

NRC-CNRC

Construction

RR-331 Guide to Calculating Airborne Sound Transmission in Buildings

Christoph Hoeller, David Quirt, Jeffrey Mahn

Fourth Edition December 2018

Guide to Calculating Airborne Sound Transmission in Buildings

Applying ISO Measurement and Prediction Standards in a North American Context

Abstract: In recent years, the science and engineering for controlling sound transmission in buildings have shifted from a focus on individual assemblies such as walls or floors, to a focus on performance of the complete system. Standardized procedures for calculating the overall transmission, combined with standardized measurements to characterize sub-assemblies, provide much better prediction of sound transmission between adjacent indoor spaces. The International Organization for Standardization (ISO) has published a calculation method, ISO 15712-1 (now replaced by ISO 12354-1) that uses laboratory test data for sub-assemblies such as walls and floors as inputs for a detailed procedure to calculate the expected sound transmission between adjacent rooms in a building. This standard works very well for some types of construction, but to use it in a North American context one must overcome two obstacles - incompatibility with the ASTM standards used by our construction industry, and low accuracy of its predictions for lightweight wood or steel frame construction. To bypass limitations of ISO 15712-1, this Guide explains how to merge ASTM and ISO test data in the ISO calculation procedure, and provides recommendations for applying extended measurement and calculation procedures for specific common types of construction. This Guide was developed in a project established by the National Research Council Canada to support the transition of construction industry practice to using the apparent sound transmission class (ASTC) rating for noise protection objectives in the 2015 edition of the National Building Code of Canada (NBCC). However, the potential range of application goes beyond the minimum requirements of the NBCC – the Guide also facilitates design to provide enhanced sound insulation, and should be generally applicable to construction in both Canada and the USA.

This publication contains a limited set of examples for several types of construction, to provide an introduction and overview of the ASTC calculation procedure. Additional examples and measurement data can be found in the companion documents to this Guide, namely NRC Research Reports RR-333 to RR-337. Furthermore, the calculation procedure outlined and illustrated in this Guide is also used by the software web application *soundPATHS*, which is available for free on the website of the National Research Council Canada (see the references in Section 7 of this Guide for access details).

Although it is not repeated at every step of this Guide, it should be understood that some variation in sound insulation is to be expected in practice due to changes in the specific design details, quality of workmanship, substitution of "generic equivalents", or simply rebuilding the construction. It would be prudent to allow a margin of error of 2-3 ASTC points to ensure that a design will satisfy a specific requirement.

Despite this caveat, the authors believe that methods and results shown here do provide a good estimate of the apparent sound insulation for the types of constructions presented.

Changes in the Fourth Edition

This fourth edition supersedes the first, second, and third editions of the NRC Research Report RR-331, which were published in October 2013, April 2016, and September 2017, respectively.

Changes in the fourth edition include:

- Reorganization of Chapter 1 and consolidation of descriptions for worked examples
- Update of the worked examples with hollow concrete block masonry walls and precast concrete floors in Chapters 2 and 5, based on two new NRC Research Reports:
 - o 2nd edition of RR-334, "Apparent Sound Insulation in Concrete Block Buildings", and
 - o 1st edition of RR-333, "Apparent Sound Insulation in Precast Concrete Buildings"
- Update of the worked examples for wood-framed constructions in Section 4.2, based on the new NRC Research Report RR-336, "Apparent Sound Insulation in Wood-Framed Buildings"
- Update of the specimen descriptions in the worked examples for CFS-framed constructions in Section 4.3
- New appendix on ASTC calculations involving composite assemblies, e.g. walls with doors
- Various editorial updates and corrections

Acknowledgements

The authors gratefully acknowledge that the development of this Guide was supported by a Special Interest Group of industry partners who co-funded the project, and participated in the planning and review process. The Steering Committee for the project included the following members:

Steering Committee Member	Representing
Gary Sturgeon	Canadian Concrete Masonry Producers Association
Alfred Wong	Canadian Institute of Steel Construction
Robert Burak	Canadian Precast/Prestressed Concrete Institute
Bart Kanters	Canadian Ready Mixed Concrete Association
Rodney McPhee	Canadian Wood Council
Michael Schmeida	Gypsum Association
Salvatore Ciarlo	Owens Corning Canada
Richard Roos	ROXUL Inc.

The following NRC researchers were co-authors of previous editions of this Guide:

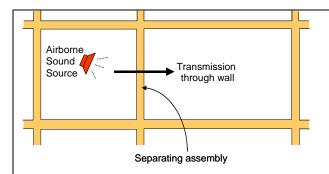
- Trevor Nightingale
- Ivan Sabourin
- Stefan Schoenwald
- Berndt Zeitler

The following committee members contributed to the development of previous editions of this Guide:

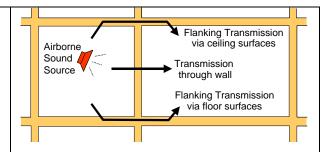
Doug Eichler (ROXUL), Steve Fox (Canadian Sheet Steel Building Institute), Bradford Gover (NRC Canada), Paul Hargest (Canadian Concrete Masonry Producers Association), Peggy Lepper (Canadian Wood Council), Frank Lohmann (Codes Canada), Richard J. McGrath (Cement Association of Canada), Bob Mercer (Canadian Gypsum Company), Dave Nicholson (Maxxon Corporation), John Rice (Canadian Sheet Steel Building Institute), Ineke van Zeeland (Canadian Wood Council), Robert Wessel (Gypsum Association), Morched Zeghal (Codes Canada)

This page was intentionally left blank.

Contents


1.	Sou	nd Transmission via Many Paths	1
	1.1.	Predicting Sound Transmission for Common Types of Construction	3
	1.2.	Applying the Concepts of ISO Standards in an ASTM Environment	4
	1.3.	Combining Sound Transmitted via Many Paths	7
	1.4.	Worked Examples in this Guide	11
2.	Buil	dings with Concrete or Concrete Masonry Walls and Concrete Floors	21
	2.1.	Rigid Junctions in Concrete and Concrete Masonry Buildings	25
	2.2.	Non-Rigid Junctions in Concrete and Concrete Masonry Buildings	41
	2.3.	Adding "Linings" to Walls, Floors, and Ceilings in Concrete/Masonry Buildings	47
	2.4.	Simplified Calculation Method for Concrete/Masonry Buildings	63
3.	Buil	dings with CLT Wall and Floor Assemblies	75
	3.1.	Simplified Calculation Procedure for CLT Constructions	75
	3.2.	Detailed Calculation Procedure for CLT Constructions	89
4.	Buil	dings with Lightweight Framed Wall and Floor Assemblies	103
	4.1.	Calculation Procedure for Lightweight Framed Walls and Floors	105
	4.2.	Wood-Framed Wall and Floor Assemblies	109
	4.3.	Cold-Formed Steel-Framed Wall and Floor Assemblies	129
5.	Buil	dings with Hybrid Construction	145
	5.1.	Concrete Floors with Lightweight Framed Walls and Heavy Façades	146
	5.2.	Concrete Floors with Lightweight Framed Walls and Lightweight Façades	157
	5.3.	Concrete Masonry Walls with Lightweight Framed Floors and Walls	165
6.	Арр	endices	177
	6.1.	Appendix A1: Calculation of ΔTL and ΔSTC Values	177
	6.2.	Appendix A2: Sound Transmission for Multi-Element Assemblies	184
7	Dof	eveness and Endnates	101

This page was intentionally left blank.


1. Sound Transmission via Many Paths

The simplest approach to sound transmission between adjacent rooms in buildings considers only the sound transmission through the separating wall or floor. This perspective has been entrenched in North American building codes, which for many decades have considered only the ratings for the separating assembly: sound transmission class (STC) or field sound transmission class (FSTC) for airborne sources and impact insulation class (IIC) for footstep noise.

Implicit in this approach (illustrated in Figure 1.1) is the simplistic assumption that sound is transmitted only through the obvious separating assembly – the separating wall assembly when the rooms are side-by-side, or the floor/ceiling assembly when rooms are one-above-the-other. Under this approach, inadequate sound insulation is often incorrectly attributed to errors in either the design of the separating assembly or the workmanship of those who built it, and remediation focusses on that assembly. Unfortunately, this paradigm is still common among designers and builders in North America.

Figure 1.1: The drawings in Figure 1.1 and 1.2 show a cross-section through a building with two adjacent rooms. Part of the sound from an airborne source in one unit (represented by red loudspeaker in the drawings, which could include anything from a home theatre to people talking loudly) is transmitted to the adjacent unit. The historic approach, illustrated in Figure 1.1, considers <u>only</u> the direct sound transmission through the separating assembly.

Figure 1.2: In reality, there are many paths for sound transmission between adjacent rooms, including both direct transmission through the separating assembly and indirect structure-borne paths, a few of which are indicated here. (See Section 1.4 for more detail.) The structure-borne paths usually significantly affect the overall sound transmission.

In reality, the technical issue is more complex, as illustrated in Figure 1.2. There is direct transmission of sound through the separating assembly, but that is only part of the story of how sound is transmitted between adjacent rooms. As shown in the figure, the airborne sound source excites all the surfaces in the source space and all of these surfaces vibrate in response. Some of this vibrational energy is transmitted as structure-borne sound across the surfaces abutting the separating assembly, through the junctions where these surfaces join the separating assembly, and into surfaces of the adjoining space.

These surfaces in the receiving room then radiate part of the vibrational energy as airborne sound. The sound transmission by these paths is called flanking sound transmission.

Occupants of the adjacent room hear the combination of radiated sounds due to direct transmission through the separating assembly plus sound due to structure-borne flanking transmission involving all the other elements coupled to the separating assembly. Furthermore, there is also transmission of sound through leaks (openings) in the walls. It follows that in reality, the sound insulation between adjacent rooms is always worse than the sound insulation provided by just the separating assembly. The importance of including all of the transmission paths has long been recognized in principle and the fundamental science was largely explained decades ago, by Cremer et al [10]. Although the measurement of the ASTC rating in a building according to the standard, ASTM E336 is quite straightforward, predicting the ASTC rating of a building is more complex. The challenge has been to reduce the complicated calculation of the sound transmission by multiple paths into manageable engineering that yields trustworthy quantitative estimates and to standardize that process to facilitate its inclusion in a regulatory framework.

For design or regulation, a standardized framework for estimating the overall sound transmission has been developed and has been in use to support performance-based European code systems. In 2005, the International Organization for Standardization (ISO) published a calculation method, ISO 15712-1, "Building acoustics — Estimation of acoustic performance of buildings from the performance of elements — Part 1: Airborne sound insulation between rooms" [8]. This standard is one part of a series of standards: Part 2 deals with "impact sound insulation between rooms", Part 3 deals with "airborne sound insulation against outdoor sound", and Part 4 deals with "transmission of indoor sound to the outside". In 2017, the four parts of ISO 15712 were replaced by the corresponding parts of ISO 12354 [9]. This Guide continues to reference ISO 15712, for the reasons discussed in Section 1.1.

ISO 15712-1 outlines a procedure for estimating the apparent sound insulation from the performance of elements, but there are two significant impediments to applying its methods in a North American context:

- ISO 15712-1 provides reliable estimates for some types of construction, but not for the lightweight framed construction widely used for buildings in North America.
- ISO standards for building acoustics have many differences from the ASTM standards used by the construction industry in North America both in their terminology and in specific technical requirements for measurement procedures and ratings.

The following sections of this chapter outline a strategy for dealing with these limitations, both explaining how to merge ASTM and ISO test data and procedures, and providing recommendations for adapting the calculation procedures for common types of construction.

