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3 Design Examples

EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBC 2015

Consider a single-storey warehouse building located in Niagara Falls, Ontario. The building plan
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil
at the building site is classed as a Site Class D per NBC 2015.

Calculate the seismic base shear force for this building to NBC 2015 seismic requirements
(considering the masonry walls to be detailed as “conventional construction”). Next, determine
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity.

Assume that the roof acts like a rigid diaphragm.
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SOLUTION:

1. Calculate the seismic weight /7 (NBC 2015 C1.4.1.8.2)
a) Roof loads:
- Snow load (Niagara Falls, ON) W =0.25%(1.8"0.8+0.4)= 0.46 kPa

N

(25% of the total snow load is used for the seismic weight)

- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete

topping) W, =3.30 kPa

Total roof seismic weight W...r = (0.46kPa+3.30kPa)(64.0m*27.0m)= 6497 kN
b) Wall weight:

Assume solid grouted walls w= 4.0 kN/m?

(this is a conservative assumption and could be changed later if it is determined that partially
grouted walls would be adequate)
The usual assumption is that the weight of all the walls above wall midheight is part of the
seismic weight (mass) that responds to the ground motion and contributes to the total base
shear.
Tributary wall surface area:

- North face elevation = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m?

- South face elevation (same as north face elevation) =181.1 m?

- East face elevation =0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m) = 81.4 m?

- West face elevation (same as east face elevation) = 81.4m?
Total tributary wall area Area =525.0 m?
Total wall seismic weight W =w*Area= 4.07525.0= 2100 kN

The total seismic weight is equal to the sum of roof weight and the wall weight, that is,
w=w.,,+W,,=6497+2100= 8597 kN ~ 8600 kN

roof’ w

2. Determine the seismic hazard for the site (see Section 1.4).
e Location: Niagara Falls, ON (see NBC 2015 Appendix C)
S,(0.2)=0.321
S,(0.5)=0.157
S,(1.0)=0.072
§,(2.0)=0.032
S,(5.0)=0.0076
PGAref = 0207
¢ Foundation factor — Site Class D and PGAs = 0.207 (see Tables 1-3 to 1-7)
F(0.2)=1.09
F(0.5)=1.30
F(1.0)=1.39
F(2.0)=1.44
F(5.0)=1.48
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e Site design spectrum S(T) (see Section 1.4)

For 7=0.2 sec: §(0.2)=F(0.2)S,(0.2)=1.09*0.321=0.35  |5(0.2)=0.35
orS(0.5) = F(0.5)+S,(0.5)=1.3*0.157=0.20 (larger value governs)

For T'=0.5sec: S§(0.5)=F(0.5)S,(0.5)=1.3*0.157=0.20 5(0.5)=0.20

For T=1.0sec §(1.0)=F(1.0)-S,(1.0)=1.39*0.072=0.10 5(1.0)=0.10

For T=2.0sec §(2.0)=F(2.0)S,(2.0)=1.44*0.032=0.046  [S(2.0)=0.05

For T=5.0sec §(5.0)=F(5.0)-S,(5.0)=1.48*0.0076=0.011 [5(5.0)=0.01

The site design spectrum S(T) is shown below.

S(T),
0.4 S(T)=0.35
03 T |
0.2+ |
|
0.1+
! T=0.21sec s
0.2 040506 08 1.0

“0 T_f{sec)

e Building period (7 ) calculation (see Section 1.6 and NBC 2015 CI.4.1.8.11(3).c) for wall
structures)

h,=6.6 m building height
T =0.05(h, )*=0.21 sec

Then interpolate between S(0.2) and S(0.5)to determine the design spectral acceleration:
S(1)=5(0.21)=0.35

3. Compute the seismic base shear (see Section 1.6)

The base shear is given by the expression (NBC 2015 Cl.4.1.8.11)
RdRo

where

1,=1.0 (building importance factor, equal to 1.0 for normal importance, 1.3 for high

importance, and 1.5 for post-disaster buildings)

M = 1.0 (higher mode factor, equal to 1.0 for 7' < 1.0 sec, that is, most low-rise masonry

buildings)

Building SFRS description: masonry structure — conventional construction (see Table 1-13 or

NBC 2015 Table 4.1.8.9), hence R,=15and R =1.5

The design base shear I is given by:
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S(T)M I, = 035%1.0*1.0
R,R, 1.5*1.5
but should not be less than

W =0.16W

_S(40)M, 1w _ 0.023*1.0*1.0

min W = 0001W
R,R 1.5*1.5
Note that S(4.0) value (0.023) was obtained by interpolation from the site design spectrum
chartS(T).

The design base shear J need not be taken more than greater of the following two values:

25(0.2 *
V. o= (0-2) (1 :(2 035)( 1.0 jW:O.lOW, provided R, >1.5.
3 R,R, 3 1.5*%1.5

And
Vi =5(0.5) il =o.20( L0 jW =0.09%
R,R, 1.5*%1.5
The upper limit on the design seismic base shear governs and therefore

V'=0.10W =0.10*8600 =860 kN

Note that the upper limit on the base shear is often going to govern for low-rise masonry
structures which have low fundamental periods. The lower bound value would generally only
apply to very tall buildings.

4. Determine if the equivalent static procedure can be used (see Section 1.6 and NBC
2015 Cl. 4.1.8.7).

According to the NBC 2015, the dynamic method is the default method of determining member
forces and deflections, but the equivalent static method can be used if the structure meets any
of the following criteria:

(a) is located in a region of low seismic activity where the seismic hazard index
1.F,S,(0.2)<0.35.

In this case, the seismic hazard indexis [.F,S, (0.2)=1 .0*1.09*0.321=0.35 since

F =F(0.2)=1.09.

(b) is a reqular structure less than 60 m in height with period T < 2 seconds in either
direction.

This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above).
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-16
of Section 1.12.1. A single storey structure by definition will not have any irregularities of Type 1
to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on
the torsional sensitivity.

(c) has any type of irreqularity, other than Type 7 and Type 9, and is less than 20 m in
height with period T < 0.5 seconds in either direction.

This structure satisfies the height and period criteria.

Since the criterion ¢) has been satisfied, the design can proceed by using the equivalent static

analysis procedure. It will be shown later that, even when using a conservative assumption, the
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For
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structures with the lateral resisting 0.5 Vl lﬂ-S ¥

elements distributed around the
perimeter walls the B value will almost

always be less than 1.7. Vvl

5. Distribute the base shear force to +E:'*T=E}f
the individual walls. V

In this example, the structure is w

symmetric in each direction and so the

centre of mass, C,,, and the centre of TV

resistance, C,, coincide at the '

geometric centre of the structure. One might argue that in this simple system with walls at only
each side of the building, the system is statically determinate in each direction and the total
shear on each side can be determined using statics. However, how much shear goes to each of
the walls on a side depends on the relative stiffness of the walls, although once yielding occurs
the force on each wall depends on the yield strength of the wall.

a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to
act through the centre of resistance)

Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height,
length, thickness) and mechanical properties and it can be concluded that these walls have the
same stiffness.

As a result, equal shear force will be developed at each side. The force per side is equal to (see
the figure):

0.5V =0.5*860 =430 kN

So, shear force in each of the two walls in the N-S direction is equal to:

v, =—0'5V :ﬂ: 215 kN
2 2

b) Seismic forces in the N-S direction taking into account the effect of accidental torsion
The building is symmetrical in plan and so the centre of mass C,, coincides with the centre of
resistance C, (see Section 1.11 for more details on torsional effects). Therefore, there are no
actual torsional effects in this building. However, NBC 2015 Cl.4.1.8.11.(9) requires that
torsional moments (torques) due to accidental eccentricities must be taken into account in the
design. The forces due to accidental torsion can be determined by applying the seismic force at
a point offset from the C, by an accidental eccentricity e, = 0.1D,_, thereby causing the
torsional moments equal to

T.=+V(0.1D, ) = 860 * (0.1* 64.0) = £5504 kNm
Note that D, = 64.0 m (equal to the total length of the structure in the East/West direction).

As a result of the accidental torsion, seismic shear forces resisted by each side of the building
are different. These forces can be calculated by taking the sum of moments around the C,
(torsional moment created by force must be equal to the sum of moments created by the side
forces). The resulting end forces are equal to 0.6/ and 0.4}, thereby indicating an increase in
the end forces by 0.1V due to accidental torsion.
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It should be noted that, in this example, accidental torsion would cause forces in the E-W walls
as well because of the rigid diaphragm. But a conservative approach is to ignore the
contribution of E-W wallls and take all the torsional forces on the N-S walls.

The shear force in each N-S wall from accidental torsion is equal to:
T/D,. 5504/64
VT = 2 =

=43 kN

Thus, the maximum shear force in each of the two walls is the sum of the lateral component
plus the torsional force,

V, =V, +V, =215+43 =258 kN fJ.f:iVl lﬂ‘ﬁv

Note that the same result could be obtained by
applying the lateral load through a point equal to Eﬂ:l
the accidental eccentricity to one side of the Cy Cg
centre of rigidity and then solving for the wall + 4
forces using statics (see the figure). This would wl T

V

show that
: Ea:ﬁij Dyx

Vy :K*0.6 :@*0.6 =258 kN

2 2
Therefore, even though this building is e Dy =64m =]
symmetrical in plan, the accidental torsion causes
increased seismic shear force in each wall of 43
kN, corresponding to a 20% increase compared to the design without torsion. However, this is
based on the assumption that the N-S walls resist all the torsion. Walls in the E-W direction
would also resist the torsional forces, and in this example the contribution to total torsional
stiffness would be roughly the same for the E-W and N-S walls. Thus, one could reduce the
torsional forces on the N-S walls by roughly one half.

c¢) Seismic forces in the E-W walls
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and
consequently the same stiffness, the shear force will be equal at the East and West side. The
force per side is equal to
0.5V =0.5*860 =430 kN
e Seismic forces in the E-W walls — torsional effects ignored
Shear force in each E-W wall is equal to (there are seven walls per side):

0.5V 430

v, —— =61 kN

7 7
e Seismic forces in the E-W walls — torsional effects considered:
Vi :%*0.6=¥*0.6: 74 kN

6. Check whether the structure is torsionally sensitive (see Section 1.11.2).

NBC 2015 CI. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be determined
by comparing the maximum horizontal displacement anywhere on a storey, to the average
displacement of that storey. Torsional sensitivity is determined in a similar manner as the effect
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of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of +0.1D,_
from the centre of mass C,, . In case of a rigid diaphragm, displacements are proportional to the
forces developed in the walls. Therefore, B can be determined by comparing the forces at the
sides of the building with/without the effect of accidental torsion.

The maximum displacement would be proportional to 0.6V, while the displacement on the other
side would be proportional to 0.4V. Thus, the average displacement is proportional to 0.5V.
Thus

B 0.6V

0.5V
Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would
have also been allowed under criterion b) as discussed in step 4 above.

1.2

7. Discussion

It was assumed at the beginning of this example that the roof structure can be modeled like a
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S
wall would be equal to 0.5V. From a reliability point of view, it does not seem quite right that the
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around.
On the other hand, the flexible diaphragm may have a longer period and the forces would be
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models).
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBC 2015

A typical floor plan and vertical elevation are shown below for a four-storey mixed use
(commercial/residential) building located at Abbotsford, BC. The ground floor is commercial with
a reinforced concrete slab separating it from the residential floors, which have lighter floor
system consisting of steel joists supporting a composite steel and concrete deck. The front of
the building is mostly glazing, which has no structural application.

First, determine the seismic force for this building according to the NBC 2015 equivalent static
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that
the strong N-S walls can resist the torsion.

Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the
seismic forces obtained with and without torsional effects.

For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a
preliminary design) and the compressive strength £, is 10.0 MPa. Grade 400 steel has been
used for the reinforcement. The building is of normal importance and is supported on Class C
soil. Consider Conventional Construction reinforced masonry shear walls.

Movement joints are not to be considered in this example. Note that movement joints in the N-S
walls would have caused slight changes in the stiffness values of these walls.

Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and
glazing):

4" floor (roof level) = 3 kPa Note: 1 kPa = 1 kN/m?

2" and 3" floor = 4 kPa

1%t floor (concrete floor) = 6 kPa

25% snow load = 0.4 kPa

glazing

S M 3 *
N -
"Ié e LU ) 10m - ; E 3

) RC columns &
8 2
B / H M'.,.
o A 7

Yy Y; g
=
o i i =
3@667=20m 7 9lazing i 20m K
Plan Elevation
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SOLUTION:

1. Design assumptions
Rigid diaphragm
All walls are solid grouted

2. Calculate the seismic weight 7/ (see NBC 2015 Cl.4.1.8.2)

Wall weight:
N-S walls - 200 mm thick w=4.18 kPa
E-W walls — 300 mm thick w=6.38 kPa

Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while
the length of an E-W wall is 10.0 m.

Seismic weight 7, :

W, = [% + %}(4.18/&1 %2 %20m + 6.38kPa *2%10.0m) + (6.0kPa )\ 20m * 20m) = 3579kN

Seismic weight W, :
W, = (% + %)(4. 18kPa*2*20m + 6.38kPa * 2*10.0m)+ (4.0kPa )(20m * 20m) = 2484kN

Seismic weight W, (same as W,) :
W, =2484kN
Seismic weight 7, :

W, = (%J@.lskpa *2%20m + 6.38kPa * 2%10.0m) + (3.0kPa + 0.4kPa ) 20m * 20m) = 1802kN

Note that the seismic weight for each floor level is the sum of the wall weights and the floor
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height
(below and above a certain floor level) was considered in the wall area calculations.

The total seismic weight is equal to

W=W +W,+W,+W, =3579 + 2484 + 2484 + 1802 = 10350kN

3. Calculate the seismic base shear force (see Section 1.6).

a) Find seismic design parameters used to determine seismic base shear.
e Location: Abbotsford, BC (see NBC 2015 Appendix C)
$,(0.2)=0.701

S_(0.5)= 0.597
S_(1.0)= 0.350
S (2.0)= 0.215
S (5.0)= 0.071

PGAref = 0306
e Foundation factor — Site Class C and PGA = 0.306 (see Tables 1-3 to 1-7)
F(0.2)=F(0.5)=F(1.0)=F(2.0)= F(5.00=1.0

o Site design spectrum S(T') (see Section 1.4)
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For 7'=0.2sec: §(0.2)=F(0.2)+S,(0.2)=1.0°0.701=0.70  |5(0.2)=0.70

orS(0.5) = F(0.5)+S,(0.5)=1.00.597=0.60 (larger value governs)
For T'=0.5sec: S§(0.5)=F(0.5)S,(0.5)=1.0*0.597=0.60 5(0.5)=0.60
For T=1.0sec S§(1.0)=F(1.0)-S, (1.0)=1.0*0.35=0.35 5(1.0)=0.35
For T=2.0sec §(2.0)=F(2.0)-5,(2.0)=1.0*0.215=0.22  |5(2.0)=0.22
For T=5.0sec §(5.0)=F(5.0)-S,(5.0)=1.0*0.071=0.07  |§(5.0)=0.07

¢ Building period (T') calculation (NBC 2015 Cl.4.1.8.11.3(c)) — wall structures
h,=14.0 m building height

T =0.05(h, )'*=0.36 sec

Building period T = 0.36 sec, so interpolate between $(0.2) and S(0.5), hence [S(T')= 0.65

S(T)J |

081
0.70

0.7 S(1)=0.65
- | 0.60
0.5+ :
047 | 0.35
0.3 |

| 0.22
0.2+ |
0.1+ |

| T=0.36sec

02 03 04 0506 08 10 0 .
T (sec)

e /,=1.0 (normal importance building)
e M =1.0 (higher mode factor, equal to 1.0 for 7" <1.0 sec)

e Building SFRS description: masonry structure — Conventional Construction shear walls can
be used for building height of 14 m (see Table 1-13 and NBC 2015 Table 4.1.8.9).

In this case 1,F,S,(0.2)=1.01.0*0.70=0.70, hence 0.35 < I,F,S,(0.2)<0.75 thus the

maximum building height is 30 m. Hence
R,=15and R =15

b) Compute the design base shear (NBC 2015 Cl.4.1.8.11).
The design base shear J is determined according to the following equation:
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S(T)M I, = 0.70%1.0*1.0
R,R, 1.5*1.5
but should not be less than

wW=031W

_S(40)M, 1. W _0.12%1.0*1.0

min W = OOSW
R,R, 1.5*1.5
Note that S(4.0) value (0.15) was obtained by interpolation from the site design spectrum
chartS(T).

The design base shear J need not be taken more than greater of the following two values:

25(0.2 *
V. o= (0-2) (1 :(2 0'7())( 1.0 jW:O.ZlW, provided R, >1.5.
3 R,R, 3 1.5*%1.5

and
I/vmax = S(OS)(

W
R,R

[

=0.60 1.0 W =0.27W - this value governs
1.5*%1.5

Therefore, the design seismic base shear is equal to
V=027 =0.27*10350 = 2900 kN

4. Determine whether the equivalent static procedure can be used (see Section 1.5 and
NBC 2015 ClI. 4.1.8.7).

According to the NBC 2015, the dynamic method is the default method, but the equivalent static
method can be used if the structure meets any of the following criteria:

(a) is located in a region of low seismic activity where [ .F S, (0.2) <0.35,

In this case, the seismic hazard index is 1,.F,S,(0.2)=1.0*1.0*0.70=0.70 > 0.35 and so this
criterion is not satisfied. Note that F/ = F(0.2) =1.0.

(b) is a regular structure less than 60 m in height with period T < 2 seconds in either
direction,

This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above).
To confirm that this structure is regular, the designer needs to review the irregularities discussed
in Section 1.12.1. It can be concluded that this building does not have any of the irregularity
types identified by NBC 2015 and so this criterion is satisfied.

(c) has any type of irreqularity (other than Type 7 or Type 9 that requires the dynamic
method if B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either
direction

This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5
sec. The torsional sensitivity B should be checked to confirm that B < 1.7 (see Section 1.11.2).

Since the criterion b) has been satisfied, the design can proceed by using the equivalent static
analysis procedure.

5. Seismic force distribution over the building height (see Section 1.9).

According to NBC 2015 CI. 4.1.8.11.(7), the total lateral seismic force, V", is to be distributed
over the building height in accordance with the following formula (see Figure 1-5):
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where

F_— seismic force acting at level x

F, —a portion of the base shear to be applied in addition to force F, at the top of the building.

In this case, F,= 0 since the fundamental period is less than 0.7 sec.
Interstorey shear force at level x can be calculated as follows:

V.=F+YF,

Bending moment at level x can be calculated as follows:

Mx :iF'z(hz _hx)

i=x

These calculations are presented in Table 1.

Table 1. Distribution of Seismic Forces over the Wall Height

Level | /, . W, | L V. M,
(m) (kN) (kN) J(KN) | (kNm)
4 140 1802 25228 |810 |810 |0
3 [11.0 |2484 [27324 |877 1687 | 2430
2 |80 2484 119872 [638 | 2325 |7492
1_]50 3579 | 17895 [575 |2900 | 14468
D 10349 (90319 | 2900 28968

Distribution of seismic forces over the building height and the corresponding shear and moment
diagrams are shown on the figure below.
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W,¢ 5+ ——Fs=s10
=
e
Ww,;¢ + ———| F=s877 810 2430
0
W, + ——|F-638 1687 7492
w,e + —|F=ss 2325 14468
=
i
¥ - 2900 28968
7 V; (kN) M (kNm)

It is important to confirm that the sum of seismic forces /. over the building height is equal to
the base shear

V, =V = 2900 kN

The bending moment at the base of the building, also called the base bending moment, is equal
to

M, = 28968 ~ 29000 kNm.

