Environmental Product Declaration

A cradle-to-gate EPD according to ISO 14025 and ISO 21930

NORMAL-WEIGHT AND LIGHT-WEIGHT CONCRETE MASONRY UNITS AS MANUFACTURED BY MEMBERS OF THE CANADIAN CONCRETE MASONRY PRODUCERS ASSOCIATION (CCMPA)

About The CCMPA

For five decades, the CCMPA worked on behalf of Ontario's concrete masonry producers to build an industry as strong and as enduring as the products it manufactures. Now, as a Canadawide body with national membership, we're making our industry stronger.

Today, technology and innovation are presenting our industry with great opportunities — and considerable challenges. As CCMPA, we will provide the inclusive representation and strong voice necessary to ensure that we meet those challenges, and that our products remain the building material of choice.

ASTM International Certified EPD

This is a Canadian industry-average business-to-business Type III environmental product declaration (EPD) for concrete masonry unit (CMU) products as manufactured by Canadian Concrete Masonry Producers Association (CCMPA) members. This declaration has been prepared in accordance with ISO 14025 and ISO 21930, and the ASTM product category rules (PCR) and EPD program operator rules.

The intent of this document is to further the development of environmentally compatible and more sustainable construction products by providing comprehensive environmental information related to potential impacts of CMU available in Canada in accordance with international standards.

Program Operator

Owner of the EPD

ASTM International Environmental Product Declarations 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 www.astm.org

Canadian Concrete Masonry Producers Association (CCMPA) P.O. Box 1345, 1500 Avenue Road Toronto, Ontario M5M 3X0 ccmpa.ca

CCMPA Member-company Corporate Address & Facility Locations Applicable to this EPD

locations: Surrey, British Columbia

BRICK

locations: Brampton, Ontario; Brockville, Ontario

BRAMPTON

Basalite Concrete Products 8650 130th Street Surrey, British Columbia V3W IGI www.basalite.com

Brampton Brick Limited

www.bramptonbrick.com

225 Wanless Drive

Brampton, Ontario

L7A IE9

locations: Kitchener, Ontario

Brown's Concrete Products Ltd. 3075 Herold Drive Sudbury, Ontario P3E 6K9

www.boehmerblock.com

Boehmers

NIR 553

1038 Rife Road

Cambridge, Ontario

www.brownsconcrete.com

locations: Sudbury, Ontario

Environmental Product Declaration

C	Canal Block 3562 Nugent Road Port Colborne, Ontario L3K 5V5 <u>www.canalblock.com</u>	Casey Concrete Ltd.	Casey Concrete Ltd 96 Park Street Amherst, Nova Scotia B4H 2M8 www.caseyltd.ca	
locations: Port Colborne, Ont	ario	locations: Amherst, Nova Scot	ia	
Century Concrete PRODUCTS	Century Concrete Products Ltd 2016 4170 Midland Ave Scarborough, Ontario MIV 4S6 www.centuryconcrete.ca	CINDERCRETE PRODUCTS LTD.	Cindercrete Products Ltd. P.O. Box 306 Hwy #I East Regina, Saskatchewan S4P 3A1 www.cindercrete.com	
	Concusto Buodusto			
	260 East White Hills Road P.O. Box 8056 STN 'A' St. John's, Newfoundland AIB 3M7 www.newcrete.ca	Day & Campbell Since 1946	Day & Campbell Limited 1074 Upper Wellington Street Hamilton, Ontario L9A 3S6 www.daycampbell.com	
locations: St. John's, Newfound	dland	locations: Hamilton, Ontario		
	Eastway Concrete and Block Inc. 192 Biesenthal Rd Pembroke, Ontario K8A 6W7 www.alliedconcretecanada.com	Expocrete an Oldcastle®company	Expocrete, an Oldcastle company #38, 53016 HVVY 60 Acheson, Alberta T7X 5A7 www.expocrete.com	
locations: Pembroke, Ontario		locations: Acheson, Alberta; Edmonton, Alberta; Winnipeg, Manitoba		
LAFARGE	Lafarge Canada Inc. #300 115 Quarry Park Road SE Calgary, Alberta T2C 5G9 www.lafarge-na.com		Newtonbrook Block 2665 Aurora Road P.O. Box 69 Gormley, Ontario L0H IG0 www.newtonbrook.com	
locations: Lethbridge, Alberta		locations: Whitchurch-Stouffvi	lle, Ontario	
NIAGARA BLOCK	Niagara Block Inc. 5000 Montrose Road Niagara Falls, Ontario L2H IK5 www.niagarablock.com	C PERMACON	Permacon 8145, Bombardier St. Ville D'Anjou, Quebec HIJ IA5 <u>www.permacon.ca</u>	
locations: Niagara Falls, Ontar	io	locations: Anjou, Quebec; Milt Quebec; Sherbrooke, Quebec, S Rivieres, Quebec	on, Ontario; Quebec City, Stittsville, Ontario, Trois	