1.1. Predicting Sound Transmission for Common Types of Construction

As noted above, ISO 15712-1 provides reliable estimates for buildings with concrete floors and walls of concrete or masonry, but it is less accurate for other common types of construction, especially for lightweight wood-frame and steel-frame constructions. ISO 15712-1 has other limitations, too. For example, in several places the Standard identifies situations where the detailed calculation is not appropriate, but does not provide specific guidance on how to deal with such cases. Many of these limitations can be overcome by using data from laboratory testing according to the ISO 10848 series of standards [7]. The four parts of ISO 10848 were developed to deal with measuring flanking sound transmission for various combinations of construction types and junctions.

The 2015 edition of the National Building Code of Canada (NBCC) deals with these constraints by specifying suitable procedures and test data to deal with calculating the ASTC rating for different types of construction, with direct references to ISO 15712-1 and the ISO 10848 series.

In 2017, the 4 parts of ISO 15712 were replaced by the corresponding parts of ISO 12354. The procedures in ISO 12354-1 are equivalent to those of ISO 15712-1, and resolve most of the concerns identified in the preceding paragraphs. At the time of preparing this Guide, the NBCC has not been updated to replace references to ISO 15712-1 with the corresponding links to the new ISO 12354-1. For consistency with the NBCC, this Guide outlines the steps of the standardized calculation procedures with references to ISO 15712-1. Referencing ISO 12354-1 instead would have negligible impact on the contents of this Guide other than the different number of the referenced standard.

Following the approach in the 2015 NBCC, and to provide more guidance to users on how to use the calculation procedure, this Guide presents an approach suited to each type of construction:

- For types of construction where the calculation procedure of ISO 15712-1 <u>is accurate</u>, the Guide
 outlines the steps of the standardized calculation process. The Guide does not reproduce the
 equations of ISO 15712-1, but it does indicate which equations apply in each context;
- For types of construction where the calculation procedure of ISO 15712-1 is not so accurate, the
 Guide presents an alternative approach. This is based on experimental data obtained using the
 ISO 10848 series of standards for laboratory measurement of flanking sound transmission. It
 combines the sound power due to direct and flanking sound transmission in the same way as
 ISO 15712-1, as described in Section 1.4 of this Guide.

Each type of construction is presented in a separate chapter of this Guide, as follows:

- Concrete and masonry structures in Chapter 2
- Cross-laminated timber (CLT) structures in Chapter 3
- Lightweight wood-framed and steel-framed structures in Chapter 4
- Hybrid structures integrating different types of construction in Chapter 5

1.2. Applying the Concepts of ISO Standards in an ASTM Environment

Although the building acoustics standards developed by ASTM are very similar in concept to the corresponding ISO standards, there are differences in the terminology and technical requirements between the two which present numerous barriers to using a mix of standards from the two domains.

Although ASTM standard E336 recognizes the contribution of flanking to apparent sound transmission, there is neither an ASTM standard for measuring the structure-borne flanking sound transmission that often dominates sound transmission between rooms, nor an ASTM counterpart of ISO 15712-1 for predicting the combination of direct and flanking sound transmission. In the absence of suitable ASTM standards, this Guide uses the procedures of ISO 15712-1 and data from the complementary ISO 10848 series for some constructions, but connects this ISO calculation framework to the ASTM terms and test data widely used by the North American construction industry. This methodology combines identifying where data from ASTM laboratory tests can reasonably be used in place of their ISO counterparts, and presenting the results using ASTM terminology (or new terminology for flanking sound transmission that is consistent with existing ASTM terms) to facilitate their use and understanding by a North American audience. Some obvious counterparts in the terminology are presented in Table 1.1.

ISO Designation	Description	ASTM Counterpart
ISO 10140 Parts 1 and 2 (formerly ISO 140-3)	Laboratory measurement of airborne sound transmission through a wall or floor	ASTM E90
sound reduction index, R (ISO 10140-2)	Fraction of sound power transmitted (in dB) at each frequency, in laboratory test	sound transmission loss, TL (ASTM E90)
weighted sound reduction index, R _w (ISO 717-1)	Single-number rating determined from R or TL values in standard frequency bands	sound transmission class, STC (ASTM E413)
apparent sound reduction index, R' (ISO 16283-1)	Fraction of sound power transmitted (in dB) at each frequency, including all paths in a building	apparent sound transmission loss, ATL (ASTM E336)
weighted apparent sound reduction index, R'w (ISO 717-1)	Single-number rating determined from R' or ATL values in standard frequency bands	apparent sound transmission class, ASTC (ASTM E413)

Table 1.1: Standards and terms used in ISO 15712-1 for which ASTM has close counterparts

Note that the description "counterpart" does not imply that the ASTM and ISO standards or terms are exactly equivalent. For example, the descriptors R_W and STC are not interchangeable. Neither are R'_W and ASTC because of systematic differences in the calculation procedures. However, the laboratory test used to measure airborne sound transmission through wall or floor assemblies – ASTM E90 and its counterpart ISO 10140-2 – are based on essentially the same procedure, with minor variants in facility requirements. Therefore, the measured quantities "sound transmission loss" from the ASTM E90 test and "sound reduction index" from the ISO standard are sufficiently similar so that data from ASTM E90

tests can be used in place of data from ISO 10140-2 tests in the calculations of ISO 15712-1 to obtain a sensible answer. Similarly, the simplified calculation of ISO 15712-1 may be performed using STC ratings to predict the ASTC rating. The close parallel between "sound reduction index" and "sound transmission loss" also means that results from ISO 15712-1 calculations (normally expressed as R' values) can confidently be treated as calculated apparent sound transmission loss (ATL) values and then used in the procedure of ASTM E413 to calculate the ASTC rating, which is the objective for designers or regulators in the North American context.

For purposes of this Guide, a glossary of new terms with counterparts in ISO 15712-1 (using terminology consistent with measures used in ASTM standards) and of other key terms from pertinent ISO standards such as ISO 15712-1 and ISO 10848 is presented in Table 1.2.

In addition, several scientific terms used in ISO 15712-1 at various stages of the calculation have been used without change. These include: radiation efficiency, velocity level difference, internal loss factor, total loss factor, equivalent absorption length, and transmission factor. They are described in the glossary in Annex A of ISO 15712-1.

Terms used in this Guide	Description
Structural reverberation time (T _s)	Structural reverberation time is a measure indicating the rate of decay of vibration energy in an element and can apply either to a laboratory wall or floor assembly, or to a wall or floor assembly in-situ in a building.
Sound transmission loss in-situ (TL _{situ})	Sound transmission loss in-situ is the counterpart of sound reduction index in-situ (R_{situ}) described in ISO 15712-1 as "the sound reduction index of an element in the actual field situation".
Change in sound transmission loss (ΔTL)	Change in sound transmission loss is the difference in sound transmission loss due to a lining applied on one side of a wall or floor assembly when measured according to ASTM E90, compared with the sound transmission loss of the same assembly without a lining.
Change in sound transmission class (ΔSTC)	Change in sound transmission class is the difference in single-number rating due to a lining applied on one side of a wall or floor assembly. The calculation procedure for Δ STC is described in Appendix A1 of this Guide.
Vibration reduction index (K _{ij})	Vibration reduction index (K_{ij}) is described in ISO 15712-1 as "direction-averaged vibration level difference over a junction, normalised to the junction length and the equivalent sound absorption length to make it an invariant quantity". Depending on the type of building element, K_{ij} values may be determined using equations in Annex E of ISO 15712-1 or the measurement procedures of ISO 10848.
Velocity level difference (VLD)	Velocity level difference (VLD) is described in ISO 15712-1 as "junction velocity level difference in-situ between an excited element (wall or floor) and the receiving element (wall or floor)." It is calculated by correcting the K_{ij} value to allow for edge loss conditions (identified through structural reverberation times) of the assemblies in-situ.
Flanking sound transmission loss (Flanking TL _{ij})	Flanking sound transmission loss is the counterpart of flanking sound reduction index (R_{ij}) in ISO 15712-1. It is a measure of sound transmission via the flanking path from element i in the source room to element j in the receiving room, normalised like apparent sound transmission loss.
Flanking sound transmission class (Flanking STC _{ij})	Flanking STC is the single-number rating calculated from the flanking sound transmission loss following the STC calculation procedure of ASTM E413.

Table 1.2: Key terms used in this Guide to deal with concepts from ISO 15712-1 and ISO 10848 for which current ASTM acoustics standards have no counterparts.

1.3. Combining Sound Transmitted via Many Paths

The calculations of ISO 15712-1 must deal with combining the sound power transmitted via the direct path and via a set of flanking paths. To keep track of the sound transmission paths, it is useful to introduce the labeling convention for the paths that is used in ISO 15712-1 and is shown in Figure 1.3.

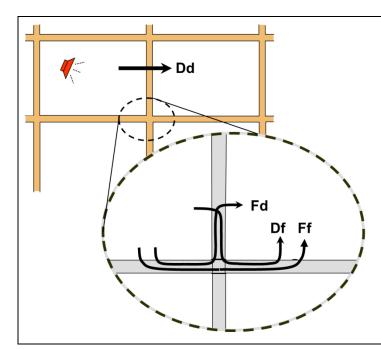


Figure 1.3: This figure shows the labelling convention for transmission paths used in ISO 15712-1. Consider the transmission of airborne sound from a source room (left) to a receiving room (right). Each transmission path involves one surface in the source room (denoted by a capital letter) and one in the receiving room (denoted by a lower case letter). Direct transmission through the separating assembly is path Dd. For each edge of the separating assembly there are three flanking paths: Ff from flanking surface F to flanking surface f, Df from direct surface D to flanking surface f, and Fd from flanking surface F to direct surface d.

Note that the letter "F" or "f" denotes $\underline{\mathbf{f}}$ lanking surface, and "D" or "d" denotes the surface for $\underline{\mathbf{d}}$ irect transmission, i.e. the surface of the separating assembly. These surfaces may be either wall or floor/ceiling assemblies.

1.3.1. Calculation of the ASTC Rating

In Canada, building elements are normally tested according to the ASTM E90 standard, and building code requirements are given in terms of apparent sound transmission class (ASTC) determined from the apparent sound transmission loss (ATL) for the set of frequency bands from 125 Hz to 4000 Hz, following the procedure in ASTM E413. Merging this context with using the ISO 15712-1 procedures in this Guide, the terms "direct sound transmission loss" and "flanking sound transmission loss" have been introduced to provide consistency with ASTM terminology while matching the function of the direct and flanking sound reduction indices defined in ISO 15712-1.

Section 4.1 of ISO 15712-1 defines a process to calculate the apparent sound transmission by combining the sound power transmitted via the direct path and the twelve first-order flanking paths (three paths at each of the four edges of the separating assembly, as illustrated in Figure 1.3). Equation 14 in ISO 15712-1 is recast here with slightly different grouping of the paths (treating the set of paths at each edge of the separating assembly in turn) to match the presentation approach chosen for the examples in this Guide.