6. Find the seismic forces in the E-W walls — torsional effects ignored.

Due to asymmetric layout of the E-W walls, the centre of Ve =V /-
mass C,, in the building under consideration does not x=V/2
coincide with the centre of resistance C,, hence there are X

torsional effects in all walls. However, since the N-S walls are
significantly more rigid compared to the E-W walls, it can be

assumed that the N-S walls will resist the torsional effects X e—
(see step 8 for a detailed discussion). As a consequence, it 4 . V/2

can be assumed that the base shear force in the E-W
direction is equally divided between the two E-W walls (see
the figure), that is,

— 2 =2 1450 kN

X0

Similarly, the base bending moment in each wall is equal to

M, = % = @ =14500 kNm
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7. Find the seismic forces in the E-W walls — torsional effects considered (see Section

1.11).
To determine the wall forces from the
torsional forces a 3-D analysis should
be made. Even though the walls are
considered uniform over the entire
height, the contribution of shear
deformation relative to bending
deformation is different over the height.
An approximate method that does not
require a 3-D analysis is to consider the
structure as an equivalent single-storey
structure. The entire shear is applied at
the effective height, #,, defined as the
height at which the shear force V',
must be applied to produce the base
moment M ., that is,

M
p =t 22000446

TV, 2900

T f—
_I,/\_"‘ . _L;.._-'T-‘_—:’;r*zue
h fe—
he f— he
¥y ¥ 1 vy |

This model, although not strictly correct, will be used to determine the elastic distribution of the
torsional forces as well as the displacements. The top displacement of the wall is assumed to be
1.5 times the displacement at the 7/, height (see step 8 for displacement calculations).

Torsional moment (torque) is a product of the seismic force and the eccentricity between the
centre of resistance (C, ) and the centre of mass ( C,, ), which will be calculated in the following

tables.

First, the centre of mass will be determined, as shown on the figure. The calculations are

summarized in Table 2.

Table 2. Calculation of the Centre of Mass (C,,)

* *
Wall w; X; Vi w; T X, W, m Vi
(kN) (m) (m)
Xl 733.7 10.00 20.00 7337 14674
X2 733.7 10.00 13.33 7337 9780
Yl 961.4 0 10.00 0 9614
Yz 961.4 20.00 10.00 19228 9614
Floors 6960 10.00 10.00 69600 69600
Z 10350 103502 113282

The C,, coordinates can be determined as follows:

ZWZ. *X,
103502

Xey =— = =10.00 m
3w, 10350

9/1/2018
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Next, the centre of resistance (C, ) will be determined, and the calculations are presented in
Table 3, although because there are only two equal walls in each direction the C, will lie
between the walls.

Table 3. Calculation of the Centre of Resistance (Cj)

Wall (tm) Wi,* | K/(E,- )= | K,x103 | K, x10® | x, |y | K, -x | K,
(kN/m) (kN/m) (m) | (m) f*10° *10°
| 0.29 1.0 0.143 352.5 20. 7050.0
00
Xz 0.29 1.0 0.143 352.5 13. 4699.0
33
Yl 0.19 0.5 0.5 807.5 0 0
Y. 0.19 0.5 0.5 807.5 20. 16150.0
2 00
Z 705.0 1615.0 16150.0 | 11750.0

Notes:
*- h=h,=10.0 m effective wall height

** - see Table D-3

Note that the elastic uncracked wall
stiffnesses K for individual walls have been
determined from Table D-3, by entering
appropriate height-to-length ratios. In this
design, all walls and piers have been
modelled as cantilevers (fixed at the base
and free at the top) — see Section C.3 for
more details regarding wall stiffness
calculations. The modulus of elasticity for
masonry is E, =8.5*10° kPa
(corresponding to £, of 10 MPa).

yme:jﬁ.ﬁ?m

The C, coordinates can be determined as
follows (see the figure):
ZK X 3
o o ! _16150*10°
CR — - 3
> K,  1615*10

i

ZKxi*y[ 3
K _1750%10°
Y TTSR T 055100

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W
walls, we need to determine the actual eccentricity in the y direction (e, ), that is,

e, =Yg — Yo =16.67-10.94=5.73 m

In addition, the accidental eccentricity needs to be considered, that is,
e, =10.1D,, =£0.1*20 =42.0 m

The total maximum eccentricity in the y-direction is equal to
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e, =e,+e, =573+2.0=7.73 m

or
e,,=e,—¢,=573-20=373m
Note that the latter value does not govern and will not be considered in further calculations.

Torsional moment is determined as a product of the shear force and the eccentricity, that is,
T=V "‘ety1 =2900*7.73 =22417 kNm
Torsional effects are illustrated on the figure below.

Seismic force in each wall has two components: translational (no torsional effects) and torsional,
that is,

V=V, +V,

where

K,
V., =V *=—— translational component

2K
and

v - T*c
J
J=YK, ¢, +Y K, -c, =169%10° torsional stiffness (see Table 4)

¢,; - distance of the wall centroid from the centre of resistance (C, ) (see the figure below)

xi? g

L* K, torsional component

c

Translational and torsional force components for the individual walls are shown below.
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Translational Force Torsional Force
Components Components

Calculation of translational and torsional forces is presented in Table 4.

Table 4. Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction

Kx *10° Ky "10° ci Z Ki ) ci2 108 Kx on th Vtota[
Wall | (kN/m) (kN/m) (m) Z K, | &N) (kN) (kN)
X, 352.5 -3.33 3.84 0.5 1450 -154 1296
X 352.5 3.33 3.84 0.5 1450 154 1604
2
Y, 807.5 -10.00 80.80 -1070 -1070
Y, 807.5 10.00 80.80 1070 1070
705.0 1615.0 169.0

™

It can be concluded from the above table that the maximum force in the E-W direction is equal
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained
ignoring torsional effects.

It can be noted that the contribution of E-W walls to the overall torsional moment 7' of 22417
kNm is not significant (see Table 4).

T, ,, =154kN *3.3m +154kN *3.3m =1017kNm

because
y - /T =1017/22417 =0.045 = 5%

this shows that the E-W walls contribute only 5% to the overall torsional moment.

The contribution of N-S walls to the overall torsional moment is as follows:
T, ¢ =1070kN *10m +1070kN *10m = 21400kNm

and
T, /T =21400/22417 = 95%

and
T=T,, +T, =1017+21400 = 22417kNm (this is also a check for the torsional forces)
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Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable,
since these walls contribute approximately 95% to the overall torsional resistance.

8. Calculate the displacements at the roof level (consider torsional effects).

Approximate deflections in the E-W walls can be determined according to the procedure
outlined below. It should be noted that the force distribution calculations have been performed
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K')
value to account for the effect of cracking.

a) The reduced stiffness to account for the effect of cracking (see Section 2.5.4)
The reduced stiffness for walls X, and X, will be determined according to Section 2.5.4
(S304-14 CI.16.3.3), that is,

1,=1,003+P/(4,7,)

Here,
P =(2%6.67*6.67)(3.0+2*4.0+6.0) =1513 kN (axial force due to dead load in wall X, )

4, = (290 *10%)*10.0 = 290 *10* mm? (gross cross-sectional area for 290 mm block wall, solid

grouted, length 10.0 m; see Table D-1 for A4, values for the unit wall length)
f.1=10.0 MPa

Since

03+P/(4,f",)=03+1513*10°/(10.0%290*10*) = 0.35

It appears that

£=0.35
1

4
thus
1
K, = (I—e)K(, =0.35K,
4
where K, is elastic uncracked stiffness. In this case, stiffness is taken as proportional to the

ratio of moment of inertia values because the wall is expected to behave in flexure-dominant
manner (otherwise a ratio of cross-sectional areas could be used — see Example 3).

b) The translational displacement in the walls X, and X, can be calculated as follows

top
AXZO = VXZU = 1450kN3 =11.8mm ﬂx.?
0.35K,, 0.35*352.5*10°kN/m

According to NBC 2015 CI. 4.1.8.13, these deflections need to :
be multiplied by the R,R, /I, ratio (see Section 1.13). In this Vi ", .-'_"‘nxz.
case, /,=1.0, and so

A s =(11.8mm)R,R, =11.8%1.5%1.5 = 26.6mm
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Since the previous analysis assumed that the seismic force
acts at the effective height #,, the displacement at the top
of the wall will be larger (see the figure). The top
displacement can be calculated by deriving the
displacement value at the tip of the cantilever; alternatively,
an approximate factor of 1.5 can be used as follows:

Ay =1.5%A , =1.5%26.6mm = 40.0mm

Since this is a rigid diaphragm, it can be assumed that the
translational displacements are equal at a certain floor
level — let us use point A at the South-East corner as a
reference (see the figure).

liis

c) The torsional displacements can be calculated as follows:
Torsional rotation of the building & can be determined as
follows, considering the reduced torsional stiffness to account
for cracking (same as discussed in step a) above):

T 22417kNi
T 2281TKNm 3 29410 rad

J 0.35*%169*10

where (see the step 7 calculations)

T =22417 KNm  torsional moment

J =169*10° elastic torsional stiffness

The maximum torsional displacement at the South-East corner

in the X direction (see point A on the figure):

A =0*Y, =379 *107**16.67m = 6.3mm

Similarly, as above, these displacements need to be multiplied
by R,R,/I, and also by 1.5 to determine the displacement at
the top of the roof, and so

A =1.5%63%R R, ~22mm

d) Finally, the total maximum displacement at the roof level (at point A) is equal to:
A=A AT =40+22=62mm

9. Check whether the building is torsionally sensitive.

NBC 2015 CI. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be
determined by comparing the maximum horizontal displacement anywhere on a storey to the
average displacement of that storey (see Section 1.11.2). This should be done for every storey,
but in this case will only be done for the one storey as the remaining storeys will have similar B
values because of the vertical uniformity of the walls. Torsional sensitivity is determined in a
similar manner like the effect of accidental torsion, that is, by applying a set of lateral forces at a
distance of £0.1D,_ from the centre of mass C,, . Since the purpose of this evaluation is to
compare deflections at certain locations relative to one another, it is not critical to use cracked
wall stiffnesses.

In this case, the total maximum displacement at point A was determined in step 8 above, that is,
A =62mm

We need to determine the displacement at other corner (point B), that is, the minimum
displacement. This can be done as follows:
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Translational component:

AP =A " =40mm

Torsional component:

A, =0%c,, =3.79*10" *3.3m ~ 1.3mm

These displacements need to be multiplied by R,R, /I,

and also by 1.5 to determine the displacement at the top
of the roof, and so

ABt =13*1.5*R,R ~5mm

Since the direction of torsional displacements is opposite
from the translational displacements, it follows that

ABmm = ABU —AB, =40-5=35mm

The average displacement at the roof level in the E-W

direction (see the figure showing the displacement
components):

AA B .
e — max +A min _ 62+35 — 49mm
2 2 .
AA
:h:@:1_27 ey
A 49.0

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with
the main force resisting elements located around the exterior of the building will not be
torsionally sensitive.

10. Discussion
A couple of important issues related to this design example will be discussed in this section.

a) Why should the N-S walls be considered to resist entire torsional effects?
The distribution of forces to the various elements in the structure is generally based on the
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible
and then the forces are distributed on the basis of contributory masses. The present example
structure with four floors of concrete construction can be considered as having rigid diaphragms,
and an elastic analysis was performed to determine the wall forces due to the torsional effects.
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely
separated, it is expected that they will resist most of the torque from the eccentricity. However,
since we are designing the structures to respond inelastically, the distribution of forces from an
elastic analysis should always be questioned. An argument is presented below to show that if
the forces in the E-W wallls are designed to be equal, they will not contribute to the torsional
resistance.

Vv
The elastic torsional analysis for the
forces in the E-W direction result in
additional forces of 154 kN in the E-W
walls and £1070 kN in the N-S walls
(see Table 4). If all the torque is
resisted by the N-S walls, the force in
these walls would be £1120 kN (an
increase of only 50 kN).
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For the earthquake load in the E-W direction the E-W walls must resist the total base shear in
this direction and so they will have reached their yield strength and progressed along the flat
portion of the shear/displacement curve as shown in the figure (assuming they have equal
strength). The torsional load will have caused a small rotation of the diaphragms and so wall

X, will have a slightly larger displacement than wall X, , as shown on the figure. Had the walls
remained elastic, the shear in wall X', would then be greater than wall X, and this would
contribute to the torsional resistance. However, in the nonlinear case, they both have the same
shear resistance and so do not contribute to the torsional resistance. Thus, in this example, all
the torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two
directions would occur at the same time, and practice has been to consider only 30% of the
loads in one direction when combining with the loads in the other direction. Thus, the forces in
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the
yield level on one side, but the torsional displacement on the other side would be in the opposite
direction, so the wall force would be much reduced in the other direction. The two N-S forces
then provide a torque to resist the torsional motion. Although this resisting torque may not be as
large as the elastic analysis would predict, the result would not be failure, but only slightly larger
torsional displacements.

b) Application of the “100%+30%” rule

In the calculation of total wall seismic forces including the torsional effects (see step 7 above),
the effect of seismic loads in E-W direction only was taken into consideration when calculating
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that
requires the forces in any element that arise from 100% of the loads in one direction be
combined with 30% of the loads in the orthogonal direction (for more details refer to NBC
4.1.8.8.(1)c and the commentary portion in Section 1.11.3).

Let us determine the forces in one of the E-W walls, e.g. wall X, , by applying the “100+30%”
rule. If only 100% of the force in the E-W direction is considered, the total force in the wall is
equal to (see Table 4):

Vi ™ =Visy + Vo = 1450 +154 = 1604kN

If the seismic load is applied in the N-S direction, the torsional moment would be determined
based on the accidental eccentricity e, (since the building is symmetrical in that direction), and
so the torsional force in the wall X', can be prorated by the ratio of torsional eccentricities in the
E-W and N-S directions as follows,

y NS:VXZI*G_a:154*72.0m

o =39.8 ~ 40kN

g 73m

The total seismic force in the wall X, due to 100% of the load in E-W direction and 30% of the
load in the N-S direction can be determined as

Vi =V ' 403V, =1604+0.3%40 = 1616kN

It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant.

However, it can be shown that the “100+30%” rule would significantly influence the forces in the
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall
Y, ) due to torsional effects is equal to (see Table 4)

v,,"" =1070kN
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When the seismic force acts in the N-S direction, the total force in the wall ¥, (including the
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on
accidental torsion)

V. "% 20.6%V =0.6%2900 = 1740kN

Y1

So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the
force in the E-W direction the resulting total force is equal to

Vy =V,," 7 +03V,5" =1740+0.3%1070 = 206 1kN
In this case, it can be concluded that the difference between the force of 2061 kN (when the

“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant
(around 18%). This is illustrated on the figure below.

For those cases where there is a large eccentricity in one direction and the torsional forces are
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can
be significant.

AR

W

0.3V},

20% sefsmic force 100%; seismic force
Sfar E-W direction for N-5 direction
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and
flexible diaphragm alternatives

Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The
building plan and relevant elevations are shown on the figure below. The building has an open
north-west fagade consisting mostly of glazing. The roof elevation is at 4.8 m above the
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel
columns on the north-west side. Masonry properties should be determined based on 20 MPa
block strength and Type S mortar (use f, of 10.0 MPa). Grade 400 steel has been used for the
reinforcement.

Masonry walls should be treated as “conventional construction” according to NBC 2015 and
CSA S304-14. A preliminary seismic design has shown that the total seismic base shear force
for the building is equal to V' =700 kN. This force was determined based on the total seismic
weight I of 2340 kN and the seismic coefficient equal to 0.3, thatis, V' = 0.3 .

This example will determine the seismic forces in the N-S walls (Y, to Y;) due to seismic force
acting in the N-S direction for the following two cases:

a) Rigid roof diaphragm (consider torsional effects), and

b) Flexible roof diaphragm.

Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be
discussed.

Note that both flexible and rigid diaphragms are considered to have the same weight, although
this would be unlikely in a real design application. Also, the columns located on the north-west
side are neglected in the seismic design calculations.

Specified loads:

roof = 3.5 kPa

25% snow load = 0.6 kPa

wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption)

E - | s
o = IaZEI "
- ] q
+ E + =
' b5
> Yif = s -
X; I

C62m _EEm_ a2m _@28m 52m _@28m 3m
| B B | s | prien Wyl

- ]
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SOLUTION:

a) Rigid diaphragm

Torsional moment (torque) is a product of the seismic force and the eccentricity between the
centre of resistance (C;, ) and the centre of mass (C,, ). The coordinates of the centre of mass
will be determined taking into account the influence of wall masses, the upper half of which are
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the
centroid of the roof area is determined by dividing the roof plan into two rectangular sections.

Table 1. Calculation of the Centre of Mass (C,,)

Wall W, X, Yo | WX WY,
(kN) (m) (m)

x1__ | 387 1500 [0.00 [5810 |0

x2__|116 2550 | 18.00 2963 | 2092

Y1 | 232 21.00 |9.00 |4880 [2092

Y2 |52 30.00 | 2.00 1548 [ 103

Y3 | 116 30.00  |1350 |3486 | 1569
Roof 1_| 1107 15.00 [ 4.50 16605 | 4982
Roof 2 | 332 2550|1350 | 8466 | 4482

2343 43759 | 15319
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The C,, coordinates have been determined from the table as follows (see the figure below):

Xew =

W, *Y,
_Z‘ | 15324.38
Yo T TSy T 234386

Next, the coordinates of the
centre of resistance (C, ) will
be determined. Wall X, has
several openings and the
overall wall stiffness is
determined using the method
explained in Section C.3.3 by
considering the deflections of
the following components for a
unit load (see the figure
below):

e solid wall with 4.8 m height
and 30 m length — cantilever
(Asolid )

e an interior strip with 1.6 m
height (equal to the opening
height) and 30 m length —
cantilever (A

*
ZW X 43757.02
MW, 234386

18.68 m

=6.54 m

18m

X~

= 21.0m :l: 9.0 m ::l

Stri )
o piers A, B,l & and D — cantilevered (A ,,,) (the stiffness of the piers A, B, C, and D is

summed and the inverse taken as A ;)

The stiffness of each component is based on the following equation for the cantilever model by
using appropriate height-to-length ratios (see Section C.3.2), that is,

\ 15
‘ﬂ"u'l.
napg
strip{ | _A _D><[ B _DX] € DX D] I~

_ 62 _(#%, 62 %%, 62 48,30 53-'

= [ =2 d o e el

- 30m ”

Wall Xr
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The overall wall deflection is determined from the combined pier deflections, as follows:

AXl

= Asolid - A

strip

+A ABCD

Note that the strip deflection is subtracted from the solid wall deflections - this removes the
entire portion of the wall containing all the openings, which is then replaced with the deflection
of the four piers.