Environmental Product Declaration

Iocations: Gormley, Ontario;	Richvale-York Block Inc. 1298 Clarke Road London, Ontario N5V 3B5 <u>www.richvaleyork.com</u> London, Ontario	SANTERRA Iocations: Windsor, Ontario	Santerra Stonecraft 5115 Rhodes Drive Windsor, Ontario N8N 2M1 www.santerrastonecraft.com	
	Snaw Brick I Shaw Dr P.O. Box 2130 Lantz, Nova Scotia B2S 3G4 www.shawbrick.com	Simcoe Masonry centre	Simcoe Block (1979) Ltd. 207 Tiffin Street Barrie, Ontario L4M 4T2 www.simcoeblock.com	
locations: Fredericton, New B	runswick; Lantz, Nova Scotia	locations: Barrie, Ontario		
BRICK & BLOCK LTD.	Tristar Brick & Block Ltd. Unit 3A -33790 Industrial Avenue Abbotsford, British Columbia V2S 7T9 www.tristarblock.com	VJ RICE Concrete Limited	VJ Rice Concrete Limited I Rice Road Bridgetown, Nova Scotia B0S IC0 http://www.riceconcrete.ca/	
locations: Abbotsford, British	Columbia	locations: Bridgetown, Nova S	cotia	
EPD Information				
Product Names Normal-weight & light-weight concrete masonry unit (CMU)		 Product Definition Manufactured masonry unit made of concrete in which the binder is a combination of water and cementitious materials 		
Declared Unit I m ³ CMU		Declaration Number EPD- TBD		
Declaration Type A "cradle-to-gate" EPD for n across Canada. Activity stag declaration is intended for us	ormal-weight and light-weight co es or information modules cover se in Business-to-Business (B-to-l	oncrete masonry units manufa ed include production (modu B) communication. This EPD (actured by CCMPA members les AI to A3). The of CMU (UN CPC 3755) is	

Content of the Declaration

The declaration follows Section 11, Content of the EPD, ASTM International, Product Category Rules For Preparing an Environmental Product Declaration For Manufactured Concrete and Concrete Masonry Products.

an average product EPD, as an average from several CCMPA manufacturers' facilities as listed under "CCMPA

Member-company Corporate Address & Facility Locations Applicable to this EPD" - see pg. 2.

Declaration Comparability Limitation Statement

The following ISO statement indicates the EPD comparability limitations and intent to avoid any market distortions or misinterpretation of EPDs based on the ASTM's PCR: 2014:

- EPDs from different programs (using different PCR) may not be comparable.
- Declarations based on the ASTM PCR are not comparative assertions; that is, no claim of environmental superiority may be inferred or implied.