The apparent sound transmission loss is the logarithmic expression of the total transmission factor (τ '):

$$ATL = -10\log \tau' \, dB$$
 Eq. 1.1

The total transmission factor (τ') is calculated from a sum of transmission factors for individual paths:

$$au' = au_{Dd} + \sum_{Edge=1}^{4} \left(au_{Ff} + au_{Fd} + au_{Df}
ight)$$
 Eq. 1.2

The transmission factors are defined as follows:

- τ' is the ratio of the total sound power radiated into the receiving room relative to the sound power incident on the separating element;
- τ_{Dd} is the ratio of the sound power radiated by the separating element relative to the sound power incident on the separating element;
- τ_{Df} is the ratio of the sound power radiated by a flanking element f in the receiving room due to structure-borne transmission from element D in the source room, relative to the sound power incident on the separating element;
- τ_{Ff} is the ratio of the sound power radiated by a flanking element f in the receiving room due to structure-borne transmission from element F in the source room, relative to the sound power incident on the separating element;
- τ_{Fd} is the ratio of the sound power radiated by element d in the receiving room due to structure-borne transmission from flanking element F in the source room, relative to the sound power incident on the separating element.

Each of the transmission factors τ_{ij} can be related to a corresponding path transmission loss associated with a specific pair of surfaces by the following expressions:

Direct transmission loss (for the separating assembly) = $-10 \log \tau_{Dd}$ dB

Flanking transmission loss (for flanking path ij)
$$=-10\log au_{ij}$$
 dB Eq. 1.3 or conversely, $au_{ij}=10^{-TL_{ij}/10}$

To connect this more obviously to standard laboratory test results, the expressions of Equations 1.1 to 1.3 can readily be recast in terms of sound transmission loss values, as shown in Eq. 1.4.

The apparent sound transmission loss (ATL) between two rooms (assuming the room geometry of Section 1.4.1 and neglecting the sound that by-passes the building structure, e.g. leaks, ducts,...) is the resultant of the direct sound transmission loss (TL_{Dd}) through the separating wall or floor element and the set of flanking sound transmission loss contributions (TL_{Ff} , TL_{Fd} , and TL_{Df}) of the three flanking paths for every junction at the edges of the separating element (as shown in Fig. 1.3) such that:

$$ATL = -10 \cdot \log_{10} \left(10^{-0.1 \cdot TL_{Dd}} + \sum_{edge=1}^{4} \left(10^{-0.1 \cdot TL_{Ff}} + 10^{-0.1 \cdot TL_{Fd}} + 10^{-0.1 \cdot TL_{Df}} \right) \right)$$
 Eq. 1.4

Note that this equation differs slightly from the calculation of the apparent sound transmission defined in Equation 14 of ISO 15712-1. Eq. 1.4 of this Guide treats the set of paths at each edge of the separating assembly in turn to match the presentation for the examples in this Guide. Eq. 1.4 is universally valid for all building systems, and the remaining challenge is to find the right expressions to calculate the sound transmission for the different paths for the chosen building system and situation.

The standard ISO 15712-1 describes two methods of calculating the apparent sound insulation in a building: the Detailed Method and the Simplified Method. This Guide describes both methods to calculate the apparent sound insulation in a building. The Simplified Method uses the single-number ratings (STC or Flanking STC for each transmission path, as appropriate) instead of the frequency-dependent sound transmission loss values, and yields the ASTC directly:

$$ASTC = -10 \cdot \log_{10} \left[10^{-0.1 \cdot STC_{Dd}} + \sum_{edge=1}^{4} \left(10^{-0.1 \cdot STC_{Ff}} + 10^{-0.1 \cdot STC_{Fd}} + 10^{-0.1 \cdot STC_{Df}} \right) \right] \quad \text{Eq. 1.5}$$

The Simplified Method has been widely used by designers in Europe for many years for calculations based on R_W data. Its primary advantage is the simplicity of the procedure, which makes it usable by non-specialists. Although it is less rigorous than the Detailed Method, the differences between the results using the two methods are small, and the calculations for the Simplified Method use approximations that should ensure the results are slightly conservative.

The calculation process for each type of construction is presented in a separate chapter of this Guide:

- Concrete and masonry structures in Chapter 2
- Cross-laminated timber (CLT) structures in Chapter 3
- Lightweight wood-framed and steel-framed structures in Chapter 4
- Hybrid structures integrating different types of construction in Chapter 5

For each of these types of construction, an appropriate type of laboratory data should be used, as detailed in that chapter.

The set of transmission factors used in this Guide is less general than the corresponding list of transmission factors in ISO 15712-1 to reflect the simplifications due to the Standard Scenario (see Section 1.4) and some further simplifications noted in the following cautions.

Cautions and limitations to examples presented in this Guide:

This Guide was developed to support the transition to ASTC ratings for sound control objectives in the National Building Code of Canada. Simplifications were made to meet the specific needs of that application, where sound insulation is addressed only in the context of multi-unit residential buildings. The simplifications include that:

- Transmission around or through the separating assembly due to leaks at its perimeter or penetrations such as ventilation systems are assumed negligible.
- Indirect airborne sound transmission (for example airborne flanking via an unblocked attic or crawl space) is assumed to be suppressed by normal fire blocking requirements.

For adjacent units in a multi-family residential building, these two issues should be dealt with by using normal good practice for fire and sound control between adjoining dwellings.

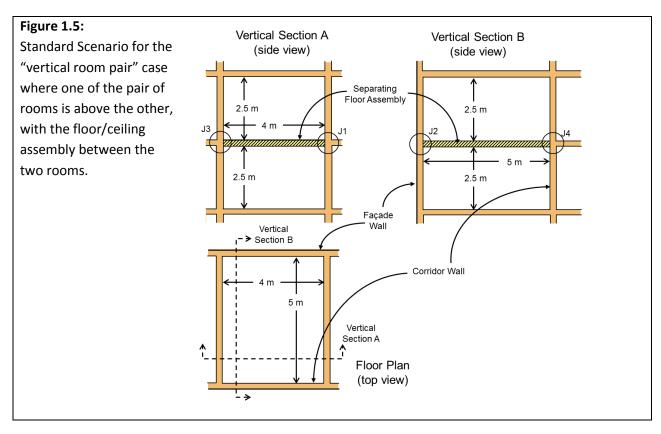
If this Guide is applied to situations other than separation between adjacent units in multi-family residential buildings, some of these issues may have to be explicitly addressed in the calculation process. For example, for adjoining rooms within a single office or home, flanking paths such as ventilation ducts or open shared plenum spaces may be an issue. The flanking sound transmission associated with these additional paths should be determined and included in the calculated ASTC. ISO 15712-1 includes specific guidance for such issues, and the examples in this Guide allow for such a correction. A worked example of a scenario with two side-by-side rooms and a door is presented in Appendix A2.

1.4. Worked Examples in this Guide

This Guide contains more than 50 worked examples that demonstrate the calculation of the ASTC rating for various construction types. Each worked example presents the pertinent physical characteristics of the wall and floor assemblies and their junctions, together with a summary of key steps in the calculation process for these constructions.

1.4.1. Standard Scenario for the Worked Examples in this Guide

The prediction of the sound transmitted in buildings depends not only on the construction details of the transmission paths, but also on the size and shape of each of the room surfaces and on the sound absorption in the receiving room. The ability to adjust the calculation to fit the dimensions in a specific building or to normalize to different receiving room conditions enables a skilled designer to obtain more accurate predictions.


For purposes of this Guide, where results are presented for a variety of constructions, easy and meaningful comparison of results is facilitated by calculating all the examples for a common set of room geometry and dimensions. This is particularly useful where only small changes are made between the construction details in the examples, since any change in the ASTC rating can then be attributed to the changes that were made in the construction details.

Therefore, a Standard Scenario has been adopted for all the examples, with the following constraints:

- Sound is transmitted between adjacent rooms, either side-by-side or one-above-the-other.
- The adjacent rooms are mirror images of each other, (with one side of the separating assembly facing each room, and constituting one complete face of each rectangular room).

The Standard Scenario is illustrated in Figures 1.4 and 1.5, for the cases where one room is beside the other, or one is above the other, respectively.

The pertinent dimensions and junction details are shown in Figures 1.4 and 1.5.

- Note the labelling of junctions at the four edges of the separating assembly (J1 to J4) in Figures 1.4 and 1.5. These junction designations are used in the design examples throughout this Guide.
- For horizontal room pairs (i.e. rooms are side-by-side) the separating wall is 2.5 m high by 5 m wide, flanking floor/ceilings are 4 m by 5 m and flanking walls are 2.5 m high by 4 m wide.
- For vertical room pairs (i.e. one room is above the other) the separating floor/ceiling is 4 m by 5 m wide and flanking walls in both rooms are 2.5 m high.
- In general, it is assumed that junctions at one side of the room (at the separating wall if rooms are side-by-side) are cross-junctions, while one or both of the other two junctions are T-junctions. This enables the examples to illustrate typical differences between the two common junction cases.
- For a horizontal room pair, the separating wall has T-junctions with the flanking walls at both the façade and corridor sides, and cross-junctions at floor and ceiling.
- For a vertical room pair, the façade wall has a T-junction with the separating floor, but the opposing corridor wall has a cross-junction, as do the other two walls.

Deviations from the Standard Scenario, such as for rooms with different dimensions or for room pairs where one room is an end unit with T-junctions instead of cross-junctions, can be calculated by substituting the appropriate room dimensions and junction details in the calculation procedures and in the worked examples in this Guide.

Following the labeling convention described in Figure 1.3, the labels for the flanking surfaces of the Standard Scenarios are detailed in the following Table 1.3.

Room Pair	Surfaces D and d	Flanking Surfaces F and f	Junction
		Junction 1: floor F and f	Cross-junction
Horizontal	Separating wall	Junction 2: façade wall F and f	T-junction
(Fig. 1.4)		Junction 3: ceiling F and f	Cross-junction
		Junction 4: corridor wall F and f	T-junction
		Junction 1: wall F and f	Cross-junction
Vertical	Separating floor/ceiling	Junction 2: façade wall F and f	T-junction
(Fig. 1.5)		Junction 3: wall F and f	Cross-junction
		Junction 4: corridor wall F and f	Cross-junction

Table 1.3: Surfaces (D, d, F and f) for flanking paths at each junction, as in the Standard Scenario.

1.4.2. Calculation Spreadsheets for the Worked Examples

The calculation of the ASTC rating for each worked example is illustrated step by step in a calculation spreadsheet. Figure 1.6 shows two examples of calculation spreadsheets – one for a calculation using the Detailed Method of ISO 15712-1, and one for a calculation using the Simplified Method.

Colour is used to highlight input and output values in the worked examples:

- Bright yellow is used to indicate section headings, i.e. blocks of data for the separating assembly and the four junctions
- Light red is used to indicate input values
- Blue is used to indicate the direct sound transmission loss, including the effect of in-situ loss corrections and any added lining(s) on the separating assembly
- Pale yellow is used to indicate calculated values of the combined flanking sound transmission due to a set of flanking paths
- Green is used to indicate the final result for the ASTC rating

Figure 1.6: Examples of calculation spreadsheets for the determination of the ASTC rating: The layouts for the Detailed Method (on the left) and the Simplified Method (on the right) are similar, but the former presents more detailed information. Larger versions of these images are given in the following discussion of each method.

Calculation Spreadsheets for Worked Examples using the Detailed Method

Worked examples demonstrating the calculation of the ASTC rating using the Detailed Method are presented in Sections 2.1, 2.2, 2.3, 3.2, 5.1, and 5.2.

The calculations using the Detailed Method are performed in the 16 one-third octave frequency bands between 125 Hz and 4000 Hz, but to save space data is only presented in six of these one-third octave bands (125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz). It should be kept in mind that the data shown in the worked examples is only a subset of the actual data used for the calculations.

Within each spreadsheet, the "Reference" column presents the source of input data. The source may be indicated by a NRC report number and identifier for a laboratory test result, or by applicable equations and sections of ISO 15712-1 or their counterparts using ASTM ratings. Symbols and subscripts identifying the corresponding variable in ISO 15712-1 are given in the adjacent column.