Finally, the stiffness of the wall X, is equal to the reciprocal of the deflection (see Table 2), as

follows

1
KXI :A_:l71

X1

Table 2. Wall X, Stiffness Calculations

t h /

el m) | m) | (m) conltsi?t(ijons hl K/(E*t) | Displacement K it [(E*1)
Solid 024 |48 30.0 | cant 0.160 2.015 0.496
Opening
strip 024 |16 30.0 | cant 0.053 6.226 -0.161
X1A 0.24 1.6 6.2 cant 0.258 1.186
X1B 0.24 1.6 6.2 cant 0.258 1.186
X1C 0.24 1.6 6.2 cant 0.258 1.186
X1D 0.24 1.6 3.0 cant 0.533 0.453

Y. (ABCD) [ 4015 0.249

0.585 1.709

The stiffness of wall ¥, is determined in the same manner (see the figure below). The
calculations are summarized in Table 3.

%
) S — T — S
strip < E [i‘ F | Y
. 80 qpp 90 | !
for = 8 m =
Wall 'Y,
9/1/2018
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Table 3. Wall Y, Stiffness Calculations

Wall t h l End h/l K/(E*t) | Displacement [ k. /(E*7)
(m) (m) (m) | conditions ’

Solid 0.24 4.8 18 cant 0.267 1.142 0.876
Opening
strip 0.24 2.4 18 cant 0.133 2.442 -0.409
Pier E 0.24 2.4 8 cant 0.300 0.992
Pier F 0.24 2.4 9 cant 0.267 1.142

sum(EF) | 2.134 0.469

0.935 1.070

Next, the centre of resistance (C, ) will be determined, and the calculations are presented in

Table 4.

Table 4. Calculation of the Centre of Resistance (C,)

Wall t h [ End h/l K K. K, X, Y, K, *X, K_*Y,
(m) | (m) | (m) | cond. E*t | kNm) | qnm) | (m) | (m)

X1 0.24 1.709* | 3.49E+06 | O 15 0 0.00E+00

X2 024148 |9 cant 0.53 | 0.453 9.24E+05 | O 255 | 18 1.66E+07

Y1 0.24 1.070** ] 0 2.18E+06 | 21 0 4.58E+07

Y2 024148 |4 cant 1.20 | 0.095 0 1.94E+05 | 30 0 5.82E+06

Y3 024148 |9 cant 0.53 | 0.453 0 9.24E+05 | 30 0 2.77TE+07
4.41E+06 | 3.30E+06 7.94E+07 | 1.66E+07

Notes:

* - see Table 2
** - see Table 3

Note that all walls and piers in this example were modelled as cantilevers (fixed at the base and
free at the top). For more discussion related to modelling of masonry walls and piers for seismic
loads see Section C.3. The modulus of elasticity for masonry is taken as E, =8.5*10° kPa

(corresponding to £, of 10 MPa).

The C, coordinates can be determined as follows (see the figure on the next page):

ZKy[ *x[

7.94%10

1
x =
CR
z Kyi
i

K. *y,
2K, Y 166107

©3.30%10°

Y T TSR T 4417108

24.05m

=377 m

Next, the eccentricity needs to be determined. Since we are considering the seismic load effects
in the N-S direction, we need to determine the actual eccentricity in the x-direction (e, ), that is,

€, = Xop —Xpy =24.05-18.68=5.37 m
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In addition, an accidental eccentricity needs to be considered, as follows:
e, =10.1D, =40.1*30=43.0 m

The total maximum eccentricity in
the x-direction assumes the
following two values depending on ¥;
the sign of the accidental Y;
eccentricity, that is,

e,=e +e,=537+3.0=837T m
e,=e —e,=537-3.0=237Tm - ch =
T

i ¥
The torsional moment is determined = 1 3(

as a product of the shear force and 2 A

the eccentricity, that is, . L =

T, =V*e, =700%8.37 ~ 5860 kNm : Xz ol
T, =V *e_, =700%2.37 ~ 1660 kNm

The seismic force in each wall can be determined as the sum of the two components:
translational (no torsional effects) and torsional, that is,

Vo=V, +V,

where

i

V., = V*Z—K translational component
T*c, _
V., = ¥, * K, torsional component

t

J=YK, ¢ +Y K, ¢, =297*%10° torsional rigidity (see Table 5)

¢, ¢, -distance of the wall

centroid from the centre of 174
resistance (C}) X2t
q—

The calculation of translational XZ Lj"sa
and torsional forces is presented Y. \
in Table 5. Translational and Y 2
torsional force components due 1 V
to the eccentricity e , and the Y3t
torsional moment 7, are shown C
on the figure. Note that the o= b
o
| |
| |
| |
|
| |
|
I

torque 7, causes rotation in the
same direction like the force V
(showed by the dashed line) X,
around point C, (this is .
illustrated on Figure 1-8). The V
wall forces shown on the a, 5
diagram are in the directions to e X3 -_-_,‘
resist the shear V and torque T, +

TV

thus on wall Y1 the translational
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in
the opposite direction. The calculation of the forces is presented in Table 5 where the sign
convention has horizontal wall forces positive to the left and vertical forces positive down,
resulting in negative values for the torsional forces in walls X1, Y2 and Y3.

Table 5. Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction

Wall 2
a Ki ci K,- * ci Ky /Z Ky Vo Vlt Vltotal V2t V2mtal Vgovem
(kN/m) (m) (kN) | (kN) | (kN) | (kN) | (kN) (kN)
(1) (2) ) (4) ®) ® | @ (8) (9) | (10) (11)
X1 3.49E+06 | -3.77 4.96E+07 -260 | -260 -74 | -74 260
X2 9.24E+05 | 14.23 1.87E+08 260 260 74 74 260
z KX 4.41E+06
Y1 2.18E+06 | 3.05 2.03E+07 | 0.66 463 131 594 37 500 594
Y2 1.94E+05 | -5.95 6.87E+06 | 0.06 1 -23 18 -6 35 35
Y3 9.24E+05 | -5.95 3.27E+07 | 0.28 196 -109 | 87 -31 165 165
Z Ky 3.30E+06 1.00 700
% 2
2K *e | porevon

It should be noted that there are two total seismic forces for each wall in the N-S direction
(corresponding to torsional moments 7, and 7, ) — see columns (8) and (10) in Table 5. The
governing force to be used for design is equal to the larger of these two forces, as shown in
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3.

b) Flexible diaphragm

It is assumed in this example that flexible diaphragms are not capable of transferring significant
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act
as beams spanning between the walls, as shown on the figure below. The diaphragm loads
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example).

Shear forces in the walls Y|, and Y, (diaphragm D1):
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall X inertia
load:

Vi = 0.3%[(9m*30m) * (3.5kPa + 0.6kPa) + 2.4m * 30m * 5.38kPa | = 448kN

The diaphragm is considered as a beam with the reactions at the locations of walls Y,, and Y,,
that is,

Ry,, = 448kN *15m/9m = TATkN

and
R,, =V, —R,,, =448—-747 = -299kN (opposite direction from R,,, is required to satisfy

equilibrium)

The total force in each wall is obtained when the wall inertia load is added to the diaphragm
reaction, that is,
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Vie =Rya vV, =747+ 0.3%2.4m*9m * 5.38kPa = 782kN
Vo =Ry, +V, =-299+0.3*%2.4m*4m* 5.38kPa = -284kN (note: this force has opposite
direction from force V)
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Shear forces in the walls Y, and Y, (diaphragm D2):

Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall X, inertia
load:

Vy, =0.3%[(9m*9m)* (3.5kPa + 0.6kPa) + 2.4m * 9m * 5.38kPa| = 134.5kN

The diaphragm is considered as a beam with the reactions at the locations of walls Y,, and Y,
that is,
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Ry, =R,; =134.5/2=673kN
The total force in each wall is obtained when the wall inertia load is added to the diaphragm

reaction, that is,
Vi =Ry +V, =67+0.3*2.4m*9m *5.38kPa =102kN

V,, =R, +V, = 67+03%2.4m*9m*538kPa = 102kN

Total shear force in wall ¥;:
The total seismic force in the wall Y, is equal to
Vi =V + V1 = 782 +102 = 884kN

Shear forces in walls ¥, and ¥;:
The total shear force in the combined walls Y, and Y, is equal to

Visy =Vyy +Vyy =—2844102 = —182kN

This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the
wall stiffnesses are presented in Table 4):

Ky, 1.94*10°

V,, = -
K, +K, TP 1.94%10° +9.24%10°
Vs =Vyp —Vy, = —182—(=32) = —150kN

*(—182) = 0.17* (—182) = —32kN

The comparison
Shear forces in the walls Y, to Y, obtained in parts a) and b) of this example are summarized

on the figure below. A comparison of the shear forces is presented in Table 6.

Y? ll‘ﬁﬁ Y'% T
165

1594_ 19?2

Y; v, 135 Y, v, T35

a) Rigid diaphragm b) Flexible diaphragm

Table 6. Shear Forces in the Walls Y, to Y, for Rigid and Flexible Diaphragms

Shear forces (kN)
Wall | Rigid diaphragm | Flexible diaphragm
(part a) (part b)
Y, | 594 972 (884)
Y, |35 35 (32)
Y, |165 165 (150)
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These
values are increased by 10 % to account for accidental eccentricity.

It can be observed from the table that the flexible diaphragm assumption results in the same
seismic forces for the walls Y, and Y,, and an increase in the wall Y, force.

Deflection calculations

A fundamental question related to diaphragm design is: when should a diaphragm be modeled
as a rigid or a flexible one? This is discussed in Section 1.11.4. A possible way for comparing
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid
and flexible diaphragm case are presented below.

e Rigid diaphragm (see Example 2, step 8 for a similar calculation)

The deflection will be calculated for point A as this should be the maximum. First, a reduction in
the wall stiffness to account for the effect of cracking will be determined following the approach
presented in Section 2.5.4 (S304-14 CI.16.3.3), that is,

4,=4,003+P)(4,1",)]

Here,

P, =9.0%(9.0/2)*3.5=142 kN (axial force due to dead load in wall X,)

A, = (240 * 103) *9.0=216*10* mm? (effective cross-sectional area for 240 mm block wall,
solid grouted, length 9.0 m; see Table D-1 for 4, values for the unit wall length)
f.1=10.0 MPa

Since

03+P/(4,1",)=03+142%10°/(10.0%216*10*) =031

It appears that

4, =0.31

4

Because the behaviour of low-rise shear walls is expected to be shear dominant and so
stiffness is proportional to cross-sectional area; thus

K, =( je )K, =031K,

g
where K, is elastic uncracked stiffness

Next, the translational displacement at point A can be calculated as follows:
V 700kN

0 = = 3 = O68mm

031> K, 031*3.3*10°kN /m
Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the
building € can be found from the following equation:

T 5860kN;

S N —6.36*10"rad

J 0.31*%297*10
where (see the torsional calculations performed in part a) of this example)
T =5860 kNm torsional moment

A
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J =297*10° elastic torsional stiffness (this value is reduced by 0.5 to take into account
the cracking in the walls)
The torsional displacement at point A:

A =0%x,=636*10"*24.05m =1.53mm
The total displacement at point A is can be found as follows (note that the displacements need
to be multiplied by R, R, /I, ratio, where I,=1.0):

A =(A"+ A" )*R,R, =(0.68+1.53)*1.5%1.5=5.0mm

r————1

A . j o e
s W éi ______ A ! i ."- .-'I
A 3 .‘ﬁ: :"'I-' s 3 ! _.'I

Translational Displacement Torsional Displacement

o Flexible diaphragm

As a first approximation the calculation will consider a 21 m long diaphragm portion as a
cantilever beam, as shown in the figure on the next page. This is an approximate model since
the diaphragm is not fully fixed at that point, but the model is simple and useful for checking
magnitude of deformations in a flexible diaphragm for this structure. The total shear force is
equal to:

V,, = 0.3%[(9m* 21m) * (3.5kPa + 0.6kPa) + 2.4m* 21m * 5.38kPa| = 314kN

and the equivalent uniform load is equal to

v, =V, /L=15.0 kN/m

where

L =21.0 m diaphragm length for the cantilevered portion

The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at

the wall ¥;, and walls Y|, Y,, and Y, also deflect; both effects provide some rotation at the fixed
end of the cantilever.

Consider a plywood diaphragm with the following properties:
E =1500 MPa plywood modulus of elasticity

G =600 MPa plywood shear modulus

t, =254 mm (1" plywood thickness)

A=b*t, =9.0m*0.0254m = 0.23 m?

Let us assume that the two courses of grouted bond beam block act as a chord member, as
shown on the figure on the next page. The roof-to-wall connection is achieved by means of nails
driven into the anchor plate and hooked steel anchors welded to the plate embedded into the
masonry. The corresponding moment of inertia around the centroid of the diaphragm can be
found as follows:
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2 2
I=2*AC*[§j =2*0.096*[?J =389 m*

where
A, =2%(0.24m*0.2m) = 0.096 m? chord area (two grouted 240 mm blocks)

E, =8.5%10°kPa masonry modulus of elasticity based on f, = 10.0 MPa (solid grouted 20
MPa blocks and Type S mortar)

A ~

. 22} | B =

b=t .

[

Section 1-1
!_._ L=21m

EEESEEENEER 'Y

:ﬁ.A_I_ e . p
AEEEEEEEEEEN

|_: L=21m

==

The total displacement at point A is equal to the combination of flexural and shear component,
that is,

N * L LW *L 15.0*(21.0)* L 12%314%210

8E*I 2*A4*G 8*8.5%10°*3.89 2%*0.23*600*10°
The total displacement at point A is can be found by multiplying the above displacement by
R,R, /1, ratio, thatis,

A'max = A" *R,R, =40%1.5%1.5 = 90mm

=(11.0+29.0)*¥107° =40* 107> m = 40mm

A quick check of the additional deflection caused by rotation at the fixed end of the cantilever
indicates that an additional 50 mm could be expected at point A. Thus, the total displacement
would be about 140 mm.

By comparing the displacements for the rigid and flexible diaphragm model, it can be observed
that the difference is significant:

A'_ =5mm rigid diaphragm model

A =90mm  flexible diaphragm model

Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to:

pR="Lm _ 90 0019219 %
ho 4800
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The drift is within the NBC 2015 limit of 2.5% (see Section 1.13); however, a flexible diaphragm
would not be an ideal solution for this design — a rigid diaphragm would be the preferred
solution.

Discussion

In this example, seismic forces were determined for the N-S walls due to seismic load acting in
the N-S direction. It should be noted, however, that there is a significant eccentricity causing
torsional effects in the E-W walls due to seismic load acting in the E-W direction — these
calculations were not included in this example.
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall

Determine minimum seismic reinforcement according to CSA S304-14 for a loadbearing
masonry shear wall located in an area with a seismic hazard index /.F,S, (0.2) of 0.80. The
wall is subjected to axial dead load (including its own weight) of 230 kN.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength fy = 400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

F} =230kN

Wall dimensions:
[,,=8000 mm length

h,,= 6600 mm height
t= 190 mm thickness

6,600 mm

8,000 mm

SOLUTION:

The purpose of this example is to demonstrate how the minimum seismic reinforcement area
should be determined and distributed in horizontal and vertical direction. Once the
reinforcement has been selected in terms of its area and distribution, the flexural and shear
resistance of the wall will be determined and the capacity design issues discussed, as well as
the seismic safety implications of vertical and horizontal reinforcement distribution.

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

f,=400MPa ¢ =0.85
Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it

will be ignored for the small area included.
Masonry:

¢,=0.6

Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table
4 of S304-14 that

f,=9.8 MPa

Based on Note 3 to Table 4, this /| value is normally used for hollow block masonry but can
also be used for partially grouted masonry if the grouted area is not considered.
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.6.9 and
Table 2-3).

Since I.F. S, (0.2)=0.80 > 0.35, minimum seismic reinforcement must be provided (S304-14
Cl.16.4.5.1).

Seismic reinforcement area

Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel
having a minimum area of

A, in =0.0024, =0.002%(190*10° mm2/m) = 380 mm2/m

for 190 mm block walls, where

4, =(1000mm)*(190mm)=190*10° mm?/m gross cross-sectional area for a unit wall length of 1

m
Minimum area in each direction (one-third of the total area):
A,

Apypin = A} i =0.00067 4, =%=¥=127 mm2/m

Thus the minimum total vertical reinforcement area
A o =127*1 = (127 mm?m)(8 m) = 1016 mm?

In distributing seismic reinforcement, the designer may be faced with the dilemma: should more
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3" of the total
amount of reinforcement can be placed in one direction and the remainder in the other direction.
In this example, less reinforcement will be placed in the vertical direction, and more in the
horizontal direction. The rationale for this decision will be explained later in this example.

Vertical reinforcement (area and distribution) (see Table 2-3):

Since [, F. S, (0.2)=0.80 > (0.75, according to S304-14 CI.16.4.5.3 spacing of vertical reinforcing
bars shall not exceed the lesser of:

e 6(t+10)=6(190+10)=1200 mm

e 1200mm

Therefore, the maximum permitted spacing of vertical reinforcement is equal to
s =1200 mm.

Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so

A, = 8*200 =1600 mm?
(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the
upper limit prescribed by S304-14).

The corresponding vertical reinforcement area per metre length is

4, = ‘14” *1000 = 200 mm2/m > A’

vmin

=127 mm?2/m OK

w

It should be noted that the requirements for spacing of vertical reinforcement have been relaxed
for Conventional Construction masonry walls at sites where 0.35</,.F S, (0.2)<0.75 (see Table

2-3).
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Horizontal reinforcement (area and distribution) (see Table 2-3):

Let us consider a combination of joint reinforcement and bond beam reinforcement. According
to S304-14 CI.16.4.5.4, where both types of reinforcement are used, the maximum spacing of

bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement

arrangement is considered:

o 9 Ga. ladder reinforcement @ 400 mm spacing, and

e 2-15M bond beam reinforcement @ 2200 mm (1/3" of the overall wall height). The area of
ladder reinforcement (2 wires) is equal to 22.4mm?, and the area of a 15M bar is 200 mm?. So,
the total area of horizontal reinforcement per metre of wall height is

, [22.4 400
+

" 17200 © 2200

J* 1000 =238 mm?m > 4, . =127 mm*m  OK

So, the total area of horizontal and vertical reinforcement is
A=A+ A4, =200+238=438 mm?’/m >A4, . =380 mmm OK

Note that the total area (438 mm?/m) exceeds the S304-14 minimum requirements (380 mm?/m)
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also
a reserve in reinforcement area provides additional safety for seismic effects.

3. Check whether the vertical reinforcement meets the minimum requirements for
loadbearing walls (S304-14 C1.10.15.1.1 — see Table 2-3).

Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements
would need to be checked, however the check is omitted from this example since it does not
govern in seismic zones.