Applicable C Canada	ountries	Date of Issue		Period of Validity 5 years	
EPD Prepared by Athena Sustainable Materials Institute		Matt Bowick Athena Sustainable Materials Institute 119 Ross Avenue, Suite 100 Ottawa, Ontario, KIY 0N6, Canada <u>matt.bowick@athenasmi.org</u>			
This EPD was in by ASTM in acco	dependently verified ordance with ISO 14025:		Signature of third-part	y reviewer	
Internal	<u>External</u> X		Name and contact info	ormation for representative	
EPD Project I	Report Information		1		
EPD Project A Canadian Indus report is availab	Report stry-Average Cradle-to-Gate Lij le upon request at cert@ast	fe Cycle Assessment m.org.	of Two Concrete Mason	ry Unit Products, August 2016. The	
EPD Project	Prepared by Athena Sustainable Materials Institute		Matt Bowick Athena Sustainable Ma 119 Ross Avenue, Suit Ottawa, Ontario, KIY <u>matt.bowick@athenas</u>	nterials Institute re 100 [°] 0N6, Canada r <mark>mi.org</mark>	
This EPD project accordance with	ct report was independently n ISO 14025 and the referer	verified by in nce PCR:	Signature of third-party reviewer Name and contact information for representative		
PCR Informat	tion				
Reference PCR			ASTM International, P Preparing an Environm Manufactured Concre Products	roduct Category Rules For nental Product Declaration For te and Concrete Masonry	
Date of Issue			December 2014		
PCR review was	s conducted by:		Nicholas Santero, PE I Christine Subasic, Cor Juan Tejeda, ORCO B Contact information a <i>cert@astm.org</i> .	nternational (Chairperson) nsulting Architectural Engineer lock Company vailable upon request at	

1. PRODUCT IDENTIFICATION

This EPD reports industry-average environmental information for products broadly called either "normal-weight" or "light-weight" concrete masonry unit (CMU), produced by CCMPA members at their facilities located across Canada. See Figure I for a visual representation of a typical CMU.

Figure 1: Concrete Masonry Unit

CMUs are typically used in load-bearing and partition wall construction. The blocks are laid in horizontal rows; successive rows are bound by mortar beds and optionally reinforced with steel reinforcing and/or concrete grout. CMUs are also used in masonry columns and beam construction.

The applicable Canadian product standard for CMUs (UN CPC 3755) is **CSA A165.1-04 - Concrete** block masonry units.

CMUs typically have a length of 390 mm, a height of 190 mm, and a gross thickness of either 90 mm, 140 mm, 190 mm, 240 mm, or 290 mm¹.

Table I below summarizes the specifications for CMU products that are applicable to this EPD, according to the CSA A165.1-04 "Four Facet" system.

¹ The noted thicknesses correspond to size codes 10, 15, 20, 25, and 30. The size code refers to the nominal thickness of the block in centimetres.

	Specification Identification			
Facet	Normal- weight CMU	Light- weight CMU	Comments	
First : Identifies the percentage content of the unit.	H, S, or Sc		The symbols H, S and Sc indicate less than 75%, greater than 75% but less than 100%, and 100% solid content respectively.	
Second : Identifies the minimum concrete material strength, in MPa.	15	15	The specified strength of the unit is based on test results of three units with a minimum strength as noted.	
Third : identifies oven dry concrete density and the allowable absorption maximum as a percentage of concrete density.	A	В	A and B refer to CMUs with oven dry densities of >2,000 and 1,800-2,000 kg/m ³ , and absorption maximums of 175 and 200 kg/m ³ , respectively.	
Fourth : identifies the maximum moisture, expressed as a percentage of actual absorption as it relates to relative humidity and linear shrinkage of the concrete unit.	M, O		M refers to a known moisture content maximum (See CSA A165.1-04 for further information). O refers to no limits on moisture content maximum.	

Table 1: CMU Products Applicable to this EPD

2. DECLARED UNIT

The declared unit is 1 m³ of CMU. Data is additionally presented per yd³ of CMU.

3. REFERENCE SERVICE LIFE

The reference service life of CMU is dependent on its end-use and therefore not declared herein.

4. MATERIAL CONTENT

Table 2 below presents the industry-average material content by input material for the two CMU products, as derived by the CCMPA and the Athena Institute.