To permit readers to better assess the worked examples using the Detailed Method, the spreadsheets show the single-number ratings (such as STC for each assembly and Flanking STC for specific paths) at intermediate steps during the calculation. Note that these single-number ratings shown at each stage of the calculation are presented only to provide readers with a convenient indication of the relative strength of the 13 sound transmission paths. The actual calculation at each step is performed in the individual one-third octave bands. The sound transmission loss values for the 13 paths are combined to arrive at the overall apparent sound transmission loss (ATL) for each frequency band. The ASTC rating is then calculated from the values for apparent sound transmission loss in the 16 one-third octave frequency bands between 125 Hz and 4000 Hz.

Under the heading "STC or ASTC" the examples using the Detailed Method present single-number ratings, each calculated from a set of one-third octave band data according to ASTM E413, to provide a consistent set of summary single-number measures at each stage of the calculation:

- STC values for the laboratory sound transmission loss of wall or floor assemblies
- In-situ STC values for the calculated in-situ sound transmission loss of wall and floor assemblies
- Direct STC values for the in-situ sound transmission loss through the separating assembly including the effect of linings
- Flanking STC values calculated for each flanking sound transmission path at each junction including the effect of linings
- Apparent STC (ASTC) values for the combination of direct and flanking transmission via all paths

The Detailed Method worksheet for an example with side-by-side rooms is shown in Figure 1.7.

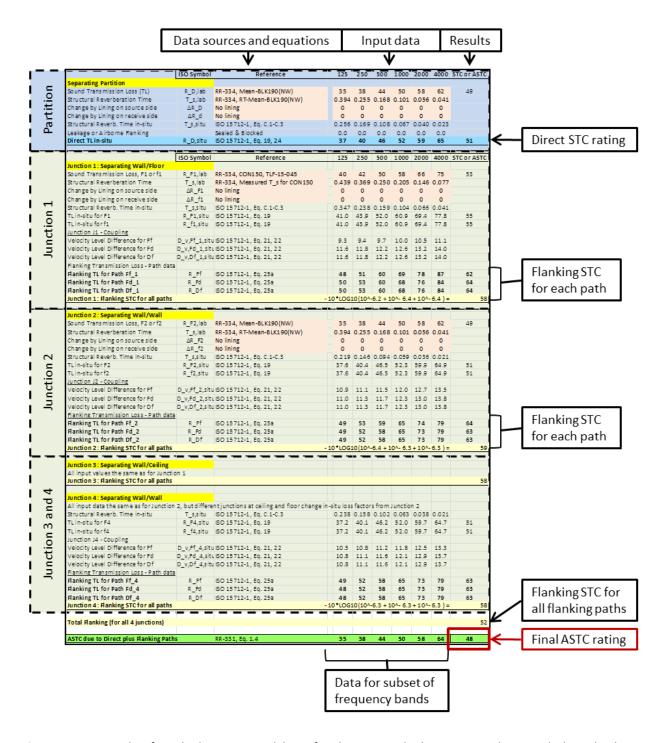


Figure 1.7: Example of a calculation spreadsheet for the ASTC calculation using the Detailed Method.

Calculation Spreadsheets for Worked Examples using the Simplified Method

Worked examples that demonstrate the calculation of the ASTC rating using the Simplified Method are presented in Sections 2.4, 3.1, 4.2, 4.3, and 5.3.

Under the heading "STC or ΔSTC", the examples present input data determined from laboratory tests:

- STC values for the laboratory sound transmission loss of wall or floor assemblies
- ΔSTC values measured in the laboratory for the change in STC due to adding that lining to the specified wall or floor assembly, as explained in Appendix A1 of this Guide
- Flanking STC values for each flanking sound transmission path at each junction measured following ISO 10848 and re-normalized using Eq. 4.1.3 (for lightweight framed constructions)

Under the heading "STC or ASTC", the examples present the calculated values for sound transmission via specific paths:

- Direct STC ratings for the in-situ sound transmission loss through the separating assembly including the effect of linings
- Flanking STC ratings for each flanking sound transmission path including the effect of linings
- Apparent STC (ASTC) ratings for the combination of direct and flanking sound transmission paths

The numeric calculations are presented step-by-step in each worked example, using compact notation consistent with the spreadsheet expressions:

- For the calculation of the Direct STC and the Flanking STC, the expressions show the required calculation to account for linings on one or both sides of the bare assembly. These values are rounded to the nearest integer, for consistency with the corresponding measured values.
- For combining the sound power transmitted via specific paths, the calculation of Eq. 1.5 is presented in several stages. Note that in the compact notation, a term for transmitted sound power fraction such as $10^{-0.1 \cdot STC_{ij}}$ becomes $10^{-7.4}$, if $STC_{ii} = 74$.
- At each stage (such as the Flanking STC for the 3 paths at a given junction) the result is converted into decibel form by calculating -10*log₁₀ (transmitted sound power fraction) to facilitate comparison of each path or junction with the Direct STC and the final ASTC result.

Within the spreadsheet for each worked example, the "Reference" column presents the source of the input data. The source may be identified by a NRC report number and identifier for each laboratory test result, or by applicable equations and sections of ISO 15712-1 or their counterparts using ASTM ratings. Symbols and subscripts identifying the corresponding variable in ISO 15712-1 are given in the adjacent column.

The Simplified Method worksheet for an example with side-by-side rooms is shown in Figure 1.8.

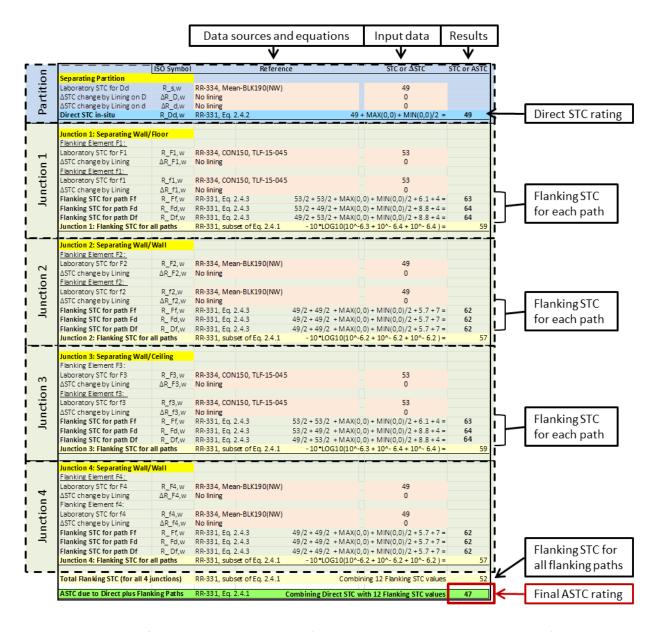


Figure 1.8: Example of a calculation spreadsheet for the ASTC calculation using the Simplified Method.

1.4.3. Rounding and Precision in the Worked Examples

The value of the final ASTC rating obtained in each worked example depends slightly on the precision of the input data and on rounding of results at each stage of the calculation. There is no rounding approach explicitly specified in ISO 15712-1, but the worked examples in the ISO standard show input and calculated sound reduction index values rounded to 0.1 dB which is consistent with the requirements for presentation of results in the ISO standards for measuring laboratory sound transmission. The ASTM standards for the measurement of sound transmission in the laboratory and in the field (ASTM E90 and ASTM E336, respectively) specify that sound transmission loss values should be rounded to the nearest integer, which is arguably more representative of meaningful precision of the result.

The examples in this document follow the ASTM convention of rounding to the nearest integer for input sound transmission loss data from laboratory tests of wall or floor assemblies, for measured or calculated values of flanking sound transmission loss for individual paths, and for the apparent sound transmission loss calculated from the combination of direct and flanking paths. For input values measured according to ISO standards for which there is no ASTM counterpart, specific rounding rules were used as noted below:

- Sound transmission loss values from measurements according to ASTM E90, and values of ΔTL calculated from such measurements were rounded to the nearest integer.
- Structural reverberation times measured for laboratory wall or floor specimens or calculated for laboratory results according to Annex C of ISO 15712-1 were rounded to 3 decimal places.
- Values of the vibration reduction index (K_{ij}) at junctions between a separating assembly and an assembly were rounded to the nearest 0.1 dB, both for results measured according to ISO 10848 and for those calculated using the equations from Annex E of ISO 15712-1.

Between the input values and the flanking transmission loss results for each path (which were rounded to the nearest integer), the worked examples are calculated to the full precision of the spreadsheet and interim values are presented to slightly higher precision to permit detailed comparisons for users treating these examples as benchmarks for their own worksheets.

When the calculated Flanking TL or Flanking STC value for a given path exceeds 90, the value is limited to 90, to allow for the inevitable effect of higher order flanking paths which make the higher calculated value not representative of the true situation. Further enhancements to elements in these paths will give negligible benefit. The consequence of this limit is that the Junction STC value for the set of 3 paths at each edge of the separating assembly cannot exceed 85, and the Total Flanking STC value for all 4 edges cannot exceed 79.

The rounding approach used in this Guide provides a reasonable representation of data precision, and should permit unambiguous interpretation of the worked examples presented here. However, it is possible that a jurisdiction could specify other rounding approaches. Other rounding approaches could change the calculated ASTC ratings by \pm 1.

This page was intentionally left blank.

2. Buildings with Concrete or Concrete Masonry Walls and Concrete Floors

This chapter begins with an introduction outlining the concepts of the detailed calculation method of ISO 15712-1. The following sections provide more focussed procedural guidance and worked examples for specific sets of wall, floor, and junction details for concrete and masonry buildings.

Airborne sound in a source room excites vibration of the wall and floor assemblies that form the bounding surfaces of the room. As discussed in Chapter 1, the apparent transmission between adjacent rooms includes the combination of direct airborne sound transmission through the separating assembly and structure-borne flanking sound transmission via the three pairs of wall and floor surfaces (one in the source room and the other in the receiving room) that are connected at each of the four edges of the separating assembly. The Detailed Method of ISO 15712-1 is focused on the balance between the input sound power and power losses (due to internal losses, sound radiation, and power flow into adjoining assemblies). This balance alters the direct transmission through each floor or wall assembly, and also the structure-borne transmission via the flanking surfaces.

More information on the direct and flanking sound insulation of hollow concrete block masonry wall assemblies connected to concrete floor assemblies can be found in NRC Research Report RR-334, "Apparent Sound Insulation in Concrete Block Buildings." The report provides the data for direct and flanking sound insulation for a variety of concrete block building configurations.

<u>Direct Transmission through the Separating Assembly</u>

Figure 2.1 shows the steps required to transform the laboratory sound transmission data through a bare separating assembly into the direct in-situ transmission loss. The steps are described in more detail below the figure. The transformation requires a correction to adjust for the differences between losses in a laboratory test specimen and the losses when the assembly is connected to adjoining structures insitu in the building. Note that all of the calculations are performed in one-third octave bands.

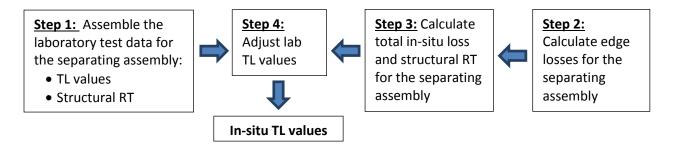


Figure 2.1: Steps to calculate the in-situ transmission loss for the separating assembly.