4. Desigh summary
The reinforcement arrangement for the wall under consideration is summarized below.
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vertical reinf. =
8-15M grouted 3
]
9 (v, ladder — = =
@ 400 N2
—}'—
2-15M @ 2200 —1f =
hond beam o
grouted
100, _100

I 1
00

1598 mm concrete block
) 15 MPa strength
Design Summary Type § mortar
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EXAMPLE 4b: Seismic design of a |Conventional Construction| squat shear wall

Design a single-storey squat concrete block shear wall shown in the figure below according to
NBC 2015 and CSA S304-14 seismic requirements for Conventional Construction reinforced
masonry walls. The building site is located at the site supported by Site Class C soil, and the
seismic hazard index /,.F,S, (0.2) is 0.66. The wall is subjected to a total dead load of 230 kN
(including the wall self-weight) and an in-plane seismic force of 630 kN. Consider the wall to be
solid grouted. Neglect the out-of-plane effects in this design.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength f =400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

Pr=230kN
Vi=630kN 1

F |Illll|I|I|I|||||I|I|I|I|I|I|I|I|I|I|I| &
e Wall dimensions:
e e B 1,=8000 mm length
e e eeicicies B h, = 6600 mm height
e e e t= 190 mm thickness
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII m
e )
L 8,000 mm
I -

SOLUTION:

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa
Masonry:
¢m = 06

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Load analysis
The wall needs to be designed for the following load effects:

. Pf = 230 kN axial load
. Vf = 630 kN seismic shear force

e M,=V,*h=630"6.6 ~4160 kNm overturning moment at the base of the wall

Note that, according to NBC 2015 Table 4.1.3.2, load combination for the dead load and seismic
effects is 1.0*D + 1.0*E.
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3. Minimum CSA S$304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3)
Since [, F. S, (0.2)= 0.66 > 0.35, minimum seismic reinforcement is required (S304-14
Cl.16.4.5.1). See Example 4a for a detailed calculation of the S304-14 minimum seismic
reinforcement.

4. Design for the combined axial load and flexure

A design for the combined effects of axial load and flexure will be performed using two different
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering
concentrated and distributed reinforcement.

Distributed wall reinforcement (see Section C.1.1.2)

This procedure assumes uniformly distributed vertical reinforcement over the wall length. The
total vertical reinforcement area can be estimated, and the estimate can be revised until the
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical
reinforcement was determined as

A4,,= 3200 mm? > 1016 mm? (minimum seismic reinforcement) - OK

Try 16-15M bars for vertical reinforcement.
The wall is subjected to axial load

P,=230 kN
The approximate moment resistance for the wall section is given by:
a, =0.85 B, =0.8

¢S, A 0.85%400%*3200
o= = =0.159

¢,/ 1t 0.6*7.5%8000*190

P * 3

a=—t = 203

¢,/ 1t 0.6*7.5%8000*190

wt+a 0.159+0.034 (8000) = 1547 mm

Cc = =
20+a,B, " 2%0.159+0.85%0.8

1544

P
M, =058, f, A0, [ 1+—L— | 1-= |=0.5%0.85*——*3200
6 f,A ! 1000

sJ y“ivt

+
1000 0.85*400*3200

w

M, =4253 kNm> M, =4160 kNm OK

Distributed and concentrated wall reinforcement (see Section C.1.1.1)

This procedure assumes the same total reinforcement area, but the concentrated reinforcement
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length.

A,,= 3200 mm?
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Concentrated reinforcement area at

each wall end (3-15M bars in total, A Ay A
1-15Min last 3 cells): TR Bl = = — = = e
A, =600 mm?
Distributed reinforcement A 2.15M

C 3=
A, =3200-2*600=2000 mm? —t—

Distance from the wall end to the

centroid of concentrated

reinforcement s
d' =300 mm ]

100 200 200
et rtods]

==

The compression zone depth a:
_Po+gf, A4, 230%10° +0.85*400* 2000

a= =1252 mm
0.85¢, 1" t 0.85*0.6*7.5*190

The masonry compression resultant C, :
C, =(0.854, 1, t-a)=(0.85%0.6*7.5)(190 *1252) =910 kN

The factored moment resistance A, will be determined by summing up the moments around
the centroid of the wall section as follows jsee equation (3) in Section C.1.1.1)

M, =[C, (1, -a)2+2( 4., /2-d)]10°
= [910%10° * (8000 — 1252)/2 + 2% (0.85* 400 * 600)(8000/2 — 300)|* 10 M, = 4580 kNm

The second procedure was used as a reference (to confirm the results of the first procedure).
Both procedure give similar A, values (4253 kNm and 4580 kNm by the first and second
procedure respectively).

5. Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.5.4)

Cl.16.5.4 requires that the factored shear resistance, ¥V, for a Conventional Construction shear
wall should be greater than the shear due to effects of factored loads, but not less than i) the
shear corresponding to the development of factored moment capacity, M, or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Conventional Construction shear walls, the shear capacity should exceed the shear
corresponding to the nominal moment capacity, as follows

M, =4253 kNm

The shear force V,, corresponding to the overturning moment M, is equal to
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M 42
V,=—" =—53= 645 kN
h 6.6
The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to
_V,*R;-R, 630-1.5-1.5

fe
1.3 1.3
The smaller of these two values should be used, hence

=1090kN

V., =645kN

6. Find the diagonal tension shear resistance (see Section 2.3.2 and S304-14
C1.10.10.2.1).

Masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, =08/ =6400 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,=207 kN

M.

v, =0.16(2——2L),/f! = 0.44 MPa
V,d,

M, 4160

= =1.03~1.0
V,d, 630%6.4

V,=4,v,b,d, +025P,)y, =0.6(0.44*190*6400+0.25*207*10%*1.0 = 352 kN
Steel shear resistance V', (2-15M bond beam reinforcement at 1200 mm spacing):
d
V. =0.69A4 f —~=0.6%0.85 *ﬂ*400 » 0400 435 kN
T 1000 1200

Total shear resistance

V.=V +V =352+435="787 kN

The factored shear resistance exceeds the minimum required factored shear resistance, that is,
V. =T78TkN>V , =645kN OK

h
This is a squat shear wall because l—” = % =0.825<1.0. Maximum shear allowed on the

section is (S304-14 CI.10.10.2.1)
h
maxV, =0.4¢ . f! b,d,y,(2 _l_w) =939 kN

Since
V. <maxV, OK

Note that a solid grouted walll is required, thatis, y, =1.0. A partially grouted wall would have
7, = 0.5, so its shear capacity would not be adequate for this design.
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7. Sliding shear resistance (see Section 2.3.3)
The factored in-plane sliding shear resistance V, is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 3200 mm? total area of vertical wall reinforcement
T,=¢.A,f, =0.8573200*400 = 1088 kN

P, =207 kN

P, =P, +T,6 =207+1088 = 1295 kN

V. =¢,uP,=0.6%1.01295=777 kN

V.=TITkN>V =645kN  OK

8. Design summary

The reinforcement arrangement for the wall under consideration is shown in the figure below.
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to
ensure uniform shear transfer along the entire length (see Section 2.3.2.2).
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9. Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. There are three shear forces:

a) V, =645 kN minimum required factored shear resistance

b) V. =787 kN diagonal tension shear resistance
c) V. =777 kN sliding shear resistance

Since the minimum required factored shear resistance is smallest of the three values, it can be
concluded that the flexural failure mechanism is critical in this case, which is desirable for
seismic design.

Note that S304-14 CI.10.2.8 prescribes the use of a reduced effective depth d for the flexural
design of squat shear walls. This example deals with seismic design, and the wall reinforcement
is expected to yield in tension, this provision was not followed since it would lead to a non-
conservative design; instead, the actual effective depth was used for flexural design.
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EXAMPLE 4c: Seismic design of a [Moderately Ductile| squat shear wall

Design a single-storey squat concrete block shear wall shown on the figure below according to
NBC 2015 and CSA S304-14 seismic requirements for moderately ductile squat shear walls
(note that the same shear wall was designed in Example 4b as a conventional construction).
The building site is located in Ottawa, ON and the seismic hazard index I, F,S, (0.2) is 0.66.
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher R, value of 2.0 that can be used for walls
with Moderate Ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in
this design.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength fy = 400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

FJ’F=23{JRN
V,=470kN l
P IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ey | Wall dimensions:
Lo LI O T D L L LT L] E [,=8000 mm length
T ) b, = 6600 mm height
e e e =190 mm thickness
e Note that the h/t ratio exceeds
8.000 mm the $304.1 limit of 20 for
= J = moderately ductile squat shear
walls (CI.10.16.6.3).
SOLUTION:
Since
h_W:@:()_82531_()
[ 8000

this is a squat shear wall. The wall is to be designed as a moderately ductile squat shear wall,
and NBC 2015 Table 4.1.8.9 specifies the following R, and R, values (see Table 1-13):
R,=20and R =15

The seismic shear force of 470 kN for a wall with moderate ductility (R, = 2.0) was obtained by
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with
conventional construction (R, =1.5), as follows

V, =630% 12 ~ 470 kN
- 2.0

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa
Masonry:
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¢,=0.6
From S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Load analysis
The wall needs to be designed for the following load effects:

. Pf = 230 kN axial load
. Vf = 470 kN seismic shear force

e M,=V,*h=470"6.6 ~ 3100 kNm overturning moment at the base of the wall

Note that, according to NBC 2015 Table 4.1.3.2, the load combination for the dead load and
seismic effects is 1.0*D + 1.0*E.

3. Minimum S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3)
Since 1,F,S,(0.2)= 0.66 > 0.35, minimum seismic reinforcement is required (C.16.4.5.1). See

Example 4a for a detailed calculation of the S304-14 minimum seismic reinforcement.

4. Design for the combined axial load and flexure (see Section C.1.1.2).

A design for the combined effects of axial load and flexure will be performed by assuming
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the
total area of vertical reinforcement was determined as

A,,= 2200 mm? > 1016 mm? (minimum seismic reinforcement) - OK

and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area
of 2200 mm?).

The wall is subjected to axial load P,= 230 kN. Note that the load factor for the load
combination with earthquake load is equal to 1.0.

The moment resistance for the wall section can be determined from the following equations (see
Example 4b):
a, =085 B,=08 ©=0.109 a=0.034 c=1273 mm

P *103
Mr=0.5¢sfyAwlw 1+ ! 1—i :O.S*O.SS*ﬂ*zzoo*gooo 1+ 230710 (1—1273j
P, fyAv, / 1000 1000 0.85*400*2200 8000

w

M, =3290 kNm> M, =3100 kNm OK

5. Height/thickness ratio check (see Section 2.6.4)
S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
moderately ductile squat shear walls (Cl.16.7.4):

h/(t+10) < 20, unless it can be shown for lightly loaded walls that a more slender wall is
satisfactory for out-of-plane stability.

For this example,

h = 6600 mm (unsupported wall height)
t= 190 mm actual wall thickness
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So,
h/(t +10) = 6600/(190 +10) = 33 > 20

The height-to-thickness ratio for this wall exceeds the S304-14 limits by a significant margin.
However, S304-14 permits the height-to-thickness restrictions for moderately ductile squat
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability
is satisfactory.

This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which
corresponds to the compressive stress of
* 3

f. = _f _ 2307107 _ =0.15 MPa

[t 8000*190
This stress corresponds to only 2% of the masonry compressive strength £ which is equal to
7.5 MPa. In general, a compressive stress below 0.1 1 (equal to 0.75 MPa in this case) is
considered to be very low.

The recommendations included in the commentary to Section 2.6.4 will be followed here. A
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of
the compression zone must be confirmed for this case.

Try an effective flange width 5, =390mm. The wall section and the internal force distribution is
shown on the figure below.

%—“AL
bf @:—f El'f; Izl 111'1;:
| [ ] i [ ] (23] [ [ ] (R
- e R d'__
K

i

085 i (TTTTTT | l
CE :(')sfy A T E Ti
e W

This procedure assumes the same total reinforcement area 4,, as determined in step 4, but the
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is
distributed over the wall length.

A,,= 2200 mm?
Concentrated reinforcement area (2-15M bars at each wall end):

9/1/2018 3-49



A4,= 400 mm?
Distributed reinforcement area:
A, =2200-2*400=1400 mm?
Distance from the wall end to the centroid of concentrated reinforcement A, :

d'=100 mm
¢ Check the buckling resistance of the compression zone.
The area of the compression zone 4, :

_Po+¢ [, 4, 230%10° +0.85*400* 1400
Lo085g 1 0.85%0.6%7.5
The depth of the compression zone a:
Ay =b *t+1"  1.846%10° —(390*190) +190>
t - 190
The neutral axis depth:

c=-%-965 mm
0.8

=1.846*10° mm?

=772 mm

a=

The centroid of the masonry compression zone:
t*(a2/2)+ b, -0li*/2)

X = 4

In this case, the compression zone is L-shaped, however only the flange area will be considered

for the buckling resistance check (see the shaded area shown on the figure below). This is a

conservative approximation and it is considered to be appropriate for this purpose, since the
gross moment of inertia is used.

=326 mm

Gross moment of inertia for the flange only:
_t*b” 190%390°
xg 12 12

=9.39*10% mm*

The buckling strength for the compression zone will be
determined according to S304-14 CI.10.7.4.3, as follows:

p o TPEL 017
T (1+0.58,) (kh)

where

4. =0.75

k =1.0 pin-pin support conditions
B, =0 assume 100% seismic live load

h=6600 mm unsupported wall height
E =850f' =6375 MPa modulus of elasticity for masonry

¢ Find the resultant compression force (including the concrete and steel component).
P,=C,+¢.f,A =706 *10° +0.85%400 * 400 = 842 kN

where

C, =(0.85¢, f', )4, =(0.85%0.6*7.5)(1.846 ¥10°) = 706 kN
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¢ Confirm that the out-of-plane buckling resistance is adequate.
Since

P, =842kN< P, =1017 kN

it 'can be concluded that the out-of-plane buckling resistance is adequate and so the flanged
section can be used for this design. This is in compliance with S304-14 CI|.16.7.4, despite the
fact that the h/t ratio for this wall is 33, which exceeds the S304-14-prescribed limit of 20.

4a. Design the flanged section for the combined axial load and flexure — consider
distributed and concentrated wall reinforcement (see Section C.1.1.1).

The key design parameters for this calculation were determined in step 5 above. The factored
moment resistance M. will be determined by summing up the moments around the centroid of
the wall section as follows

M, =C,(1,/2-x)+2(4, [ A, X1, /2—d’) =706*10° *(8000/2 — 326) + 2 * (0.85* 400 * 400)* (8000/2 — 100)

M, =3655%10° Nmm = 3655 kNm
Since
M, =3655 kNm> M, =3100 kNm  OK

6. Find the minimum required factored shear resistance (see Section 2.6.5 and $304-14
Cl1.16.7.3.2)

Cl.16.7.3.2 requires that the factored shear resistance, V., for a Moderately Ductile squat shear
wall should be greater than the shear due to effects of factored loads, but not less than i) the
shear corresponding to the development of factored moment resistance, M, , or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear
corresponding to the factored moment resistance. In this case, the factored moment resistance
is equal to

M, =3655 kNm

The shear force at the top of the wall that would cause an overturning moment equal to A is

p, =M. 3055 _ sppn
h, 6.6

W

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to

_V;*R,'R, 470-20-15

er =1085kN

: 1.3 1.3
The smaller of these two values should be used, hence
V., =554 kN

7. The diagonal tension shear resistance (see Section 2.3.2 and S304-14 C1.10.10.2.1)
Masonry shear resistance (V)):

b, =190 mm overall wall thickness
d, =08/ =6400 mm effective wall depth
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7, =1.0 solid grouted wall
P, =0.9P,=207 kN

M.
v, =0.16(2——L),/f! = 0.44 MPa
V,d,
M, 3100
V.d, 470%6.4

=1.03=1.0

V, =4,0,b,d, +0.25P,)y, =0.6(0.44*190*6400+0.25*207*10%)*1.0 = 352 kN

Steel shear resistance V.
Assume 2-15M bond beam reinforcement at 1200 mm spacing, so

A, =400 mm?

s =1200 mm

Horizontal reinforcement area per metre:
" A 400

A, =—-*1000 =——*1000 =333 mm?m
s 1200

V0644 f, % —0.6%0.85% 200 x 4005 8400
Y 1000 1200

=435 kN

Total diagonal shear resistance

V.=V +V =352+435="787 kN

The factored shear resistance exceeds the minimum required factored shear resistance, that is,
V. =787 kN>V =554 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.2)
h
maxV, =0.4¢, ./ f, b,d,y,(2 _Z_W) =939 kN

Since
V. <maxV, OK

Note that S304-14 CI.16.7.3.1 requires that the method by which the shear force is applied to
the wall shall be capable of applying shear force uniformly over the wall length. This can be
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section
2.3.2.2 (see Figure 2-16).

8. Sliding shear resistance (see Section 2.3.3)
The factored in-plane sliding shear resistance V' is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 2200 mm? total area of vertical wall reinforcement
T,=¢.4,f, =0.8572200"400 = 748 kN

P, =207 kN

P, =P, +T, =207+748 = 955 kN

V. =¢,uP, =0.6%1.07955 = 573 kN
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V. =573 kN> V =554 kN OK
Note that V/, =573 kN < V. =787 kN for diagonal tension (this indicates that the sliding shear
resistance governs over the diagonal tension shear resistance).

9. Minimum reinforcement requirements for Moderately Ductile squat shear walls (see
Section 2.6.10)

S304-14 CI.16.7.5 prescribes the following requirements for the amount of reinforcement in
Moderately Ductile squat shear walls:

Horizontal reinforcement ratio p,

p, should be greater than the minimum value set by S304-14 CI.16.7.5:
V, B 470*10°

b, h,-4-f 190*6600%0.85*400

and the value determined in accordance with Cl.10.10.2 based on the shear resistance

requirements
phshear = Ah = 2131 :170*1073
b,*h, 190*6600
where 4, is the total area of horizontal reinforcement along the wall height, that is,
A, = A4, +d, =33346.4=2131mm?

where

!

A, =333 mm?/m (see step 6)
In this case,
£, =1.10M03 < p, . =1.70%10%

This indicates that the S304-14 shear resistance requirement governs. The amount of horizontal
reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is adequate.

=1.10*10"

phmin =

Vertical reinforcement ratio p,
Minimum p . value set by S304-14 CI|.16.7.5:

P B 5 230*10° B
8 -b,1-f ©0.85%190%8000%400

where P, = P, =230kN. Actual vertical reinforcement ratio p,,, based on the flexural design

1.10*10 0.65*107

pvmin 2 phmin -

requirements (see step 4):
A, 2200

= =1.447%107
I,*t 8000*190

p\gﬂex =
Since
Pojiex = 1447103 > p . =0.65*103

It appears that the amount of vertical reinforcement determined based on the flexural design
requirements (11-15M) governs. It can be concluded that the minimum S304-14 reinforcement
requirements for Moderately Ductile shear walls have been satisfied.
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10. Shear resistance at the web-to-flange interface (see Section C.2 and CI1.7.11).

The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and
vertical shear stress, as shown below.

Horizontal shear:

sV _ 554%10°
7tl, 190*8000
where ¢, = 190 mm (effective wall thickness)

=0.36 MPa

Vertical shear (caused by the resultant compression force P, calculated in Step 5):

- Py _ 842*10°
7 b, *h,  190*6600

Factored shear strength for bonded interfaces (S304-14 CIL.7.11.1):

v, =0.16¢,/f] =0.26 MPa

Since

v, =0.67MPa> v, =0.26 MPa

shear reinforcement at the web-to-flange interface is required. Since the horizontal
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the
flange (90° hook), and so

, = 2AS, _ 0.85%2%200*400
’ s-t, 1200*190

The total shear resistance

v =v +v =0.26+0.60 =0.86 MPa

Since

v, =0.67MPa < v, =0.86 MPa

the shear resistance at the web-to-flange interface is satisfactory.

