
SEISMIC DESIGN GUIDE FOR MASONRY BUILDINGS

Canadian Concrete Masonry Producers Association

Second Edition

2018

Donald AndersonSvetlana Brzev



9/1/2018                    3-1 

 

                          TABLE OF CONTENTS – CHAPTER 3 

3 DESIGN EXAMPLES 
 
 
1 Seismic load calculation for a low-rise masonry building to NBC 2015  3-2 

 
2 Seismic load calculation for a medium-rise masonry building to NBC 2015 3-9 

 
3 Seismic load distribution in a masonry building considering both rigid and flexible 

diaphragm alternatives 
 

3-24 

4a Minimum seismic reinforcement for a squat masonry shear wall 3-37 
 

4b Seismic design of a squat shear wall of Conventional Construction 3-41 
 

4c Seismic design of a Moderately Ductile squat shear wall 3-47 
 

5a Seismic design of a Moderately Ductile flexural shear wall 3-57 
 

5b Seismic design of a Ductile shear wall with rectangular cross-section 3-68 
 

5c Seismic design of a Ductile shear wall with boundary elements 3-79 
 

6a Design of a loadbearing wall for out-of-plane seismic effects 3-92 
 

6b Design of a nonloadbearing wall for out-of-plane seismic effects 3-99 
 

7 Seismic design of masonry veneer ties 3-104 
 

8 Seismic design of a masonry infill wall 3-106 
 



9/1/2018                    3-2 

 

3 Design Examples 
 
EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBC 2015 
 
Consider a single-storey warehouse building located in Niagara Falls, Ontario. The building plan 
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure 
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70 
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the 
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil 
at the building site is classed as a Site Class D per NBC 2015. 
 
Calculate the seismic base shear force for this building to NBC 2015 seismic requirements 
(considering the masonry walls to be detailed as “conventional construction”). Next, determine 
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity. 
Assume that the roof acts like a rigid diaphragm. 
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SOLUTION: 
 
1.  Calculate the seismic weight  W  (NBC 2015 Cl.4.1.8.2) 
a) Roof loads: 
- Snow load (Niagara Falls, ON)                      sW   = 0.25*(1.8*0.8+0.4)= 0.46 kPa 

(25% of the total snow load is used for the seismic weight) 
- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete 
topping)                                                                     DW  = 3.30 kPa 

Total roof seismic weight  roofW = (0.46kPa+3.30kPa)(64.0m*27.0m)= 6497 kN 

b) Wall weight: 
Assume solid grouted walls                                 w = 4.0 kN/m2 
(this is a conservative assumption and could be changed later if it is determined that partially 
grouted walls would be adequate) 
The usual assumption is that the weight of all the walls above wall midheight is part of the 
seismic weight (mass) that responds to the ground motion and contributes to the total base 
shear. 
Tributary wall surface area: 

- North face elevation   = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m2 
- South face elevation (same as north face elevation)        = 181.1 m2 
- East face elevation   = 0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m)  =   81.4 m2 
- West face elevation (same as east face elevation)         =   81.4 m2 

Total tributary wall area                                                                          Area   = 525.0 m2 
                                                            ________________________________________ 
Total wall seismic weight      AreawWwall * =  4.0*525.0= 2100 kN 

 
The total seismic weight is equal to the sum of roof weight and the wall weight, that is, 

wallroof WWW  = 6497+2100= 8597 kN  8600 kN 

 
2. Determine the seismic hazard for the site (see Section 1.4). 
 Location: Niagara Falls, ON (see NBC 2015 Appendix C)                      

)2.0(aS = 0.321   

)5.0(aS = 0.157 

)0.1(aS = 0.072 

)0.2(aS = 0.032 

(5.0)aS = 0.0076 

PGAref = 0.207 
 Foundation factor – Site Class D and PGAref = 0.207 (see Tables 1-3 to 1-7) 

(0.2)F = 1.09  

(0.5)F = 1.30  

(1.0)F = 1.39 

(2.0)F = 1.44 

(5.0)F = 1.48 
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 Site design spectrum  TS  (see Section 1.4) 

For T =0.2 sec:     0.2 (0.2) 0.2aS F S  = 1.09*0.321=0.35        2.0S =0.35   

or    0.5 (0.5) 0.5aS F S  =1.3*0.157=0.20 (larger value governs) 

For T =0.5 sec:      0.5 (0.5) 0.5aS F S  =1.3*0.157=0.20           5.0S =0.20 

For T =1.0 sec      1.0 (1.0) 1.0aS F S  =1.39*0.072=0.10           0.1S =0.10 

For T =2.0 sec       2.0 (2.0) 2.0aS F S  =1.44*0.032=0.046       2.0S =0.05 

For T =5.0 sec       5.0 (5.0) 5.0aS F S  =1.48*0.0076=0.011     5.0S =0.01 

 
The site design spectrum  TS  is shown below. 

 
 Building period (T ) calculation (see Section 1.6 and NBC 2015 Cl.4.1.8.11(3).c) for wall 
structures) 

nh = 6.6 m   building height 

  4305.0 nhT  = 0.21 sec 

Then interpolate between  2.0S  and  5.0S to determine the design spectral acceleration: 

 TS =  21.0S = 0.35 
 
3. Compute the seismic base shear (see Section 1.6) 
The base shear is given by the expression (NBC 2015 Cl.4.1.8.11) 

                         
 

W
RR

IMTS
V

od

Ev  

where 
EI = 1.0   (building importance factor, equal to 1.0 for normal importance, 1.3 for high 

importance, and 1.5 for post-disaster buildings) 
vM = 1.0 (higher mode factor, equal to 1.0 for T 1.0 sec, that is, most low-rise masonry 

buildings) 
Building SFRS description:  masonry structure – conventional construction (see Table 1-13 or 
NBC 2015 Table 4.1.8.9), hence   dR = 1.5 and  oR = 1.5      
 
The design base shear V  is given by: 
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  0.35*1.0*1.0
0.16

1.5*1.5
v E

d o

S T M I
V W W W

R R
    

but should not be less than  
 

 
min

4.0 0.023*1.0*1.0
0.001

1.5*1.5
v E

d o

S M I W
V W W

R R
    

Note that  4.0S value (0.023) was obtained by interpolation from the site design spectrum 

chart  TS . 

The design base shear V need not be taken more than greater of the following two values:  

 
max

2 0.2 2*0.35 1.0
0.10

3 3 1.5*1.5
E

d o

S I W
V W W

R R

            
    

, provided 5.1dR .      

And  

 max

1.0
0.5 0.20 0.09

1.5*1.5
E

d o

I W
V S W W

R R

        
  

 

The upper limit on the design seismic base shear governs and therefore 
 

0.10 0.10*8600 860V W     kN 
 
Note that the upper limit on the base shear is often going to govern for low-rise masonry 
structures which have low fundamental periods. The lower bound value would generally only 
apply to very tall buildings. 
 
4. Determine if the equivalent static procedure can be used (see Section 1.6 and NBC 
2015 Cl. 4.1.8.7). 
According to the NBC 2015, the dynamic method is the default method of determining member 
forces and deflections, but the equivalent static method can be used if the structure meets any 
of the following criteria:  
(a) is located in a region of low seismic activity where the seismic hazard index 

  35.02.0 aaE SFI . 
In this case, the seismic hazard index is  2.0aaE SFI =1.0*1.09*0.321=0.35 since 

(0.2) 1.09aF F  . 
 (b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction.  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-16 
of Section 1.12.1. A single storey structure by definition will not have any irregularities of Type 1 
to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7 
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on 
the torsional sensitivity.  
(c) has any type of irregularity, other than Type 7 and Type 9, and is less than 20 m in 
height with period T < 0.5 seconds in either direction.  
This structure satisfies the height and period criteria. 
 
Since the criterion c) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure. It will be shown later that, even when using a conservative assumption, the 
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For 
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structures with the lateral resisting 
elements distributed around the 
perimeter walls the B value will almost 
always be less than 1.7. 
 
5. Distribute the base shear force to 
the individual walls. 
In this example, the structure is 
symmetric in each direction and so the 
centre of mass, MC , and the centre of 
resistance, RC ,  coincide at the 
geometric centre of the structure. One might argue that in this simple system with walls at only 
each side of the building, the system is statically determinate in each direction and the total 
shear on each side can be determined using statics. However, how much shear goes to each of 
the walls on a side depends on the relative stiffness of the walls, although once yielding occurs 
the force on each wall depends on the yield strength of the wall.  
 
a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to 
act through the centre of resistance) 
Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in 
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height, 
length, thickness) and mechanical properties and it can be concluded that these walls have the 
same stiffness.  
 
As a result, equal shear force will be developed at each side. The force per side is equal to (see 
the figure): 

430860*5.05.0 V  kN 
So, shear force in each of the two walls in the N-S direction is equal to: 

215
2

430

2

5.0


V
VV  kN 

 
b) Seismic forces in the N-S direction taking into account the effect of accidental torsion 
The building is symmetrical in plan and so the centre of mass MC  coincides with the centre of 
resistance RC   (see Section 1.11 for more details on torsional effects). Therefore, there are no 
actual torsional effects in this building. However, NBC 2015 Cl.4.1.8.11.(9) requires that 
torsional moments (torques) due to accidental eccentricities must be taken into account in the 
design. The forces due to accidental torsion can be determined by applying the seismic force at 
a point offset from the RC  by an accidental eccentricity nxa De 1.0 , thereby causing the 
torsional moments equal to  

  5504)0.64*1.0(*8601.0  nxx DVT  kNm 

Note that 0.64nxD  m (equal to the total length of the structure in the East/West direction). 

 
As a result of the accidental torsion, seismic shear forces resisted by each side of the building 
are different. These forces can be calculated by taking the sum of moments around the RC  
(torsional moment created by force must be equal to the sum of moments created by the side 
forces). The resulting end forces are equal to V6.0  and V4.0 , thereby indicating an increase in 
the end forces by V1.0  due to accidental torsion. 
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It should be noted that, in this example, accidental torsion would cause forces in the E-W walls 
as well because of the rigid diaphragm. But a conservative approach is to ignore the 
contribution of E-W walls and take all the torsional forces on the N-S walls. 
 
The shear force in each N-S wall from accidental torsion is equal to: 

43
2

645504

2
 nx

T

DT
V  kN 

 
Thus, the maximum shear force in each of the two walls is the sum of the lateral component 
plus the torsional force, 

25843215  TVW VVV  kN 

 
Note that the same result could be obtained by 
applying the lateral load through a point equal to 
the accidental eccentricity to one side of the 
centre of rigidity and then solving for the wall 
forces using statics (see the figure). This would 
show that  

2586.0*
2

860
6.0*

2


V
VW  kN 

 
Therefore, even though this building is 
symmetrical in plan, the accidental torsion causes 
increased seismic shear force in each wall of 43 
kN, corresponding to a 20% increase compared to the design without torsion. However, this is 
based on the assumption that the N-S walls resist all the torsion. Walls in the E-W direction 
would also resist the torsional forces, and in this example the contribution to total torsional 
stiffness would be roughly the same for the E-W and N-S walls. Thus, one could reduce the 
torsional forces on the N-S walls by roughly one half. 
 
c) Seismic forces in the E-W walls 
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and 
consequently the same stiffness, the shear force will be equal at the East and West side. The 
force per side is equal to 

430860*5.05.0 V  kN 
 Seismic forces in the E-W walls – torsional effects ignored 
Shear force in each E-W wall is equal to (there are seven walls per side): 

61
7

430

7

5.0


V
VV  kN 

 Seismic forces in the E-W walls – torsional effects considered: 

746.0*
7

860
6.0*

7


V
VW  kN 

 
6. Check whether the structure is torsionally sensitive (see Section 1.11.2). 
NBC 2015 Cl. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be determined 
by comparing the maximum horizontal displacement anywhere on a storey, to the average 
displacement of that storey. Torsional sensitivity is determined in a similar manner as the effect 
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of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of nxD1.0  
from the centre of mass MC . In case of a rigid diaphragm, displacements are proportional to the 
forces developed in the walls. Therefore, B  can be determined by comparing the forces at the 
sides of the building with/without the effect of accidental torsion. 
 
The maximum displacement would be proportional to 0.6V, while the displacement on the other 
side would be proportional to 0.4V. Thus, the average displacement is proportional to 0.5V. 
Thus 

2.1
5.0

6.0


V

V
B  

Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would 
have also been allowed under criterion b) as discussed in step 4 above. 
 
7. Discussion 
It was assumed at the beginning of this example that the roof structure can be modeled like a 
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S 
wall would be equal to 0.5V.  From a reliability point of view, it does not seem quite right that the 
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around. 
On the other hand, the flexible diaphragm may have a longer period and the forces would be 
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models). 
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBC 2015 
 
A typical floor plan and vertical elevation are shown below for a four-storey mixed use 
(commercial/residential) building located at Abbotsford, BC. The ground floor is commercial with 
a reinforced concrete slab separating it from the residential floors, which have lighter floor 
system consisting of steel joists supporting a composite steel and concrete deck. The front of 
the building is mostly glazing, which has no structural application.  
 
First, determine the seismic force for this building according to the NBC 2015 equivalent static 
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and 
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that 
the strong N-S walls can resist the torsion. 
 
Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the 
seismic forces obtained with and without torsional effects. 
 
For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for  
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a 
preliminary design) and the compressive strength mf   is 10.0 MPa. Grade 400 steel has been 
used for the reinforcement. The building is of normal importance and is supported on Class C 
soil. Consider Conventional Construction reinforced masonry shear walls. 
 
Movement joints are not to be considered in this example. Note that movement joints in the N-S 
walls would have caused slight changes in the stiffness values of these walls. 
 
Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and 
glazing): 
4th floor (roof level) = 3 kPa    Note: 1 kPa = 1 kN/m2 
2nd and 3rd floor = 4 kPa 
1st floor (concrete floor) = 6 kPa 
25% snow load = 0.4 kPa 
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SOLUTION: 
 
1.  Design assumptions 
 Rigid diaphragm 
 All walls are solid grouted 
 
2.  Calculate the seismic weight  W  (see NBC 2015 Cl.4.1.8.2) 
Wall weight: 
N-S walls - 200 mm thick                 w = 4.18 kPa 
E-W walls – 300 mm thick           w = 6.38 kPa 
Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while 
the length of an E-W wall is 10.0 m. 
 
Seismic weight 1W : 

     kNmmkPamkPamkPa
mm

W 357920*200.60.10*2*38.620*2*18.4
2

0.3

2

0.5
1 






   

Seismic weight 2W : 

     kNmmkPamkPamkPa
mm

W 248420*200.40.10*2*38.620*2*18.4
2

0.3

2

0.3
2 






   

Seismic weight 3W  (same as 2W ) : 

kNW 24843   

Seismic weight 4W : 

     kNmmkPakPamkPamkPa
m

W 180220*204.00.30.10*2*38.620*2*18.4
2

0.3
4 








Note that the seismic weight for each floor level is the sum of the wall weights and the floor 
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height 
(below and above a certain floor level) was considered in the wall area calculations. 
The total seismic weight is equal to 

kNWWWWW 1035018022484248435794321   

 
3.  Calculate the seismic base shear force (see Section 1.6). 
 
a) Find seismic design parameters used to determine seismic base shear. 
 Location: Abbotsford, BC (see NBC 2015 Appendix C)                      

)2.0(aS = 0.701   

)5.0(aS = 0.597 

)0.1(aS = 0.350 

)0.2(aS = 0.215 

(5.0)aS = 0.071 

PGAref = 0.306 
 Foundation factor – Site Class C and PGAref = 0.306 (see Tables 1-3 to 1-7) 

(0.2)F = (0.5)F = (1.0)F = (2.0)F = (5.0)F = 1.0 

 Site design spectrum  TS  (see Section 1.4) 
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For T =0.2 sec:     0.2 (0.2) 0.2aS F S  = 1.0*0.701=0.70        2.0S =0.70   

or    0.5 (0.5) 0.5aS F S  =1.0*0.597=0.60 (larger value governs) 

For T =0.5 sec:      0.5 (0.5) 0.5aS F S  =1.0*0.597=0.60          5.0S =0.60 

For T =1.0 sec      1.0 (1.0) 1.0aS F S  =1.0*0.35=0.35            0.1S =0.35 

For T =2.0 sec       2.0 (2.0) 2.0aS F S  =1.0*0.215=0.22         2.0S =0.22 

For T =5.0 sec       5.0 (5.0) 5.0aS F S  =1.0*0.071=0.07         5.0S =0.07 

  
 Building period (T ) calculation (NBC 2015 Cl.4.1.8.11.3(c)) –  wall structures 

nh = 14.0 m   building height 

  4305.0 nhT  = 0.36 sec 

  
Building period T = 0.36 sec, so interpolate between  2.0S  and  5.0S , hence   TS = 0.65 

 
 EI = 1.0 (normal importance building) 

 vM = 1.0 (higher mode factor, equal to 1.0 for T 1.0 sec) 

 Building SFRS description: masonry structure – Conventional Construction shear walls can 
be used for building height of 14 m (see Table 1-13 and NBC 2015 Table 4.1.8.9). 
In this case  2.0aaE SFI =1.0*1.0*0.70=0.70, hence 0.35 <  2.0aaE SFI <0.75 thus the 

maximum building height is 30 m. Hence  

dR = 1.5 and  oR = 1.5     

 
b) Compute the design base shear (NBC 2015 Cl.4.1.8.11). 
The design base shear V  is determined according to the following equation: 
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  0.70*1.0*1.0
0.31

1.5*1.5
v E

d o

S T M I
V W W W

R R
    

but should not be less than  
 

 
min

4.0 0.12*1.0*1.0
0.05

1.5*1.5
v E

d o

S M I W
V W W

R R
    

Note that  4.0S value (0.15) was obtained by interpolation from the site design spectrum 

chart  TS . 