Step 1: Assemble the required laboratory test data:

- Laboratory sound transmission loss (TL) values measured according to ASTM E90 for the floor or wall assembly of bare concrete or masonry without added linings. For the treatment of linings in the calculation, please see Section 2.3.
- Structural reverberation time (T_s) measured according to ISO 10848-1 in the laboratory, if available. If measured data is not available, a conservative estimate of the total loss factor for a laboratory specimen can be calculated from Eq. C.5 of Annex C of ISO 15712-1.
- o Dimensions and mass per area for each of the wall and floor assemblies (without linings).
- The coincidence frequency for each of the wall and floor assemblies (without linings).

Step 2: Calculate the edge losses for the separating assembly in-situ:

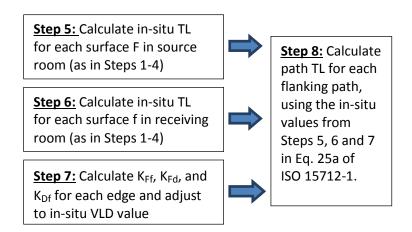
- For each edge of the separating assembly, calculate the vibration reduction index (K_{ij}) between the separating assembly and each attached assembly using the appropriate case from Annex E of ISO 15712-1. These values depend on the junction geometry and on the ratio of the mass per area for the assemblies.
- For each edge, calculate the resulting absorption coefficient using the values of K_{ij} and the coincidence frequency (frequency at which the wavelength on the element and in surrounding air coincide) for the attached assemblies in Eq. C.2 of ISO 15712-1.

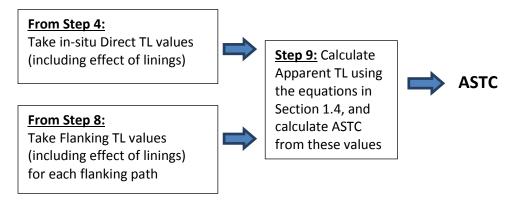
Step 3: Calculate total loss for the separating assembly and its in-situ structural reverberation time:

- Use the 2nd equation of Eq. C.1 of ISO 15712-1 to calculate the combination of internal losses, radiation losses and edge losses. A comparison between the values calculated for a common surface for a vertical pair of rooms and a horizontal pair of rooms gives a check on the loss calculations. The total loss is frequency-dependent for most junction types. Note: the worked examples only give the value for the 500 Hz one-third octave band as a benchmark value.
- Use the 1st equation of Eq. C.1 of ISO 15712-1 to calculate the resulting structural reverberation time of the assembly.
- Step 4: Calculate the in-situ TL values for the separating assembly using the ratio of the structural reverberation times according to Eq. 19 in Section 4.2.2 of ISO 15712-1.

Transmission via Flanking Elements

A similar procedure is required to adjust the flanking sound transmission loss of each flanking path for in-situ losses associated with the connecting junction and the two wall or floor surfaces that comprise the flanking path. The calculation process is presented in Figure 2.2, and each step is subsequently explained.




Figure 2.2: Steps to calculate the flanking transmission loss for each flanking path.

- Step 5: Calculate the in-situ TL values for each flanking assembly F in the source room by repeating the procedure of Steps 1 4 for these assemblies. Note that for an assembly of concrete (cast-in-place concrete or precast concrete panels or hollow concrete block masonry) the coincidence frequency is below 125 Hz. Hence the radiation efficiency is equal to unity and the resonant sound transmission loss (required for these calculations) is equal to the sound transmission loss measured in the standard ASTM E90 laboratory test.
- Step 6: Calculate the in-situ TL values for each flanking assembly f in the receiving room by repeating the procedure of Steps 1 4 for these assemblies. Note that because of the symmetry in the Standard Scenario used in this Guide and because the preceding calculation for direct sound transmission provides in-situ values for surfaces D and d, the examples in this Guide require Steps 5 and 6 for only 4 of the room surfaces: a floor/ceiling assembly, a separating wall, a corridor wall, and a façade wall. Applying the Detailed Method to rooms with other geometries than in the Standard Scenario may require further calculations.
- Step 7: Calculate the in-situ velocity level difference (VLD) for the junction attenuation for each path:
 - \circ Calculate the vibration reduction index (K_{ij}) between the pair of assemblies using the appropriate case from Annex E of ISO 15712-1.
 - Calculate the VLD for the junction of each flanking path using Eq. 21 and 22 of ISO 15712-1.

Step 8: Calculate the flanking TL values for each flanking path:

 Use the in-situ transmission loss values calculated in Steps 5 and 6, the VLD values calculated in Step 7, and the areas of the elements to determine the flanking sound transmission loss for each flanking path using Eq. 25a of ISO 15712-1.

Combining Direct and Flanking Sound Transmission

Step 9: Combine the sound power transmitted via the direct path through the separating assembly and the 12 flanking paths (3 at each edge of the separating assembly).

- Use Equations 1.4 in Section 1.4 of this Guide (equivalent to Section 4.1 of ISO 15712-1) to calculate the apparent transmission loss (ATL).
- Use the resulting values of the apparent transmission loss in the procedure of ASTM E413 to calculate the apparent sound transmission class (ASTC) rating.

2.1. Rigid Junctions in Concrete and Concrete Masonry Buildings

This section presents worked examples for the most basic sort of concrete and masonry building which has structural floor slabs of bare concrete and walls of bare concrete or masonry connecting at rigid cross-junctions or T-junctions.

- "Bare" indicates an assembly of concrete or masonry without a lining such as an added gypsum board finish on the walls or ceiling, or flooring over the concrete slab. For an assembly of concrete or normal weight hollow concrete block masonry, the "bare" surface could be painted or sealed, or have a thin coat of plaster without appreciably changing the sound transmission. However, these simple linings significantly improve the sound transmission properties of hollow concrete block masonry walls constructed of lightweight units. In practice, most buildings have wall finishes (and usually also ceiling finishes) of gypsum board mounted on some sort of lightweight framing, and some sort of flooring over the concrete. The calculations to deal with such linings are presented in Section 2.3. The examples in Section 2.1 and 2.2 have placeholders for including the effect of such linings, but those corrections have been set to zero.
- "Rigid" implies that the assemblies meeting at the junction are firmly bonded so that bending
 vibration is effectively transmitted between the elements. Loadbearing junctions are always
 rigid, whereas non-loadbearing junctions may or may not be rigid.

The calculations in this section follow the steps of the Detailed Method of ISO 15712-1, as described at the beginning of Chapter 2. The approximations of the calculation make it most suitable for "homogeneous, lightly damped" structural elements whose coincidence frequency is below the frequency range of interest (taken here as below about 125 Hz), and for which an average value of K_{ij} suitable for a rigid junction of homogeneous assemblies is appropriate. Homogeneous concrete walls and floors and hollow concrete block masonry walls of several types fall in this category.

Hollowcore precast concrete floors are not homogeneous and isotropic. However, in laboratory testing of mock-up junctions of hollow concrete block masonry walls with hollowcore concrete floors it was shown that the methods of ISO 15712-1 and the vibration reduction index values of Annex E of ISO 15712-1 are still appropriate to use for these types of constructions. The measurements on the junction were conducted with the cores of the hollowcore panels oriented perpendicular to the junction. It is expected that hollowcore panels with the cores oriented parallel to the junction would yield similar or higher vibration reduction index values, and hence the vibration reduction index values from Annex E of ISO 15712-1 are appropriate to use independent of core orientation.

Based on the findings described above, homogeneous (cast-in-place and precast) concrete walls and floors, hollow concrete block masonry walls, and hollowcore precast concrete floors are all treated in the same way in this chapter.

EXAMPLE 2.1.1:

DETAILED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions

Separating wall assembly (loadbearing) with:

 One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

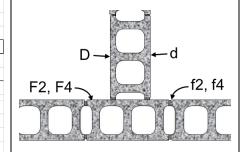
Junction 1: Bottom Junction (separating wall / floor) with:

- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:

- Abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m², with no lining
- · Rigid mortared T-junctions

Junction 3: Top Junction (separating wall / ceiling) with:


- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly

Acoustical Parameters:

g assembly:					
0.015		c_L =	3500		
238		f_c =	98		(Eq. C.2)
Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
ISO 15712-1, Eq. E.3	6.1	11.6	8.8	8.8	0.571
ISO 15712-1, Eq. E.4	5.7		5.7	5.7	0.420
ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
flanking elements F and	f at Junc	tion 1 &	3,		
0.006		c_L =	3500		
345		f_c =	124		
ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
flanking elements F and	f at Junc	tion 2 &	4,		
0.015		c_L =	3500		
238		f_c =	98		
ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)
	0.015 238 Reference ISO 15712-1, Eq. E.3 ISO 15712-1, Eq. E.4 ISO 15712-1, Eq. C.1 flanking elements F and 0.006 345 ISO 15712-1, Eq. C.1 flanking elements F and 0.015 238 ISO 15712-1, Eq. C.1	Reference K_Ff ISO 15712-1, Eq. E.3 6.1 ISO 15712-1, Eq. E.4 5.7 ISO 15712-1, Eq. C.1 Flanking elements F and f at Junco 0.006 345 ISO 15712-1, Eq. C.1 Flanking elements F and f at Junco 0.015 238 ISO 15712-1, Eq. C.1	0.015	0.015 c_L = 3500 238 f_c = 98 Reference K_Ff K_Dd' K_Fd ISO 15712-1, Eq. E.3 6.1 11.6 8.8 ISO 15712-1, Eq. E.4 5.7 5.7 ISO 15712-1, Eq. C.1 0.041 flanking elements F and f at Junction 1 & 3, 0.006 345 f_c = 124 ISO 15712-1, Eq. C.1 0.028 flanking elements F and f at Junction 2 & 4, 0.015 238 f_c = 98 ISO 15712-1, Eq. C.1 0.047	0.015 c_L = 3500 238 f_c = 98 Reference K_Ff K_Dd' K_Fd K_Df ISO 15712-1, Eq. E.3 6.1 11.6 8.8 8.8 ISO 15712-1, Eq. E.4 5.7 5.7 5.7 5.7 ISO 15712-1, Eq. C.1 0.041 (at 500 flanking elements F and f at Junction 1 & 3, 0.006 c_L = 3500 345 f_c = 124 0.028 (at 500 ISO 15712-1, Eq. C.1 0.028 (at 500 flanking elements F and f at Junction 2 & 4, 0.015 c_L = 3500 238 f_c = 98 ISO 15712-1, Eq. C.1 0.047 (at 500

F3 f3

Junction of 190 mm concrete block separating wall with 150 mm thick concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with side wall, both of 190 mm concrete block. (Plan view of Junction 2 or 4)

	ISO Symbol	Reference	12	5 250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.39	4 0.25	5 0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.25	6 0.16	0.108	0.067	0.040	0.023	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 19, 24	37	40	46	52	59	65	51

