the base of the structure  

eV  = lateral earthquake elastic force at the base of the structure 

fV  = factored shear force  

nbV  = the resultant shear force corresponding to the development of nominal moment resistance nM  at 

the base of the wall 

mV  = masonry shear resistance  

rV  = factored shear resistance  

sV  = average shear wave velocity in the top 30 m of soil or rock 
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sV  = factored shear resistance of steel reinforcement 

w  = diagonal  strut width (infill walls) 

ew  = effective diagonal strut width (infill walls) 

W  = seismic weight, equal to the dead weight plus some portion of live load that would move laterally 

with the structure 

pW  = weight of a part or a portion of a structure (veneer tie design) 

xW  = a portion of seismic weight W  that is assigned to level x  

hα  = vertical contact length between the frame and the diagonal strut (infill walls) 

Lα  = horizontal contact length between the frame and the diagonal strut (infill walls) 

β  = damping ratio 

dβ  = ratio of the factored dead load moment to the total factored moment 

1β  = ratio of depth of rectangular compression block to depth of the neutral axis 

gγ = factor to account for partially grouted or ungrouted walls that are constructed of hollow or semi-solid 

units 

maxδ = the maximum storey displacement at level x  at one of the extreme corners in the direction of 

earthquake 

aveδ  = the average storey displacement determined by averaging the maximum and minimum 

displacements of the storey at level x  

Δ  = lateral displacement  

pΔ  = plastic displacement  

yΔ  = displacement at the onset of yielding 

elΔ  = elastic displacement 

maxΔ  = maximum displacement 

uΔ  = inelastic (plastic) displacement  

mε  = the maximum compressive strain in masonry 

sε  = strain in steel reinforcement 

yε  = yield strain in steel reinforcement 

χ  = factor used to account for direction of compressive stress in a masonry member relative to the 

direction used for determination of mf ′  
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ϕ  = curvature  

uϕ  = ultimate curvature  

yϕ  = yield curvature corresponds to the onset of yielding  

erφ  = resistance factor for member stiffness 

m
φ = resistance factor for masonry 

s
φ = resistance factor for steel reinforcement 

φ  = resistance factor 

vρ  = vertical reinforcement ratio  

hρ  = horizontal reinforcement ratio  

μ   = coefficient of friction 

Δμ  = displacement ductility ratio (Chapter 1)   

ϕμ  = curvature ductility ratio  

Δμ  = displacement ductility ratio  

θ  = angle of diagonal strut measured from the horizontal 

eθ = elastic rotation  

pθ  = plastic rotation 

ω  = natural frequency 
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