The design base shear V need not be taken more than greater of the following two values:  

 
max

2 0.2 2*0.70 1.0
0.21

3 3 1.5*1.5
E

d o

S I W
V W W

R R

            
    

, provided 5.1dR .      

and  

 max

1.0
0.5 0.60 0.27

1.5*1.5
E

d o

I W
V S W W

R R

        
  

- this value governs 

 
Therefore, the design seismic base shear is equal to 

0.27 0.27*10350 2900V W     kN 
 
4. Determine whether the equivalent static procedure can be used (see Section 1.5 and 
NBC 2015 Cl. 4.1.8.7). 
According to the NBC 2015, the dynamic method is the default method, but the equivalent static 
method can be used if the structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where   35.02.0 aaE SFI , 

In this case, the seismic hazard index is  2.0aaE SFI =1.0*1.0*0.70=0.70 > 0.35 and so this 
criterion is not satisfied. Note that (0.2) 1.0aF F  . 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction,  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
To confirm that this structure is regular, the designer needs to review the irregularities discussed 
in Section 1.12.1. It can be concluded that this building does not have any of the irregularity 
types identified by NBC 2015 and so this criterion is satisfied. 
(c) has any type of irregularity (other than Type 7 or Type 9 that requires the dynamic 
method if B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either 
direction  
This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5 
sec. The torsional sensitivity B  should be checked to confirm that B < 1.7 (see Section 1.11.2). 
 
Since the criterion b) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure.  
 
5. Seismic force distribution over the building height (see Section 1.9). 
According to NBC 2015 Cl. 4.1.8.11.(7), the total lateral seismic force, V ,  is to be distributed 
over the building height in accordance with the following formula (see Figure 1-5): 
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where 

xF  – seismic force acting at level x   

tF  – a portion of the base shear to be applied in addition to force nF  at the top of the building. 

In this case, tF = 0 since the fundamental period is less than 0.7 sec. 

Interstorey shear force at level x  can be calculated as follows: 


n

x
itx FFV  

Bending moment at level x  can be calculated as follows: 

 



n

xi
xiix hhFM  

These calculations are presented in Table 1. 
 
Table 1. Distribution of Seismic Forces over the Wall Height 
 
Level 

xh   

(m) 
xW   

(kN) 
xxhW  xF   

(kN) 
xV  

(kN) 
xM  

(kNm) 
4 14.0 1802 25228 810 810 0 
3 11.0 2484 27324 877 1687 2430 
2 8.0 2484 19872 638 2325 7492 
1 5.0 3579 17895 575 2900 14468 

   10349 90319 2900  28968 

 
Distribution of seismic forces over the building height and the corresponding shear and moment 
diagrams are shown on the figure below. 

 




n

i
ii

xx
tx

hW

hW
FVF

1
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It is important to confirm that the sum of seismic forces xF  over the building height is equal to 
the base shear  

VVb  2900 kN 

The bending moment at the base of the building, also called the base bending moment, is equal 
to  

bM = 28968  29000 kNm. 

 
6. Find the seismic forces in the E-W walls – torsional effects ignored. 
Due to asymmetric layout of the E-W walls, the centre of 
mass MC  in the building under consideration does not 
coincide with the centre of resistance RC , hence there are 
torsional effects in all walls. However, since the N-S walls are 
significantly more rigid compared to the E-W walls, it can be 
assumed that the N-S walls will resist the torsional effects 
(see step 8 for a detailed discussion). As a consequence, it 
can be assumed that the base shear force in the E-W 
direction is equally divided between the two E-W walls (see 
the figure), that is, 

1450
2

2900

2


V
Vxo  kN 

 
Similarly, the base bending moment in each wall is equal to 

14500
2

29000

2
 b

bx

M
M  kNm 
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7. Find the seismic forces in the E-W walls – torsional effects considered (see Section 
1.11). 
To determine the wall forces from the 
torsional forces a 3-D analysis should 
be made. Even though the walls are 
considered uniform over the entire 
height, the contribution of shear 
deformation relative to bending 
deformation is different over the height. 
An approximate method that does not 
require a 3-D analysis is to consider the 
structure as an equivalent single-storey 
structure. The entire shear is applied at 
the effective height, eh , defined as the 
height at which the shear force fV   
must be applied to produce the base 
moment fM , that is, 

0.10
2900

29000


f

f
e V

M
h  m 

This model, although not strictly correct, will be used to determine the elastic distribution of the 
torsional forces as well as the displacements. The top displacement of the wall is assumed to be 
1.5 times the displacement at the eh  height (see step 8 for displacement calculations).  
 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ), which will be calculated in the following 
tables. 
 
First, the centre of mass will be determined, as shown on the figure. The calculations are 
summarized in Table 2. 
 
Table 2. Calculation of the Centre of Mass ( MC ) 
 

Wall iw  

(kN) 
ix  

(m) 
iy  

(m) 
ii xw *  ii yw *  

1X  733.7 10.00 20.00 7337 14674 

2X  733.7 10.00 13.33 7337 9780 

1Y  961.4 0 10.00 0 9614 

2Y  961.4 20.00 10.00 19228 9614 

Floors 6960 10.00 10.00 69600 69600 

  10350   103502 113282 

 
The MC  coordinates can be determined as follows: 

00.10
10350

103502
*





i
i

i
ii

CM w

xw
x  m           94.10

10350

113282
*






i
i

i
ii

CM w

yw
y  m 
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Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 3, although because there are only two equal walls in each direction the RC  will lie 
between the walls. 
 
Table 3. Calculation of the Centre of Resistance ( RC ) 
 

Wall 
t   
(m) 

wlh * )( tEK m  ** xK x103 

(kN/m) 
yK x103 

(kN/m) 
ix  

(m) 
iy  

(m) 
iy xK   

*103 
ix yK   

*103 

1X  0.29 1.0 0.143 352.5   20.
00 

 7050.0 

2X  0.29 1.0 0.143 352.5   13.
33 

 4699.0 

1Y  0.19 0.5 0.5  807.5 0  0  

2Y  0.19 0.5 0.5  807.5 20.
00 

 16150.0  

     705.0 1615.0   16150.0 11750.0 

Notes: 
* - ehh  = 10.0 m effective wall height 

** - see Table D-3 
 
Note that the elastic uncracked wall 
stiffnesses K  for individual walls have been 
determined from Table D-3, by entering 
appropriate height-to-length ratios. In this 
design, all walls and piers have been 
modelled as cantilevers (fixed at the base 
and free at the top) – see Section C.3 for 
more details regarding wall stiffness 
calculations. The modulus of elasticity for 
masonry is mE 8.5*106 kPa 
(corresponding to mf   of 10 MPa). 
 
The RC  coordinates can be determined as 
follows (see the figure): 

10
10*1615

10*16150
*

3

3





i
yi

i
iyi

CR K

xK
x  m 

67.16
10*705

10*11750
*

3

3






i
xi

i
ixi

CR K

yK
y  m 

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W 
walls, we need to determine the actual eccentricity in the y direction ( ye ), that is, 

73.594.1067.16  CMCRy yye  m 

In addition, the accidental eccentricity needs to be considered, that is, 
0.220*1.01.0  nya De  m 

The total maximum eccentricity in the y-direction is equal to 
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73.70.273.51  ayty eee  m 

or 
73.30.273.52  ayty eee  m 

Note that the latter value does not govern and will not be considered in further calculations. 
 
Torsional moment is determined as a product of the shear force and the eccentricity, that is, 

2241773.7*2900* 1  tyeVT  kNm 

Torsional effects are illustrated on the figure below. 

 
Seismic force in each wall has two components: translational (no torsional effects) and torsional, 
that is, 

itioi VVV   

where 




i

i
io K

K
VV *   translational component  

and 

i
i

it K
J

cT
V *

*
   torsional component 

622 10*169  yiyixixi cKcKJ   torsional stiffness (see Table 4) 

xic , yic  - distance of the wall centroid from the centre of resistance ( RC ) (see the figure below) 

 
Translational and torsional force components for the individual walls are shown below. 
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Calculation of translational and torsional forces is presented in Table 4. 
 
Table 4.  Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction 
 

Wall 
xK *103 

(kN/m) 
yK *103 

(kN/m) 
ic  

(m) 

2
ii cK  *106 

 x

x

K

K

 

xoV  

(kN) 
xtV  

(kN) 
totalV  

(kN) 

1X  352.5  -3.33 3.84 0.5 1450 -154 1296  

2X  352.5  3.33 3.84 0.5 1450  154 1604 

1Y   807.5 -10.00 80.80   -1070 -1070 

2Y   807.5 10.00 80.80   1070 1070 

  705.0 1615.0  169.0     

 
It can be concluded from the above table that the maximum force in the E-W direction is equal 
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained 
ignoring torsional effects. 
 
It can be noted that the contribution of E-W walls to the overall torsional moment T  of 22417 
kNm is not significant (see Table 4). 

kNmmkNmkNT WE 10173.3*1543.3*154   

because 
%5045.022417/1017  TT WE  

this shows that the E-W walls contribute only 5% to the overall torsional moment. 
 
The contribution of N-S walls to the overall torsional moment is as follows: 

kNmmkNmkNT SN 2140010*107010*1070   

and 
%9522417/21400  TT SN  

and 
kNmTTT SNWE 22417214001017     (this is also a check for the torsional forces) 
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Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable, 
since these walls contribute approximately 95% to the overall torsional resistance. 
 
8. Calculate the displacements at the roof level (consider torsional effects). 
Approximate deflections in the E-W walls can be determined according to the procedure 
outlined below. It should be noted that the force distribution calculations have been performed 
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to 
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the 
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K ) 
value to account for the effect of cracking. 
 
a) The reduced stiffness to account for the effect of cracking (see Section 2.5.4) 
The reduced stiffness for walls 1X  and  2X  will be determined according to Section 2.5.4 
(S304-14 Cl.16.3.3), that is, 
 

  mgsge fAPII '3.0   

 
Here, 

(2*6.67*6.67)(3.0 2*4.0 6.0) 1513sP      kN (axial force due to dead load in wall 2X ) 

 3 4290*10 )*10.0 290*10gA   mm2 (gross cross-sectional area for 290 mm block wall, solid 

grouted, length 10.0 m; see Table D-1 for eA  values for the unit wall length) 

mf  =10.0 MPa 

Since  

   3 40.3 ' 0.3 1513*10 10.0*290*10 0.35s g mP A f     

It appears that 

0.35e

g

I

I
  

thus 

( ) 0.35e
ce c c

g

I
K K K

I
     

where cK  is elastic uncracked stiffness. In this case, stiffness is taken as proportional to the 

ratio of moment of inertia values because the wall is expected to behave in flexure-dominant 
manner (otherwise a ratio of cross-sectional areas could be used – see Example 3). 
 
b) The translational displacement in the walls 1X  and  2X  can be calculated as follows 
 

2
20 3

2

1450
11.8

0.35 0.35*352.5*10 /
X o

X
X

V kN
mm

K kN m
     

According to NBC 2015 Cl. 4.1.8.13, these deflections need to 
be multiplied by the Eod IRR  ratio (see Section 1.13). In this 
case, EI = 1.0, and so 

 20 11.8 11.8*1.5*1.5 26.6X d omm R R mm     
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Since the previous analysis assumed that the seismic force 
acts at the effective height eh , the displacement at the top 
of the wall will be larger (see the figure). The top 
displacement can be calculated by deriving the 
displacement value at the tip of the cantilever; alternatively, 
an approximate factor of 1.5 can be used as follows: 

20 21.5* 1.5*26.6 40.0top
X x mm mm      

Since this is a rigid diaphragm, it can be assumed that the 
translational displacements are equal at a certain floor 
level – let us use point A at the South-East corner as a 
reference (see the figure). 
 
c) The torsional displacements can be calculated as follows: 
Torsional rotation of the building   can be determined as 
follows, considering the reduced torsional stiffness to account 
for cracking (same as discussed in step a) above): 

4
6

22417
3.79*10

0.35*169*10

T kNm

J
    rad 

where (see the step 7 calculations) 
22417T  kNm     torsional moment 

610*169J           elastic torsional stiffness 
The maximum torsional displacement at the South-East corner 
in the X direction (see point A on the figure): 

4* 3.79*10 *16.67 6.3A
t CRY m mm      

 
Similarly, as above, these displacements need to be multiplied 
by Eod IRR  and also by 1.5 to determine the displacement at 
the top of the roof, and so 

1.5*6.3* 22A top
t d oR R mm    

 
d) Finally, the total maximum displacement at the roof level (at point A) is equal to:  

max 2 40 22 62A top A top
X t mm         

 
9. Check whether the building is torsionally sensitive. 
NBC 2015 Cl. 4.1.8.11(10) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey to the 
average displacement of that storey (see Section 1.11.2). This should be done for every storey, 
but in this case will only be done for the one storey as the remaining storeys will have similar B  
values because of the vertical uniformity of the walls. Torsional sensitivity is determined in a 
similar manner like the effect of accidental torsion, that is, by applying a set of lateral forces at a 
distance of nxD1.0  from the centre of mass MC . Since the purpose of this evaluation is to 
compare deflections at certain locations relative to one another, it is not critical to use cracked 
wall stiffnesses. 
 
In this case, the total maximum displacement at point A was determined in step 8 above, that is, 

max 62A mm   

We need to determine the displacement at other corner (point B), that is, the minimum 
displacement. This can be done as follows: 
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Translational component: 

0 20 40B top
X mm     

Torsional component: 
4

1* 3.79*10 *3.3 1.3t Xc m mm      

These displacements need to be multiplied by Eod IRR  
and also by 1.5 to determine the displacement at the top 
of the roof, and so 

1.3*1.5* 5B
t d oR R mm    

Since the direction of torsional displacements is opposite 
from the translational displacements, it follows that 

min 40 5 35B B B
o t mm        

The average displacement at the roof level in the E-W 
direction (see the figure showing the displacement 
components): 

max min 62 35
49

2 2

A B

ave mm
   

     

 

max 62.0
1.27

49.0ave

B


  


 

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with 
the main force resisting elements located around the exterior of the building will not be 
torsionally sensitive.  
 
10. Discussion 
A couple of important issues related to this design example will be discussed in this section. 
 
a) Why should the N-S walls be considered to resist entire torsional effects? 
The distribution of forces to the various elements in the structure is generally based on the 
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible 
and then the forces are distributed on the basis of contributory masses. The present example 
structure with four floors of concrete construction can be considered as having rigid diaphragms, 
and an elastic analysis was performed to determine the wall forces due to the torsional effects. 
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely 
separated, it is expected that they will resist most of the torque from the eccentricity. However, 
since we are designing the structures to respond inelastically, the distribution of forces from an 
elastic analysis should always be questioned. An argument is presented below to show that if 
the forces in the E-W walls are designed to be equal, they will not contribute to the torsional 
resistance.  
 
The elastic torsional analysis for the 
forces in the E-W direction result in 
additional forces of ±154 kN in the E-W 
walls and ±1070 kN in the N-S walls 
(see Table 4). If all the torque is 
resisted by the N-S walls, the force in 
these walls would be ±1120 kN (an 
increase of only 50 kN). 
 

Δ 
 

 
 
 

V 

X1 X2 
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For the earthquake load in the E-W direction the E-W walls must resist the total base shear in 
this direction and so they will have reached their yield strength and progressed along the flat 
portion of the shear/displacement curve as shown in the figure (assuming they have equal 
strength). The torsional load will have caused a small rotation of the diaphragms and so wall 

2X  will have a slightly larger displacement than wall 1X , as shown on the figure. Had the walls 
remained elastic, the shear in wall 2X  would then be greater than wall 1X  and this would 
contribute to the torsional resistance. However, in the nonlinear case, they both have the same 
shear resistance and so do not contribute to the torsional resistance. Thus, in this example, all 
the torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the 
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W 
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two 
directions would occur at the same time, and practice has been to consider only 30% of the 
loads in one direction when combining with the loads in the other direction. Thus, the forces in 
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the 
yield level on one side, but the torsional displacement on the other side would be in the opposite 
direction, so the wall force would be much reduced in the other direction. The two N-S forces 
then provide a torque to resist the torsional motion. Although this resisting torque may not be as 
large as the elastic analysis would predict, the result would not be failure, but only slightly larger 
torsional displacements. 
 
b) Application of the “100%+30%” rule 
In the calculation of total wall seismic forces including the torsional effects (see step 7 above), 
the effect of seismic loads in E-W direction only was taken into consideration when calculating 
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that 
requires the forces in any element that arise from 100% of the loads in one direction be 
combined with 30% of the loads in the orthogonal direction (for more details refer to NBC 
4.1.8.8.(1)c and the commentary portion in Section 1.11.3). 
 
Let us determine the forces in one of the E-W walls, e.g. wall 2X , by applying the “100+30%” 
rule. If only 100% of the force in the E-W direction is considered, the total force in the wall is 
equal to (see Table 4): 

kNVVV tXoX
WE

X 16041541450222 
 

If the seismic load is applied in the N-S direction, the torsional moment would be determined 
based on the accidental eccentricity ae  (since the building is symmetrical in that direction), and 
so the torsional force in the wall 2X  can be prorated by the ratio of torsional eccentricities in the 
E-W and N-S directions as follows, 

kN
m

m

e

e
VV

y

a
tX

SN

X
408.39

73.7

0.2
*154*22


 

The total seismic force in the wall 2X  due to 100% of the load in E-W direction and 30% of the 
load in the N-S direction can be determined as 

kNVVV SN
X

WE
XX 161640*3.016043.0 222  

 
It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule 
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant. 
 
However, it can be shown that the “100+30%” rule would significantly influence the forces in the 
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall 

1Y ) due to torsional effects is equal to (see Table 4)  

kNV WE
Y 10701 
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When the seismic force acts in the N-S direction, the total force in the wall 1Y  (including the 
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on 
accidental torsion) 

kNVV SN

Y
17402900*6.0*6.0

1


 

So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the 
force in the E-W direction the resulting total force is equal to 

kNVVV WE
Y

SN
YY 20611070*3.017403.0 111  

 
In this case, it can be concluded that the difference between the force of 2061 kN (when the 
“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant 
(around 18%). This is illustrated on the figure below.  
 