(For the notes in this table please see the corresponding endnotes on page 194.)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150	0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_F1	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.238					
TL in-situ for F1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
TL in-situ for f1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
Junction J1 - Coupling	11_11,510	130 13712 1, Eq. 13	71.0	13.3	32.0	00.5	03.1	77.0	33
Velocity Level Difference for Ff	D v Ef 1 citu	ISO 15712-1, Eq. 21, 22	9.3	9.4	9.7	10.0	10.5	11.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Flanking Transmission Loss - Path dat		13O 13/12-1, Eq. 21, 22	11.0	11.0	12.2	12.0	15.2	14.0	
	_	ISO 15713 1 Fa 35a	40	F-1	CO	co	70	07	63
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	48	51	60	69	78	87	62
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	50	53	60	68	76	84	64
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	50	53	60	68	76	84	64
Junction 1: Flanking STC for all paths			- 10*LOG	10(10^.	-6.2 + 1	.0^- 6.4	+ 10^-	6.4)=	58
Junction 2: Separating Wall/Wall									
Sound Transmission Loss, F2 or f2		RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time		RR-334, RT-Mean-BLK190(NW)		0.255					
Change by Lining on source side	ΔR_F2	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3	0.219	0.146	0.094	0.059	0.036	0.021	
TL in-situ for F2	R_F2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff	D_v,Ff_2,situ	ISO 15712-1, Eq. 21, 22	10.9	11.1	11.5	12.0	12.7	13.5	
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Flanking Transmission Loss - Path dat	a								
Flanking TL for Path Ff_2	R Ff	ISO 15712-1, Eq. 25a	49	53	59	65	74	79	64
Flanking TL for Path Fd 2	R_Fd	ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63
Flanking TL for Path Df 2	R_Df	ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63
Junction 2: Flanking STC for all paths		<i>'</i> '	- 10*LOG	10(10^-	-6.4 + 1	0^- 6.3	+ 10^-	6.3)=	59
				T T				, , , , , , , , , , , , , , , , , , ,	
Junction 3: Separating Wall/Ceiling									
All input values the same as for Junct	ion 1								
Junction 3: Flanking STC for all paths									58
8 · · · · · · · · · · · · · · · · · · ·									
Junction 4: Separating Wall/Wall									
	n 2 hut differe	nt junctions at ceiling and floor change	e in-situ loss	factor	s from	lunctio	n 2		
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.158				0.021	
TL in-situ for F4		ISO 15712-1, Eq. 0.1 6.5	37.2	40.1			59.7	64.7	51
TL in-situ for f4		ISO 15712-1, Eq. 19	37.2			52.0		64.7	51
Junction J4 - Coupling	N_14,51tU	130 13/12-1, Lq. 19	37.2	40.1	40.2	32.0	33.1	04.7	31
Velocity Level Difference for Ff	D v Ef 4 cit.	ISO 15712 1 Eq. 21 22	10 5	10 0	11 2	11 0	12 5	12.2	
velocity Level Difference for Fr		ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 21, 22	10.5			11.8			
Valacity Laval Difference for Ed		13U 13/1Z-1, EU, Z1, ZZ	10.8		11.6 11.6	12.1	12.9	13.7	
Velocity Level Difference for Fd		•	400		116	12.1	12.9	13.7	
Velocity Level Difference for Df	D_v,Df_4,situ	ISO 15712-1, Eq. 21, 22	10.8	11.1	11.0				
Velocity Level Difference for Df Flanking Transmission Loss - Path dat	D_v,Df_4,situ a	ISO 15712-1, Eq. 21, 22							
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4	D_v,Df_4,situ a R_Ff	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4	D_v,Df_4,situ a R_Ff R_Fd	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	49 48	52 52	58 58	65 65	73 73	79	63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	D_v,Df_4,situ a R_Ff R_Fd R_Df	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a	49 48 48	52 52 52	58 58 58	65 65 65	73 73 73	79 79	63 63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4	D_v,Df_4,situ a R_Ff R_Fd R_Df	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	49 48	52 52 52	58 58 58	65 65 65	73 73 73	79 79	63 63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	D_v,Df_4,situ a R_Ff R_Fd R_Df	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	49 48 48	52 52 52	58 58 58	65 65 65	73 73 73	79 79	63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	D_v,Df_4,situ a R_Ff R_Fd R_Df	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	49 48 48	52 52 52	58 58 58	65 65 65	73 73 73	79 79	63 63
Velocity Level Difference for Df Flanking Transmission Loss - Path dat Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4 Junction 4: Flanking STC for all paths	D_v,Df_4,situ a R_Ff R_Fd R_Df	ISO 15712-1, Eq. 21, 22 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	49 48 48	52 52 52	58 58 58	65 65 65	73 73 73	79 79	63 63 58

EXAMPLE 2.1.2:

DETAILED METHOD

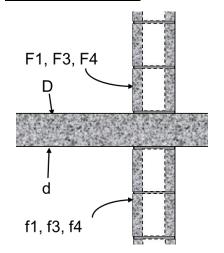
- Rooms one-above-the-other
- Concrete floor and normal weight concrete block walls with rigid junctions

Separating floor/ceiling assembly with:

 Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping / flooring on top, or ceiling lining below

Junction 1, 3, 4: Cross-junction of separating floor / flanking wall with:

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

Acoustical Parameters:

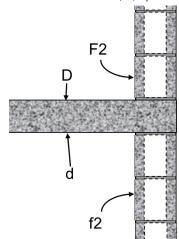

For separating	g assembly:							
internal loss, η_i =	0.006		c_L =	3500				
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)		
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	ΣΙ_k.α_k		
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.843		
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)		
Similarly, for t	Similarly, for flanking elements F and f at Junction 1 & 3,							
internal loss, η_i =	0.015		c_L =	3500				
mass (kg/m²) =	238		f_c =	98				
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)		
Similarly, for t	lanking elements F and	f at Jun	ction 2 8	k 4,_				
internal loss, η_i =	0.015		c_L =	3500				
mass (kg/m²) =	238		f_c =	98				
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)		
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)		

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall.

(Side view of Junctions 1, 3, 4)

T-Junction of separating floor of 150 mm concrete with 190 mm concrete block wall. (Side view of Junction 2)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0.43	9 0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.34	6 0.237	0.159	0.104	0.066	0.041	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	41	44	52	61	69	78	55

(For the notes in this table please see the corresponding endnotes on page 194.)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
unction 1: Separating Floor/Wall	,	2.0.0.00							
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)					0.056		
Change by Lining on source side	ΔR F1	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3	0.256	0.169	0.108	0.067	0.040	0.023	
TL in-situ for F1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
TL in-situ for f1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
Junction J1 - Coupling									
Velocity Level Difference for Ff	D v,Ff 1,situ	ISO 15712-1, Eq. 21, 22	14.1	14.4	14.8	15.4	16.1	17.0	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Velocity Level Difference for Df	' - '	ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Flanking Transmission Loss - Path data		, -, -, -, -, -, -, -, -, -, -, -, -, -,							
Flanking TL for Path Ff 1	R Ff	ISO 15712-1, Eq. 25a	53	56	63	69	78	84	67
Flanking TL for Path Fd_1	R Fd	ISO 15712-1, Eq. 25a	52	55	62	70	79	86	66
Flanking TL for Path Df 1	R Df	ISO 15712-1, Eq. 25a	52	55	62	70	79	86	66
Junction 1: Flanking STC for all paths		100 107 12 1) 1q. 100	- 10*LOG1						(
<u> </u>									
Junction 2: Separating Floor/Wall									
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_F2	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T s,situ	ISO 15712-1, Eq. C.1-C.3	0.218	0.145	0.094	0.059	0.036	0.021	
TL in-situ for F2	R_F2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff	D_v,Ff_2,situ	ISO 15712-1, Eq. 21, 22	11.3	11.5	11.9	12.4	13.1	13.9	
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Flanking Transmission Loss - Path data	a								
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	52	55	61	68	76	82	66
Flanking TL for Path Fd 2	R Fd	ISO 15712-1, Eq. 25a	50	53	61	69	77	85	65
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	50	53	61	69	77	85	65
Junction 2: Flanking STC for all paths	_		- 10*LOG1	0(10^-	6.6 + 1	0^- 6.5	+ 10^-	6.5)=	6
Junction 3: Separating Floor/Wall									
All input values the same as for Juncti									
Junction 3: Flanking STC for all paths									- 6
Junction 4: Separating Floor/Wall									
All input data the same as for Junction	•	, ,	-						nction 2
Structural Reverb. Time in-situ	_ ·	ISO 15712-1, Eq. C.1-C.3					0.038		
TL in-situ for F4		ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7		51
TL in-situ for f4	R_t4,situ	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
Junction J4 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	14.4	14.7	15.1	15.6	16.3	17.2	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
Flanking Transmission Loss - Path data		100 15710 1 5 55							
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	55	58	64	71	79	85	69
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	53	56	63	71	80	87	67
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	53	56	63	71	80	87	67
Junction 4: Flanking STC for all paths			- 10*LOG1	.0(10^-	6.9 + 1	<u>0^- 6.7</u>	+ 10^-	6.7)=	(
g									
<u>. </u>									
<u>. </u>									5
Total Flanking (for all 4 junctions) ASTC due to Direct plus Flanking Path		RR-331, Eq. 1.4	38	41	49	57	65	73	52

EXAMPLE 2.1.3:

DETAILED METHOD

- Rooms side-by-side
- Concrete floors and concrete walls with rigid junctions

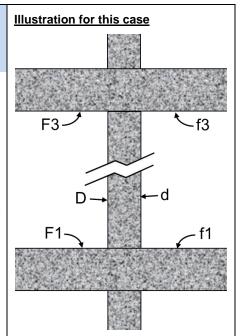
Separating wall assembly (loadbearing) with:

 Concrete wall with mass per area of 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no lining

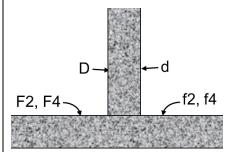
Junction 1: Bottom Junction (separating wall / floor) with:

- Concrete floor with mass per area of 460 kg/m² (e.g. normal weight concrete 200 mm thick) with no topping or flooring
- Rigid cross-junction with concrete wall assembly

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- Abutting side wall and separating wall of concrete with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick), with no lining
- · Rigid T-junctions

Junction 3: Top Junction (separating wall / ceiling) with:


- Concrete ceiling with mass per area of 460 kg/m² (e.g. normal weight concrete 200 mm thick) with no added ceiling lining
- Rigid cross-junction with concrete wall assembly

Acoustical Parameters:

For separat	ing assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 or 3	ISO 15712-1, Eq. E.3	6.7	10.9	8.8	8.8	0.544
T-Junction 2 or 4	ISO 15712-1, Eq. E.4	5.7		5.7	5.7	0.473
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.0293	(at 500	Hz)
Similarly, fo	or flanking elements F an	d f at Ju	nction 1	& 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	460		f_c =	93		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.0302	(at 500	Hz)
Similarly, fo	or flanking elements F an	ıd f at Ju	nction 2	& 4,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.0356	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.0319	(at 500	Hz)

Junctions of 150 mm concrete separating wall with 150 mm thick concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with side wall, both of 150 mm concrete. (Plan view of Junction 2 or 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0.43	9 0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.32	5 0.223	0.150	0.099	0.063	0.039	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	41	44	52	61	70	78	55