Table 2: Weighted-average Material Content of CMU Products

	kg/m³ CMU		lbs/yd ³ CMU	
Material	Normal- weight	Light- weight	Normal- weight	Light- weight
Portland Cement	137	140	231	236
Blended Cement	33.9	51.9	57.2	87.6
Slag Cement (GGBFS)	5.27	0	8.88	0
Fly Ash	0.85 I	0	1.43	0
Crushed Coarse Aggregate	758	185	1,278	312
Natural Coarse Aggregate	104	8	175	14
Crushed Fine Aggregate	157	0	264	0
Natural Fine Aggregate	979	140	1,650	236
Expanded Slag	0	1,207	0	2,035
Pumice	0	4.94	0	8.32
Silica Flour	17.6	20.4	29.6	34.4
Water Reducing Admixture (plasticizer)	0.106	0.0537	0.178	0.0905
Water Repellant/Effloresence Control Admixture	0.0919	0.0108	0.155	0.0183
Air Entraining Admixture	0.00684	0.00529	0.0115	0.00892
Batch Water	57.5	67.2	97.0	113
Total	2,250	I,825	3,792	3,076

5. SYSTEM BOUNDARY

As per the ASTM PCR, the system boundary is the product stage, which includes the following modules:

- AI Raw material supply;
- A2 Transport (to the manufacturer); and
- A3 Manufacturing.

Figure 2 shows the production stage system boundary for CMU.

Environmental Product Declaration

Figure 2: Product Stage (module A1 to A3) System Boundary

6. LIFE CYCLE INVENTORY

6.1. Primary LCI Data

Primary data is based on 18 surveys of CMU facilities deemed representative of CCMPA membercompanies, taking into consideration regional production, and plant size and type.

The following primary data was obtained from CCMPA member-companies, for either 2015 calendar year or 2015 fiscal year:

- CMU and other product production amounts, and average concrete batch wastage;
- Inbound transportation distances and modes for raw materials, and ancillary and packaging materials;
- Facility electricity and fuel consumption, and process and wash water use;
- Ancillary and packaging material use;
- Process air emissions;
- Waste outputs and outbound transportation distances and modes.

In instances where plant data were missing for a particular parameter of interest, that plant's data was removed from the horizontal averaging for that parameter.

6.2. Secondary LCI Data

See Table 4 for a summary of secondary LCI data sources used to complete a production stage LCA model for the two CMU products.

ltem	Source
AI - Raw Material Supply	
 Portland cement, blended cement, slag cement, expanded slag, silica flour Crushed and natural aggregates, pumice, batch water Admixtures 	Athena LCI database Ecoinvent 3.1 database European Federation of Concrete Admixtures Associations
<u>A2 - Transport</u>	
 Truck, rail, barge, ocean freighter 	US LCI database
<u>A3 - Manufacturing</u>	
 Ancillary materials, including road dust contrrol chemicals, oil and lubricants, grease 	Ecoinvent 3.1 database
 Packaging materials, including plastic wrap, plastic bags and top sheets, and steel straps 	Ecoinvent 3.1 database
 Wood pallets 	Athena LCI database
 Purchased electricity 	Athena LCI database
 Natural gas, diesel, gasoline, liquifed petroleum products 	US LCI database
Water discharges	Quantis Water Database
 Outbound waste transport (truck) 	US LCI database
 Non-hazardous waste to landfill, hazardous waste to incinerator 	Ecoinvent 3.1 database

Table 3: Secondary LCI Data Sources Summary

6.3. Cut-off and Allocation

All input/output flow data reported by the facility were included in the LCI modelling.

Allocation procedures observed the requirements and guidance of ISO 14044:2006, clause 4.3. and those specified in ASTM PCR for cement, Section 7.5. CMU plant LCI environmental flows (inputs and outputs) were allocated to the two products on a per-m3 CMU basis.

6.4. Data Quality

Data quality requirements, as specified in ASTM PCR: 2014, Section 7.3, were observed. This section describes the achieved data quality relative to the ISO 14044:2006 requirements.

Precision: CCMPA members, through measurement and calculation, collected primary data on their production of CMU. For accuracy the LCA team individually validated these plant gate-to-gate input and output data.

Completeness: All relevant, specific processes, including inputs (raw materials, energy, and ancillary and packaging materials) and outputs (emissions and production volume) were considered. The relevant background materials and processes were generally taken from the Athena LCI Database, US LCI Database (adjusted for known data placeholders known as "dummy"²), and Ecoinvent v3.1 LCI database, and modeled in SimaPro software v.8.1.1.16, August 2016.

Consistency: System boundaries, and allocation and cutoff rules have been uniformly applied across the product life cycles and the two CMU products. The study predominantly relies on two sources of secondary data (US LCI and Ecoinvent databases); adjustments were uniformly applied to all US LCI electricity, fuel, and transport processes. Crosschecks concerning the plausibility of mass and energy flows were continuously conducted.