For those cases where there is a large eccentricity in one direction and the torsional forces are 
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can 
be significant. 
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and 
flexible diaphragm alternatives 
 
Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The 
building plan and relevant elevations are shown on the figure below. The building has an open 
north-west façade consisting mostly of glazing. The roof elevation is at 4.8 m above the 
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel 
columns on the north-west side. Masonry properties should be determined based on 20 MPa 
block strength and Type S mortar (use mf   of 10.0 MPa). Grade 400 steel has been used for the 
reinforcement. 
 
Masonry walls should be treated as “conventional construction” according to NBC 2015 and 
CSA S304-14. A preliminary seismic design has shown that the total seismic base shear force 
for the building is equal to 700V  kN. This force was determined based on the total seismic 
weight W of 2340 kN and the seismic coefficient equal to 0.3, that is, WV 3.0 .  
 
This example will determine the seismic forces in the N-S walls ( 1Y  to 3Y ) due to seismic force 
acting in the N-S direction for the following two cases: 
a) Rigid roof diaphragm (consider torsional effects), and 
b) Flexible roof diaphragm. 
 
Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be 
discussed. 
 
Note that both flexible and rigid diaphragms are considered to have the same weight, although 
this would be unlikely in a real design application. Also, the columns located on the north-west 
side are neglected in the seismic design calculations. 
 
Specified loads: 
roof  = 3.5 kPa 
25% snow load = 0.6 kPa 
wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption) 
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SOLUTION: 
 
a) Rigid diaphragm 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ). The coordinates of the centre of mass 
will be determined taking into account the influence of wall masses, the upper half of which are 
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the 
centroid of the roof area is determined by dividing the roof plan into two rectangular sections. 
 
Table 1. Calculation of the Centre of Mass ( MC ) 

Wall 
 

iW  

(kN) 
iX  

(m) 
iY  

(m) 
ii XW *  

 
ii YW *  

 

X1 387 15.00 0.00 5810 0 

X2 116 25.50 18.00 2963 2092 

Y1 232 21.00 9.00 4880 2092 

Y2 52 30.00 2.00 1548 103 

Y3 116 30.00 13.50 3486 1569 

Roof 1 1107 15.00 4.50 16605 4982 

Roof 2 332 25.50 13.50 8466 4482 

  2343     43759 15319 



9/1/2018                    3-26 

The MC  coordinates have been determined from the table as follows (see the figure below): 

68.18
86.2343

02.43757
*






i
i

i
ii

CM W

XW
x  m 

 

54.6
86.2343

38.15324
*





i
i

i
ii

CM W

YW
y  m 

 
Next, the coordinates of the 
centre of resistance ( RC ) will 
be determined. Wall 1X  has 
several openings and the 
overall wall stiffness is 
determined using the method 
explained in Section C.3.3 by 
considering the deflections of 
the following components for a 
unit load (see the figure 
below):  
 solid wall with 4.8 m height 
and 30 m length – cantilever 
( solid ) 
 an interior strip with 1.6 m 
height (equal to the opening 
height) and 30 m length – 
cantilever ( strip ) 
 piers A, B, C, and D – cantilevered ( ABCD )  (the stiffness of the piers A, B, C, and D is 
summed and the inverse taken as ABCD ) 
 
The stiffness of each component is based on the following equation for the cantilever model by 
using appropriate height-to-length ratios (see Section C.3.2), that is, 
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The overall wall deflection is determined from the combined pier deflections, as follows: 

ABCDstripsolidX  1  

Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced with the deflection 
of the four piers. 
 
Finally, the stiffness of the wall 1X  is equal to the reciprocal of the deflection (see Table 2), as 
follows 

71.1
1

1
1 




X
XK  

 
Table 2. Wall 1X  Stiffness Calculations 
 

Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions lh  )*( tEK  Displacement )*( tEK final  

Solid 0.24 4.8 30.0 cant 0.160 2.015 0.496   
Opening 
strip 0.24 1.6 30.0 cant 0.053 6.226 -0.161   

X1A 0.24 1.6 6.2 cant 0.258 1.186     

X1B 0.24 1.6 6.2 cant 0.258 1.186     

X1C 0.24 1.6 6.2 cant 0.258 1.186     

X1D 0.24 1.6 3.0 cant 0.533 0.453     

           (ABCD) 4.012 0.249   

              0.585 1.709 

 
The stiffness of wall 1Y  is determined in the same manner (see the figure below). The 
calculations are summarized in Table 3. 
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Table 3. Wall 1Y  Stiffness Calculations 
 
Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions 

lh  )*( tEK  Displacement )*( tEK final  

Solid 0.24 4.8 18 cant 0.267 1.142 0.876   
Opening 
strip 0.24 2.4 18 cant 0.133 2.442 -0.409   

Pier E 0.24 2.4 8 cant 0.300 0.992     

Pier F 0.24 2.4 9 cant 0.267 1.142     

          sum(EF) 2.134 0.469   

              0.935 1.070 
 
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 4. 
 
Table 4. Calculation of the Centre of Resistance ( RC ) 
 
Wall 

 
t  

(m) 
h  

(m) 
l  

(m) 
End 

cond. 
lh  

tE

K

*
 xK  

(kN/m) 
yK  

(kN/m) 
iX  

(m) 
iY  

(m) 
iy XK *  ix YK *  

X1 0.24         1.709* 3.49E+06 0 15 0   0.00E+00 

X2 0.24 4.8 9 cant 0.53 0.453 9.24E+05 0 25.5 18   1.66E+07 

Y1 0.24         1.070** 0 2.18E+06 21  0 4.58E+07   

Y2 0.24 4.8 4 cant 1.20 0.095 0 1.94E+05 30  0 5.82E+06   

Y3 0.24 4.8 9 cant 0.53 0.453 0 9.24E+05 30  0 2.77E+07   

              4.41E+06 3.30E+06     7.94E+07 1.66E+07 

Notes: 
* - see Table 2 
** - see Table 3 
 
Note that all walls and piers in this example were modelled as cantilevers (fixed at the base and 
free at the top). For more discussion related to modelling of masonry walls and piers for seismic 
loads see Section C.3. The modulus of elasticity for masonry is taken as mE 8.5*106 kPa 
(corresponding to mf   of 10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure on the next page): 

05.24
10*30.3

10*94.7
*

6

7





i
yi

i
iyi

CR K

xK
x m 

77.3
10*41.4

10*66.1
*

6

7






i
xi

i
ixi

CR K

yK
y  m 

 
Next, the eccentricity needs to be determined. Since we are considering the seismic load effects 
in the N-S direction, we need to determine the actual eccentricity in the x-direction ( xe ), that is, 

37.568.1805.24  CMCRx xxe  m 
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In addition, an accidental eccentricity needs to be considered, as follows: 
0.330*1.01.0  nxa De  m 

 
The total maximum eccentricity in 
the x-direction assumes the 
following two values depending on 
the sign of the accidental 
eccentricity, that is, 

37.80.337.51  axx eee  m 

37.20.337.52  axx eee  m 

 
The torsional moment is determined 
as a product of the shear force and 
the eccentricity, that is, 

586037.8*700* 11  xeVT  kNm 

166037.2*700* 22  xeVT kNm 

 
The seismic force in each wall can be determined as the sum of the two components: 
translational (no torsional effects) and torsional, that is, 

itioi VVV   

where 




i

i
io K

K
VV *   translational component  

i
i

it K
J

cT
V *

*
   torsional component 

822 10*97.2  yiyixixi cKcKJ    torsional rigidity (see Table 5) 

xic , yic  - distance of the wall 

centroid from the centre of 
resistance ( RC ) 
 
The calculation of translational 
and torsional forces is presented 
in Table 5. Translational and 
torsional force components due 
to the eccentricity 1xe  and the 
torsional moment 1T  are shown 
on the figure. Note that the 
torque 1T  causes rotation in the 
same direction like the force V 
(showed by the dashed line) 
around point RC  (this is 
illustrated on Figure 1-8). The 
wall forces shown on the 
diagram are in the directions to 
resist the shear V and torque 1T , 
thus on wall Y1 the translational 
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in 
the opposite direction. The calculation of the forces is presented in Table 5 where the sign 
convention has horizontal wall forces positive to the left and vertical forces positive down, 
resulting in negative values for the torsional forces in walls X1, Y2 and Y3. 
 
Table 5.  Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction 
 

Wall 
iK  

(kN/m) 
ic  

(m) 

2* ii cK   yy KK  oV  

(kN) 
tV1  

(kN) 
totalV1  

(kN) 
tV2  

(kN) 
totalV2  

(kN) 
governV  

(kN) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

X1 3.49E+06 -3.77 4.96E+07     -260 -260 -74 -74 260 

X2 9.24E+05 14.23 1.87E+08     260 260 74 74 260 

 xK  
4.41E+06                   

Y1 2.18E+06 3.05 2.03E+07 0.66 463 131 594 37 500 594 

Y2 1.94E+05 -5.95 6.87E+06 0.06 41 -23 18 -6 35 35 

Y3 9.24E+05 -5.95 3.27E+07 0.28 196 -109 87 -31 165 165 

 yK  
3.30E+06     1.00 700           

  
2* ii cK  

2.97E+08       

 
It should be noted that there are two total seismic forces for each wall in the N-S direction 
(corresponding to torsional moments 1T  and 2T ) – see columns (8) and (10) in Table 5. The 
governing force to be used for design is equal to the larger of these two forces, as shown in 
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and 
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3. 
 
b) Flexible diaphragm 
It is assumed in this example that flexible diaphragms are not capable of transferring significant 
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the 
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act 
as beams spanning between the walls, as shown on the figure below. The diaphragm loads 
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia 
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic 
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example). 
 
Shear forces in the walls aY1  and 2Y  (diaphragm D1): 
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall 1X  inertia 
load: 

  kNkPammkPakPammVD 44838.5*30*4.2)6.05.3(*)30*9(*3.01   
The diaphragm is considered as a beam with the reactions at the locations of walls aY1  and 2Y , 
that is, 

kNmmkNR aY 747915*4481   

and  
kNRVR aYDY 299747448112   (opposite direction from aYR 1  is required to satisfy  

equilibrium) 
 
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 
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kNkPammVRV waYaY 78238.5*9*4.2*3.074711   

kNkPammVRV wYY 28438.5*4*4.2*3.029922   (note: this force has opposite 

direction from force aYV 1 ) 

 
Shear forces in the walls bY1  and 3Y  (diaphragm D2): 

Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall 2X  inertia 
load: 

  kNkPammkPakPammVD 5.13438.5*9*4.2)6.05.3(*)9*9(*3.02   
The diaphragm is considered as a beam with the reactions at the locations of walls bY1  and 3Y , 
that is, 
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kNRR YbY 3.672/5.13431   

The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 

kNkPammVRV wbYbY 10238.5*9*4.2*3.06711   

kNkPammVRV wYY 10238.5*9*4.2*3.06733   

 
Total shear force in wall 1Y : 

The total seismic force in the wall 1Y  is equal to 

kNVVV bYaYY 884102782111   

 
Shear forces in walls 2Y  and 3Y : 

The total shear force in the combined walls 2Y  and 3Y  is equal to 

kNVVV YYY 1821022843223   

This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the 
wall stiffnesses are presented in Table 4): 

kNV
KK

K
V Y

YY

Y
Y 32)182(*17.0)182(*

10*24.910*94.1

10*94.1
*

55

5

23
32

2
2 





  

kNVVV YYY 150)32(1822233   

 
The comparison  
Shear forces in the walls 1Y  to 3Y  obtained in parts a) and b) of this example are summarized 

on the figure below. A comparison of the shear forces is presented in Table 6. 

 
 
Table 6. Shear Forces in the Walls 1Y  to 3Y  for Rigid and Flexible Diaphragms 

 
 

Wall 
Shear forces (kN) 

Rigid diaphragm 
(part a) 

Flexible diaphragm 
(part b) 

1Y  594 972 (884) 

2Y  35 35 (32) 

3Y  165 165 (150) 
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These 
values are increased by 10 % to account for accidental eccentricity. 
 
It can be observed from the table that the flexible diaphragm assumption results in the same 
seismic forces for the walls 2Y  and 3Y , and an increase in the wall 1Y  force. 
 
Deflection calculations 
A fundamental question related to diaphragm design is: when should a diaphragm be modeled 
as a rigid or a flexible one? This is discussed in Section 1.11.4. A possible way for comparing 
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid 
and flexible diaphragm case are presented below. 
 
 Rigid diaphragm (see Example 2, step 8 for a similar calculation) 
The deflection will be calculated for point A as this should be the maximum.  First, a reduction in 
the wall stiffness to account for the effect of cracking will be determined following the approach 
presented in Section 2.5.4 (S304-14 Cl.16.3.3), that is, 

 0.3 'e g s g mA A P A f     

Here, 

 9.0* 9.0 2 *3.5 142sP    kN   (axial force due to dead load in wall 2X ) 

 43 10*2160.9*)10*240 eA mm2  (effective cross-sectional area for 240 mm block wall, 

solid grouted, length 9.0 m; see Table D-1 for eA  values for the unit wall length) 

mf  =10.0 MPa 

Since  

   3 40.3 ' 0.3 142*10 10.0*216*10 0.31s g mP A f     

It appears that 

0.31e

g

A

A
  

Because the behaviour of low-rise shear walls is expected to be shear dominant and so 
stiffness is proportional to cross-sectional area; thus 

( ) 0.31e
ce c c

g

A
K K K

A
     

where cK  is elastic uncracked stiffness 

 
Next, the translational displacement at point A can be calculated as follows: 

0 6

700
0.68

0.31 0.31*3.3*10 /
A

Y

V kN
mm

K kN m
   


 

Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the 
building   can be found from the following equation: 

5
6

5860
6.36*10

0.31*297*10

T kNm

J
    rad 

where (see the torsional calculations performed in part a) of this example) 
5860T  kNm     torsional moment 
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610*297J           elastic torsional stiffness (this value is reduced by 0.5 to take into account 
the cracking in the walls) 
The torsional displacement at point A: 

5* 6.36*10 *24.05 1.53A
t Ax m mm      

The total displacement at point A is can be found as follows (note that the displacements need 
to be multiplied by Eod IRR  ratio, where EI = 1.0): 

   max 0 * 0.68 1.53 *1.5*1.5 5.0A A A
t d oR R mm         

 
 Flexible diaphragm 
As a first approximation the calculation will consider a 21 m long diaphragm portion as a 
cantilever beam, as shown in the figure on the next page. This is an approximate model since 
the diaphragm is not fully fixed at that point, but the model is simple and useful for checking 
magnitude of deformations in a flexible diaphragm for this structure. The total shear force is 
equal to: 

  kNkPammkPakPammVD 31438.5*21*4.2)6.05.3(*)21*9(*3.0   
and the equivalent uniform load is equal to 

0.15 LVv DD  kN/m 
where 

0.21L  m  diaphragm length for the cantilevered portion 
The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at 
the wall 1Y , and walls 1Y , 2Y , and 3Y  also deflect; both effects provide some rotation at the fixed 
end of the cantilever. 
 
Consider a plywood diaphragm with the following properties: 

1500E  MPa plywood modulus of elasticity 
600G  MPa  plywood shear modulus 

4.25Dt  mm  (1” plywood thickness) 

23.00254.0*0.9*  mmtbA D  m2 
 
Let us assume that the two courses of grouted bond beam block act as a chord member, as 
shown on the figure on the next page. The roof-to-wall connection is achieved by means of nails 
driven into the anchor plate and hooked steel anchors welded to the plate embedded into the 
masonry. The corresponding moment of inertia around the centroid of the diaphragm can be 
found as follows: 
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89.3
2

0.9
*096.0*2

2
**2
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













b

AI c  m4 

where 
096.0)2.0*24.0(*2  mmAc  m2       chord area (two grouted 240 mm blocks) 

kPaEm
610*5.8       masonry modulus of elasticity based on mf  = 10.0 MPa (solid grouted 20 

MPa blocks and Type S mortar) 

 
The total displacement at point A is equal to the combination of flexural and shear component, 
that is, 

    mmm
GA

LV

IE

Lv DDA 4010*4010*0.290.11
10*600*23.0*2

0.21*314*2.1

89.3*10*5.8*8

0.21*0.15

**2

*2.1

*8

* 33

36

44

 

The total displacement at point A is can be found by multiplying the above displacement by 

Eod IRR  ratio, that is, 

mmRR od
AA 905.1*5.1*40*max   

 
A quick check of the additional deflection caused by rotation at the fixed end of the cantilever 
indicates that an additional 50 mm could be expected at point A. Thus, the total displacement 
would be about 140 mm. 
 
By comparing the displacements for the rigid and flexible diaphragm model, it can be observed 
that the difference is significant: 

max 5A mm      rigid diaphragm model 

mmA 90max    flexible diaphragm model 
 
Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to: 

9.1019.0
4800

90max 



wh

DR  % 
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The drift is within the NBC 2015 limit of 2.5% (see Section 1.13); however, a flexible diaphragm 
would not be an ideal solution for this design – a rigid diaphragm would be the preferred 
solution. 
 