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Wall/Floor		·							
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON200, TLF-12-011	41	49	55	62	69	75	59
Structural Reverberation Time		RR-334, Measured T_s for CON200					0.093		
Change by Lining on source side		No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Change by Lining on receive side		No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3					0.061		
TL in-situ for F1		ISO 15712-1, Eq. 19	41.1	49.6	57.2	64.5	70.8	77.0	60
TL in-situ for f1		ISO 15712-1, Eq. 19	41.1	49.6	57.2	64.5	70.8	77.0	60
Junction J1 - Coupling	,,	, _4							
Velocity Level Difference for Ff	D v.Ff 1.situ	ISO 15712-1, Eq. 21, 22	10.3	10.4	10.6	11.0	11.4	11.9	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.3	11.4	11.7	12.0	12.4	13.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.3	11.4	11.7	12.0	12.4	13.0	
Flanking Transmission Loss - Path data		130 13712 1, Eq. 21, 22	11.5	11.7	11.7	12.0	12.4	13.0	
Flanking TL for Path Ff 1	R_Ff	ISO 15712-1, Eq. 25a	49	58	66	73	80	87	68
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	51	57	65	74	82	89	68
Flanking TL for Path Df 1	_	ISO 15712-1, Eq. 25a	51	57	65	74	82	89	68
Junction 1: Flanking STC for all paths	I_DI	•	- 10*LOG1						
and an patrix			10 1001	0(10 -	0.0 1	0.0	10 -	J.J -	0
Junction 2: Separating Wall/Wall									
Sound Transmission Loss, F2 or f2	R F2,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	- '	RR-334, Measured T s for CON150					0.146		- 55
Change by Lining on source side	ΔR_F2	No lining	0.433	0.0	0.230	0.203	0.140	0.077	
Change by Lining on receive side		No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3					0.053		
TL in-situ for F2		ISO 15712-1, Eq. C.1-C.3	42.2	45.1	53.1	62.0	70.4	78.6	56
TL in-situ for f2	- '	ISO 15712-1, Eq. 19	42.2	45.1	53.1		70.4	78.6	56
Junction J2 - Coupling	11_12,3114	130 13712-1, Eq. 13	42.2	43.1	33.1	02.0	70.4	76.0	30
Velocity Level Difference for Ff	D v Ef 2 citu	ISO 15712-1, Eq. 21, 22	10.1	10.2	10.4	10.6	11.0	11.5	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.1	10.2	10.4	10.7	11.1	11.6	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	10.1	10.2	10.4	10.7	11.1	11.6	
Flanking Transmission Loss - Path data		130 13712-1, Eq. 21, 22	10.1	10.2	10.4	10.7	11.1	11.0	
Flanking TL for Path Ff_2	R Ff	ISO 15712-1, Eq. 25a	53	56	64	74	82	90	67
Flanking TL for Path Fd 2	R Fd	ISO 15712-1, Eq. 25a	52	55	63	73	82	90	66
Flanking TL for Path Df 2		ISO 15712-1, Eq. 25a	52	55	63	73	82	90	66
Junction 2: Flanking STC for all paths	K_DI		- 10*LOG1						6
Junearing Ste for an patris			- 10 1001	0(10 -	0.7 1	0 - 0.0	110 -	0.0 / -	0
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									6
Junearing Ste for all patris									
Junction 4: Separating Wall/Wall									
. •	2. but differe	nt junctions at ceiling and floor change	loss factor	s from	Junctio	on 2			
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3					0.059	0.034	
TL in-situ for F4		ISO 15712-1, Eq. C.1-C.3		44.6			70.0	78.2	56
TL in-situ for f4		ISO 15712-1, Eq. 19		44.6			70.0	78.2	56
Junction J4 - Coupling	11_1-1,51tu	13/12 1, 24. 13	71.7	1 7.0	JU	01.5	, 5.0	, 5.2	30
	D v Ff A situ	ISO 15712-1, Eq. 21, 22	9.6	97	9 9	10.2	10.6	11.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	9.9	10.0	10.2	10.2	10.0	11.5	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	9.9	10.0	10.2	10.5	10.9	11.5	
Flanking Transmission Loss - Path data		100 10/12 1, 14. 21, 22	3.3	10.0	10.2	10.5	10.9	11.5	
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	52	55	63	73	82	90	66
Flanking TL for Path Fd 4	R Fd	ISO 15712-1, Eq. 25a	52	55	63	72	81	90	66
Flanking TL for Path Fd_4	R_Fu R Df	ISO 15712-1, Eq. 25a	52	55	63	72	81	90	66
unction 4: Flanking STC for all paths	ת_טו		- 10*LOG1						
ranction 4. Flanking STC for all paths			10 [00]	0(10.,-	U.U + I	0.0	L TO.,-	0.0] =	
Total Flanking (for all 4 innetional									-
Total Flanking (for all 4 junctions)									5
ASTC due to Direct plus Flanking Path		DD 224 5 4 4					67	75	53
	C .	RR-331, Eq. 1.4	38	42	50	59	h7	/5	

EXAMPLE 2.1.4:

DETAILED METHOD

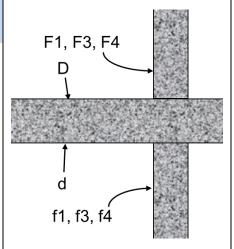
- Rooms one-above-the-other
- Concrete floor and walls with rigid junctions

Separating floor/ceiling assembly with:

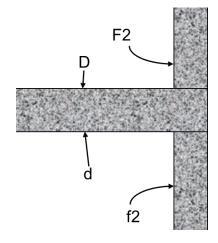
 Concrete floor with mass per area of 460 kg/m² (e.g. normal weight concrete 200 mm thick) with no topping / flooring on top, or ceiling lining below

Junction 1, 3, 4: Cross-junction of separating floor / flanking wall with:

- Rigid cross-junction with concrete wall assemblies
- Wall above and below floor of concrete with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no lining


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid T-junction with concrete wall assemblies
- Wall above and below floor of concrete with mass per area of 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no lining


Acoustical Parameters:

For separatir	ng assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	460		f_c =	93		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	10.9	6.7	8.8	8.8	0.789
T-Junction 2	ISO 15712-1, Eq. E.4	7.6		5.8	5.8	0.740
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.0302	(at 500	Hz)
Similarly, for	flanking elements F ar	nd f at Ju	ınction 1	L & 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.0293	(at 500	Hz)
Similarly, for	flanking elements F ar	nd f at Ju	ınction 2	2 & 4,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.0355	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.0319	(at 500	Hz)

Illustration for this case

Cross-junction of separating floor of 200 mm thick concrete with 150 mm thick concrete wall. (Side view of Junctions 1, 3 or 4)

T-Junction of separating floor of 200 mm thick concrete floor with 150 mm thick concrete wall. (Side view of Junction 2)

	ISO Symbol	Reference	12	25	250	500	1000	2000	4000	STC or ASTC
Separating Partition										
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON200, TLF-12-011	4	1	49	55	62	69	75	59
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON200	0.3	24	0.250	0.240	0.170	0.093	0.060	
Change by Lining on source side	ΔR_D	No lining	()	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	()	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.3	17	0.217	0.146	0.096	0.061	0.038	
Leakage or Airborne Flanking		Sealed & Blocked	0	.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	4	1	50	57	64	71	77	60

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Floor/Wall									
Sound Transmission Loss, F1 or f1	R_F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR F1	No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Change by Lining on receive side	ΔR_f1	No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.325	0.223	0.150	0.099	0.063	0.039	
TL in-situ for F1		ISO 15712-1, Eq. 19	41.3	44.2	52.2	61.2	69.7	77.9	55
TL in-situ for f1		ISO 15712-1, Eq. 19	41.3	44.2	52.2	61.2	69.7	77.9	55
Junction J1 - Coupling	11_12/0100	100 137 12 1, 14, 13	12.0		52.2	02.2	03.7	7715	- 55
Velocity Level Difference for Ff	D v Ff 1 situ	ISO 15712-1, Eq. 21, 22	12.3	12.5	12.7	13.0	13.4	14.0	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.3	11.4	11.7	12.0	12.4	13.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.3	11.4	11.7	12.0	12.4	13.0	
Flanking Transmission Loss - Path dat		13O 137 12-1, Lq. 21, 22	11.3	11.4	11.7	12.0	12.4	13.0	
Flanking TL for Path Ff 1		ISO 15713 1 Fa 35a	FC		67	7.0	OF	90	70
	R_Ff	ISO 15712-1, Eq. 25a	56	59	67	76	85		
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	53	60	67	76	84	90	70
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	53	60	67	76	84	90	70
Junction 1: Flanking STC for all paths	i e	T	- 10	LOGIC)(10^-/	+ 10^-	7 + 10	^- /) =	6
Junction 2: Separating Floor/Wall	D E3 I-1	DD 224 CON150 TIE 45 045	40	42	F.0	Ε0.		75	
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150					0.146		
Change by Lining on source side	ΔR_F2	No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Change by Lining on receive side	ΔR_f2	No lining	0.0	0.0	0.0	0.0	0.0	0.0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3					0.053		
TL in-situ for F2		ISO 15712-1, Eq. 19	42.2	45.1	53.0	62.0	70.4	78.6	56
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	42.2	45.1	53.0	62.0	70.4	78.6	56
Junction J2 - Coupling									
Velocity Level Difference for Ff	D_v,Ff_2,situ	ISO 15712-1, Eq. 21, 22	9.9	10.0	10.2	10.5	10.8	11.3	
Velocity Level Difference for Fd	D_v,Fd_2,sit	ISO 15712-1, Eq. 21, 22	9.2	9.4	9.6	9.9	10.3	10.8	
Velocity Level Difference for Df	D_v,Df_2,sit	ISO 15712-1, Eq. 21, 22	9.2	9.4	9.6	9.9	10.3	10.8	
Flanking Transmission Loss - Path dat	:a								
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	55	58	66	75	84	90	69
Flanking TL for Path Fd 2	R_Fd	ISO 15712-1, Eq. 25a	52	58	66	74	82	90	69
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	52	58	66	74	82	90	69
Junction 2: Flanking STC for all paths		, ,	- 10*LOG1	0(10^-	6.9 + 1	0^- 6.9	+ 10^-	6.9)=	6
				<u> </u>				•	
Junction 3: Separating Floor/Wall									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									ϵ
Junction 4: Separating Floor/Wall									
All input data the same as for Junctio	n 2, but differe	nt junctions at ceiling and floor chan	ge loss factor	s and j	unction	atten	uation	vs. June	tion 2
Structural Reverb. Time in-situ	T s,situ	ISO 15712-1, Eq. C.1-C.3	•				0.059		
TL in-situ for F4		ISO 15712-1, Eq. 19	41.7	44.6	52.6	61.5	70.0	78.2	56
TL in-situ for f4		ISO 15712-1, Eq. 19	41.7			61.5		78.2	56
Junction J4 - Coupling	,5	, -q. 20		5			. 3.3		
Velocity Level Difference for Ff	D v.Ff 4 citi	ISO 15712-1, Eq. 21, 22	12 7	12 R	13 0	13 3	13.7	14 3	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.0	12.1			13.1		
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.0	12.1	12.3	12.6	13.1	13.6	
Flanking Transmission Loss - Path dat	' - '	130 13/12-1, Lq. 21, 22	12.0	12.1	12.3	12.0	13.1	13.0	
Flanking TL for Path Ff_4	. <u>a</u> R_Ff	ISO 15712-1 Fg 252	E7	60	60	78	97	90	71
		ISO 15712-1, Eq. 25a	57		69		87		
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	55	61	69	77	85	90	72
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	55	61	69	77	85	90	72
Junction 4: Flanking STC for all paths			- 10*LOG1	.U(10^-	1.1 + 1	u^- /.2	+ 10^-	1.2)=	ϵ
									5
Total Flanking (for all 4 junctions)									
Total Flanking (for all 4 junctions) ASTC due to Direct plus Flanking Pat		RR-331, Eq. 1.4	39	46	54	61	69	75	56

EXAMPLE 2.1.5:

DETAILED METHOD

- Rooms side-by-side
- Floors of hollowcore precast concrete panels² with walls of normal weight concrete block walls with rigid junctions

Separating wall assembly (loadbearing) with:

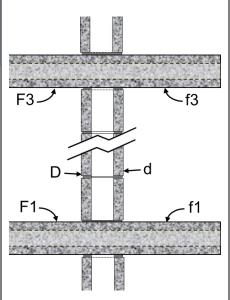
 One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