=0.67 MPa governs

=0.60 MPa

11. Design summary
The reinforcement arrangement for the wall under consideration is shown in the figure below.
Note that the wall is solid grouted.
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11. Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. There are three shear forces:

a) ¥V, =554 kN minimum required factored shear resistance
b) V. =787 kN diagonal tension shear resistance

c) V. =573 kN sliding shear resistance

Since the minimum required factored shear resistance is smallest of the three values, it can be
concluded that the flexural failure mechanism is critical in this case, which is desirable for
seismic design.

9/1/2018 3-55



Note that S304-14 CI.10.2.8 prescribes the use of reduced effective depth d for flexural design
of squat shear walls. Since this example deals with seismic design and essentially all the wall
reinforcement is expected to yield in tension, this provision was not used as it is expected to
result in additional vertical reinforcement, which would increase the moment capacity and
possibly lead to a more brittle diagonal shear failure.

Note that the S304-14 ductility check is not prescribed for Moderately Ductile squat shear walls.

This example shows that an addition of flanges can be effective in preventing the out-of-plane
buckling of Moderately Ductile squat shear walls. This is in compliance with S304-14 CI.16.7 .4,
despite the fact that the 4/t ratio for this wall is 33, which exceeds the S304-14-prescribed limit
of 20.

The last two examples provide an opportunity for comparing the total amount of vertical
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction
(16-15M bars); this reduction amounts to approximately 30%.
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EXAMPLE 5a: Seismic design of a Moderately Ductile| flexural (non-squat) shear wall
Perform the seismic design of a shear wall shown in the figure below. The wall is a part of a
four-storey building located in Montreal, QC (City Hall) where the seismic hazard index,

I.FS, (0.2), is 0.60. The design needs to meet the requirements for Moderately Ductile Shear
Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1,800 kN (including the wall self-weight), an in-plane seismic shear force of 1090 kN, and an
overturning moment of 10,900 kNm. The elastic lateral displacement at the top of the wall is 15
mm. Select the wall dimensions (length and thickness) and the reinforcement, such that the
CSA S304-14 seismic design requirements for Moderately Ductile shear walls are satisfied. Due
to architectural constraints, the wall length should not exceed 10 m, and 190 mm standard
blocks should preferably be used.

Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Grade 400 steel
reinforcement (yield strength f, = 400 MPa) is used for this design.

im .

¥
E
¥,
L
g X
¥
M,=10900kNm  F7=1800kN |
L:'r:rpeamcw I
!___. 1l m =
SOLUTION:

1. Material properties and wall dimensions
Material properties for steel (both reinforcing bars and joint reinforcement):
¢ =085 f, =400 MPa

and masonry:
From S304-14 Table 4, for 20 MPa concrete blocks and Type S mortar:

/., =10.0 MPa (assume solid grouted masonry)
¢,=0.6

Wall dimensions:
Overall height 2, =14 m
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Length /[ =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:

° Pf= 1800 kN axial load
° Vf = 1090 kN seismic shear force

e M, =10900 kNm overturning moment

This is a Moderately Ductile shear wall, and NBC 2015 Table 4.1.8.9 specifies the following R,
and R, values:

R,=20and R,= 1.5

3. Height/thickness ratio check (S304-14 C1.16.8.3, see Section 2.6.4)
S304-14 prescribes the following height-to-thickness (h/ t) limit for the compression zone in
Moderately Ductile shear walls:

h/(t+10) < 20

For this example,

h= 5000 mm (the largest unsupported wall height)

So,

t>h/20-10 =240 mm

This means that a rectangular wall section with 240 mm thickness could be used. However,
S304-14 CI.16.8.3 permits the use of a more slender wall if the wall is lightly loaded (axial stress
less than 0.1/ ), and it can be proven that out-of-plane stability can be maintained under

seismic effects.

Let us consider 1 =190 mm (standard concrete blocks) — this will result in //(¢ +10) = 25 > 20.

In this case, the axial stress level is
P 1800%*10°

= =0.095<0.1
I *t* £ 10000*190*10

The Commentary to Section 2.6.4 proposes an approach for verifying the out-of-plane stability
of masonry shear walls with flanged ends. Let us assume a 1000 mm wide flange at each wall
end, because S304-14 Cl.16.8.3.4 states that the minimum flange width of 0.2/ (= 1000 mm for
a 5m unsupported wall height at the first storey level) is required to ensure out-of-plane stability
in ductile shear walls.

The effective flange width
b, =1000 mm

The wall section and the internal force distribution is shown in the figure below.
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This procedure assumes that the concentrated reinforcement (area A, ) is provided at the wall

ends (flanges), while the remaining reinforcement (area 4, ) is distributed over the wall length.

After a few trial estimates, the total area of vertical reinforcement 4, was determined as follows

4,,= 2800 mm?

Concentrated reinforcement area (3-15M bars at each flange):

A, =600 mm?

Distributed reinforcement area:
A, =2800-2*600= 1600 mm?

Distance from the wall end to the centroid of concentrated reinforcement 4, :

d =95 mm

e Check the buckling resistance of the compression zone.
The area of the compression zone 4, :

P +¢.f, 4, 1800%10° +0.85%400*1600

=4.6*10° mm?

L0850 11

0.85*0.6*10.0

Check whether the neutral axis falls in the web. Since the flange area is

A, =b, *1=1.9%10> mm?

It is obvious that the area of compression zone is greater than the flange area, hence the

neutral axis falls in the web. The depth of the compression zone a is:
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A, b, *t+1*  46*10° —(1000*190) +190

i B s
=1610 e
t 190

mm i

a =

The neutral axis depth:

[*]
t]
c=&=2011mm bf =]
]
B

The centroid of the masonry compression zone:

L (a2/2)+;b_f -0(/2) <67 |

<5

In this case, the compression zone is T-shaped, however .Ei:.{
only the flange area will be considered for the buckling
resistance check (see the shaded area shown in the figure). This is a conservative
approximation, and it is considered to be appropriate for this purpose, since the gross moment
of inertia is used.
Gross moment of inertia for the flange only:

x7 3 * 3

o= 70 190710007 Sguig0 mpme

12 12
The buckling strength for the compression zone will be determined according to S304-14 CI.
10.7.4.3, as follows:

p oo THeEuly oo
T (1+0.58,)(kh)

where

¢, =0.75

k =1.0 pin-pin support conditions

B, =0 assume 100% seismic live load

h =5000 mm unsupported wall height

E, =850f' =8500 MPa modulus of elasticity for masonry

e Find the resultant compression force (including the concrete and steel component).
P,=C,+¢.f,A =2346 *10° 4+ 0.85*400 * 600 = 2550 kN
where

C, = (O.85¢m 1 )AL =(0.85%0.6*%10.0)(4.6*10) = 2346 kN

e Confirm that the out-of-plane buckling resistance is adequate.

Since

P, =2550kN < P, =26566 kN

cr

it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section
can be used for this design.

Note that S304-14 CI.16.8.3.4 prescribes a relaxed (h/t <30) limit for flanged shear walls

provided that the neutral axis depth meets the following simplified requirement (see Figure 2-
28):
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¢ <3t=3%190 =570 mm

Note that 3¢ denotes the distance from the inside of a wall flange to the point of zero strain. So
the total neutral axis depth (distance from the extreme compression fibre to the point of zero
strain) is equal to

c=c +t=570+190 = 760 mm

The neutral axis depth determined above is as follows

c=2011 mm > 760 mm

It can be concluded that the S304-14 simplified (h/t) check performed above is not satisfied,
and that a detailed verification is required (as presented above), to confirm the wall stability.

4. Design the flanged section for the combined axial load and flexure — consider
distributed and concentrated wall reinforcement (see Section C.1.1.1).

The key design parameters for this calculation were determined in step 3 above. The factored
moment resistance M, will be determined by summing up the moments around the centroid of
the wall section as follows

M, =C,(1,/2-x)+2(4, 1A X2, /2-d") = 2346*10° *(10000/2 — 567) + 2*(0.85* 400*600)* (10000, 2 95)
M, =12392 kNm> M, =10900 kNm  OK

5. Perform the S304-14 ductility check (see Section 2.6.3).

To satisfy the S304-14 ductility requirements for Moderately Ductile shear walls (CI.16.8.7), the
neutral axis depth ratio (c//, ) should be less than the following limit:

¢/l, <0.15 when h, /I, >5

In this case,

h

- =14<5

IW

Also, the neutral axis depth
c=2011 mm

and so

¢/l =2011/10000 =0.2 > 0.15

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand &,;, and the rotational capacity 8,., and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as
A, =15 mm

The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:

M
n 14034 oo 13 v, =13

M, 10900
In this case, the nominal moment capacity is equal to M,= 14034 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢, = ¢ =1.0 were used.

Vw =
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The S304-14 minimum rotational demand is »» = 0.003 for Moderately Ductile shear walls
(Cl.16.8.8.2). The actual value is determined from the following equation:

i (4,,R,R, —Aﬂyw): (15-20-1.5-15-130) _, oy o

id g
— (14.0—10'0)103
2 2

This is less than @n» = 0.003, hence
0,=6., =3.0-107°

1 m

The rotational capacity can be calculated as follows (and should not exceed 0.025)

& |

0, = (Z2°-0.002) = (w
C

-0.002 |=4.22-10"°
2.2011

Since the rotational capacity 6y is greater than rotational demand &y, it can be concluded that
the S304-14 ductility requirements have been satisfied.

6. Minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.8.9.2)

Cl.16.8.9.2 requires that the factored shear resistance, V_, for a Moderately Ductile shear wall
should be greater than the shear due to the effects of factored loads, but not less than i) the
shear corresponding to the development of the nominal moment capacity, M, , or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear
corresponding to the nominal moment capacity, as follows

M, =14034 kNm
The shear force resultant acts at the effective height #,, the distance from the base of the wall

to the resultant of all the seismic forces acting at the floor levels. Note that 4, can be determined
as follows

Mf
h =——=10.0 m

e

V
!
The shear force V,, corresponding to the overturning moment M, is equal to
M, 14034
', =——=——= 1403 kN
h 10.0

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to
Vo R;°R, 1090-2.0-1.5
s 1.3 1.3
The smaller of these two values should be used, hence

=2510kN
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V., =1403kN

7. The diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14
C1.10.10.2.1 and 16.8.9.1)

Masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, ~0.8/, =8000 mm effective wall depth
7, =1.0 solid grouted wall

Although the seismic hazard index /. F,S, (0.2) =0.6 > 0.35, partial grouting in the plastic hinge
zone of Moderately Ductile shear walls is permitted by S304-14 CIl.16.8.5.2, because the wall

h
has an aspect ratio - =1.4 < 2, and is subjected to low axial stress (less than 0.1 ).
However, this design requires full grouting within the plastic hinge zone due to the significant
shear demand.

P, =0.9P, = 1620 kN

M, M
Since r 10900 =1.25>1.0 use —-—=1.0in the equation for masonry shear

V,d, 1090*8.0 V.d,
resistance below

M,
v, =0.16Q2——2L)./f" =0.51 MPa
Vd,

v, =¢,,b,d, +025P,)y, =0.6(0.51*190*8000+0.25*1620*10%)*1.0 = 704 kN

To find the steel shear resistance V, assume 2-15M bond beam reinforcing bars at 600 mm

spacing (this should provide some allowance in the shear strength to satisfy capacity design),
thus

A, =400 mm?

s =600 mm

V,=0.64,4,f, o _06%0.85%200 4 400+8090 _ 1088 kN
‘ ‘ s 1000 600

According to Cl.16.8.9.1, there is a 25% reduction in the masonry shear resistance contribution
for Moderately Ductile shear walls, and so

V. =075V, +V, =0.75%704+1088 =1616 kN > ¥/, =1403 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
maxV, =0.4¢,./ f,b,d,y, =1154kN <V,

It can be concluded that the above maximum shear resistance requirement has not been
satisfied. It would be required to increase either wall thickness or length to satisfy this
requirement. It is recommended to perform this check at an early stage of the design.
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8. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 C1.10.10.5.1)
The factored in-plane sliding shear resistance V' is determined as follows:
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 2800 mm? total area of vertical wall reinforcement

For Moderately Ductile shear walls, all vertical reinforcement should be accounted for in the Ty
calculations (CI.10.10.5.1), (also see Figure 2-17)

T, =¢.4,f, =085%2800*400 =952 kN

P, =1620 kN

C=P, +T, =1620+952 = 2572 kN

V. =¢ uC =0.6%1.02572 = 1543 kN

V. =1543 kN> V , =1403 kN OK

9. Shear resistance at the web-to-flange interface (see Section C.2 and $304-14 CI.7.11).
The factored shear stress at the web-to-flange interface is equal to the larger of the horizontal
and vertical shear stress, as shown below.

Horizontal shear can be determined as follows:

s oV _ 1403*10°
Tl 190%10000
where ¢, = 190 mm (effective wall thickness)

Vertical shear over the entire wall height (caused by the resultant compression force be
calculated in Step 3):

- Py _ 2550*10°
7 b, *h, 190*14000

Factored masonry shear strength for bonded interfaces (S304-14 CI.7.11.1):

v, =0.16¢,[f7 =0.30 MPa

Since

v, =0.96 MPa> v, =0.30 MPa

it is required to provide additional shear reinforcement at the web-to-flange interface. The

horizontal reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement)

and both bars can be extended into the flange (90° hook). These bars will provide shear

resistance at the interface. Therefore,

, _ AT, 0.85%2*200*400
’ S-t, 600 *190

The total shear resistance

v,=v,+v,=030+1.19=1.49 MPa> v, =0.96 MPa OK

=0.74 MPa

=0.96 MPa governs

=1.19 MPa

10. S304-14 seismic detailing requirements for Moderately Ductile shear walls — plastic
hinge region

According to Cl.16.8.4, the required height of the plastic hinge region for Moderately Ductile
shear walls must be greater than (see Table 2-5)

h, =12/2=5.0 m

or
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h,=h,/6=140/6=23 m
(note that 4, denotes the total wall height)
So, hp =5.0 m governs

The reinforcement detailing requirements for the plastic hinge region of Moderately Ductile
shear walls are as follows (see Table 2-4 and Figure 2-40):
1. The wall in the plastic hinge region must be solid grouted (CI.16.6.2) (the relaxation
under Cl.16.8.5.2 does not apply in this case).
2. Horizontal reinforcement requirements
a) Reinforcement spacing should not exceed the following limits (CI.16.8.5.4):
s <1200 mm or

s <1,/2=10000/2 = 5000 mm

Since the lesser value governs, the maximum permitted spacing is

s <1200 mm

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements

Horizontal reinforcement shall not be lapped within (Cl.16.8.5.4)

600 mm or

[,/5=2000 mm

whichever is greater, from the ends of the wall. In this case, the reinforcement should not
be lapped within the distance 2000 mm from the end of the wall. The horizontal
reinforcement can be lapped at the wall half-length. Lap splice lengths within the plastic

hinge region are required to be at least 1.5/, (Cl. 16.8.5.5).

Horizontal reinforcement shall be (Cl.16.8.5.4):

i) provided by reinforcing bars only (no joint reinforcement!);

i) continuous over the length of the wall (can be lapped in the centre), and

i) have at least 90° hooks at the ends of the wall.

All these requirements will be complied with, as shown on the design summary drawing.
3. Vertical reinforcement requirements (CI.16.8.5.1)
Unlike Ductile shear walls there are no specific lapping restrictions for vertical reinforcement in
the plastic hinge zone of Moderately Ductile shear walls. Lap splice lengths within the plastic

hinge region are required to be at least 1.5/, (C1.16.8.5.5).

11. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that Moderately Ductile shear walls must be solid grouted in the plastic hinge
region, except for certain specific cases. But they may be partially grouted outside the plastic
hinge region (this depends on the design forces).
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12. Discussion

It is important to consider all possible behaviour modes, and to identify the one that governs in

this design. The following shear resistance values need to be considered:

3-66
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1. ¥V, =1616 kN diagonal tension shear resistance
2. V, =1543 kN sliding shear resistance
3. V, =1403 kN minimum required shear resistance to achieve ductile flexural behaviour

It can be concluded that the minimum required shear force corresponding to the flexural failure
mechanism is the smallest, so the flexural failure mechanism governs in this case, which is a
requirement for the Capacity Design approach for Moderately Ductile shear walls.
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EXAMPLE 5b: Seismic design of a shear wall with a rectangular cross-section
Perform the seismic design of a shear wall shown in the figure below. The wall is five-stories
high, with a total height of 15 m. It is part of a building located in Vancouver, BC (City Hall),
where the seismic hazard index, /. F,S, (0.2), is 0.85. The design needs to meet the
requirements for a Ductile Shear Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1800 kN, an in-plane seismic shear force of 943 kN, and an overturning moment of 9430 kNm.
The elastic lateral displacement at the top of the wall is 13 mm. Select the wall dimensions
(length and thickness), and the reinforcement so that the CSA S304-14 seismic design
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall
length should not exceed 10 m, and a standard rectangular wall section should be used.

Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as
solid grouted. Grade 400 steel reinforcement (yield strength f} = 400 MPa) is used for this
design.

s
oy
£
o
v
| &
o
_.."I_
=
oy
o
M =9430kNm I =1800kN s
/ i MVioazkn | ||
_ <10m _
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SOLUTION:

1. Material properties and wall dimensions

Material properties for steel (both reinforcing bars and joint reinforcement):
¢ =085 f, =400MPa

and masonry:

From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar:
f, =13.5 MPa (assume solid grouted masonry)

¢,=06
Wall dimensions:
Overall height 2, =15 m

Wall length considered for initial calculations: / =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:

. Pf= 1800 kN axial load
. Vf= 943 kN seismic shear force

e M, =9430 kNm overturning moment

For Ductile shear walls (NBC 2015 Table 4.1.8.9 — see Section 1.7) it is required that Ry= 3.0
and Ro=1.5.

According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be
greater than 1.0. In this case,

h, 15000

w

I, 10000

w

=15>1.0 OK

3. Determine the required wall thickness based on the S304-14 height-to-thickness
requirements (C1.16.9.3, see Section 2.6.4)

S304-14 prescribes the following height-to-thickness (h/ t) limit for the compression zone in
Ductile shear walls:

h(t+10) <12

For this example, 2= 3000 mm (unsupported wall height)

So,

t> h/12—10 =240 mm

Therefore, in this case the minimum acceptable wall thickness is
t =240 mm

Note that it would be possible to use a smaller wall thickness (190 mm) if ¢ <4b, or
¢ <0.3/,(CI.16.9.3.3 relaxing provision 4/(¢ +10) <16). The requirement

c<4b, =4-190 = 760 mm would require a very small neutral axis depth which would be difficult
to achieve in this case. Therefore a 240 mm wall thickness will be used in this design.