Discussion 
In this example, seismic forces were determined for the N-S walls due to seismic load acting in 
the N-S direction. It should be noted, however, that there is a significant eccentricity causing 
torsional effects in the E-W walls due to seismic load acting in the E-W direction – these 
calculations were not included in this example.  
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall 
 
Determine minimum seismic reinforcement according to CSA S304-14 for a loadbearing 
masonry shear wall located in an area with a seismic hazard index  2.0aaE SFI  of 0.80. The 
wall is subjected to axial dead load (including its own weight) of 230 kN. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG)  
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 
 
 
 
 

 
SOLUTION: 
The purpose of this example is to demonstrate how the minimum seismic reinforcement area 
should be determined and distributed in horizontal and vertical direction. Once the 
reinforcement has been selected in terms of its area and distribution, the flexural and shear 
resistance of the wall will be determined and the capacity design issues discussed, as well as 
the seismic safety implications of vertical and horizontal reinforcement distribution.  
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

yf = 400 MPa  
s

 = 0.85 

Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it 
will be ignored for the small area included. 
Masonry: 

m = 0.6 

Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table 
4 of S304-14 that 

mf  = 9.8 MPa  

Based on Note 3 to Table 4, this mf   value is normally used for hollow block masonry but can 

also be used for partially grouted masonry if the grouted area is not considered. 
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.6.9 and 
Table 2-3). 
Since  2.0aaE SFI =0.80 > 0.35, minimum seismic reinforcement must be provided (S304-14 

Cl.16.4.5.1). 
 
Seismic reinforcement area 
Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel 
having a minimum area of  

gs AA 002.0min   = 0.002*(190*103 mm2/m) = 380 mm2/m 

for 190 mm block walls, where 

gA =(1000mm)*(190mm)=190*103 mm2/m gross cross-sectional area for a unit wall length of 1 

m 
Minimum area in each direction (one-third of the total area): 

127
3

380

3
00067.0 min

minmin  s
gvh

A
AAA  mm2/m 

Thus the minimum total vertical reinforcement area 

wv lA *127min   = (127 mm2/m)(8 m) = 1016 mm2  

 
In distributing seismic reinforcement, the designer may be faced with the dilemma: should more 
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3rd of the total 
amount of reinforcement can be placed in one direction and the remainder in the other direction. 
In this example, less reinforcement will be placed in the vertical direction, and more in the 
horizontal direction. The rationale for this decision will be explained later in this example. 
 
Vertical reinforcement (area and distribution) (see Table 2-3): 
Since  2.0aaE SFI =0.80 > 0.75, according to S304-14 Cl.16.4.5.3 spacing of vertical reinforcing 

bars shall not exceed the lesser of: 
 )10(6 t =6(190+10)=1200 mm 

 1200mm 
Therefore, the maximum permitted spacing of vertical reinforcement is equal to  
s 1200 mm. 

 
Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note 
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so 

vA = 8*200 =1600 mm2 

(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the 
upper limit prescribed by S304-14). 
 
The corresponding vertical reinforcement area per metre length is 

1000*
w

v
v l

A
A   = 200 mm2/m > minvA =127 mm2/m       OK 

It should be noted that the requirements for spacing of vertical reinforcement have been relaxed 
for Conventional Construction masonry walls at sites where 0.35 ≤  2.0aaE SFI <0.75 (see Table 

2-3).  
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Horizontal reinforcement (area and distribution) (see Table 2-3): 
Let us consider a combination of joint reinforcement and bond beam reinforcement. According 
to S304-14 Cl.16.4.5.4, where both types of reinforcement are used, the maximum spacing of 
bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement 
arrangement is considered: 
 9 Ga. ladder reinforcement @ 400 mm spacing, and  
 2-15M bond beam reinforcement @ 2200 mm (1/3rd of the overall wall height). The area of 
ladder reinforcement (2 wires) is equal to 22.4mm2, and the area of a 15M bar is 200 mm2. So, 
the total area of horizontal reinforcement per metre of wall height is 







  1000*

2200

400

400

4.22
hA 238 mm2/m > minhA =127 mm2/m       OK 

 
So, the total area of horizontal and vertical reinforcement is 

238200  hvs AAA =438 mm2/m   > minsA =380 mm2/m         OK 

 
Note that the total area (438 mm2/m) exceeds the S304-14 minimum requirements (380 mm2/m)   
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also 
a reserve in reinforcement area provides additional safety for seismic effects. 
 
3. Check whether the vertical reinforcement meets the minimum requirements for 
loadbearing walls (S304-14 Cl.10.15.1.1 – see Table 2-3). 
Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements 
would need to be checked, however the check is omitted from this example since it does not 
govern in seismic zones. 
 
4. Design summary 
The reinforcement arrangement for the wall under consideration is summarized below. 
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EXAMPLE 4b: Seismic design of a Conventional Construction squat shear wall  
 
Design a single-storey squat concrete block shear wall shown in the figure below according to 
NBC 2015 and CSA S304-14 seismic requirements for Conventional Construction reinforced 
masonry walls. The building site is located at the site supported by Site Class C soil, and the 
seismic hazard index  2.0aaE SFI  is 0.66. The wall is subjected to a total dead load of 230 kN 
(including the wall self-weight) and an in-plane seismic force of 630 kN. Consider the wall to be 
solid grouted. Neglect the out-of-plane effects in this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 
 
 
 
 
 
 
 

SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

m = 0.6  

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
 fP = 230 kN axial load 

 fV = 630 kN seismic shear force 

 hVM ff *  = 630*6.6  4160 kNm overturning moment at the base of the wall 

Note that, according to NBC 2015 Table 4.1.3.2, load combination for the dead load and seismic 
effects is 1.0*D + 1.0*E. 
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3. Minimum CSA S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3) 
Since  2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (S304-14 
Cl.16.4.5.1). See Example 4a for a detailed calculation of the S304-14 minimum seismic 
reinforcement. 
 
4.  Design for the combined axial load and flexure 
A design for the combined effects of axial load and flexure will be performed using two different 
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering 
concentrated and distributed reinforcement. 
 
Distributed wall reinforcement (see Section C.1.1.2) 
This procedure assumes uniformly distributed vertical reinforcement over the wall length. The 
total vertical reinforcement area can be estimated, and the estimate can be revised until the 
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical 
reinforcement was determined as  

vtA = 3200 mm2 > 1016 mm2 (minimum seismic reinforcement) - OK 

Try 16-15M bars for vertical reinforcement. 
The wall is subjected to axial load 

fP = 230 kN  

The approximate moment resistance for the wall section is given by: 
85.01            8.01   

159.0
190*8000*5.7*6.0

3200*400*85.0

'


tlf

Af

wmm

vtys




  

034.0
190*8000*5.7*6.0

10*230

'

3


tlf

P

wmm

f


  

  15478000
8.0*85.0159.0*2

034.0159.0

2 11









 wlc



 mm 







 





























8000

1544
1

3200*400*85.0

10*230
1

1000

8000
*3200*

1000

400
*85.0*5.0115.0

3

wvtys

f
wvtysr l

c

Af

P
lAfM




4253rM   kNm > 4160fM   kNm       OK 

 
Distributed and concentrated wall reinforcement (see Section C.1.1.1) 
 
This procedure assumes the same total reinforcement area, but the concentrated reinforcement 
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length. 

vtA = 3200 mm2 
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Concentrated reinforcement area at 
each wall end (3-15M bars in total, 
1-15M in last 3 cells): 

cA = 600 mm2 

 
Distributed reinforcement 

dA 3200-2*600=2000 mm2 

 
Distance from the wall end to the 
centroid of concentrated 
reinforcement 

300d  mm  
 
The compression zone depth a :  

190*5.7*6.0*85.0

2000*400*85.010*230

'85.0

3 





tf

AfP
a

mm

dysf




    = 1252 mm 

 
The masonry compression resultant rC :   

   910)1252*190)(5.7*6.0*85.0('85.0  atfC mmm  kN 
 
The factored moment resistance rM  will be determined by summing up the moments around 
the centroid of the wall section as follows (see equation (3) in Section C.1.1.1) 

    610*'222)(  dlAfalCM wcyswmr   

    63 10*30028000600*400*85.0*22)12528000(*10*910  4580rM   kNm 
 
The second procedure was used as a reference (to confirm the results of the first procedure). 
Both procedure give similar rM  values (4253 kNm and 4580 kNm by the first and second 
procedure respectively).  
 
 
5.  Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.5.4)     
 
Cl.16.5.4 requires that the factored shear resistance, rV , for a Conventional Construction shear 
wall should be greater than the shear due to effects of factored loads, but not less than i) the 
shear corresponding to the development of factored moment capacity, rM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Conventional Construction shear walls, the shear capacity should exceed the shear 
corresponding to the nominal moment capacity, as follows 

4253rM    kNm   

The shear force rbV  corresponding to the overturning moment rM  is equal to 
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4253

6.6
r

rb

M
V

h
    645 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

630 1.5 1.5
1090

1.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
 

645rdV  kN 

 
6.  Find the diagonal tension shear resistance (see Section 2.3.2 and S304-14 
Cl.10.10.2.1). 
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

64008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 207 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.44 MPa 

4.6*630

4160


vf

f

dV

M
= 1.03  1.0 

gdvwmmm PdbvV  )25.0(   = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV  (2-15M bond beam reinforcement at 1200 mm spacing): 

1200

6400
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 435 kN 

Total shear resistance 
787435352  smr VVV  kN     

The factored shear resistance exceeds the minimum required factored shear resistance, that is, 
787rV kN > 645rdV  kN       OK 

This is a squat shear wall because 0.1825.0
8000

6600


w

w

l

h
. Maximum shear allowed on the 

section is (S304-14 Cl.10.10.2.1) 

939)2(4.0max 
w

w
gvwmmr l

h
dbfV   kN   

Since 

rr VV max      OK 
Note that a solid grouted wall is required, that is, 0.1g . A partially grouted wall would have 

5.0g , so its shear capacity would not be adequate for this design. 
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7. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 3200 mm2 total area of vertical wall reinforcement 

yssy fAT   = 0.85*3200*400 = 1088 kN  

dP  = 207 kN 

yd TPP 2  = 207+1088 = 1295 kN 

2PV mr  = 0.6*1.0*1295=777 kN 

777rV kN > 645rdV  kN       OK 

 
8. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to 
ensure uniform shear transfer along the entire length (see Section 2.3.2.2). 
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9. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 645rdV   kN minimum required factored shear resistance 

b) 787rV  kN diagonal tension shear resistance 

c) 777rV  kN sliding shear resistance 
 
Since the minimum required factored shear resistance is smallest of the three values, it can be 
concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
 
Note that S304-14 Cl.10.2.8 prescribes the use of a reduced effective depth d  for the flexural 
design of squat shear walls. This example deals with seismic design, and the wall reinforcement 
is expected to yield in tension, this provision was not followed since it would lead to a non-
conservative design; instead, the actual effective depth was used for flexural design. 
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EXAMPLE 4c: Seismic design of a Moderately Ductile squat shear wall 
Design a single-storey squat concrete block shear wall shown on the figure below according to  
NBC 2015 and CSA S304-14 seismic requirements for moderately ductile squat shear walls 
(note that the same shear wall was designed in Example 4b as a conventional construction). 
The building site is located in Ottawa, ON and the seismic hazard index  2.0aaE SFI  is 0.66. 
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher dR  value of 2.0 that can be used for walls 
with Moderate Ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in 
this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 

 
 
SOLUTION: 
Since  

0.1825.0
8000

6600


w

w

l

h
 

this is a squat shear wall. The wall is to be designed as a moderately ductile squat shear wall, 
and NBC 2015 Table 4.1.8.9 specifies the following dR  and oR  values (see Table 1-13): 

dR = 2.0 and oR = 1.5      

The seismic shear force of 470 kN for a wall with moderate ductility ( 0.2dR ) was obtained by 
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with 
conventional construction ( 5.1dR ), as follows 

 470
0.2

5.1
*630 fV  kN 

 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

Note that the h/t ratio exceeds 
the S304.1 limit of 20 for 
moderately ductile squat shear 
walls (Cl.10.16.6.3).  
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m = 0.6    

From S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
 fP = 230 kN axial load 

 fV = 470 kN seismic shear force 

 hVM ff *  = 470*6.6  3100 kNm overturning moment at the base of the wall 

Note that, according to NBC 2015 Table 4.1.3.2, the load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
 
3. Minimum S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3) 
Since  2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (Cl.16.4.5.1). See 

Example 4a for a detailed calculation of the S304-14 minimum seismic reinforcement. 
 
4.  Design for the combined axial load and flexure (see Section C.1.1.2). 
A design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as 

vtA = 2200 mm2  > 1016 mm2 (minimum seismic reinforcement) - OK 

and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area 
of 2200 mm2). 
 
The wall is subjected to axial load fP = 230 kN. Note that the load factor for the load 
combination with earthquake load is equal to 1.0. 
 
The moment resistance for the wall section can be determined from the following equations (see 
Example 4b): 

85.01    8.01    109.0   034.0   1273c  mm  
 







 





























8000

1273
1

2200*400*85.0

10*230
1

1000

8000
*2200*

1000

400
*85.0*5.0115.0

3

wvtys

f
wvtysr l

c

Af

P
lAfM




 
3290rM   kNm > 3100fM   kNm       OK 

 
5. Height/thickness ratio check (see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
moderately ductile squat shear walls (Cl.16.7.4): 

20)10( th , unless it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability. 
 
For this example, 
h = 6600 mm (unsupported wall height) 
t = 190 mm actual wall thickness 
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So, 
  2033101906600)10( th  

The height-to-thickness ratio for this wall exceeds the S304-14 limits by a significant margin. 
However, S304-14 permits the height-to-thickness restrictions for moderately ductile squat 
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability 
is satisfactory.  
 
This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which 
corresponds to the compressive stress of 

15.0
190*8000

10*230 3


tl

P
f

w

f
c  MPa 

This stress corresponds to only 2% of the masonry compressive strength mf   which is equal to 
7.5 MPa. In general, a compressive stress below 0.1 mf   (equal to 0.75 MPa in this case) is 
considered to be very low. 
 
The recommendations included in the commentary to Section 2.6.4 will be followed here.  A 
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of 
the compression zone must be confirmed for this case. 
 
Try an effective flange width 390fb mm.  The wall section and the internal force distribution is 
shown on the figure below.  

 
 
This procedure assumes the same total reinforcement area vtA  as determined in step 4, but the 
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is 
distributed over the wall length. 

vtA = 2200 mm2 

Concentrated reinforcement area (2-15M bars at each wall end): 
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cA = 400 mm2 

Distributed reinforcement area: 
dA 2200-2*400=1400 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

 100d  mm  
 Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*846.1
5.7*6.0*85.0

1400*400*85.010*230

'85.0








mm

dysf
L f

AfP
A




 mm2 

The depth of the compression zone a : 

772
190

190)190*390(10*846.1* 252








t

ttbA
a fL

 mm 

The neutral axis depth: 

965
8.0


a
c  mm 

The centroid of the masonry compression zone: 

   
326

2)(2* 22





L

f

A

ttbat
x  mm 

In this case, the compression zone is L-shaped, however only the flange area will be considered 
for the buckling resistance check (see the shaded area shown on the figure below). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
 
Gross moment of inertia for the flange only: 

8
33

10*39.9
12

390*190

12

*
 f

xg

bt
I  mm4 

 
The buckling strength for the compression zone will be 
determined according to S304-14 Cl.10.7.4.3, as follows: 

  

2

2 1017
1 0.5

er m
cr

d

E I
P

kh

 


 


 kN 

where 
75.0er    

0.1k  pin-pin support conditions 
0d   assume 100% seismic live load  

6600h   mm unsupported wall height 
6375850  mm fE  MPa modulus of elasticity for masonry 

 Find the resultant compression force (including the concrete and steel component). 
842400*400*85.010*706 3  cysmfb AfCP   kN 

where 
  706)10*846.1)(5.7*6.0*85.0('85.0 5  Lmmm AfC   kN 
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 Confirm that the out-of-plane buckling resistance is adequate. 
Since  

842fbP kN < 1017crP  kN 

it can be concluded that the out-of-plane buckling resistance is adequate and so the flanged 
section can be used for this design. This is in compliance with S304-14 Cl.16.7.4, despite the 
fact that the th  ratio for this wall is 33, which exceeds the S304-14-prescribed limit of 20. 
 
4a. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 5 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

      )10028000(*400*400*85.0*2)32628000(*10*706)2(22 3  dlAfxlCM wcyswmr 

365510*3655 6  NmmM r   kNm 
Since 

3655rM   kNm > 3100fM   kNm       OK 

 
6.  Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.7.3.2)     
Cl.16.7.3.2 requires that the factored shear resistance, rV , for a Moderately Ductile squat shear 
wall should be greater than the shear due to effects of factored loads, but not less than i) the 
shear corresponding to the development of factored moment resistance, rM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear 
corresponding to the factored moment resistance. In this case, the factored moment resistance 
is equal to 

3655rM   kNm 

The shear force at the top of the wall that would cause an overturning moment equal to rM  is 

3655

6.6
r

rb
w

M
V

h
    554 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

470 2.0 1.5
1085

1.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
554rdV  kN 

 
7.  The diagonal tension shear resistance (see Section 2.3.2 and S304-14 Cl.10.10.2.1)           
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

64008.0  wv ld  mm    effective wall depth 
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0.1g   solid grouted wall 

fd PP 9.0 = 207 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.44 MPa 

4.6*470

3100


vf

f

dV

M
= 1.03  1.0 

gdvwmmm PdbvV  )25.0(   = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV : 

Assume 2-15M bond beam reinforcement at 1200 mm spacing, so 
400vA  mm2 

1200s  mm 
Horizontal reinforcement area per metre: 

3331000*
1200

400
1000* 

s

A
A v
h  mm2/m 

 

1200

6400
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 435 kN 

Total diagonal shear resistance 
787435352  smr VVV  kN     

The factored shear resistance exceeds the minimum required factored shear resistance, that is, 
787rV  kN > 554rdV   kN       OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.2) 

939)2(4.0max 
w

w
gvwmmr l

h
dbfV   kN      

Since 

rr VV max    OK 
 
Note that S304-14 Cl.16.7.3.1 requires that the method by which the shear force is applied to 
the wall shall be capable of applying shear force uniformly over the wall length. This can be 
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section 
2.3.2.2 (see Figure 2-16). 
 
8. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2200 mm2 total area of vertical wall reinforcement 

yssy fAT   = 0.85*2200*400 = 748 kN  

dP  = 207 kN 

yd TPP 2  = 207+748 = 955 kN 

2PV mr   = 0.6*1.0*955 = 573 kN 
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573rV  kN > 554rdV   kN       OK 

Note that 573rV  kN < 787rV   kN for diagonal tension (this indicates that the sliding shear 

resistance governs over the diagonal tension shear resistance). 
 
9. Minimum reinforcement requirements for Moderately Ductile squat shear walls (see 
Section 2.6.10) 
S304-14 Cl.16.7.5 prescribes the following requirements for the amount of reinforcement in 
Moderately Ductile squat shear walls: 
 
Horizontal reinforcement ratio h   

h  should be greater than the minimum value set by S304-14 Cl.16.7.5: 
3

3
min

470*10
1.10*10

190*6600*0.85*400
f

h
w w s y

V

b h f



  

  
 

and the value determined in accordance with Cl.10.10.2 based on the shear resistance 
requirements 

32131
1.70*10

* 190*6600
h

hshear
w w

A

b h
     

where hA  is the total area of horizontal reinforcement along the wall height, that is, 

333 6.4 2131h h vA A d    mm2 

where 

333hA  mm2/m (see step 6) 

In this case, 

minh =1.10*10-3 <  hshear =1.70*10-3 

This indicates that the S304-14 shear resistance requirement governs. The amount of horizontal 
reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is adequate. 
 
Vertical reinforcement ratio v  

Minimum minv  value set by S304-14 Cl.16.7.5: 
3

3
min min

230*10
1.10*10

0.85*190*8000*400
s

v h
s w w y

P

b l f
 


    

  
0.65*10-3 

where 230s fP P  kN. Actual vertical reinforcement ratio vflex  based on the flexural design 

requirements (see step 4): 

310*447.1
190*8000

2200

*


tl

A

w

vt
vflex  

Since  

vflex = 1.447*10-3 > minv = 0.65*10-3 

It appears that the amount of vertical reinforcement determined based on the flexural design 
requirements (11-15M) governs. It can be concluded that the minimum S304-14 reinforcement 
requirements for Moderately Ductile shear walls have been satisfied.  
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10. Shear resistance at the web-to-flange interface (see Section C.2 and Cl.7.11). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear: 

3554*10
0.36

190*8000
rd

f
e w

V
v

t l
    MPa 

where et = 190 mm (effective wall thickness) 

Vertical shear (caused by the resultant compression force fbP  calculated in Step 5): 

67.0
6600*190

10*842

*

3


ww

fb
f hb

P
v  MPa           governs 

Factored shear strength for bonded interfaces (S304-14 Cl.7.11.1): 

0.16 0.26m m mv f    MPa 

Since 
67.0fv MPa > 0.26mv  MPa 

shear reinforcement at the web-to-flange interface is required. Since the horizontal 
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the 
flange (90° hook), and so 

0.85*2*200*400
0.60

1200*190
s s y

s
e

A f
v

s t


  


MPa 

The total shear resistance 
0.26 0.60 0.86r m sv v v     MPa 

Since  
67.0fv MPa < 86.0rv MPa 

the shear resistance at the web-to-flange interface is satisfactory. 
 
11. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solid grouted. 
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11. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 554rdV   kN minimum required factored shear resistance 

b) 787rV  kN diagonal tension shear resistance 

c) 573rV  kN sliding shear resistance 
Since the minimum required factored shear resistance is smallest of the three values, it can be 
concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
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Note that S304-14 Cl.10.2.8 prescribes the use of reduced effective depth d  for flexural design 
of squat shear walls. Since this example deals with seismic design and essentially all the wall 
reinforcement is expected to yield in tension, this provision was not used as it is expected to 
result in additional vertical reinforcement, which would increase the moment capacity and 
possibly lead to a more brittle diagonal shear failure. 
 
Note that the S304-14 ductility check is not prescribed for Moderately Ductile squat shear walls. 
 
This example shows that an addition of flanges can be effective in preventing the out-of-plane 
buckling of Moderately Ductile squat shear walls. This is in compliance with S304-14 Cl.16.7.4, 
despite the fact that the th  ratio for this wall is 33, which exceeds the S304-14-prescribed limit 
of 20. 
 
The last two examples provide an opportunity for comparing the total amount of vertical 
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a 
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall 
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction 
(16-15M bars); this reduction amounts to approximately 30%. 
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EXAMPLE 5a: Seismic design of a Moderately Ductile flexural (non-squat) shear wall 
Perform the seismic design of a shear wall shown in the figure below. The wall is a part of a 
four-storey building located in Montreal, QC (City Hall) where the seismic hazard index, 

 2.0aaE SFI , is 0.60. The design needs to meet the requirements for Moderately Ductile Shear 
Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1,800 kN (including the wall self-weight), an in-plane seismic shear force of 1090 kN, and an 
overturning moment of 10,900 kNm. The elastic lateral displacement at the top of the wall is 15 
mm. Select the wall dimensions (length and thickness) and the reinforcement, such that the 
CSA S304-14 seismic design requirements for Moderately Ductile shear walls are satisfied. Due 
to architectural constraints, the wall length should not exceed 10 m, and 190 mm standard 
blocks should preferably be used. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Grade 400 steel 
reinforcement (yield strength yf = 400 MPa) is used for this design. 

 
SOLUTION: 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 20 MPa concrete blocks and Type S mortar: 

mf  = 10.0 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  14 m 
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Length wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 1090 kN seismic shear force 

 fM  = 10900 kNm overturning moment 

 
This is a Moderately Ductile shear wall, and NBC 2015 Table 4.1.8.9 specifies the following dR  
and oR  values: 

dR = 2.0 and oR = 1.5      

 
3. Height/thickness ratio check (S304-14 Cl.16.8.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Moderately Ductile shear walls: 

20)10( th  
For this example, 
h= 5000 mm (the largest unsupported wall height) 
So, 

2401020  ht  mm 
This means that a rectangular wall section with 240 mm thickness could be used. However, 
S304-14 Cl.16.8.3 permits the use of a more slender wall if the wall is lightly loaded (axial stress 
less than mf 1.0 ), and it can be proven that out-of-plane stability can be maintained under 

seismic effects. 
 
Let us consider 190t  mm (standard concrete blocks) – this will result in 2025)10( th . 
 
In this case, the axial stress level is  

1.0095.0
10*190*10000

10*1800

**

3


mw

f

ftl

P
 

 
The Commentary to Section 2.6.4 proposes an approach for verifying the out-of-plane stability 
of masonry shear walls with flanged ends. Let us assume a 1000 mm wide flange at each wall 
end, because S304-14 Cl.16.8.3.4 states that the minimum flange width of h2.0  (= 1000 mm for 
a 5m unsupported wall height at the first storey level) is required to ensure out-of-plane stability 
in ductile shear walls. 
 
The effective flange width 

1000fb  mm   

The wall section and the internal force distribution is shown in the figure below.  
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This procedure assumes that the concentrated reinforcement (area cA ) is provided at the wall 

ends (flanges), while the remaining reinforcement (area dA ) is distributed over the wall length. 

After a few trial estimates, the total area of vertical reinforcement vtA  was determined as follows 

vtA = 2800 mm2 

Concentrated reinforcement area (3-15M bars at each flange): 

cA = 600 mm2 

Distributed reinforcement area: 
dA 2800-2*600= 1600 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

95d  mm  
 Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*6.4
0.10*6.0*85.0

1600*400*85.010*1800

'85.0








mm

dysf
L f

AfP
A




mm2 

 
Check whether the neutral axis falls in the web. Since the flange area is 

510*9.1*  tbA ff mm2 

It is obvious that the area of compression zone is greater than the flange area, hence the 
neutral axis falls in the web. The depth of the compression zone a  is: 
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1610
190

190)190*1000(10*6.4* 252








t

ttbA
a fL

 

mm 
 
The neutral axis depth: 

2011
8.0


a
c  mm 

The centroid of the masonry compression zone: 

   
567

2)(2* 22





L

f

A

ttbat
x  mm 

 
 
In this case, the compression zone is T-shaped, however 
only the flange area will be considered for the buckling 
resistance check (see the shaded area shown in the figure). This is a conservative 
approximation, and it is considered to be appropriate for this purpose, since the gross moment 
of inertia is used. 
Gross moment of inertia for the flange only: 

10
33

10*58.1
12

1000*190

12

*
 f

xg

bt
I  mm4 

The buckling strength for the compression zone will be determined according to S304-14 Cl. 
10.7.4.3, as follows: 

   

2

2 26566
1 0.5

er m xg
cr

d

E I
P

kh

 


 


kN  

where 
75.0er  

0.1k  pin-pin support conditions 
0d   assume 100% seismic live load 

5000h   mm unsupported wall height 
8500850  mm fE  MPa modulus of elasticity for masonry 

 Find the resultant compression force (including the concrete and steel component). 
2550600*400*85.010*2346 3  cysmfb AfCP   kN 

where 

  2346)10*6.4)(0.10*6.0*85.0('85.0 5  Lmmm AfC   kN 

 Confirm that the out-of-plane buckling resistance is adequate. 
Since  

2550fbP kN < 26566crP  kN 

it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section 
can be used for this design. 
 
Note that S304-14 Cl.16.8.3.4 prescribes a relaxed ( th <30) limit for flanged shear walls 
provided that the neutral axis depth meets the following simplified requirement (see Figure 2-
28): 
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570190*33*  tc  mm 
Note that t3  denotes the distance from the inside of a wall flange to the point of zero strain. So 
the total neutral axis depth (distance from the extreme compression fibre to the point of zero 
strain) is equal to 

760190570*  tcc  mm 
The neutral axis depth determined above is as follows 

2011c  mm > 760 mm  
It can be concluded that the S304-14 simplified ( th ) check performed above is not satisfied, 
and that a detailed verification is required (as presented above), to confirm the wall stability.  
 
4. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 3 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

      )95210000(*600*400*85.0*2)567210000(*10*2346)2(22 3  dlAfxlCM wcyswmr   

 
12392rM   kNm > 10900fM   kNm       OK 

 
5. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Moderately Ductile shear walls (Cl.16.8.7), the 
neutral axis depth ratio ( wlc ) should be less than the following limit: 

15.0wlc  when 5ww lh   

In this case,  

54.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 2011 mm 
and so 

15.02.0100002011 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

151 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

3.129.1
10900

14034


f

n
w M

M
               3.1w  

In this case, the nominal moment capacity is equal to Mn = 14034 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm   were used.  
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The S304-14 minimum rotational demand is min = 0.003 for Moderately Ductile shear walls 
(Cl.16.8.8.2). The actual value is determined from the following equation: 
 

    3

3

11 1083.2

10
2

0.10
0.14

30.1155.10.215

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is less than min = 0.003, hence  
3

min 100.3   id  

The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31022.4002.0
20112

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity iic is greater than rotational demand id, it can be concluded that 
the S304-14 ductility requirements have been satisfied. 
 
6.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.8.9.2)     
 
Cl.16.8.9.2 requires that the factored shear resistance, rV , for a Moderately Ductile shear wall 
should be greater than the shear due to the effects of factored loads, but not less than i) the 
shear corresponding to the development of the nominal moment capacity, nM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear 
corresponding to the nominal moment capacity, as follows 

14034nM   kNm   

The shear force resultant acts at the effective height eh , the distance from the base of the wall 

to the resultant of all the seismic forces acting at the floor levels. Note that eh  can be determined 

as follows 

0.10
f

f
e V

M
h  m 

The shear force nbV  corresponding to the overturning moment nM  is equal to 


0.10

14034

e

n
nb h

M
V  1403 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

2510
3.1

5.10.21090

3.1






 odf

fe

RRV
V kN 

The smaller of these two values should be used, hence 
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1403rdV kN 

 
7.  The diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14 
Cl.10.10.2.1 and 16.8.9.1)           
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

80008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

Although the seismic hazard index   35.06.02.0 aaE SFI , partial grouting in the plastic hinge 

zone of Moderately Ductile shear walls is permitted by S304-14 Cl.16.8.5.2, because the wall 

has an aspect ratio 24.1 
w

w

l

h
, and is subjected to low axial stress (less than mf 1.0 ). 

However, this design requires full grouting within the plastic hinge zone due to the significant 
shear demand. 
 

fd PP 9.0 = 1620 kN  

Since 
0.8*1090

10900


vf

f

dV

M
= 1.25 > 1.0  use  1.0f

f v

M

V d
 in the equation for masonry shear 

resistance below 

m
vf

f
m f

dV

M
v  )2(16.0 = 0.51 MPa 

gdvwmmm PdbvV  )25.0(   = 0.6(0.51*190*8000+0.25*1620*103)*1.0 = 704 kN     

To find the steel shear resistance sV , assume 2-15M bond beam reinforcing bars at 600 mm 

spacing (this should provide some allowance in the shear strength to satisfy capacity design), 
thus 

400vA  mm2 

600s  mm 

600

8000
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1088 kN 

 
According to Cl.16.8.9.1, there is a 25% reduction in the masonry shear resistance contribution 
for Moderately Ductile shear walls, and so 

16161088704*75.075.0  smr VVV  kN  > 1403rdV  kN       OK 

 
Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

11544.0max  gvwmmr dbfV  kN < rV        

It can be concluded that the above maximum shear resistance requirement has not been 
satisfied. It would be required to increase either wall thickness or length to satisfy this 
requirement. It is recommended to perform this check at an early stage of the design. 
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8. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 Cl.10.10.5.1) 
The factored in-plane sliding shear resistance rV  is determined as follows: 

  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 

For Moderately Ductile shear walls, all vertical reinforcement should be accounted for in the yT  

calculations (Cl.10.10.5.1), (also see Figure 2-17)  
400*2800*85.0 yssy fAT   = 952 kN 

dP  = 1620 kN 

yd TPC   = 1620+952 = 2572 kN 

CV mr   = 0.6*1.0*2572 = 1543 kN 

1543rV  kN > 1403rdV  kN       OK 

 
9. Shear resistance at the web-to-flange interface (see Section C.2 and S304-14 Cl.7.11). 
The factored shear stress at the web-to-flange interface is equal to the larger of the horizontal 
and vertical shear stress, as shown below. 
Horizontal shear can be determined as follows: 

74.0
10000*190

10*1403 3


we

rd
f lt

V
v  MPa 

where et = 190 mm (effective wall thickness) 

Vertical shear over the entire wall height (caused by the resultant compression force fbP  
calculated in Step 3): 

96.0
14000*190

10*2550

*

3


ww

fb
f hb

P
v  MPa           governs 

Factored masonry shear strength for bonded interfaces (S304-14 Cl.7.11.1): 

0.16 0.30m m mv f    MPa 

Since 
96.0fv  MPa > 0.30mv   MPa 

it is required to provide additional shear reinforcement at the web-to-flange interface. The 
horizontal reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement) 
and both bars can be extended into the flange (90° hook). These bars will provide shear 
resistance at the interface. Therefore, 

19.1
190*600

400*200*2*85.0





e

yss
s ts

fA
v


 MPa 

The total shear resistance 
0.30 1.19 1.49r m sv v v      MPa > 96.0fv  MPa    OK 

 
10. S304-14 seismic detailing requirements for Moderately Ductile shear walls – plastic 
hinge region 
According to Cl.16.8.4, the required height of the plastic hinge region for Moderately Ductile 
shear walls must be greater than (see Table 2-5) 

2 2 5.0ph l   m    

or 
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/ 6 14.0 / 6 2.3p wh h    m   

(note that wh  denotes the total wall height) 

So, 5.0ph   m governs   

 
The reinforcement detailing requirements for the plastic hinge region of Moderately Ductile 
shear walls are as follows (see Table 2-4 and Figure 2-40): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2) (the relaxation 

under Cl.16.8.5.2 does not apply in this case). 
2. Horizontal reinforcement requirements  

a) Reinforcement spacing should not exceed the following limits (Cl.16.8.5.4): 
1200s  mm or  

50002100002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
1200s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements  

 Horizontal reinforcement shall not be lapped within (Cl.16.8.5.4) 
 600 mm or  

20005 wl  mm   

whichever is greater, from the ends of the wall. In this case, the reinforcement should not 
be lapped within the distance 2000 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. Lap splice lengths within the plastic 
hinge region are required to be at least dl5.1 (Cl. 16.8.5.5). 

 
Horizontal reinforcement shall be (Cl.16.8.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have at least 90° hooks at the ends of the wall. 
All these requirements will be complied with, as shown on the design summary drawing. 

3. Vertical reinforcement requirements (Cl.16.8.5.1) 
Unlike Ductile shear walls there are no specific lapping restrictions for vertical reinforcement in 
the plastic hinge zone of Moderately Ductile shear walls. Lap splice lengths within the plastic 
hinge region are required to be at least dl5.1  (Cl.16.8.5.5). 

 
11. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that Moderately Ductile shear walls must be solid grouted in the plastic hinge 
region, except for certain specific cases. But they may be partially grouted outside the plastic 
hinge region (this depends on the design forces). 
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12. Discussion 
 
It is important to consider all possible behaviour modes, and to identify the one that governs in 
this design. The following shear resistance values need to be considered: 
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1. 1616rV  kN diagonal tension shear resistance 

2. 1543rV  kN sliding shear resistance 

3. 1403rdV  kN minimum required shear resistance to achieve ductile flexural behaviour 

 
It can be concluded that the minimum required shear force corresponding to the flexural failure 
mechanism is the smallest, so the flexural failure mechanism governs in this case, which is a 
requirement for the Capacity Design approach for Moderately Ductile shear walls. 
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EXAMPLE 5b: Seismic design of a Ductile shear wall with a rectangular cross-section 
Perform the seismic design of a shear wall shown in the figure below. The wall is five-stories  
high, with a total height of 15 m. It is part of a building located in Vancouver, BC (City Hall), 
where the seismic hazard index,  2.0aaE SFI , is 0.85. The design needs to meet the 
requirements for a Ductile Shear Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1800 kN, an in-plane seismic shear force of 943 kN, and an overturning moment of 9430 kNm. 
The elastic lateral displacement at the top of the wall is 13 mm. Select the wall dimensions 
(length and thickness), and the reinforcement so that the CSA S304-14 seismic design 
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall 
length should not exceed 10 m, and a standard rectangular wall section should be used. 
 
Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
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SOLUTION: 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar: 

mf  = 13.5 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  15 m 

Wall length considered for initial calculations: wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 943 kN seismic shear force 

 fM  = 9430 kNm overturning moment 

 
For Ductile shear walls (NBC 2015 Table 4.1.8.9 – see Section 1.7) it is required that Rd = 3.0 
and Ro = 1.5. 
 
According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be 
greater than 1.0. In this case,  

0.15.1
10000

15000


w

w

l

h
  OK 

 
3. Determine the required wall thickness based on the S304-14 height-to-thickness 
requirements (Cl.16.9.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls: 

12)10( th  

For this example, h= 3000 mm (unsupported wall height) 
So, 

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness is 

240t  mm 
Note that it would be possible to use a smaller wall thickness (190 mm) if wbc 4 or 

wlc 3.0 (Cl.16.9.3.3 relaxing provision 16)10( th ). The requirement 

76019044  wbc mm would require a very small neutral axis depth which would be difficult 

to achieve in this case. Therefore a 240 mm wall thickness will be used in this design. 
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4. Determine the wall length based on the shear design requirements. 
Designers may be requested to determine the wall dimensions (length and thickness) based on 
the design loads. In this case, the thickness is governed by the height-to-thickness ratio 
requirements, and the length can be determined from the maximum shear resistance for the 
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304-14 
Cl.10.10.2.1): 

gvwmmrr dbfVV   4.0max  

0.1g   solid grouted wall (required for plastic hinge zone) 

240wb  mm overall wall thickness 

80008.0  wv ld  mm   effective wall depth 

Set  
943 fr VV  kN 

and so 

5570
0.1*8.0*240*5.13*6.0*4.0

10*943

)8.0(4.0

3





gwmm

f
w

bf

V
l


 mm 

Therefore, based on the shear design requirements the designer could select a wall length of 
5.7 m. However, a preliminary capacity design check indicated that a minimum wall length of 
nearly 10 m was required, thus try 

10000wl  mm 

which gives 
1690max rV  kN   

 
5. Minimum S304-14 seismic reinforcement requirements (see Table 2-3). Since 

 2.0aaE SFI = 0.85 > 0.35, it is required to provide minimum seismic reinforcement (S304-14 

Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic 
reinforcement requirements. 
 
6.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2). 
Design for the combined effects of axial load and flexure by assuming uniformly distributed 
vertical reinforcement over the wall length.  
 
The amount of vertical reinforcement can be estimated from the ductility requirements for 
Ductile shear walls (S304-14 Cl.16.8.8). The goal for the S304-14 detailed ductility check is to 
confirm that the rotational capacity exceeds the rotational demand in the plastic hinge zone. 
Based on the minimum rotational demand requirements (min = 0.004), the wlc ratio should not 

exceed 0.2 for Ductile Shear Walls (see Section 2.6.3). An approach for estimating the 
maximum amount of vertical reinforcement required for predefined wlc ratio for walls with 

distributed reinforcement is presented in Section 2.6.3, and its application will be illustrated next.  
 
The main input parameter is the level of axial compression stress relative to compressive 
strength mf ' , that is, 

055.0
240100005.13

101800

''

3







tlf

P

f

f

wm

f

m
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From Fig. 2-27 (see below), for the given axial stress level of 0.055 (vertical axis), and assuming 

wlc =0.2 (horizontal axis) it is possible to determine the corresponding  value; 

06.0  
 
The required vertical reinforcement ratio can be determined from  as follows: 

00143.0
40085.0

5.136.006.0'






ys

mm
v f

f




  

 Since the vertical reinforcement ratio is equal to  

w

vt
v lt

A

*
  

The maximum required area of vertical reinforcement can be determined as follows 
 

34321000024000143.0  wvvt ltA  mm2 

Since this is the maximum amount from the ductility perspective, the goal is to select an amount 
of reinforcement less than the maximum and confirm that the amount is sufficient to satisfy the 
strength requirement (flexural capacity must be larger than the applied bending moment). 

 
 
The proposed area of vertical reinforcement is as follows: 

vtA = 2800 mm2  

In total, 14 vertical reinforcing bars are used in this design: 4-15 M reinforcing bars as 
concentrated reinforcement (2-15M bars at each end) plus 10-15M bars as distributed 
reinforcement, and the average spacing is equal to  

753
13

20010000



s   mm  
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Since 2-15M bars are concentrated at each end, the amount of concentrated reinforcement is 

cA = 400 mm2  

And the amount of distributed reinforcement is 
 cvtd AAA 2 2000 mm2 

For Ductile shear walls, S304-14 Cl.16.9.5.3 notes that the amount of concentrated 
reinforcement at each wall end should not exceed 25% of the distributed reinforcement. Since 

2.02000400 dc AA  < 0.25 OK 

It is also required to check the maximum reinforcement area per S304-14 Cl.10.15.2 (see Table 
2-3). 
Since mms 753  < 960240*44 t  mm 

4800)10*240(02.002.0 3
max  gs AA  mm2/m 

This is significantly larger than the estimated area of vertical reinforcement. 
 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01    8.01     05.0   09.0   1820c  mm 
 







 





























10000

1820
1

2800*400*85.0

10*1800
1

1000

10000
*2800*

1000

400
*85.0*5.0115.0

3

wvtys

f

wvtysr l

c

Af

P
lAfM


  

11300rM   kNm > 9430fM   kNm       OK 

Note that 
2.018.0100001820 wlc  

Therefore, the S304-14 minimum rotational demand requirement for Ductile shear walls is 
satisfied. 
 
7. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ), should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

55.1 
w

w

l

h
Also, the neutral axis depth  

c= 1820 mm 
and so 

125.018.0100001820 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

131 fΔ  mm 
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The overstrength factor must be at least equal to 1.3, and can be determined from the following 
equation: 

36.1
9430

12800


f

n
w M

M
   

In this case, the nominal moment capacity is equal to Mn = 12,800 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
The S304-14 minimum rotational demand is min = 0.004 for Ductile shear walls. The actual value 
is determined from the following equation: 
 

    3

3

11 1008.4

10
2

0.10
0.15

36.1135.10.313

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31087.4002.0
18202

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity iic is greater than rotational demand id, it can be concluded that 
the S304-14 ductility requirements have been satisfied. 
 
8.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.9.8.3)     
 
Cl.16.9.8.3 requires that the factored shear resistance, rV , should be greater than the shear due 
to effects of factored loads, but not less than i) the shear corresponding to the development of 
probable moment capacity, pM , or ii) the shear corresponding to the lateral seismic load (base 

shear), where earthquake effects were calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to 
the probable moment capacity, as follows 

13900pM   kNm   

The shear force resultant acts at the effective height eh , that is, the distance from the base of 

the wall to the resultant of all seismic forces acting at the floor levels. Note that eh  can be 

determined as follows 

0.10
f

f
e V

M
h  m 

The shear force pbV  corresponding to the overturning moment pM  is equal to 


0.10

13900

e

p
pb h

M
V  1390 kN 
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The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

3264
3.1

5.10.3943

3.1






 odf

fe

RRV
V kN 

The smaller of these two values should be used, hence 
1390rdV kN 

 
9.  Diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14 
Cl.10.10.2.1 and Cl.16.9.8.1)           
Masonry shear resistance ( mV ): 

240wb  mm overall wall thickness 

80008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 1620 kN  

Since 

0.8*943

9430


vf

f

dV

M
= 1.25 > 1.0  use 0.1

vf

f

dV

M
 in the equation for masonry shear resistance 

below 

m
vf

f
m f

dV

M
v  )2(16.0 = 0.59 MPa 

gdvwmmm PdbvV  )25.0(   = 0.6(0.59*240*8000+0.25*1620*103)*1.0 = 920 kN     

The required steel shear resistance can be found from the following equation (see Section 2.6.5 
and S304-14 Cl.16.9.8.1) (note 50% reduction of Vm) 

rdsmr VVVV  5.0     

hence 
9309205.013905.0  mrds VVV  kN 

The required amount of reinforcement can be found from the following equation 

57.0
8000*400*85.0*6.0

10*930

6.0

3


vys

sv

df

V

s

A


 

Try 2-15M bond beam reinforcing bars at 600 mm spacing ( 400vA  mm2   and  600s  mm): 

67.0
600

400


s

Av  > 0.57    OK 

Steel shear resistance sV : 

600

8000
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1088 kN 

Total diagonal shear resistance: 
0.5 0.5 920 1088 1548r m sV V V       kN    > 1390rdV kN  OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

16904.0max  gvwmmr dbfV   kN   
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Since 
1548rV kN < 1690max rV kN       OK 

In conclusion, the diagonal shear design requirement has been satisfied. 
 
10. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 Cl.10.10.5.1 and 
16.9.8.2) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted 
for in the yT  calculations (S304-14 Cl.16.9.8.2), and so (see Figure 2-17b)  







 








 


10000

182010000
*400*2800*85.0

w

w
yssy l

cl
fAT   = 779 kN 

dP  = 1620 kN 

yd TPC   = 1620+779 = 2399 kN 

CV mr   = 0.6*1.0*2399 = 1440 kN 

1440rV  kN >  1390rdV kN       OK 

 
11. S304-14 seismic detailing requirements for Ductile shear walls – plastic hinge region 
 
According to Cl.16.9.4, the required height of the plastic hinge region for Ductile shear walls is 
(see Table 2-5) 

0.5 0.1 0.5 10000 0.1 15000 6500p w wh l h       mm  

However 
0.8 1.5w p wl h l    

Since 
80008.0 wl mm > 6500 mm 

It follows that 
0.8 8.0p wh l   m governs.  

 
The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are 
as follows (see Table 2-4 and Figure 2-41): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2). 
2. Horizontal reinforcement requirements: 

a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4): 
600s  mm or  

50002100002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
600s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements 

 Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4) 
  600 mm or  



9/1/2018                    3-76 

  5wl = 2000 mm 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within 2000 mm from the end of the wall. The horizontal reinforcement can be 
lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.16.9.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 

3. Vertical reinforcement requirements: 
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.3): 

25004100004  wls  mm, but need not be less than 400 mm, or the minimum 

seismic requirements specified in Cl.16.4.5.3, which states that 1200s  mm (this value 
governs since the wall thickness is 240 mm). Since the lesser value governs, the 
maximum permitted spacing is 1200s  mm. 
 

b) Detailing requirements 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (Cl.16.9.5.2). 
 
12. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be 
partially grouted outside the plastic hinge region (depending on the design forces).  
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13. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following shear resistance values need to be considered: 

4. 1548rV  kN diagonal tension shear resistance 

5. 1440rV  kN sliding shear resistance 

6. 1390rdV  kN minimum required shear resistance to achieve ductile flexural behaviour 
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It can be concluded that the minimum required shear force corresponding to the flexural failure 
mechanism is the smallest (1390 kN), so it governs in this case, which is a requirement for the 
Capacity Design approach for Ductile RM shear walls. 
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EXAMPLE 5c: Seismic design of a Ductile shear wall with Boundary Elements 
Perform the seismic design of the same shear wall designed in Example 5b. The building is 
located in Victoria, BC where the seismic hazard index,  2.0aaE SFI , is 1.3. The design needs 
to meet the requirements for a Ductile Shear Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1800 kN, an in-plane seismic shear force of 1310 kN, and an overturning moment of 13100 
kNm. The elastic lateral displacement at the top of the wall is 18 mm. Select the wall dimensions 
(length and thickness) and the reinforcement, so that the CSA S304-14 seismic design 
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall 
length should not exceed 10 m. The wall may have standard rectangular section, or 
alternatively, boundary elements may be provided at wall ends if required by design. 
 
Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
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SOLUTION: 
 
As the first attempt, the wall will be designed with a rectangular cross-section, and boundary 
elements will be provided only if a rectangular section cannot be used. 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar: 

mf  = 13.5 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  15 m 

Wall length considered for initial calculations: wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 1310 kN seismic shear force 

 fM  = 13100 kNm overturning moment 

For Ductile shear walls (NBC 2015 Table 4.1.8.9 – see Section 1.7), it is required that Rd = 3.0 
and Ro = 1.5. 
 
According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be 
greater than 1.0. In this case,  

0.15.1
10000

15000


w

w

l

h
  OK 

 
3. Determine the required wall thickness based on the S304-14 height-to-thickness 
requirements (Cl.16.9.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls: 

12)10( th  
For this example, 
h= 3000 mm (unsupported wall height) 
So, 

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness is 

240t  mm 
 
4. Minimum S304-14 seismic reinforcement requirements (see Table 2-2) 
Since  2.0aaE SFI = 1.3 > 0.35, it is required to provide minimum seismic reinforcement (S304-
14 Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic 
reinforcement requirements. 
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5.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2). 
 
The total area of vertical reinforcement has been estimated as follows: 

vtA = 6000 mm2  

 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01    8.01     09.0   08.0   1910c  mm 
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15500rM   kNm > 13100fM   kNm       OK 

 
6. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ) should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

55.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 1910 mm 
and so 

125.019.0100001910 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

181 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

39.1
13100

18200


f

n
w M

M
   

In this case, the nominal moment capacity is equal to Mn = 18,200 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
Based on the S304-14 rotational demand requirement, the minimum rotational demand min = 
0.004 for Ductile shear walls. The actual value is determined from the following equation: 
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   1 1 3

3

18 3.0 1.5 18 1.39
5.60 10

10.0
15.0 10

2 2

wf o d f

id
w

w

Δ R R Δ

h


 

    
   

    
 

  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31053.4002.0
19102

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity is less than the rotational demand, it can be concluded that the 
S304-14 ductility requirements have not been satisfied. The design will be continued by 
providing boundary elements at wall ends, and following the pertinent S304-14 provisions for 
Ductile shear walls with increased compressive strain beyond the 0.0025 limit (S304-14 
Cl.16.10). It is proposed that an overall wall length of 9 m be used, which is less than the 
maximum length (10 m) per design requirements. 
 
7. Determine the minimum required thickness for the boundary elements and the wall 
based on the S304-14 height-to-thickness requirements (Cl.16.9.3, see Section 2.6.8.3) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls with boundary elements (for the zone between the compression face to one-
half of the compression zone depth, see Figure 2-35): 

12)10( th  
For this example, 
h= 3000 mm (unsupported wall height) 
So  

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness of the boundary element is 240 
mm, however a larger size will be selected since larger number of vertical reinforcing bars need 
to be provided, that is, 

390bt  mm 

The maximum required thickness of the wall web is 
1781016  ht  mm 

Therefore, a 190 mm wall thickness could be used for this design based on the height/thickness 
requirements, however a larger thickness is required to meet the shear resistance requirements, 
therefore  

240t  mm 
will be used in this design. 
 
8.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.1). 
The proposed wall length 9000wl mm is less than the maximum permitted value (10000 mm). 

The proposed dimensions of boundary elements are:  
790bl mm length 

390bt  mm thickness 

These dimensions will be verified at a later stage. 
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The design procedure assumes that the concentrated reinforcement (area cA ) is provided at 

each boundary element, while the remaining reinforcement (area dA ) is distributed over the wall 

web. After a few trial estimates, the total area of vertical reinforcement vtA  was determined as 

follows 

vtA = 5200 mm2 

Concentrated reinforcement in the boundary elements (8-15M bars at each boundary element): 

cA = 1600 mm2 

Check if this amount is sufficient based on S304-14 Cl.16.11.8: 
16209000*240*00075.0**00075.0  wc ltA mm2 

The proposed area is slightly less than the required area, but the difference is insignificant. 
 
Distributed reinforcement in the wall: 

dA 5200-2*1600 = 2000 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

3952  bld  mm  

The area of the compression zone LA : 

5
3

10*6.3
5.13*6.0*85.0

2000*400*85.010*1800

'85.0








mm

dysf
L f

AfP
A




mm2 

 
If the area of the compression zone exceeds the area of boundary element, it follows that the 
neutral axis falls in the wall web (as opposed to the boundary element). In this case the area of 
boundary element is 

510*08.3790*390*  bbg ltA  mm2 

Since 

gL AA     

it follows that the neutral axis falls in the web. The compression zone depth a  can be 
determined from the following equation: 

5* 3.6*10 390*790
790 1010

240
L f f

f

A b l
a l

t

 
     mm 

The neutral axis depth is 

1259
8.0


a
c  mm 

The centroid of the masonry compression zone: 

 
539

10*6.3

2240*)7901010()
2

790
1010(*790*3902*

2
**

5

2
2

















L

f
f

ff

A

tla
l

alb

x  

 
 
The resultant of masonry compression stress is  
 

  2480)10*6.3)(5.13*6.0*85.0('85.0 5  Lmmm AfC   kN 
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Finally, the factored moment resistance of the wall 
section is  
 

     )53929000(10*48.2)2(22 6dlAfxlCM wcyswmr 
 

14300)39529000)(1600*400*85.0(2   kNm 
 

14300rM   kNm > 13100fM   kNm       OK 

Note that 
2.014.090001259 wlc  

therefore the S304-14 minimum rotational demand requirement for Ductile shear walls is 
satisfied. 
 
9.  Determine the size of boundary elements (see Section 2.6.8.3). 
The proposed thickness of a boundary element is  

390bt mm 

and the proposed length is  
790bl mm 

 
Note that the length of a boundary element should not be less than the largest of the following 
three values (Cl.16.11.2): 

))0025.0(,2,1.0( mumuwb cclcl     

The selection of the length is an iterative process, since it is required to perform a design for 
axial load and flexure in order to determine the neutral axis depth c, hence 

3599000*1.012591.0  wlc mm 

630212592 c mm 
The larger of these two values will govern, that is, 

630bl mm 

Hence, the proposed value of 790 mm is OK. Note that the third criterion is as follows 

mumub cl  )0025.0(   

Cannot be followed at this stage because mu  is not known. 