Reproducibility: Internal reproducibility is possible since the data and the models are stored and available in Athena LCI database developed in SimaPro, 2016. A high level of transparency is provided throughout the report as the LCI profile is presented for the declared product.

Representativeness: The representativeness of the data is summarized as follows:

- Time related coverage: *primary* collected data for the CMU manufacturing process: 2015; all *secondary* data has been validated within the past 8 years.
- Geographical coverage: the geographical coverage is Canada.
- Technological coverage: typical or average.

² "Dummy" is a term used by US LCI database that refers to "empty" LCI data sets (technosphere processes).

7. LIFE CYCLE ASSESSMENT

This section summarizes the results of the life cycle impact assessment (LCIA) based on the cradle-togate life cycle inventory inputs and outputs analysis. The results are calculated on the basis of 1 m³ CMU (Tables 4 and 5), but are also provided for 1 yd³ CMU (Tables 6 and 7). The CMU production results are delineated by information modules A1 through A3.

As per the ASTM PCR, Section 8, US EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI, version 2.1) impact categories are used as they provide a North American context for the mandatory category indicators to be included in this EPD. These are relative expressions only and do not predict category impact end-points, the exceeding of thresholds, safety margins or risks. Total primary and sub-set energy consumption was compiled using a cumulative energy demand model. Material resource consumption and generated waste reflect cumulative life cycle inventory flow information.

Environmental Indicator	Unit	A I Raw Material Supply	A2 Transport	A3 Manu- facturing	Total
TRACI 2.1 impact categories					
Global warming potential	kg CO₂ eq.	170	27	63	260
Acidification potential	kg SO₂ eq.	0.722	0.181	0.479	1.38
Eutrophication potential	kg N eq.	0.0780	0.0102	0.0130	0.101
Smog creation potential	kg O₃ eq.	11.9	4.93	2.15	19.0
Ozone depletion potential	kg CFC-11 eq.	2.53E-06	1.13E-09	1.41E-07	2.68E-06
Total primary energy consumpt	ion				
Non-renewable fossil	MJ (HHV)	1,041	408	1,089	2,538
Non-renewable nuclear	MJ (HHV)	128	4.27	156	289
Renewable (non-biomass)	MJ (HHV)	75.7	0.939	54.0	131
Renewable (biomass)	MJ (HHV)	82.8	0	35.0	118
Material resources consumption					
Non-renewable material resources	kg	2,386	0	0.331	2,387
Renewable material resources	kg	3.94	0	14.9	18.9
Net fresh water	I	842	0.0860	198	1,040
Waste generated					
Non-hazardous waste generated	kg	0.318	0.315	61.3	61.9
Hazardous waste generated	kg	0.00458	0	0.111	0.115

Table 4: LCA results – Normal-weight CMU, per m³

Environmental Indicator	Unit	AI Raw Material Supply	A2 Transport	A3 Manu- facturing	Total
TRACI 2.1 impact categories					
Global warming potential	kg CO2 eq.	184	22	63	270
Acidification potential	kg SO₂ eq.	1.00	0.154	0.479	I.64
Eutrophication potential	kg N eq.	0.0899	0.0087	0.0130	0.112
Smog creation potential	kg O₃ eq.	12.6	4.20	2.15	18.9
Ozone depletion potential	kg CFC-11 eq.	2.18E-06	9.47E-10	1.41E-07	2.33E-06
Total primary energy consumption					
Non-renewable fossil	MJ (HHV)	1,089	342	1,089	2,519
Non-renewable nuclear	MJ (HHV)	167	3.57	156	327
Renewable (non-biomass)	MJ (HHV)	65.4	0.784	54.0	120
Renewable (biomass)	MJ (HHV)	92.7	0	35.0	128
Material resources consumption					
Non-renewable material resources	kg	648	0	0.331	648
Renewable material resources	kg	4.36	0	14.9	19.3
Net fresh water	Ī	545	0.0719	198	743
Waste generated					
Non-hazardous waste generated	kg	0.363	0.263	61.3	61.9
Hazardous waste generated	kg	0.00500	0	0.111	0.116