9/1/2018 3-69



4. Determine the wall length based on the shear design requirements.

Designers may be requested to determine the wall dimensions (length and thickness) based on
the design loads. In this case, the thickness is governed by the height-to-thickness ratio
requirements, and the length can be determined from the maximum shear resistance for the
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304-14
Cl.10.10.2.1):

V, <maxV, =0.4¢,.f,b,d 7,
7, =1.0 solid grouted wall (required for plastic hinge zone)
b, =240 mm overall wall thickness

d,=0.8] =8000 mm effective wall depth
Set

V,=V,=943 kN

and so

* 3
= 943710 =5570 mm

V.
[ > /
" 0.4¢,11b,(0.8)y, 04%0.6%/13.5%240*%0.8*1.0

Therefore, based on the shear design requirements the designer could select a wall length of
5.7 m. However, a preliminary capacity design check indicated that a minimum wall length of
nearly 10 m was required, thus try

[,, =10000 mm
which gives
max/V, =1690 kN

5. Minimum S304-14 seismic reinforcement requirements (see Table 2-3). Since
1,F,S,(0.2)=0.85> 0.35, it is required to provide minimum seismic reinforcement (S304-14

Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic
reinforcement requirements.

6. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2).
Design for the combined effects of axial load and flexure by assuming uniformly distributed
vertical reinforcement over the wall length.

The amount of vertical reinforcement can be estimated from the ductility requirements for
Ductile shear walls (S304-14 CI.16.8.8). The goal for the S304-14 detailed ductility check is to
confirm that the rotational capacity exceeds the rotational demand in the plastic hinge zone.

Based on the minimum rotational demand requirements (6min = 0.004), the ¢/, ratio should not

exceed 0.2 for Ductile Shear Walls (see Section 2.6.3). An approach for estimating the
maximum amount of vertical reinforcement required for predefined C/lw ratio for walls with

distributed reinforcement is presented in Section 2.6.3, and its application will be illustrated next.

The main input parameter is the level of axial compression stress relative to compressive
strength ", , thatis,
f P 1800-10°

= 7. =0.055
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From Fig. 2-27 (see below), for the given axial stress level of 0.055 (vertical axis), and assuming
c/lW =0.2 (horizontal axis) it is possible to determine the corresponding o value;

w=0.06

The required vertical reinforcement ratio can be determined from o as follows:
_w¢,f', 0.06-0.6-13.5

P, =0.00143
9.1, 0.85-400
Since the vertical reinforcement ratio is equal to
_ Avt
Py =

The maximum required area of vertical reinforcement can be determined as follows

A, =p,-t-1,=0.00143-240-10000 = 3432 mm?

Since this is the maximum amount from the ductility perspective, the goal is to select an amount
of reinforcement less than the maximum and confirm that the amount is sufficient to satisfy the
strength requirement (flexural capacity must be larger than the applied bending moment).

0.2
Q
0.18 i
o 2
iy o |
0.16 T T |
2 3!
E o014 g > !
P a o | ®
a B
E 0.12 g I ——(
i S 1
5 i 1 (.02
% 0. ] 0.04
k-] I
8 : 0.06
Eﬂ —-0.08
o ——0.1
=

The proposed area of vertical reinforcement is as follows:
A,,= 2800 mm?

In total, 14 vertical reinforcing bars are used in this design: 4-15 M reinforcing bars as
concentrated reinforcement (2-15M bars at each end) plus 10-15M bars as distributed
reinforcement, and the average spacing is equal to

10000 —200
§<——— =753 mm

13
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Since 2-15M bars are concentrated at each end, the amount of concentrated reinforcement is
A, =400 mm?

And the amount of distributed reinforcement is

A, =4, —2A4, =2000 mm?

For Ductile shear walls, S304-14 Cl.16.9.5.3 notes that the amount of concentrated
reinforcement at each wall end should not exceed 25% of the distributed reinforcement. Since
AC/Ad =400/2000 = 0.2 < 0.25 OK

It is also required to check the maximum reinforcement area per S304-14 CI.10.15.2 (see Table
2-3).

SinZ:e s=753mm < 4t =4%240=960 mm

A e =0.024, =0.02(240 *10°) = 4800 mm?/m

This is significantly larger than the estimated area of vertical reinforcement.

The wall is subjected to axial load P,= 1800 kN. The moment resistance for the wall section
can be determined from the following equations (see Section C.1.1.2):

a, =085 £, =08 w=005 a=0.09 c=1820 mm

P % 3
M, =054 f, A0 | 1L | 1= | =0.5%0.85+ 220 %800« 12000, 1800710 (1_ 1820)
| 6fA, 1 1000 1000 | 0.85%400%2800 A 10000

M, =11300 kNm> M, =9430 kNm  OK

Note that
c/lw = 1820/10000 =0.18<0.2

Therefore, the S304-14 minimum rotational demand requirement for Ductile shear walls is
satisfied.

7. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis
depth ratio (c/lw ), should be less than the following limit:

¢/l, <0.125 when &, /I, >5
In this case,

w

—~ =1.5 < 5Also, the neutral axis depth

¢=1820 mm
and so
c/lw = 1820/10000 =0.18>0.125

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand 6., and the rotational capacity &,. , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which

is given as
4, =13 mm
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The overstrength factor must be at least equal to 1.3, and can be determined from the following
equation:

M, 12800 _ .

n

M, 9430

In this cése, the nominal moment capacity is equal to M,= 12,800 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢ = ¢ =1.0were used.

Vw =

The S304-14 minimum rotational demand is &nin = 0.004 for Ductile shear walls. The actual value
is determined from the following equation:

_4RR, —4,7, ) (13-3.01.5-13-1.36) 4.08.10

id — E
h - (15.0—102'0)103

2

This is greater than @i, = 0.004, so the actual rotational demand will be used.
The rotational capacity can be calculated as follows (and should not exceed 0.025)

& |

0. = (_;" ¥ _0.002) = (w
C

2-1820

ic

- 0.002j =4.87-107°

Since the rotational capacity 6y is greater than rotational demand &y, it can be concluded that
the S304-14 ductility requirements have been satisfied.

8. Minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.9.8.3)

Cl.16.9.8.3 requires that the factored shear resistance, V., should be greater than the shear due
to effects of factored loads, but not less than i) the shear corresponding to the development of
probable moment capacity, M ,, or ii) the shear corresponding to the lateral seismic load (base

shear), where earthquake effects were calculated using RiR,=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to
the probable moment capacity, as follows

M b= 13900 kNm
The shear force resultant acts at the effective height #,, that is, the distance from the base of

the wall to the resultant of all seismic forces acting at the floor levels. Note that/, can be
determined as follows

M,
h,=——=10.0 m
!
The shear force Vpb corresponding to the overturning momentMp is equal to
M, 13900
h 10.0

e

V., =

D

= 1390 kN
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The second requirement gives an “almost elastic” factored base shear force for the wall, which

is equal to

V- Ve R, R, _ 943-3.0-1.5
s 1.3

The smaller of these two values should be used, hence

V., =1390kN

7

=3264 kN

9. Diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and $304-14
C1.10.10.2.1 and CI1.16.9.8.1)

Masonry shear resistance (V)):

b, =240 mm overall wall thickness

d, =08/ =8000 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,= 1620 kN

Since
M, 9430 M, . , ,
= =1.25>1.0 use — =1.0 in the equation for masonry shear resistance
V., 943*8.0 V.d,
below

M,
v, =0.1602——2)/f = 0.59 MPa

Vd,
V, =4,(,b,d,+0.25P,)y, =0.6(0.59*240*8000+0.25*1620*10%)*1.0 = 920 kN

wv

The required steel shear resistance can be found from the following equation (see Section 2.6.5
and S304-14 CI.16.9.8.1) (note 50% reduction of V)

V=05V +V 2V,

hence

V.=V ,-05V =1390-0.5-920 =930 kN

The required amount of reinforcement can be found from the following equation
A 4 930*10°

v S

- _ =0.57
s 0.64,f,d, 0.6%0.85%400*8000

Try 2-15M bond beam reinforcing bars at 600 mm spacing ( 4, =400 mm? and s =600 mm):

A
v _ 400 _ 675057 OK

s 600
Steel shear resistance V' :
d
V.=0.69.A4, f, — =O.6*O.85*ﬂ*400"<M = 1088 kN
TS 1000 600

Total diagonal shear resistance:
V=05V +V =0.5-920+1088 =1548 kN >V , =1390kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
max V, = 0.44,\/f,b,d,7, =1690 kN
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Since
V., =1548KkN < maxV, =1690kN OK
In conclusion, the diagonal shear design requirement has been satisfied.

10. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 C1.10.10.5.1 and
16.9.8.2)

The factored in-plane sliding shear resistance V' is determined as follows:
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, = 2800 mm? total area of vertical wall reinforcement

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted
forinthe T calculations (S304-14 Cl.16.9.8.2), and so (see Figure 2-17b)

10000 -1820
10000

l, —c
/

w

T, =¢SASf{ j:0.85*2800*400*(

P, = 1620 kN
C=P, +T, = 1620+779 = 2399 kN

V. =¢ uC =0.61.0"2399 = 1440 kN
V. =1440 kN> ¥, =1390kN  OK

J =779 kN

11. S304-14 seismic detailing requirements for Ductile shear walls — plastic hinge region

According to CI.16.9.4, the required height of the plastic hinge region for Ductile shear walls is
(see Table 2-5)

h,=0.5[+0.14,=0.5-10000+0.1-15000 = 6500 mm

However
0.8/ < hp <1.5],

Since
0.8/, =8000 mm > 6500 mm

It follows that
h,=0.8/,=8.0 mgoverns.

The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are
as follows (see Table 2-4 and Figure 2-41):
1. The wall in the plastic hinge region must be solid grouted (CI.16.6.2).
2. Horizontal reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (CIl.16.9.5.4):
s <600 mm or
s<1,/2=10000/2 = 5000 mm
Since the lesser value governs, the maximum permitted spacing is
s <600 mm
According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements
Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4)
600 mm or
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1,/5=2000 mm

whichever is greater, from the end of the wall. In this case, the reinforcement should not

be lapped within 2000 mm from the end of the wall. The horizontal reinforcement can be
lapped at the wall half-length.

Horizontal reinforcement shall be (CI.16.9.5.4):

i) provided by reinforcing bars only (no joint reinforcement!);

ii) continuous over the length of the wall (can be lapped in the centre), and

iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall.
3. Vertical reinforcement requirements:

a) Reinforcement spacing should not exceed the following limits (CI.16.9.5.3):
s<1,/4=10000/4 =2500 mm, but need not be less than 400 mm, or the minimum

seismic requirements specified in Cl.16.4.5.3, which states that s <1200 mm (this value
governs since the wall thickness is 240 mm). Since the lesser value governs, the
maximum permitted spacing is s <1200 mm.

b) Detailing requirements

At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (Cl.16.9.5.2).

12. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be
partially grouted outside the plastic hinge region (depending on the design forces).
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Section A-A

It is important to consider all possible behaviour modes and identify the one that governs in this

design. The following shear resistance values need to be considered:

13. Discussion

V. =1548 kN diagonal tension shear resistance

4.

V' =1440 kN sliding shear resistance

5.

v, =1390 kN minimum required shear resistance to achieve ductile flexural behaviour

6.

3-77
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It can be concluded that the minimum required shear force corresponding to the flexural failure
mechanism is the smallest (1390 kN), so it governs in this case, which is a requirement for the
Capacity Design approach for Ductile RM shear walls.
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EXAMPLE 5c: Seismic design of a shear wall with Boundary Elements|

Perform the seismic design of the same shear wall designed in Example 5b. The building is
located in Victoria, BC where the seismic hazard index, /,.F,S, (0.2), is 1.3. The design needs
to meet the requirements for a Ductile Shear Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1800 kN, an in-plane seismic shear force of 1310 kN, and an overturning moment of 13100
kNm. The elastic lateral displacement at the top of the wall is 18 mm. Select the wall dimensions
(length and thickness) and the reinforcement, so that the CSA S304-14 seismic design
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall
length should not exceed 10 m. The wall may have standard rectangular section, or
alternatively, boundary elements may be provided at wall ends if required by design.

Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as
solid grouted. Grade 400 steel reinforcement (yield strength f =400 MPa) is used for this
design.

£
oy
+
£
2y
_1_
| &
o
1
=
oy
.
M;=13100kNm | *f =1800kN .
Vi =1310kN|
£10m 2
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SOLUTION:

As the first attempt, the wall will be designed with a rectangular cross-section, and boundary
elements will be provided only if a rectangular section cannot be used.

1. Material properties and wall dimensions
Material properties for steel (both reinforcing bars and joint reinforcement):

¢ =085 f, =400MPa

and masonry:

From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar:
f, =13.5 MPa (assume solid grouted masonry)

¢,=0.6
Wall dimensions:
Overall height 2, =15 m

Wall length considered for initial calculations: / =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:
e P,=1800 kN axial load

. Vf = 1310 kN seismic shear force

e M, =13100 kNm overturning moment

For Dubtile shear walls (NBC 2015 Table 4.1.8.9 — see Section 1.7), it is required that Ry= 3.0
and Ro=1.5.

According to S304-14 CI.16.9.2, the height/length aspect ratio for Ductile walls needs to be

greater than 1.0. In this case,
h, _ 15000

>
/ 10000

w

=15>1.0 OK

3. Determine the required wall thickness based on the S304-14 height-to-thickness
requirements (C1.16.9.3, see Section 2.6.4)

S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
Ductile shear walls:

h/(t +10) <12

For this example,

h = 3000 mm (unsupported wall height)

So,

t>h/12-10 =240 mm

Therefore, in this case the minimum acceptable wall thickness is
t =240 mm

4. Minimum S304-14 seismic reinforcement requirements (see Table 2-2)

Since I.F,S, (0.2)= 1.3 > 0.35, it is required to provide minimum seismic reinforcement (S304-
14 CI.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic
reinforcement requirements.
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5. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2).

The total area of vertical reinforcement has been estimated as follows:
A, = 6000 mm?

The wall is subjected to axial load P, = 1800 kN. The moment resistance for the wall section
can be determined from the following equations (see Section C.1.1.2):

a, =085 £, =08 @w=009 a=0.08 c=1910 mm

3
400 *IOOOO(H 1800*10 ](1 1910)

P
M, =050 f A1, |1+—L— | 1-5 |=0.5%0.85*—*6000 -
: 81,4, 1 1000 1000 | 0.85*400*6000 \ 10000

M, =15500 kNm> M . =13100 kNm OK

6. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis
depth ratio (c/lw ) should be less than the following limit:

¢/l, <0.125 when h, /I, >5
In this case,

h

—=15<5

IW

Also, the neutral axis depth

c=1910 mm

and so

¢/l, =1910/10000 = 0.19 > 0.125

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand QM and the rotational capacity Ql-c , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as
4, =18 mm
The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:
M 18200

= =1.39

n

M, 13100

In this cése, the nominal moment capacity is equal to M,= 18,200 kNm, which was calculated in
the same manner as the factored moment resistance M., except that unit values of material
resistance factors ¢ =@ =1.0were used.

Vw =

Based on the S304-14 rotational demand requirement, the minimum rotational demand &y, =
0.004 for Ductile shear walls. The actual value is determined from the following equation:
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4,R,R,—4 18-3.0-1.5—18-1.
«9,-d=( R Ry A,)_(18:30-1:5-18 ) _5.60.10°

[
h, = [15.0—10'0)-103
2 2

This is greater than i, = 0.004, so the actual rotational demand will be used.
The rotational capacity can be calculated as follows (and should not exceed 0.025)

l [0.0025 10000

0. = (M —-0.002) = - 0.002) =4.53-107
2c 2-1910

Since the rotational capacity is less than the rotational demand, it can be concluded that the
S304-14 ductility requirements have not been satisfied. The design will be continued by
providing boundary elements at wall ends, and following the pertinent S304-14 provisions for
Ductile shear walls with increased compressive strain beyond the 0.0025 limit (S304-14
Cl.16.10). It is proposed that an overall wall length of 9 m be used, which is less than the
maximum length (10 m) per design requirements.

7. Determine the minimum required thickness for the boundary elements and the wall
based on the S304-14 height-to-thickness requirements (C1.16.9.3, see Section 2.6.8.3)
S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
Ductile shear walls with boundary elements (for the zone between the compression face to one-
half of the compression zone depth, see Figure 2-35):

h/(t +10) <12
For this example,

h = 3000 mm (unsupported wall height)

So

t>h/12-10 =240 mm

Therefore, in this case the minimum acceptable wall thickness of the boundary element is 240
mm, however a larger size will be selected since larger number of vertical reinforcing bars need
to be provided, that is,

t, =390 mm

The maximum required thickness of the wall web is

t>h/16—10=178 mm

Therefore, a 190 mm wall thickness could be used for this design based on the height/thickness
requirements, however a larger thickness is required to meet the shear resistance requirements,
therefore

t =240 mm

will be used in this design.

8. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.1).
The proposed wall length /,, = 9000 mm is less than the maximum permitted value (10000 mm).

The proposed dimensions of boundary elements are:
[, =790 mm length

t, =390 mm thickness
These dimensions will be verified at a later stage.
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The design procedure assumes that the concentrated reinforcement (area A, ) is provided at
each boundary element, while the remaining reinforcement (area 4, ) is distributed over the wall

web. After a few trial estimates, the total area of vertical reinforcement 4, was determined as
follows

A,,= 5200 mm?
Concentrated reinforcement in the boundary elements (8-15M bars at each boundary element):
A, = 1600 mm?

Check if this amount is sufficient based on S304-14 CI.16.11.8:
A, >20.00075*¢t*[ =0.00075 *240*9000 = 1620 mm?

The proposed area is slightly less than the required area, but the difference is insignificant.

Distributed reinforcement in the wall:
A, =5200-2*1600 = 2000 mm?

Distance from the wall end to the centroid of concentrated reinforcement A, :

d'=1,/2=395 mm

The area of the compression zone 4, :

4 = P +9¢.f,4, _1800* 10° +0.85*400 * 2000
0.85¢, 1", 0.85*0.6*13.5

=3.6*10° mm?

If the area of the compression zone exceeds the area of boundary element, it follows that the
neutral axis falls in the wall web (as opposed to the boundary element). In this case the area of
boundary element is

A, =1,%1,=390%790=3.08*10" mm?

Since

A, > A4,

it follows that the neutral axis falls in the web. The compression zone depth a can be

determined from the following equation:
A, —b,*, 3.6*10° —=390*790

t ' 240
The neutral axis depth is

c=-% 21259 mm
0.8

+790=1010mm

a

The centroid of the masonry compression zone:

!
f 2
by *1, *(a —2] tla=1,fri2 390%790%(1010— 20y + (1010 = 790)* * 240,2
x= = 2 =539
4, 3.6%10

The resultant of masonry compression stress is

C, =(0.85¢, f' )4, =(0.85%0.6*13.5)(3.6¥10°) = 2480 kN
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Finally, the factored moment resistance of the wall
section is

M, =C,(1,/2-x)+2(g, /4.1, /2—d") = 2.48*]

+2(0.85*400*1600)(9000/2 —395) =14300 kNm

M, =14300 kNm> M  =13100 kNm OK

Note that
c/lw = 1259/9000 =0.14<0.2

therefore the S304-14 minimum rotational demand requirement for Ductile shear walls is
satisfied.