 
10. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ) should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

567.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 1259 mm 
and so 

125.014.090001259 wlc  
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Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

181 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

3.127.1
13100

16600


f

n
w M

M   

Hence, 
3.1w  

In this case, the nominal moment capacity is equal to Mn = 16,600 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
The S304-14 minimum rotational demand is min = 0.004 for Ductile shear walls. The actual value 
is determined from the following equation: 
 

    3

3

11 1049.5
10

2

0.9
0.15

30.1185.10.318

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The required maximum compressive strain value can be determined from the following equation 
(see Section 2.6.8.2) 
 

  0021.0
9000

1259*2
)002.010*49.5(

2
002.0 3  

w
idmu l

c  

Note that 

mumub cl  )0025.0(   

However, this criterion cannot be applied since mu is less than 0.0025. 

 
11.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.10.4.3)     
 
Cl.16.10.4.3 requires that the factored shear resistance, rV , should be greater than the shear 
due to the effects of factored loads, but not less than i) the shear corresponding to the 
development of probable moment capacity, pM , or ii) the shear corresponding to the lateral 

seismic load (base shear), where earthquake effects were calculated using RdRo = 1.3. 
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The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to 
the probable moment capacity, as follows 

18600pM   kNm   

The shear force resultant acts at the effective height eh , that is, the distance from the base of 

the wall to the resultant of all seismic forces acting at the floor levels. Note that eh  can be 

determined as follows 

0.10
f

f
e V

M
h  m 

The shear force pbV  corresponding to the overturning moment pM  is equal to 


0.10

18600

e

p
pb h

M
V  1860 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

1310 3.0 1.5
4535

1,.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
1860rdV kN 

 
12.  Diagonal tension shear resistance (see Section 2.6.5 and S304-14 Cl.10.10.2.1)           
Masonry shear resistance ( mV ): 

240wb  mm overall wall thickness 

72008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 1620 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.59 MPa 

Since 

2.7*1310

13100


vf

f

dV

M
= 1.39 > 1.0  

use 0.1
vf

f

dV

M
 

gdvwmmm PdbvV  )25.0(   = 0.6(0.59*240*7200+0.25*1620*103)*1.0 = 852 kN     

The required steel shear resistance can be found from the following equation (see Section 2.6.5 
and S304-14 Cl.16.10.4.1) 

rdsmmur VVVV  ))2(0025.0(   

Since 
59.0)0021.0*2(0025.0)2(0025.0 mu  

Then 
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1357852*59.0186059.0  mrds VVV  kN 

The required amount of reinforcement can be found from the following equation 

92.0
7200*400*85.0*6.0

10*1357

6.0

3


vys

sv

df

V

s

A


 

Try 2-20M bond beam reinforcing bars at 600 mm spacing ( 600vA  mm2   and  600s  mm): 

0.1
600

600


s

Av  > 0.92    OK 

Steel shear resistance sV : 

600

7200
*600*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1470 kN 

Total diagonal shear resistance: 
1973147085259.059.0  smr VVV  kN    > 1860rdV  kN    OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

15204.0max  gvwmmr dbfV   kN   

Since 
1973rV kN > 1520max rV kN       

the above maximum shear resistance requirement has not been satisfied. It would be required 
to increase either wall thickness or length to satisfy this requirement. It is recommended to 
perform this check at an early stage of the design.  
 
13. Sliding shear resistance (see Sections 2.3.3 and 2.6.7, and S304-14 Cl.10.10.5.1 and 
16.10.4.2) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 5200 mm2 total area of vertical wall reinforcement 

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted 
for in the yT  calculations (S304-14 Cl.16.10.4.2), (also see Figure 2-17b)  







 








 


9000

12599000
*400*5200*85.0

w

w
yssy l

cl
fAT   = 1520 kN 

dP  = 1620 kN 

yd TPC   = 1620+1520 = 3140 kN 

CV mr   = 0.6*1.0*3140 = 1884 kN 

1884rV  kN >  1860rdV kN       OK 

 
14. Shear at the interface (see Section 2.6.8.4 and S304-14 Cl.16.11.10) 
It is required to check whether the horizontal wall reinforcement is sufficient to resist the vertical 
shear stresses at the boundary element interface. The shear flow demand is based on the 
design shear force transferred over the storey height, that is, 

620
0.3

1860


h

V
V rd
sf kN/m 

The shear flow resistance is as follows (Cl.16.11.10) 
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smfr FV   

The resistance provided by horizontal reinforcement (2-20M bars at 600 mm spacing) is as 
follows 

204340*0.1*6.0  smfr FV  kN/m 

Where 
    340600600*400*85.0  sAfF vyss  kN/m 

is the shear flow resistance provided by the horizontal reinforcement. Since  

sffr VV   

it follows that additional horizontal reinforcement is required to satisfy the requirement. Let us 
assume that 2-20M bars (total area 600 mm2) will be provided at 200 mm spacing throughout 
the wall height at the first-floor level, that is, 

    1020200600*400*85.0  sAfF vyss  kN/m 

6121020*0.1*6.0  smfr FV  kN/m 

This shear flow resistance approximately satisfies the shear flow demand. The difference (620-
612=8 kN/m) is 1% of the total demand, which is insignificant. 
 
15. Detailing of boundary elements (see Section 2.6.8.5 and S304-14 Cl.16.11) 
 
1) Regular ties and buckling prevention ties within the plastic hinge zone 

 
Dimensions of a boundary element: 

790bl mm length 

390bt mm thickness 
510*08.3390*790*  bbg tlA mm2 

For the rectangular hoop reinforcement, the minimum area Ash in each principal direction should 
not be less than the larger of the following (S304-14 Cl.16.11.6): 

c
yh

m

ch

g
pnsh hs

f

f

A

A
kkA 

'
2.0 1  

or 

c
yh

m
sh hs

f

f
A 

'
09.0  

where 

33.1
28

8

2








l

l
n n

n
k  

8ln  number of supported bars around the perimeter of a boundary element 

163.00021.0*301.0301.01  mupk   
510*0.2690*290 chA mm2 

is the area of the confined core and 690ch mm is the larger dimension of the confined core 

(the dimension in other direction is 290 mm) 
The maximum spacing of buckling prevention ties within the plastic hinge zone should not 
exceed the lesser of (S304-14 Cl.16.11.4) 
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)2,24,6( btieb tdds   

Where db is longitudinal bar diameter, and dtie is the tie diameter, hence 
9015*66 bd mm 

24010*2424 tied mm 

19523902 bt mm 

Hence, 
90s mm governs 

Assume  
80s mm 

The required area of tie reinforcement in boundary elements should be at least equal to the 
larger of  

124690*80*
400

5.13

10*0.2

10*08.3
*163.0*33.1*2.0

'
2.0

5

5

1  c
yh

m

ch

g
pnsh hs

f

f

A

A
kkA mm2 

or 

168690*80*
400

5.13
09.0

'
09.0  c

yh

m
sh hs

f

f
A mm2 

Hence 
168shA mm2 governs 

This area of reinforcement can be achieved through 3-10M bars (total area 300 mm2): two bars 
are a part of a regular tie enclosing the boundary element, plus a cross tie supporting 
intermediate bars. 
 
2) Regular ties and buckling prevention ties outside the plastic hinge zone 

 
The maximum spacing of buckling prevention ties outside the plastic hinge zone should not 
exceed the lesser of (S304-14 Cl.12.2.1) 

),48,16( btieb tdds   

Where db is longitudinal bar diameter, and dtie is the tie diameter, hence 
24015*1616 bd mm 

48010*4848 tied mm 

390bt mm 

Hence, 
240s mm governs 

Assume  
240s mm 
 

3) Vertical reinforcement: detailing 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (S304-14 Cl.16.11.9). 
 
16. The S304-14 seismic detailing requirements for Ductile shear walls – plastic hinge 
region 
 
According to Cl.16.10.3, the required height of the plastic hinge region for Ductile shear walls is 
(see Table 2-5) 
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0.5 0.1 0.5 9000 0.1 15000 6000p w wh l h       mm  

However 
2.0w p wl h l    

Since 
9000wl mm > 6000 mm 

It follows that 
9.0p wh l   m governs.   

 
The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are 
as follows (see Table 2-4 and Figure 2-41): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2). 
2. Horizontal reinforcement requirements: 

a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4): 
600s  mm or  

4500290002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
600s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements 

 Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4) 
  600 mm or  
  5wl = 1800 mm 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within the distance 1800 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.16.9.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 

3. Vertical reinforcement requirements: 
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.3): 

2250490004  wls  mm, but need not be less than 400 mm   

or the minimum seismic requirements specified in Cl.16.4.5.3, which states that  
1200s  mm (this value governs since the wall thickness is 240 mm). 

            Since the lesser value governs, the maximum permitted spacing is 1200s  mm. 
b) Detailing requirements 

At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (Cl.16.9.5.2). 
 
17. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be 
partially grouted outside the plastic hinge region (depending on the design forces). 
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects 
 
Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane 
loads in Example 4b, according to NBC 2015 and CSA S304-14 requirements. The wall is a part 
of a single-storey warehouse building located in Burnaby, BC, with soil corresponding to Site 
Class D. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN 
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15 
MPa unit strength, Type S mortar, and solid grouting. The wall is reinforced with 15M Grade 400 
vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in S304-14 will 
not be considered in this design. 

 
 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry:  

m = 0.6    

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2. Determine the out-of-plane seismic load according to NBC 2015 (see Section 2.7.7.3). 
This design requires the calculation of seismic load pV  for parts of buildings and nonstructural 
components according to NBC 2015 Cl.4.1.8.18. First, seismic design parameters need to be 
determined as follows: 
 Location: Burnaby, BC (NBC 2015 Appendix C)                     

)2.0(aS = 0.768  and PGAref = 0.50 

 Foundation factors  
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(0.2)aF F  0.9 and Site Class D for PGAref = 0.50 (from Table 1-3 or NBC 2015 Table 

4.1.8.4.B) 
 EI = 1.0  normal importance building 
Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBC 
2015, Table 4.1.8.18, Case 1) 

0.1pC    0.1rA   5.2pR   0.3xA  ( nx hh    top floor) 

 2.15.20.30.10.1  pxrpp RAACS       

 0.47.0  pS    O.K. 

 pW  = 4.0 kN/m2 unit weight of the 190 mm block wall (solid grouted) 

Seismic load pV  can be calculated as follows: 

  ppEaap WSISFV 2.03.0 =0.3*0.9*0.69*1.0*1.2*(4.0 kN/m2) = 0.99 kN/m2  1.0 kN/m2 

 
3. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
According to S304-14 Cl.10.6.1, the effective compression zone width (b ) should be taken as 
the lesser of the following two values (see Figure 2-19): 

600 sb  mm   spacing of vertical reinforcement 
or 

760190*44  tb  mm 
All design calculations in this example will be performed considering a vertical wall strip of width 

600b  mm. 
 
4. Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin 
supports at the base and top. The loads on the wall 
consist of axial load due to roof load and wall self-
weight, plus the seismic out-of-plane load. The roof 
load and wall self-weight create moments due to 
minimum axial load eccentricity. 
 Axial load per wall width equal to 600b  mm: 

0.1725.176.0*
8

230
* 

m

kN
b

l

P
P

w
f  kN 

 Minimum eccentricity (S304-14 Cl.10.7.2)  
 te 1.0min  0.019 m 

 Out-of-plane seismic load per wall width equal to 
600b  mm: 

6.06.0*0.1 pv  kN/m 

 Design bending moment (at the midheight): 

8

6.6*6.0
019.0*17

8

*
*

22

min  wp
f

hv
epM  

        = 3.59  3.6 kNm 
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5. Check whether the wall resistance for the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
This can be verified from a P-M interaction diagram which can be developed using the EXCEL© 
software (or commercially available masonry design software). Relevant tables used to develop 
the diagram are presented below, while the detailed theoretical background is outlined in 
Section C.1.2. Note that the design width is equal to mmb 600 . 
 
Table 1. Design Parameters 
 

Design parameter Unit Symbol Value 

Wall thickness  mm t 190 

Design width mm b 600 

Masonry maximum strain    EPSm 0.003 

Masonry strength MPa f'm 7.5 

Steel yield strength MPa fy 400 

Steel modulus of elasticity  MPa Es 200000 

Effective depth mm d 95 

(c/d)balanced     0.6 

Reinforcement area mm^2/b As 200 
Material resistance-
masonry   Fim 0.6 

Material resistance-steel   Fis 0.85 

X- factor   X 1 

BETA1   BETA1 0.8 

Effective area mm^2 Ae 114000 
 
In this case, the reinforcement is placed at the centre of the wall and so 

95
2

190

2


t
d  mm 

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and 
maximum compressive strain in masonry) can be determined from the following proportion 

y

m

b

b

cd

c







 

For 003.0m  and 002.0y  it follows that 

dcb 6.0  

The area of vertical reinforcement per width 600b  mm can be determined as follows: 

200600*
600

200
*  b

s

A
A b
s  mm2    (15M@ 600 mm reinforcement) 

 
To determine whether the wall can carry the combined effect of axial load and bending moment, 
it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction 
diagram). The P-M interaction diagram for this example was developed using Microsoft 
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EXCEL spreadsheet, but other methods or computer programs are also available. The results 
of the calculations are presented in Table 2. 
 
Table 2. P-M Interaction Diagram Values 
 

  
  

  c/d c Cm EPSs Tr Mr Pr 

    mm N   N kNm kN 

Points controlled 
by steel c<cb  

  0.01 0.95 1744.2 0.02 68000 0.16504 -66.256 

  0.1 9.5 17442 0.02 68000 1.59071 -50.558 

  0.2 19 34884 0.02 68000 3.04886 -33.116 

  0.3 28.5 52326 0.02 68000 4.37445 -15.674 

  0.4 38 69768 0.02 68000 5.56749 1.768 

  0.5 47.5 87210 0.02 68000 6.62796 19.21 

  0.6 57 104652 0.02 68000 7.55587 36.652 

Points controlled 
by masonry c>cb 

  0.6 57 104652 0.002 68000 7.55587 36.652 

  0.7 66.5 122094 0.00129 43714.3 8.35123 78.3797 

  0.8 76 139536 0.00075 25500 9.01403 114.036 

  0.9 85.5 156978 0.00033 11333.3 9.54426 145.645 

Full section under 
compression 

  1 95 174420 0 0 9.94194 174.42 

  1.2 114 209304 -0.0005 -17000 10.3396 209.304 

  1.3 123.5 226746 -0.0007 -23538 10.3396 226.746 

  1.5 142.5 261630 -0.001 -34000 9.94194 261.63 

  1.7 161.5 296514 -0.0012 -42000 9.01403 296.514 

  2 190 348840 -0.0015 -51000 6.62796 348.84 

Pure compression             0 348.84 
 
The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated 
on the figure below. For more detailed explanation related to the development of P-M interaction 
diagrams refer to Section C.1.2. 
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The P-M interaction diagram showing the point of interest ( 6.3fM  kNm and 17fP  kN) is 
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-
plane bending is adequate for the given design loads and the reinforcement determined in 
Example 4b. 
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Wall P-M Interaction Diagram
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6. Check whether the out-of-plane shear resistance of the wall is adequate (S304-14 
Cl.10.10.3, see Section 2.4.2). 
Design shear force at the support per wall width 600b  mm: 

0.2
2

6.6*6.0

2

*
 wp

f

hv
V  kN 

According to S304-14 Cl.10.10.3, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV         

where 

mm fv  16.0 = 0.44 MPa  ( mf  = 7.5 MPa for solid grouted 15 MPa block) 

95d  mm    effective depth (to the block mid-depth) 
600b  mm  effective compression zone width 

The axial load dP  can be determined as 

 5.1525.17*9.09.0  fd PP  kN 

(note that the load has been prorated in proportion to the effective compression zone width b ). 
So, 

4.17)15500*25.095*600*44.0(*6.0 rV  kN 
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Since 
0.2fV  kN < 4.17rV  kN    OK 

Maximum shear allowed on the section is 

 5.37)95*600(*5.7*6.0*4.0*4.0max  dbfV mmr   kN          OK         

 
7. Check the sliding shear resistance (see Section 2.4.3). 
The factored out-of-plane sliding shear resistance rV  is determined according to S304-14 
Cl.10.10.5.2, as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement per wall width 600b  mm  

yssy fAT   = 0.85*200*400 = 68 kN  

5.159.0  fd PP  kN 

yd TPP 2  = 15.5+68 = 83.5 kN 

2PV mr  = 0.6*1.0*83.5= 50.0 kN 

0.50rV kN > 0.2fV kN       OK 

Note that the sliding shear resistance does not govern in this case, however this mechanism 
often governs the in-plane shear resistance. 
 
8. Conclusion 
It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall 
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design 
governs (this is a common scenario in design practice). 
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects 
 
Consider the same masonry wall discussed in Example 6a, but in this example treat is as a 
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm 
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane 
seismic resistance of the wall according to NBC 2015 and CSA S304-14 seismic requirements.  
 
Consider the following two cases: 
a) unreinforced wall, and 
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design). 
 
Use the seismic load determined in Example 6a, that is, 0.1pv  kN/m2. 

 
SOLUTION: 
 
Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

m = 0.6    

Compression resistance (S304-14 Table 4, 15 MPa concrete blocks and Type S mortar): 

mf  = 9.8 MPa (ungrouted, or partially grouted ignoring grout area)  

Tension resistance normal to bed joint (S304-14 Table 5): 

tf = 0.4 MPa (ungrouted) 

 
Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall 
height is 6.6wh  m. A unit wall strip (width 1000b  mm) will be considered for this design.  
 