Table 5: LCA results – Light-weight CMU, per m³

Table 6: LCA results –Normal-weight CMU, per yd³

Environmental Indicator	Unit	AI Raw Material Supply	A2 Transport	A3 Manu- facturing	Total
TRACI 2.1 impact categories					
Global warming potential	kg CO₂ eq.	130	21	48	198
Acidification potential	kg SO₂ eq.	0.552	0.138	0.367	1.06
Eutrophication potential	kg N eq.	0.0596	0.00784	0.00991	0.07737
Smog creation potential	kg O₃ eq.	9.10	3.77	1.64	14.5
Ozone depletion potential	kg CFC-11 eq.	1.94E-06	8.65E-10	I.08E-07	2.05E-06
Total primary energy consumption	on				
Non-renewable fossil	MJ (HHV)	796	312	833	1,941
Non-renewable nuclear	MJ (HHV)	98	3.26	120	221
Renewable (non-biomass)	MJ (HHV)	57.9	0.718	41.3	100
Renewable (biomass)	MJ (HHV)	63.3	0	26.8	90
Material resources consumption					
Non-renewable material resources	kg	1,824	0	0.253	1,825
Renewable material resources	kg	3.01	0	11.4	14.4
Net fresh water	Ī	644	0.0657	151	795
Waste generated					
Non-hazardous waste generated	kg	0.243	0.241	46.8	47.3
Hazardous waste generated	kġ	0.00350	0	0.0845	0.0880

Environmental Indicator	Unit	AI Raw Material Supply	A2 Transport	A3 Manu- facturing	Total
TRACI 2.1 impact categories					
Global warming potential Acidification potential	kg CO₂ eq. kg SO₂ eq.	4 0.77	7 0. 8	48 0.367	206 1.25
Eutrophication potential	kg N eq.	0.0687	0.0067	0.0099	0.085
Smog creation potential	kg O₃ eq.	9.6	3.21	1.64	14.5
Ozone depletion potential	kg CFC-11 eq.	I.67E-06	7.24E-10	I.08E-07	I.78E-06
Total primary energy consum	nption				
Non-renewable fossil	MJ (HHV)	832	261	833	1,926
Non-renewable nuclear	MJ (HHV)	128	2.73	120	250
Renewable (non-biomass)	MJ (HHV)	50.0	0.600	41.3	92
Renewable (biomass)	MJ (HHV)	70.9	0	26.8	98
Material resources consumpt	ion				
Non-renewable material resources	kg	495	0	0.253	496
Renewable material resources	kg	3.33	0	11.4	14.7
Net fresh water	Ĩ	417	0.0550	151	568
Waste generated					
Non-hazardous waste generated	kg	0.278	0.201	46.8	47.3
Hazardous waste generated	kġ	0.00382	0	0.0845	0.0883

Table 7: LCA results – Light-weight CMU, per yd³

8. ADDITIONAL ENVIRONMENTAL INFORMATION

Table 8 reports two additional environmental indicators:

- Recovered materials sums the mass of recovered materials used in the CMU formulations (i.e. the mass after processing has occurred);
- Respiratory effects is a TRACI 2.1 impact category.

Table 8: Additional Cradle-to-gate Environmental Indicator Results

Environmental Indicator	Unit	Normal-weight CMU	Light-weight CMU
Recovered materials	kg	28.8	1,265
Respiratory effects	kg PM2.5 eq.	0.107	0.252

9. REFERENCES

ASTM International, Product Category Rules For Preparing an Environmental Product Declaration For Manufactured Concrete and Concrete Masonry Products, December 2014.

ISO 21930: 2007 Building construction – Sustainability in building construction – Environmental declaration of building products.

ISO 14025: 2006 Environmental labeling and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044: 2006 Environmental management - Life cycle assessment - Requirements and guidelines.

ISO 14040: 2006 Environmental management - Life cycle assessment - Principles and framework.

ISO 14021:1999 Environmental labels and declarations - Self-declared environmental claims (Type II environmental labelling)

CSA A165.1-04 - Concrete block masonry units

Quantis Water Database Technical Report version 1, 2012