9. Determine the size of boundary elements (see Section 2.6.8.3).
The proposed thickness of a boundary element is

t, =390mm
and the proposed length is
[, =790 mm

Note that the length of a boundary element should not be less than the largest of the following
three values (CI1.16.11.2):

I, >(c-0.1,,¢c/2,c(¢,, —0.0025)/¢,,)

The selection of the length is an iterative process, since it is required to perform a design for
axial load and flexure in order to determine the neutral axis depth ¢, hence
c—0.1/,=1259-0.1*9000 =359 mm

¢/2=1259/2 = 630mm

The larger of these two values will govern, that is,

[, 2630mm

Hence, the proposed value of 790 mm is OK. Note that the third criterion is as follows
I, >c(¢,, —0.0025)/¢,,

Cannot be followed at this stage because ¢,,, is not known.

10. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (CI.16.9.7), the neutral axis
depth ratio (c/lw ) should be less than the following limit:

¢/l, <0.125 when h, /I, >5
In this case,

ﬂ =1.67<5

[,

Also, the neutral axis depth
c=1259 mm

and so

¢/l, =1259/9000 = 0.14 > 0.125
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Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand Qid and the rotational capacity Ql-c , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as

4, =18 mm

The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:

V= M, =—16600 =1.27<1.3
M, 13100

Hence,

y, =13

In this case, the nominal moment capacity is equal to M,= 16,600 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢, = ¢ =1.0were used.

The S304-14 minimum rotational demand is &.» = 0.004 for Ductile shear walls. The actual value
is determined from the following equation:

0, - (Z’flRoRd —ZWW): (18-3.0-1.5—18-1.30):5.49.1073

14
I (15.0_9-0).103
2 2

This is greater than i, = 0.004, so the actual rotational demand will be used.
The required maximum compressive strain value can be determined from the following equation
(see Section 2.6.8.2)

e,, >0, + o.ooz)% =(5.49*107 +0.002)

w

2*1259
9000

=0.0021

Note that
[, z2c(s,, — 0.0025)/6‘mu

However, this criterion cannot be applied since ¢, is less than 0.0025.

11. Minimum required factored shear resistance (see Section 2.6.5 and S$S304-14
C1.16.10.4.3)

Cl.16.10.4.3 requires that the factored shear resistance, V,, should be greater than the shear
due to the effects of factored loads, but not less than i) the shear corresponding to the
development of probable moment capacity, M ,, or ii) the shear corresponding to the lateral

seismic load (base shear), where earthquake effects were calculated using RsR.= 1.3.
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The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to
the probable moment capacity, as follows

M, =18600 kNm

The shear force resultant acts at the effective height #,, that is, the distance from the base of

the wall to the resultant of all seismic forces acting at the floor levels. Note that/, can be
determined as follows

M,
h,=——=10.0 m

Vv
!
The shear force ¥, corresponding to the overturning moment 3/ , is equal to
M, 1
My 18600 s
h 10.0

e

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to

_Vy-R;-R, _1310:3.0-15

o =4535kN

: 1,.3 1.3
The smaller of these two values should be used, hence
V., =1860kN

12. Diagonal tension shear resistance (see Section 2.6.5 and S304-14 C1.10.10.2.1)
Masonry shear resistance (V)):

b, =240 mm overall wall thickness

d, =08/, =7200 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,= 1620 kN

M.
v, =0.16Q2——2-)./f} = 0.59 MPa
V,d,
Since
M.
r o _B100 439540
Ve, 1310%7.2
M,
use =1.0
V.d,

V., =4,(v,b,d,+025P,)y, =0.6(0.59*240*7200+0.25*1620*10%)*1.0 = 852 kN

The required steel shear resistance can be found from the following equation (see Section 2.6.5
and S304-14 CI1.16.10.4.1)

V. = (0.0025/(25 W, +V. 2V,

Since

0.0025/(25,"“) =0.0025/(2*0.0021) = 0.59
Then

mu
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V.=V,—0.59 =1860-0.59*852=1357 kN

The required amount of reinforcement can be found from the following equation

4, _ V. 1357*10° 0.9

s 0.6¢,1f,d, 0.6%0.85%400%*7200

Try 2-20M bond beam reinforcing bars at 600 mm spacing ( 4, = 600 mm? and s =600 mm):

A, 600

r=—=1.0>092 OK

s 600

Steel shear resistance V' :

V.=0.60.A4,f d _ 0.6*0.85* 400 *600* 7200 1470 kN
‘ B 1000 600

Total diagonal shear resistance:
V=059 +V =059-852+1470=1973 kN >V, =1860 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
maxV, =0.4¢,\/f1b,d,y, =1520 kN

Since

V. =1973kN > max V., =1520 kN

the above maximum shear resistance requirement has not been satisfied. It would be required
to increase either wall thickness or length to satisfy this requirement. It is recommended to
perform this check at an early stage of the design.

13. Sliding shear resistance (see Sections 2.3.3 and 2.6.7, and S304-14 C1.10.10.5.1 and
16.10.4.2)

The factored in-plane sliding shear resistance V', is determined as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, =5200 mm? total area of vertical wall reinforcement

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted
forin the 7', calculations (S304-14 CI.16.10.4.2), (also see Figure 2-17b)

9000-1259
9000

[, —c
Ty=¢sAsfy[ ;
P, =1620 kN
C=P,+T, =1620+1520 = 3140 kN
V. =¢ uC =0.61.0"3140 = 1884 kN
V. =1884 kN> 7, =1860kN  OK

j=0.85*5200*400*[ j = 1520 kN

w

14. Shear at the interface (see Section 2.6.8.4 and S304-14 Cl.16.11.10)

It is required to check whether the horizontal wall reinforcement is sufficient to resist the vertical
shear stresses at the boundary element interface. The shear flow demand is based on the
design shear force transferred over the storey height, that is,

V,= Vo :@:620kNlm
3.0

sf
‘ h
The shear flow resistance is as follows (Cl.16.11.10)
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Vi =@k,

The resistance provided by horizontal reinforcement (2-20M bars at 600 mm spacing) is as
follows

Vi =@,uF, =0.6*1.0%340 = 204 kN/m

Where

F,=¢.f,(4,/s)=0.85%400*(600/600) = 340 kN/m

is the shear flow resistance provided by the horizontal reinforcement. Since
Vi <Vy

it follows that additional horizontal reinforcement is required to satisfy the requirement. Let us
assume that 2-20M bars (total area 600 mm?) will be provided at 200 mm spacing throughout
the wall height at the first-floor level, that is,

F,=¢.f,(4,/s)=0.85%400*(600/200) = 1020 kN/m

Vi=¢,uF, =0.6%1.0%1020 = 612 kKN/m

This shear flow resistance approximately satisfies the shear flow demand. The difference (620-
612=8 kN/m) is 1% of the total demand, which is insignificant.

15. Detailing of boundary elements (see Section 2.6.8.5 and S$304-14 C1.16.11)

1) Regular ties and buckling prevention ties within the plastic hinge zone

Dimensions of a boundary element:

[, =790 mm length

t, =390mm thickness

A4, =1,*t,=790%*390 =3.08 *10° mm?

For the rectangular hoop reinforcement, the minimum area As, in each principal direction should
not be less than the larger of the following (S304-14 CI.16.11.6):

A '
A, =02k,k,, Ao Sn gy

c

ch yh
or
A, = 0.09f—’”s-hc
fyh
where
n, 8

k, = = =133

n-2 8-2

n, = 8 number of supported bars around the perimeter of a boundary element

k, =0.1+30¢,, =0.1+30%0.0021=0.163

A, =290%690 = 2.0*10° mm?

is the area of the confined core and 4, = 690 mm is the larger dimension of the confined core

(the dimension in other direction is 290 mm)
The maximum spacing of buckling prevention ties within the plastic hinge zone should not
exceed the lesser of (S304-14 Cl.16.11.4)
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s <(6d,,24d,,,t,/2)

Where d is longitudinal bar diameter, and dse is the tie diameter, hence
6d, =6*15=90mm

24d,, =24*10 =240 mm

t,/2=390/2 =195 mm

Hence,

s <90 mm governs

Assume

s =80mm

The required area of tie reinforcement in boundary elements should be at least equal to the
larger of

*80* 690 =124 mm?

A ' * 5
A, =02k k, oL ng p —02%133%0,163% 208710 135
"4, L 2.0%10° 400
or

A4, = 0.09&s h, = 0.09%*80 *690 = 168 mm?

yh

Hence

A, =168 mm? governs

This area of reinforcement can be achieved through 3-10M bars (total area 300 mm?): two bars

are a part of a regular tie enclosing the boundary element, plus a cross tie supporting
intermediate bars.

2) Regular ties and buckling prevention ties outside the plastic hinge zone

The maximum spacing of buckling prevention ties outside the plastic hinge zone should not
exceed the lesser of (S304-14 Cl.12.2.1)

s<(6d,,48d,,,t,)

Where d is longitudinal bar diameter, and dse is the tie diameter, hence
16d, =16*15=240mm

48d,, =48*10=480mm

t, =390mm

Hence,

s <240 mm governs

Assume
s =240 mm

3) Vertical reinforcement: detailing
At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (S304-14 Cl.16.11.9).

16. The S304-14 seismic detailing requirements for Ductile shear walls — plastic hinge
region

According to Cl.16.10.3, the required height of the plastic hinge region for Ductile shear walls is
(see Table 2-5)

9/1/2018 3-89



h,=0.5l,+0.14,=0.5-9000+0.1-15000 = 6000 mm

However
[, < hp <2.0/,

Since
[,, =9000 mm > 6000 mm

It follows that
h,=1,=9.0 mgoverns.

The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are
as follows (see Table 2-4 and Figure 2-41):
1. The wall in the plastic hinge region must be solid grouted (CIl.16.6.2).
2. Horizontal reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4):
s <600 mm or
s <1,/2=9000/2 = 4500 mm
Since the lesser value governs, the maximum permitted spacing is
s <600 mm
According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements
Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4)
600 mm or

[,/5= 1800 mm

whichever is greater, from the end of the wall. In this case, the reinforcement should not
be lapped within the distance 1800 mm from the end of the wall. The horizontal
reinforcement can be lapped at the wall half-length.

Horizontal reinforcement shall be (CI.16.9.5.4):
i) provided by reinforcing bars only (no joint reinforcement!);
ii) continuous over the length of the wall (can be lapped in the centre), and
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall.
3. Vertical reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (CI.16.9.5.3):

s <1,/4=9000/4 =2250 mm, but need not be less than 400 mm

or the minimum seismic requirements specified in Cl.16.4.5.3, which states that
s <1200 mm (this value governs since the wall thickness is 240 mm).
Since the lesser value governs, the maximum permitted spacing is s <1200 mm.
b) Detailing requirements
At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (Cl.16.9.5.2).

17. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be
partially grouted outside the plastic hinge region (depending on the design forces).
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects

Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane
loads in Example 4b, according to NBC 2015 and CSA S304-14 requirements. The wall is a part
of a single-storey warehouse building located in Burnaby, BC, with soil corresponding to Site
Class D. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15
MPa unit strength, Type S mortar, and solid grouting. The wall is reinforced with 15M Grade 400
vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in S304-14 will
not be considered in this design.

l P=220kN
~ 15M@a00

£ |~
g
=
=
h =]
@ - 190 mm

" Block wall
o  I—

SOLUTION:

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa

Masonry:

¢,=0.6

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Determine the out-of-plane seismic load according to NBC 2015 (see Section 2.7.7.3).
This design requires the calculation of seismic load V', for parts of buildings and nonstructural
components according to NBC 2015 Cl.4.1.8.18. First, seismic design parameters need to be
determined as follows:

e Location: Burnaby, BC  (NBC 2015 Appendix C)

§5,(0.2)=0.768 and PGAs= 0.50
e Foundation factors
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F =F(0.2)=0.9 and Site Class D for PGA= 0.50 (from Table 1-3 or NBC 2015 Table

4.1.8.4.B)
e /,=1.0 normal importance building
Find S (horizontal force factor for part or portion of a building and its anchorage per NBC
2015, Table 4.1.8.18, Case 1)
C,=10 4,=10 R, =25 A, =3.0(h =h, topfloor)

S, = CpA,AX/Rp =1.0-1.0-3.0/2.5=1.2
0.7<§,<40 OK
e W,=40 kN/m? unit weight of the 190 mm block wall (solid grouted)
Seismic load V', can be calculated as follows:
V,=03F,S, (O.Z)IESpr =0.3*0.9*0.69*1.0*1.2*(4.0 kN/m?) = 0.99 kN/m?~ 1.0 kN/m?

3. Determine the effective compression zone width (5 ) for the out-of-plane design (see
Section 2.4.2).

According to S304-14 CI.10.6.1, the effective compression zone width (5 ) should be taken as
the lesser of the following two values (see Figure 2-19):

b=s5=600 mm spacing of vertical reinforcement

or

b=4t=4%190=760 mm

All design calculations in this example will be performed considering a vertical wall strip of width
b =600 mm.

4. Find the design shear force and the bending moment.
The wall will be modeled as a simple beam with pin
supports at the base and top. The loads on the wall p
consist of axial load due to roof load and wall self- fl_ emm=01L
weight, plus the seismic out-of-plane load. The roof i

load and wall self-weight create moments due to
minimum axial load eccentricity.

¢ Axial load per wall width equal to b = 600 mm:

# A . ]

P, _ Py BN 6217252170 kN /
[, 8m £ ; ;

¢ Minimum eccentricity (S304-14 CI.10.7.2) B lm}, I."I

e, =0.1¢=0.019m Ve \i |*—'

e Out-of-plane seismic load per wall width equal to < |I .f'l

b =600 mm: \ /

v, =1.0%0.6=0.6 kN/m

IIETEENEEEEE NN N

¢ Design bending moment (at the midheight): =190 mm HI"& {
v *p? % (2 = | \ /
M= p¥ey, +——=" =17*0.019+% . S
: 5 7

=3.59 = 3.6 kNm
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5. Check whether the wall resistance for the combined effect of axial load and bending is
adequate (see Section C.1.2).

This can be verified from a P-M interaction diagram which can be developed using the EXCEL©®
software (or commercially available masonry design software). Relevant tables used to develop
the diagram are presented below, while the detailed theoretical background is outlined in
Section C.1.2. Note that the design width is equal to b = 600mm .

Table 1. Design Parameters

Design parameter Unit Symbol | Value
Wall thickness mm t 190
Design width mm b 600
Masonry maximum strain EPSm 0.003
Masonry strength MPa 'm 7.5
Steel yield strength MPa fy 400
Steel modulus of elasticity | MPa Es 200000
Effective depth mm d 95
(c/d)balanced 0.6
Reinforcement area mm*2/b As 200
Material resistance-

masonry Fim 0.6
Material resistance-steel Fis 0.85
X- factor X 1
BETA1 BETA1 0.8
Effective area mm?*2 Ae 114000

In this case, the reinforcement is placed at the centre of the wall and so
d= L2 = @ =95 mm
2 2

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and
maximum compressive strain in masonry) can be determined from the following proportion

c, &

d—c, - £,

For ¢, =0.003 and ¢, =0.002 it follows that

¢, =0.6d

The area of vertical reinforcement per width » = 600 mm can be determined as follows:
A 200

A, =-"t*b= @* 600 =200 mm? (15M@ 600 mm reinforcement)
s

To determine whether the wall can carry the combined effect of axial load and bending moment,

it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction
diagram). The P-M interaction diagram for this example was developed using Microsoft
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EXCEL® spreadsheet, but other methods or computer programs are also available. The results
of the calculations are presented in Table 2.

Table 2. P-M Interaction Diagram Values

c/d c Cm EPSs T, M, P.
mm N N kNm kN
0.01 0.95 |1744.2 ]0.02 68000 0.16504 | -66.256
0.1 9.5 17442 0.02 68000 1.59071 | -50.558
] 0.2 19 34884 0.02 68000 3.04886 | -33.116
P°g;t§tgg|"2fé:fd 0.3 |285 [52326 [0.02  [68000 |4.37445 |-15.674
0.4 38 69768 0.02 68000 5.56749 | 1.768
0.5 47.5 |87210 0.02 68000 6.62796 | 19.21
0.6 57 104652 | 0.02 68000 7.55587 | 36.652
0.6 57 104652 | 0.002 68000 7.55587 | 36.652
Points controlled 0.7 66.5 | 122094 | 0.00129 | 43714.3 | 8.35123 | 78.3797
by masonry c>c, 0.8 76 139536 | 0.00075 | 25500 9.01403 | 114.036
0.9 85.5 | 156978 | 0.00033 | 11333.3 | 9.54426 | 145.645
1 95 174420 |0 0 9.94194 | 174.42
1.2 114 | 209304 |-0.0005 |-17000 | 10.3396 | 209.304
Full section under 1.3 123.5 | 226746 | -0.0007 |-23538 | 10.3396 | 226.746
compression 1.5 142.5 |1 261630 | -0.001 -34000 | 9.94194 | 261.63
1.7 161.5 | 296514 | -0.0012 |-42000 | 9.01403 | 296.514
2 190 | 348840 |-0.0015 |-51000 | 6.62796 | 348.84
Pure compression 0 348.84

The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated

on the figure below. For more detailed explanation related to the development of P-M interaction
diagrams refer to Section C.1.2.
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The P-M interaction diagram showing the point of interest (M , =3.6 kNmand P, =17 kN) is
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-

plane bending is adequate for the given design loads and the reinforcement determined in

Example 4b.
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6. Check whether the out-of-plane shear resistance of the wall is adequate (S304-14
Cl1.10.10.3, see Section 2.4.2).
Design shear force at the support per wall width 5 = 600 mm:
v, *h *

v, =-—+t—= :0'6 0.6 ~ 2.0 kN

/ 2 2
According to S304-14 CI.10.10.3, the factored out-of-plane shear resistance (V) shall be taken
as follows

V.=¢ (v, -b-d+0.25P)

where

v, =0.16,/f] = 0.44 MPa ( f, = 7.5 MPa for solid grouted 15 MPa block)

d =95 mm effective depth (to the block mid-depth)
b =600 mm effective compression zone width
The axial load P, can be determined as

P, =09P, =0.9%17.25=15.5 kN

(note that the load has been prorated in proportion to the effective compression zone width 5).
So,

V. =0.6%(0.44*600*95+0.25*15500) =17.4 kN
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Since
Vf =20kN<V =174 kN OK

Maximum shear allowed on the section is
maxV, = 0.4¢, /£ (b*d)=0.4%0.6%~7.5*(600%95) = 37.5 kN OK

7. Check the sliding shear resistance (see Section 2.4.3).
The factored out-of-plane sliding shear resistance V| is determined according to S304-14
Cl.10.10.5.2, as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, =200 mm? area of vertical reinforcement per wall width 5 = 600 mm
T,=¢.4,f, =0.857200"400 = 68 kN

P, =09P, =15.5 kN

P,=P,+T, =15.5+68 = 83.5 kN

V. =¢,uP,=0.6"1.083.5= 50.0 kN

V. =50.0kN >V . =2.0kN OK

Note that the sliding shear resistance does not govern in this case, however this mechanism

often governs the in-plane shear resistance.

8. Conclusion

It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design

governs (this is a common scenario in design practice).
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects

Consider the same masonry wall discussed in Example 6a, but in this example treat is as a
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane
seismic resistance of the wall according to NBC 2015 and CSA S304-14 seismic requirements.