The forces on the wall consist of the axial load due to the wall self-weight and the bending 
moment due to seismic out-of-plane load (NBC 2015 load combination 1xD+1xE). 
 Factored axial load per width b  of 1.0 m: 
wall weight w = 2.46 kN/m2 (ungrouted 190 mm block wall) 

1.80.1*
2

6.6
*)46.2(*

2
*  b
h

wP w
f  kN/m 

 Out-of-plane seismic load per width b  of 1.0 m: 
0.1pv  kN/m 

 Factored bending moment (at the midheight): 

5.5
8

6.6*0.1

8

* 22

 wp
f

hv
M  kNm/m 

 Factored shear force (at the support): 

3.3
2

6.6*0.1

2

*
 wp

f

hv
V  kN/m 
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a) Unreinforced wall 
 
Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section 2.7.1.3). 
Find the load eccentricity: 

mmm
kN

kNm

P

M
e

f

f 68068.0
1.8

5.5
  

According to S304-14 Cl.7.2.1, an unreinforced masonry wall is to be designed as uncracked if 
te 33.0  

where t   denotes the wall thickness ( mmt 190 ) 
mmt 63190*33.033.0   

In this case, 
mmtmme 6333.0680   

so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the 
allowable value) according to S304-14 Cl.7.2. The design procedure is explained in Section 
2.7.1.3. 
 
First, we need to determine properties for the effective wall section for a width 1000b  mm. 
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows: 

310*4.75eA  mm2/m effective cross-sectional area 
610*66.4eS  mm3/m section modulus of effective cross-sectional area 

 
The maximum compression stress at the wall face can be calculated as follows: 

MPa
S

M

A

P
f

e

f

e

f
c 29.118.1107.0

10*66.4

10*5.5

10*4.75

10*1.8
max

6

6

3

3

  

The allowable value is equal to 
MPafmm 9.58.9*6.0   

Since 
MPaMPaf c 9.529.1max   

it follows that the maximum compression stress is less than the allowable value. 
 
Find the maximum tensile stress as follows: 

MPa
S

M

A

P
f

e

f

e

f
t 07.118.1107.0

10*66.4

10*5.5

10*4.75

10*1.8
max

6

6

3

3

  

 The allowable value is equal to 
MPaf tm 24.04.0*6.0   

Since 
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MPaMPaf t 24.007.1max   

it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable. 
 
In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is 
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also, 
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where 
the seismic hazard index  2.0aaE SFI =1.0*1.0*0.66=0.66 > 0.35.  Therefore, the design will 
proceed considering a reinforced nonloadbearing wall. 
 
b) Reinforced wall 
 
i. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.7.4). 
According to S304-14 Cl.16.4.5.2a, if   75.02.035.0  aaE SFI  nonloadbearing walls shall be 
reinforced in one or more directions with reinforcing steel having a minimum total area of  

gstotal AA 0005.0   
The reinforcement may be placed in one direction, provided that it is located to reinforce the wall 
adequately against lateral loads and spans between lateral supports. 

gstotal AA 0005.0  = 0.0005*(190*103 mm2) = 95 mm2/m 
where 

gA =(1000mm)*(190mm)=190*103 mm2 gross cross-sectional area per metre of wall length 

Let us choose 15M vertical reinforcement (area 200 mm2 ) at 1200 mm spacing which is the 
maximum spacing allowed (1200 mm). 

The area of reinforcement per metre of wall length is 

167
1200

1000
*200 sA mm2/m  > 95 mm2/m   OK 

 
ii. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm, 
as follows: 

7.9
0.1

2.1
*1.8 fP  kN 

6.6
0.1

2.1
*5.5 fM  kNm 

0.4
0.1

2.1
*3.3 fV  kN 

 
iii. Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
Since this is a partially grouted wall, its flexural resistance will be determined using a T-section 
model.  
 
According to S304-14 Cl.10.6.1, the effective compression zone width (b ) should be taken as 
the lesser of the following two values (see Figure 2-19): 

1200 sb  mm  
or 

760190*44  tb  mm 
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Therefore, 760b  mm will be used as the width of the masonry compression zone. 
 
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38 
mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1, 
considering the case of an ungrouted 200 mm block wall. 

 
Since the reinforcement is placed at the centre of the wall, the effective depth is equal to 

95
2

190

2


t
d  mm 

The reinforcement area used for the design needs to be determined as follows: 
200 bs AA  mm2 

The internal forces will be determined as follows (see Figure C-9): 
68000200*400*85.0  sysr AfT   N 

Since 
77700680009700  rfm TPC  N 

and 
  abfC mmm  '85.0   

the depth of the compression stress block a can be determined as follows 

20
760*8.9*6.0*85.0

77700

'85.0


bf

C
a

mm

m


 mm  

Since 
mmtmma f 3820   

the neutral axis is located in the face shell (flange). The moment resistance around the centroid 
of the wall section can be determined as follows 

6.6)22095(*77700)2(  adCM mr  kNm 

Since  
6.6rM  kNm = 6.6fM  kNm 

it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could 
be reduced to s =1000 mm to allow for an additional safety margin (the revised moment 
resistance calculations are omitted from this example). 
 
iv. Check whether the out-of-plane shear resistance of the wall is adequate (see Section 
2.4.2). 
According to S304-14 Cl.10.10.3, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV        where 
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mm fv  16.0 = 0.50 MPa 

95d  mm    effective depth 
200b  mm  web width - equal to the grouted cell width (156 mm) plus the thickness of the 

adjacent webs (26 mm each) 
The axial load dP  can be determined as 

 7.87.9*9.09.0  fd PP  kN 

Thus, 
0.7)8700*25.095*200*50.0(*6.0 rV  kN 

Since 
0.4fV  kN < 0.7rV  kN    OK 

Maximum shear allowed on the section is 

 3.14)95*200(*8.9*6.0*4.0*4.0max  dbfV mmr   kN          OK         

 
v. Check the sliding shear resistance (see Section 2.4.3). 
The factored in-plane sliding shear resistance rV  is determined according to S304-14 
Cl.10.10.5.2, as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement at 1.2 m spacing 

yssy fAT   = 0.85*200*400 = 68.0 kN  

dP  = 8.7 kN 

yd TPP 2  = 8.7+68.0 = 76.7 kN 

2PV mr  = 0.6*1.0*76.7 = 46.0 kN 

0.46rV kN > 0.4fV kN       OK 

 
vi. Conclusion 
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is 
satisfactory. It should be noted that the flexural resistance governs in this design. The required 
amount of vertical reinforcement (15M@1200 mm) corresponds to the following area per metre 
length  

167
1000

* 
s

AA bs  mm2 

which is significantly larger than the minimum seismic reinforcement prescribed by S304-14, 
that is, 95stotalA  mm2/m. Note that 15M@1200 mm is also the minimum vertical reinforcement 
that meets the minimum spacing requirements using typical15M bars. 
 
Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was 
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at 
400 mm spacing could be considered to improve the overall seismic performance of the wall.  
 
It should be noted that, in exterior walls the mortar-bedded joints could be significantly affected 
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints); 
some of the grooves are up to 10 mm deep. The designer should consider this effect in the 
calculation of the compression zone depth. 
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EXAMPLE 7: Seismic design of masonry veneer ties 
 
Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a 
school gymnasium in Montréal, Quebec. The building is founded on Site Class C. The design 
should be performed to the requirements of NBC 2015, CSA S304-14, and CSA A370-14. 
Consider the following two types of the veneer backup: 
a) Concrete block wall (a rigid backup), and 
b) Steel stud wall with 400 mm steel stud spacing (a flexible backup). 
c) Evaluate the minimum tie strength requirements for the rigid and flexible backup. 
 
SOLUTION: 
 
This design problem requires the calculation of seismic load pV  for nonstructural elements 
according to NBC 2015 Cl.4.1.8.18 (for more details see Section 2.7.7.3). Note that the wind 
load could govern in a tie design for many site locations in Canada, however wind load 
calculations were omitted for this seismic design example. 
 
First, seismic design parameters need to be determined as follows: 
 Location: Montréal (City Hall), Quebec (NBC 2015 Appendix C)                     

)2.0(aS = 0.595 and PGAref = 0.379 

 Foundation factor  
(0.2)aF F  1.0 and Site Class C for PGAref = 0.379 (from Table 1-3 or NBC 2015 

Table 4.1.8.4.B) 
 EI = 1.3   school (high importance building) 
At this point, it would be appropriate to check whether the seismic design of ties is required for 
this design. According to NBC 2015 Cl.4.1.8.18.2, seismic design of ties is required when the 
seismic hazard index   35.02.0 aaE SFI  (and also for post-disaster buildings in lower seismic 
regions). In this case, 

 2.0aaE SFI = 1.3*0.88*0.69=0.79   0.35 

Therefore, seismic design is required. 
 Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBC 

2015, Table 4.1.8.18, Case 8) 
0.25.10.30.10.1  pxrpp RAACS       

where 
0.321  nxx hhA  for top of wall worst case 

Since 0.47.0  pS    O.K. 

 pW  = 1.8 kN/m2 unit weight of the veneer masonry (concrete blocks) 

Seismic load pV  can be calculated as follows: 

  ppEaap WSISFV 2.03.0 =0.3*1.0*0.595*1.3*2.0*(1.8 kN/m2) =0.85 kN/m2 

Note that the above load is determined per m2 of the wall surface area.  
 
a) Concrete block backup (rigid) 
Assume the maximum tie spacing permitted according to S304-14 Cl.9.1.3 of 600 mm vertically 
and 820 mm horizontally (see Section 2.7.7.2), resulting in a tributary tie area for a concrete 
backup wall of  
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A = 0.82*0.60 = 0.49 m2 
The required factored tie capacity should exceed the factored tie load, that is, 

AVV pf * = (0.85 kN/m2)*(0.49 m2) = 0.42 kN 

Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum 
tributary area calculated from pV  and the factored tie capacity fV , that is, 

pf VVA   

 
b) Steel stud backup (flexible) 
Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral 
load on a vertical line of ties (S304-14 Cl.9.1.3.3, see Section 2.7.7.3): 

tpf AVV **4.0 = 0.4*(0.85 kN/m2)*(1.92m2) = 0.65 kN 

where tA = 0.4m*4.8m = 1.92 m2 is tributary area on a vertical line of ties based on a probable 

0.4 m horizontal tie spacing, and 4.8 m wall height 
 
According to the same S304-14 clause, the tie must also be able to resist a load corresponding 
to double the tributary area on a tie, that is, 

AVV pf **2 = 2*(0.85 kN/m2)*(0.4m*0.6m) = 0.41 kN 

Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie 
spacing of 0.6 m prescribed by S304-14 Cl.9.1.3.1. 
 
In conclusion, the tie design load for the flexible veneer backup is fV = 0.65 kN. 

 
c) Minimum strength requirements 
 CSA A370-14 Cl.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In 
order to obtain the ultimate tie strength, the factored strength needs to be divided by the 
resistance factor  . According to CSA A370-14 Cl.9.4.2.1.2, the resistance factor is 0.9 for tie 
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the 
connection. It is conservative to use lower resistance factor in determining the ultimate tie 
strength ultV .  
 For the steel stud backup: 

 fr VV 0.65 kN 

thus the ultimate strength can be determined as follows 

08.1
6.0

65.0



r

ult

V
V  kN 

This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.  
 For the concrete block backup: 

 fr VV 0.42 kN 

thus the ultimate strength can be determined as follows 

7.0
6.0

42.0



r

ult

V
V  kN 

This value is less than the minimum of 1 kN, so the minimum requirement governs.  
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EXAMPLE 8: Seismic design of a masonry infill wall 
 
A single-storey reinforced concrete frame structure is shown in the figure below. The frame is 
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the 
frame. The wall is built using 190 mm hollow blocks and Type S mortar.  
 
a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions 
according to CSA S304-14 assuming the infill-frame interaction. 
 
b) Assuming that the infill wall provides the total lateral resistance, determine the maximum 
lateral load that the infilled frame can resist. Consider the following three failure mechanisms: 
strut compression failure, diagonal tension resistance, and sliding shear resistance. 

 
Given: 

fE  =25000 MPa concrete frame modulus of elasticity  

mf   = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4, 

CSA S304-14) 
 
SOLUTION: 
 
a) Find the diagonal strut properties. 
 
 Key properties for the masonry wall and the concrete frame 
Concrete frame: 

fE  =25000 MPa 

Beam and column properties: 

9
4

10*133.2
12

)400(
 cb II  mm4 

Masonry: 
83308.9*850850  mm fE  MPa 

Effective wall thickness (face shells only): 
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75et  mm (Table D-1, 200 mm hollow block wall) 

 Diagonal strut geometry (see Section 2.7.2 and S304-14 Cl.7.13) 
3000h  mm 
3600l  mm 

Find   (angle of diagonal strut measured from the horizontal): 

833.0
3600

3000
)tan( 

l

h                8.39  

Length of the diagonal: 
2 2 2 23000 3600 4686dl h l       mm 

 
Find the strut width (see Figure 2-46): 

  1587
8.39*2sin*75*8330

3000*10*133.2*25000*4

22sin

4

2

4
1

94
1


















 





em

cf
h tE

hIE
 

 

  3322
8.39*2sin*75*8330

3600*10*133.2*25000*4

2sin

4 4
1

94
1


















 




em

bf
L tE

lIE
 

Strut width: 

    368233221587 2222  Lhw    mm 

Effective diagonal strut width ew  for the compressive resistance calculation should be taken as 
the least of (Cl.7.13.3.3) 

1841236822  wwe  mm 

or 
4 4686 4 1172e dw l    mm 

thus 
11701172 ew  mm 

The design length of the diagonal strut sl  should be equal to (Cl.7.13.3.4.4) 

2 4686 3682 2 2845s dl l w      mm 

 
b) Determine the maximum lateral load which the infilled frame can resist assuming that 
the infill wall provides the total lateral resistance. 
 
 Diagonal strut: compression resistance (Cl.7.13.3.4.3 and Section 2.7.2) 
The compression strength of the diagonal strut maxrP  is equal to the compression strength of 
masonry times the effective cross-sectional area, that is, 

  emmr AfP  85.0max  

where 

m = 0.6 

5.0  the masonry compressive strength parallel to bed joints  

877501170*75*  eee wtA   mm2 the effective cross-sectional area  

 
3.21987750*8.9*6.0*5.0*85.0max rP  kN 
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The corresponding lateral force is equal to the horizontal component of the strut compression 
force hP , that is, (see the figure below) 

0.168)8.39cos(*3.219)cos(*max  rh PP  kN 

 
Before proceeding with the design, slenderness effects should also be checked. First, the 
slenderness ratio needs to be determined as follows (S304-14 Cl.7.7.5): 
* 1.0*2845

15.0
190

sk l

t
   

where 
0.1k  assume pin-pin support conditions 

2845sl   mm  design length for the diagonal strut 

190t  mm  overall wall thickness 
The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account, 
that is, 

19*1.021  tee  mm 
Since 
*

15.0sk l

t
 > 5.65.310 21  ee  and 0.30

*


t

lk d  

the slenderness effects need to be considered. 
 
The critical axial compressive force for the diagonal strut crP  will be determined according to 
S304-14 Cl.7.7.6.3 as follows: 

  
1380

5.01 2

2





dd

effmer
cr

kl

IE
P




 kN 

where 
65.0er    

0d   assume 100% seismic live load 

8330mE  MPa modulus of elasticity for masonry 
610*2094.0  oeff II  mm4 

where 
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  6
33

10*522
12

)4.75190(190*1170



oI  mm4 moment of inertia of the effective cross-

sectional area based on the effective diagonal strut width 1170ew  mm and the effective wall 

thickness 4.75et mm (face shells only). 

 
Since 

3.219max rP  kN < 1380crP  kN 

it follows that compression failure governs over buckling failure. 
 
 The diagonal tension shear resistance (see Section 2.3.2 and S304-14 Cl.10.10.2). 
Find the masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

28808.0  wv ld  mm    effective wall depth 

5.0g   ungrouted wall 

0dP  (ignore self-weight) 

mm fv  16.0 = 0.5 MPa 

gdvwmmm PdbvV  )25.0(  = 0.6(0.5*190*2880+0)*0.5  82.0 kN     

This is a squat shear wall because 0.183.0
3600

3000


w

w

l

h
. In this case, there is no need to find 

the maximum permitted shear resistance per S304-14 Cl.10.10.2.1 rVmax  because it is not 
going to control for an unreinforced wall without gravity load. 
 
 Sliding shear resistance (see Section 2.7.1 and Cl.7.10.5) 

116.0 PAfV mucmmrs    

The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

2160002880*75  veuc dtA  mm2    uncracked portion of the effective wall cross-sectional 

area  
The compressive force in masonry acting normal to the sliding plane is normally taken as dP  
plus an additional component, equal to 90% of the factored vertical component of the 
compressive force resulting from the diagonal strut action vP  (see the figure on the previous 
page).  

vd PPP *9.01   

where 
)tan(* rsv VP   

thus 
)tan(*9.001 rsVP   

The sliding shear resistance can be determined from the following equation 

))tan(*9.0(16.0  rsmucmmrs VAfV   

or 
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0.118
)8.39tan(*9.0*0.1*6.01

216000*8.9*6.0*16.0

)tan(*9.0**1

16.0








 



m

ucmm
rs

Af
V  kN 

 
 Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three lateral forces should be considered: 
a) 168hP  kN shear force corresponding to the strut compression failure 

b) 82mV  kN diagonal tension shear resistance 

c) 118rsV  kN sliding shear resistance 

It could be concluded that the diagonal tension shear resistance governs, however once 
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum 
shear force developed in an infill wall corresponds either to the strut compression resistance or 
the sliding shear resistance (see the discussion in Section 2.7.2). In this case, sliding shear 
resistance governs and so 118max  rsr VV kN. 
 
It should be noted that the maximum shear force developed in the infill maxrV  will be transferred 
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not 
the scope of the masonry design, however the designer should always consider the entire 
lateral load path and the force transfer between the structural components. 
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