Consider the following two cases:
a) unreinforced wall, and
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design).

Use the seismic load determined in Example 6a, that is, v, = 1.0 kKN/m?.

SOLUTION:

Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa

Masonry:

¢,=0.6

Compression resistance (S304-14 Table 4, 15 MPa concrete blocks and Type S mortar):
f.'=9.8 MPa (ungrouted, or partially grouted ignoring grout area)

Tension resistance normal to bed joint (S304-14 Table 5):
f,= 0.4 MPa (ungrouted)

Find the design shear force and the bending moment.
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall
heightis /4, = 6.6 m. A unit wall strip (width b =1000 mm) will be considered for this design.

The forces on the wall consist of the axial load due to the wall self-weight and the bending
moment due to seismic out-of-plane load (NBC 2015 load combination 1xD+1xE).

e Factored axial load per width 5 of 1.0 m:

wall weight w= 2.46 kN/m? (ungrouted 190 mm block wall)

P, =w* hz = (2.46)*6;26*1.0= 8.1 kN/m

S

e Out-of-plane seismic load per width 4 of 1.0 m:
v, =1.0 kN/m

e Factored bending moment (at the midheight):

v *h? 1.0%6.6°
M,=-"+——= 076.6 ~ 5.5 kNm/m
' 8 8
o Factored shear force (at the support):

v *h *
Vf =_Lr ¥ _ 1.0%6.6 ~ 3.3 kN/m
2 2
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a) Unreinforced wall

Check whether the wall resistance to the combined effect of axial load and bending is
adequate (see Section 2.7.1.3).
Find the load eccentricity:

o= My SSKNM_ o (m — 680mm
P, 8.1kN
According to S304-14 CI.7.2.1, an unreinforced masonry wall is to be designed as uncracked if
e>0.33¢
where ¢ denotes the wall thickness (¢ = 190mm )
0.33t =0.33*190 = 63mm
In this case,
e =680mm > 0.33t = 63mm
so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the

allowable value) according to S304-14 CI.7.2. The design procedure is explained in Section
2.71.3.

First, we need to determine properties for the effective wall section for a width 5 =1000 mm.
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows:

A, =75.4*10° mm?m effective cross-sectional area

S, =4.66*10° mm%m section modulus of effective cross-sectional area

. b=1m ,
= |
o A Vo o
5
P o, ST i
( b
A~ \ maortar-bedded

e
area

The maximum compression stress at the wall face can be calculated as follows:

P, M, 81*10° 5.5%10°
maXfC =—++ = 3 + -
A, S, 754*10° 4.66*10
The allowable value is equal to
é, fr =0.6%9.8=59MPa
Since

max f, =1.29MPa < 5.9MPa
it follows that the maximum compression stress is less than the allowable value.

=0.107+1.18 =1.29MPa

Find the maximum tensile stress as follows:

P. M. *103 %106
max f, =~ 2L = 5] 103— >-> 106 =0.107-1.18 =-1.07MPa
A, S, 754*10° 4.66*10
The allowable value is equal to
-¢,f, =—0.6%0.4=-024MPa

Since
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max f, = —-1.07MPa < —0.24MPa
it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable.

In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also,
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where
the seismic hazard index [, F,S, (0.2 =1.0%1.0*0.66=0.66 > 0.35. Therefore, the design will
proceed considering a reinforced nonloadbearing wall.

b) Reinforced wall

i. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.7.4).
According to S304-14 CI.16.4.5.2a, if 0.35<1,F,S,(0.2)<0.75 nonloadbearing walls shall be
reinforced in one or more directions with reinforcing steel having a minimum total area of

Ao =0.00054,

The reinforcement may be placed in one direction, provided that it is located to reinforce the wall
adequately against lateral loads and spans between lateral supports.

A =0.00054, =0.0005%(190*10% mm2) = 95 mm?m

where

4, =(1000mm)*(190mm)=190*10° mm? gross cross-sectional area per metre of wall length

stotal

Let us choose 15M vertical reinforcement (area 200 mm?) at 1200 mm spacing which is the
maximum spacing allowed (1200 mm).
The area of reinforcement per metre of wall length is

1000
A, = 200*% =167mm?m > 95 mm¥m OK

ii. Determine the effective compression zone width (5 ) for the out-of-plane design (see
Section 2.4.2).

The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm,
as follows:

P, =8.1%12 297 kN
1.0

M =5.5*£: 6.6 KNm

v, =33+12 40 kN
1.0

iii. Check whether the wall resistance to the combined effect of axial load and bending is
adequate (see Section C.1.2).

Since this is a partially grouted wall, its flexural resistance will be determined using a T-section
model.

According to S304-14 CI.10.6.1, the effective compression zone width (5 ) should be taken as
the lesser of the following two values (see Figure 2-19):

b=s=1200 mm

or

b=4t=4%*190 =760 mm
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Therefore, b =760 mm will be used as the width of the masonry compression zone.
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38

mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1,
considering the case of an ungrouted 200 mm block wall.

s b=760 mm ___

oL oo o

— T,

[ |
[ S=1200 mm |

T-section

Since the reinforcement is placed at the centre of the wall, the effective depth is equal to

d:i:@:% mm
2 2

The reinforcement area used for the design needs to be determined as follows:
A, =4, =200 mm?

The internal forces will be determined as follows (see Figure C-9):

T,=¢.f,4, =0.85%400*200 = 68000 N

Since

C, =P, +T, =9700+68000="77700 N

and

C, =(0.85¢, ' Nb-a)

the depth of the compression stress block a can be determined as follows
C 77700

a= m =

0.85¢, 7' b 0.85%0.6%9.8*760
Since
a=20mm < i, = 38mm

=20 mm

the neutral axis is located in the face shell (flange). The moment resistance around the centroid
of the wall section can be determined as follows

M, =C,(d—a/2)=77700*(95-20/2) = 6.6 kNm

Since

M, =6.6 kNm= M =6.6 kNm

it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could

be reduced to s =1000 mm to allow for an additional safety margin (the revised moment
resistance calculations are omitted from this example).

iv. Check whether the out-of-plane shear resistance of the wall is adequate (see Section
2.4.2).

According to S304-14 CI.10.10.3, the factored out-of-plane shear resistance (V) shall be taken
as follows

V. =¢,(, -b-d+0.25P)) where
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v, =0.16,/f] = 0.50 MPa

d =95 mm effective depth

b =200 mm web width - equal to the grouted cell width (156 mm) plus the thickness of the
adjacent webs (26 mm each)

The axial load P, can be determined as

P, =09P, =0.9%9.7=8.7 kN
Thus,
V. =0.6*(0.50*200*95+0.25*8700) = 7.0 kN
Since
V,=40kN</V, =70kN OK
Maximum shear allowed on the section is
maxV, = 0.4, \[f1 (b*d)=0.4%0.6%/9.8 *(200%95) =14.3 kN OK

v. Check the sliding shear resistance (see Section 2.4.3).

The factored in-plane sliding shear resistance V| is determined according to S304-14
Cl.10.10.5.2, as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, =200 mm? area of vertical reinforcement at 1.2 m spacing
T,=¢.4,f, =0.857200"400 = 68.0 kN

P, =8.7kN

P,=P,+T, =87+68.0 =76.7 kN

V. .=¢,uP,=0.6"1.0"76.7 = 46.0 kN

V.,=460kN>V, =40kN  OK

vi. Conclusion
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is
satisfactory. It should be noted that the flexural resistance governs in this design. The required
amount of vertical reinforcement (15M@ 1200 mm) corresponds to the following area per metre
length
A =4, * 1000

s
which is significantly larger than the minimum seismic reinforcement prescribed by S304-14,
thatis, 4., =95 mm?m. Note that 15M@1200 mm is also the minimum vertical reinforcement
that meets the minimum spacing requirements using typical15M bars.

=167 mm?

Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at
400 mm spacing could be considered to improve the overall seismic performance of the wall.

It should be noted that, in exterior walls the mortar-bedded joints could be significantly affected
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints);
some of the grooves are up to 10 mm deep. The designer should consider this effect in the
calculation of the compression zone depth.
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EXAMPLE 7: Seismic design of masonry veneer ties

Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a
school gymnasium in Montréal, Quebec. The building is founded on Site Class C. The design
should be performed to the requirements of NBC 2015, CSA S304-14, and CSA A370-14.
Consider the following two types of the veneer backup:

a) Concrete block wall (a rigid backup), and

b) Steel stud wall with 400 mm steel stud spacing (a flexible backup).

c¢) Evaluate the minimum tie strength requirements for the rigid and flexible backup.

SOLUTION:

This design problem requires the calculation of seismic load V_ for nonstructural elements
according to NBC 2015 Cl.4.1.8.18 (for more details see Section 2.7.7.3). Note that the wind
load could govern in a tie design for many site locations in Canada, however wind load
calculations were omitted for this seismic design example.

First, seismic design parameters need to be determined as follows:
e Location: Montréal (City Hall), Quebec (NBC 2015 Appendix C)
S,(0.2) = 0.595 and PGA= 0.379
e Foundation factor
F =F(0.2)=1.0 and Site Class C for PGA= 0.379 (from Table 1-3 or NBC 2015
Table 4.1.8.4.B)
e [,=13 school (high importance building)

At this point, it would be appropriate to check whether the seismic design of ties is required for
this design. According to NBC 2015 Cl.4.1.8.18.2, seismic design of ties is required when the
seismic hazard index ,F,S,(0.2)>0.35 (and also for post-disaster buildings in lower seismic
regions). In this case,

I.F,S,(0.2)=1.3*0.88*0.69=0.79 > 0.35
Therefore, seismic design is required.
e Find §, (horizontal force factor for part or portion of a building and its anchorage per NBC

2015, Table 4.1.8.18, Case 8)

S, = CpArAx/Rp =1.0-1.0-3.0/1.5=2.0
where

A, =1+2h /h,=3.0 for top of wall worst case

Since 0.7<S,<4.0 OK.

e W,=18 kN/m? unit weight of the veneer masonry (concrete blocks)

Seismic load V/, can be calculated as follows:

V,=03F,S, (O.2)1ESpr =0.3*1.0*0.595*1.3*2.0%(1.8 kN/m?) =0.85 kN/m?

Note that the above load is determined per m? of the wall surface area.

a) Concrete block backup (rigid)

Assume the maximum tie spacing permitted according to S304-14 CIl.9.1.3 of 600 mm vertically

and 820 mm horizontally (see Section 2.7.7.2), resulting in a tributary tie area for a concrete
backup wall of
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A=0.82*0.60 = 0.49 m?

The required factored tie capacity should exceed the factored tie load, that is,
V,2V,*A=(0.85kN/m?)*(0.49 m?) = 0.42 kN

Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum
tributary area calculated from V', and the factored tie capacity V', , that is,

A= Vf /Vp

b) Steel stud backup (flexible)

Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral
load on a vertical line of ties (S304-14 CI.9.1.3.3, see Section 2.7.7.3):

V,204*V, *4,=0.4*(0.85 kN/m?)*(1.92m?) = 0.65 kN

where 4,=0.4m*4.8m = 1.92 m? is tributary area on a vertical line of ties based on a probable
0.4 m horizontal tie spacing, and 4.8 m wall height

According to the same S304-14 clause, the tie must also be able to resist a load corresponding
to double the tributary area on a tie, that is,

V, =2%V * 4= 2%0.85 kN/m?)*(0.4m*0.6m) = 0.41 kN

Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie
spacing of 0.6 m prescribed by S304-14 CI.9.1.3.1.

In conclusion, the tie design load for the flexible veneer backup is ', = 0.65 kN.

c) Minimum strength requirements

CSA A370-14 CI.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In
order to obtain the ultimate tie strength, the factored strength needs to be divided by the
resistance factor ¢. According to CSA A370-14 C1.9.4.2.1.2, the resistance factor is 0.9 for tie
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the
connection. It is conservative to use lower resistance factor in determining the ultimate tie
strength V.

e For the steel stud backup:

V, 2V, =0.65kN

thus the ultimate strength can be determined as follows

=ﬂzﬁzl.08 kN
0.6

Vult

¢
This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.
e Forthe concrete block backup:
V,2V,=042kN

thus the ultimate strength can be determined as follows

v, 0.
=Y 042 9N
4 06

This value is less than the minimum of 1 kN, so the minimum requirement governs.
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EXAMPLE 8: Seismic design of a masonry infill wall

A single-storey reinforced concrete frame structure is shown in the figure below. The frame is
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the
frame. The wall is built using 190 mm hollow blocks and Type S mortar.

a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions
according to CSA S304-14 assuming the infill-frame interaction.

b) Assuming that the infill wall provides the total lateral resistance, determine the maximum
lateral load that the infilled frame can resist. Consider the following three failure mechanisms:
strut compression failure, diagonal tension resistance, and sliding shear resistance.

400 x 400
..-/ RC beam
[e=le Fales] wleate |
[ T 1T T T T T T 1 '
C T T T T T T 1
e I D e
400 x 400 —.. I|||||||||||||||I £
RC column P T T T T T T T 1 £
|||||||||||||||I| S
|||||||||||||||I| 2
[ T T T T T T T 1
[ T T T T T T 1
[ElEa] Eheals [EhEal & i
) I s ¥
I":5 3600 mm ;‘I
Given:

E, =25000 MPa concrete frame modulus of elasticity

f., = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4,
CSA S304-14)

SOLUTION:
a) Find the diagonal strut properties.

o Key properties for the masonry wall and the concrete frame
Concrete frame:

E, =25000 MPa
Beam and column properties:

4
I, =1, = (4?3) =2.133*10° mm*

Masonry:
E, =850f' =850%9.8 =8330 MPa
Effective wall thickness (face shells only):
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t, =75 mm (Table D-1, 200 mm hollow block wall)
o Diagonal strut geometry (see Section 2.7.2 and S304-14 CI.7.13)

h =3000 mm
[ =3600 mm
Find € (angle of diagonal strut measured from the horizontal):
tan(@d) :ﬁzﬂz 0.833 0 =39.8"
[ 3600

Length of the diagonal:
1, =~I* + 1> =~/3000% +3600> = 4686 mm

Find the strut width (see Figure 2-46):
] 1
g [ AEAL A_Z 4*25000*2.133*10° *3000 4_1587
’ E,t,sin26 2| 8330*75%sin(2%39.8°)

2

1 1

4E 1,1 i 4%25000%2.133%10° #3600 | *

o, =7 — 1" | =g : : =3322
E,t,sin26 833075 *sin(2%39.8°)

Strut width:

w=ya,? +a,’ =+(1587) +(3322)° =3682 mm

Effective diagonal strut width w, for the compressive resistance calculation should be taken as
the least of (CI.7.13.3.3)

w, =w/2=3682/2=1841 mm

or

w,=1,/4=4686/4=1172 mm

thus

w, =1172~1170 mm

The design length of the diagonal strut /. should be equal to (Cl.7.13.3.4.4)

I =1,—w/2=4686-3682/2=2845 mm

b) Determine the maximum lateral load which the infilled frame can resist assuming that
the infill wall provides the total lateral resistance.

e Diagonal strut: compression resistance (Cl.7.13.3.4.3 and Section 2.7.2)
The compression strength of the diagonal strut P is equal to the compression strength of

Fmax

masonry times the effective cross-sectional area, that is,

Prmax = (0851¢mfr:1 ) Ae
where

¢,=0.6
x =0.5 the masonry compressive strength parallel to bed joints
A, =t,*w,=75%1170 =87750 mm? the effective cross-sectional area

P =0.85%0.5%0.6*9.8%87750=219.3 kN

Fmax
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The corresponding lateral force is equal to the horizontal component of the strut compression
force P,, thatis, (see the figure below)

P, =P *cos(d)=219.3*cos(39.8) =168.0 kN

Fmax

4 i

i A ra

=

—HHHHHHA

Before proceeding with the design, slenderness effects should also be checked. First, the
slenderness ratio needs to be determined as follows (S304-14 CI.7.7.5):
k*l  1.0%2845
L= =15.0
t 190
where
k =1.0 assume pin-pin support conditions

[, =2845 mm design length for the diagonal strut

t =190 mm overall wall thickness

The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account,
that is,

e, =e,=0.1%t=19 mm

Since

* *
KL 150 10-3.5¢,/e, =6.5 and LB

<30.0

the slenderness effects need to be considered.

The critical axial compressive force for the diagonal strut P, will be determined according to
S304-14 CI.7.7.6.3 as follows:

P = 2 =1380 kN
T (1+0.58, K, )

where

¢, =0.65

B, =0 assume 100% seismic live load

E  =8330 MPa modulus of elasticity for masonry
I, =041,=209 *10° mm?*

where
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1170%[190° - (190 - 75.4)* ]
° 12
sectional area based on the effective diagonal strut width w, =1170 mm and the effective wall

I 522*10° mm* moment of inertia of the effective cross-

thickness ¢, = 75.4 mm (face shells only).

Since
P =2193 kN< P =1380 kN

rmax

it follows that compression failure governs over buckling failure.

e The diagonal tension shear resistance (see Section 2.3.2 and S304-14 CI.10.10.2).
Find the masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, ~0.8/, =2880 mm effective wall depth
7, =0.5 ungrouted wall

P, =0 (ignore self-weight)

v, =0.16,/f/ = 0.5 MPa
v, =¢,(v,b,d,+0.25P,)y, = 0.6(0.5*190*2880+0)*0.5 ~ 82.0 kN

h
This is a squat shear wall because — = % =0.83<1.0. In this case, there is no need to find

the maximum permitted shear resistance per S304-14 CI1.10.10.2.1 max V. because it is not
going to control for an unreinforced wall without gravity load.

¢ Sliding shear resistance (see Section 2.7.1 and CI.7.10.5)

VVS = 0'16¢ﬂ1 V fﬂtl AMC‘ + ¢ﬂ1/lP1

The factored in-plane sliding shear resistance V, is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, =t,-d, =75%2880=216000 mm? uncracked portion of the effective wall cross-sectional

area

The compressive force in masonry acting normal to the sliding plane is normally taken as P,
plus an additional component, equal to 90% of the factored vertical component of the
compressive force resulting from the diagonal strut action P, (see the figure on the previous

page).

P =P +09*P

where

P =V _*tan(0)

thus

P, =0+09*V_tan(@)

The sliding shear resistance can be determined from the following equation
V, =0.16¢, /11 A, +@,1(0.9%V, tan(6))

or
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_0164,\fi A, 0.16%0.6*/9.8*216000
" 1—¢ *u*0.9*tan(d) 1-0.6*1.0%0.9*tan(39.8")

=118.0 kN

e Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. The following three lateral forces should be considered:

a) P, =168 kN shear force corresponding to the strut compression failure
b) V., =82 kN diagonal tension shear resistance

c) V. =118 kN sliding shear resistance

It could be concluded that the diagonal tension shear resistance governs, however once
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum
shear force developed in an infill wall corresponds either to the strut compression resistance or
the sliding shear resistance (see the discussion in Section 2.7.2). In this case, sliding shear
resistance governs andso V, =V =118kN.

It should be noted that the maximum shear force developed in the infill 7, will be transferred
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not
the scope of the masonry design, however the designer should always consider the entire

lateral load path and the force transfer between the structural components.
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