Junction 1: Bottom Junction (separating wall / floor) with:

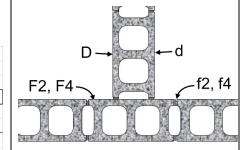
- Floor assembly of hollowcore precast concrete panels² of crosssection 203 mm thick and 2440 mm wide, fully grouted at joints between adjacent panels, with mass per area of 344 kg/m²
- No topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:

- Abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m², with no lining
- · Rigid mortared T-junctions


Junction 3: Top Junction (separating wall / ceiling) with:

- Ceiling assembly of hollowcore precast concrete panels² of crosssection 203 mm thick and 2440 mm wide, fully grouted at joints between adjacent panels, with mass per area of 344 kg/m²
- No added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly


Acoustical Parameters:

For separati	ng assembly:					
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 or 3	ISO 15712-1, Eq. E.3	6.1	11.6	8.8	8.8	0.506
T-Junction 2 or 4	ISO 15712-1, Eq. E.4	5.7		5.7	5.7	0.420
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.039	(at 500	Hz)
Similarly, fo	r flanking elements F a	nd f at Ju	unction 1	1 & 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	344		f_c =	91		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.030	(at 500	Hz)
Similarly, fo	r flanking elements F a	nd f at Ju	unction 2	2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.045	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.042	(at 500	Hz)

Illustration for this case

Junction of 190 mm concrete block separating wall with floor and ceiling of 203 mm hollowcore precast concrete panels. (Side view of Junctions 1 and 3)

Junction of separating wall with side wall, both of 190 mm concrete blocks. (Plan view of Junction 2 or 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.268	0.176	0.112	0.069	0.041	0.024	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 19, 24	37	40	46	52	59	64	51

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-333, HCON203(344)	38	46	52	60	65	72	56
Structural Reverberation Time	T s,lab	RR-333, RT-HCON203(344)		0.328					
Change by Lining on source side	ΔR F1	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.221					
TL in-situ for F1		ISO 15712-1, Eq. 19	39.5	47.7	53.3	62.4	67.4	74.0	58
TL in-situ for f1		ISO 15712-1, Eq. 19	39.5	47.7	53.3	62.4	67.4	74.0	58
Junction J1 - Coupling	11_12/0100	100 107 12 1, 14, 15	03.5	.,,,,	33.3	0211	0,	,	- 30
Velocity Level Difference for Ff	D v Ff 1 situ	ISO 15712-1, Eq. 21, 22	9.6	9.7	10.0	10.3	10.7	11.3	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.7	11.9	12.3	12.7	13.3	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.7	11.9	12.3	12.7	13.3	14.0	
Flanking Transmission Loss - Path dat		130 13712-1, Eq. 21, 22	11.7	11.5	12.3	12.7	13.3	14.0	
Flanking TL for Path Ff 1	R Ff	ISO 15712-1, Eq. 25a	47	55	61	71	76	83	65
			49	55	61	69	76	82	65
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	49	55	61	69	76	82	65
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	- 10*LOG						60
Junction 1: Flanking STC for all paths	1		- 10 100	10(10	-0.5 + 1	.0^- 6.5	+ 10^-	0.5] =	0
Junction 2: Separating Wall/Wall									
Sound Transmission Loss, F2 or f2	D F2 lob	DD 224 Mass DI K100/NNA/\	25	38	44	F0	58	62	49
Structural Reverberation Time		RR-334, Mean-BLK190(NW) RR-334, RT-Mean-BLK190(NW)	35	0.255		50			49
				0.255	0.108	0.101	0.056	0.041	
Change by Lining on source side		No lining	0					0	
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0		
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.152					
TL in-situ for F2		ISO 15712-1, Eq. 19	37.4	40.3	46.4	52.2	59.8	64.8	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.4	40.3	46.4	52.2	59.8	64.8	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	10.7	11.0	11.4	11.9	12.6	13.4	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.8	11.1	11.6	12.1	12.8	13.7	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	10.8	11.1	11.6	12.1	12.8	13.7	
Flanking Transmission Loss - Path dat									
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	49	52	59	65	73	79	63
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63
Flanking TL for Path Df_2		ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63
Junction 2: Flanking STC for all paths			- 10*LOG	10(10^	-6.3 + 1	0^- 6.3	+ 10^-	6.3)=	58
Junction 3: Separating Wall/Ceiling									
All input values the same as for Juncti									C
Junction 3: Flanking STC for all paths									6
Junction 4: Separating Wall/Wall	a 2 but differe	nt innetions at sailing and flagrahan	an loss fortes	o franc	Lunatia	. n 2			
All input data the same as for Junction Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.165			0.020	0.022	
									Г1
TL in-situ for F4		ISO 15712-1, Eq. 19	37.0	39.9			59.6	64.6	51
TL in-situ for f4	K_T4,SITU	ISO 15712-1, Eq. 19	37.0	39.9	46.0	51.9	59.6	64.6	51
Junction J4 - Coupling	D Ef 4 .:	ICO 45742 4 5- 24 22	400	10.0	11.0	11.0	42.2	42.2	
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22		10.6					
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.6			12.0		13.6	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	10.6	11.0	11.4	12.0	12.7	13.6	
Flanking Transmission Loss - Path dat									
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	48	51	58	64	73	79	62
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	48	51	58	64	72	78	62
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	48	51	58	64	72	78	62
Junction 4: Flanking STC for all paths			- 10*LOG	10(10^.	-6.2 + 1	0^- 6.2	+ 10^-	6.2)=	5
Total Flanking (for all 4 junctions)									5
Total Flanking (for all 4 junctions)									
ASTC due to Direct plus Flanking Patl		RR-331, Eq. 1.4	34	38	44	50	58	63	49

EXAMPLE 2.1.6:

DETAILED METHOD

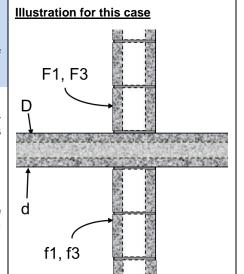
- Rooms one-above-the-other
- Floor of hollowcore precast concrete panels² with walls of normal weight concrete block walls with rigid junctions

Separating floor/ceiling assembly with:

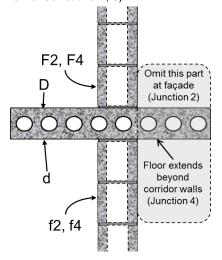
- Floor assembly of hollowcore precast concrete panels² of crosssection 203 mm thick and 2440 mm wide, fully grouted at joints between adjacent panels, with mass per area of 344 kg/m²
- No topping / flooring on top, or ceiling lining below

Junction 1, 3, 4: Cross-junction of separating floor / flanking wall with:

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junctions with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


NOTE: Sound transmission would be essentially unchanged with the hollowcore floor slabs oriented perpendicular to the case illustrated.

Acoustical Parameters:

For separating	g assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	344		f_c =	91		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 and 3	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.783
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
X-Junction 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.626
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.030	(at 500	Hz)
Similarly, for	lanking elements F and	d f at Jui	nction 1	& 3,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.039	(at 500	Hz)
Similarly, for	lanking elements F and	d f at Jui	nction 2	<u>& 4,</u>		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.045	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.042	(at 500	Hz)

Cross-junction of separating floor assembly of hollowcore precast concrete panels 203 mm thick with 190 mm concrete block flanking wall. (Side view of Junctions 1, 3).

T-Junction of separating floor of hollowcore precast concrete panels 203 mm thick with 190 mm concrete block wall. (Side view of Junction 2 or 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition		<u> </u>							
Sound Transmission Loss (TL)	R_D,lab	RR-333, HCON203(344)	38	46	52	60	65	72	56
Structural Reverberation Time	T_s,lab	RR-333, RT-HCON203(344)	0.458	0.328	0.200	0.168	0.109	0.061	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Transferred Data In-situ									
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.320	0.220	0.148	0.097	0.062	0.039	
Effect of Airborne Flanking		No leakage	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	40	48	53	62	67	74	58

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Floor/Wall									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time		RR-334, RT-Mean-BLK190(NW)			0.168				
Change by Lining on source side		No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3			0.112				
TL in-situ for F1		ISO 15712-1, Eq. 19	36.7	39.6	45.8	51.7	59.4	64.4	51
TL in-situ for f1		ISO 15712-1, Eq. 19	36.7	39.6	45.8	51.7	59.4	64.4	51
Junction J1 - Coupling	11_11,310	130 137 12 1, Eq. 13	30.7	33.0	45.0	31.7	33.4	04.4	31
Velocity Level Difference for Ff	D v Ef 1 situ	ISO 15712-1, Eq. 21, 22	13.9	14.2	14.6	15.2	16.0	16.9	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.7	11.9	12.3	12.7	13.3	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.7	11.9	12.3	12.7	13.3	14.0	
Flanking Transmission Loss - Path data		130 13/12-1, Eq. 21, 22	11./	11.9	12.5	12.7	15.5	14.0	
Flanking TL for Path Ff 1		ISO 15712 1 Fa 250	F2	FC	63	co	77	83	67
	R_Ff	ISO 15712-1, Eq. 25a	53	56	62 63	69 71	77	84	67
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	51	57			78		
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	51	57	63	71	78	84	67
Junction 1: Flanking STC for all paths			- 10*LOG1	.0(10^-	6./+1	U^- 6.7	+ 10^-	6./)=	6
Junction 2: Separating Floor/Wall									
	D E3 lab	DD 224 Moan DI M400/NIMA	25	20	44	ΕO	EO	63	40
Sound Transmission Loss, F2 or f2		RR-334, Mean-BLK190(NW)	35	38		50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)		0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_F2	No lining	0						
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3			0.097				
TL in-situ for F2		ISO 15712-1, Eq. 19	37.4	40.3	46.4	52.2	59.8	64.8	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.4	40.3	46.4	52.2	59.8	64.8	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	11.1	11.4	11.7	12.3	13.0	13.8	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.5	11.0	11.7	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.5	11.0	11.7	
Flanking Transmission Loss - Path data	1								
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	51	55	61	67	76	82	66
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	50	55	61	69	76	83	66
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	50	55	61	69	76	83	66
Junction 2: Flanking STC for all paths			- 10*LOG1	.0(10^-	6.6 + 1	0^- 6.6	+ 10^-	6.6)=	6
Junction 3: Separating Floor/Wall									
All input values the same as for Junction	on 1								
Junction 3: Flanking STC for all paths									6
Junction 4: Separating Floor/Wall	2 1 1 1:00		1 6 .				ļ ,		
All input data the same as for Junction		-		_					
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3			0.105				
TL in-situ for F4		ISO 15712-1, Eq. 19	37.0		46.0		59.6		51
TL in-situ for f4	R_t4,situ	ISO 15712-1, Eq. 19	37.0	39.9	46.0	51.9	59.6	64.6	51
Junction J4 - Coupling		100 45540 4 5 5 5 5							
		ISO 15712-1, Eq. 21, 22			14.9			17.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.3		12.9	13.3		14.6	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.3	12.6	12.9	13.3	13.9	14.6	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	54	57	64	70	79	85	68
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	52	58	64	72	79	85	69
indinking it for rathra_4	R Df	ISO 15712-1, Eq. 25a	52	58	64	72	79	85	69
Flanking TL for Path Df_4			- 10*LOG1	.0(10^-	6.8 + 1	0^-6.9	+ 10^-	6.9)=	6
Flanking TL for Path Df_4			10 1001	- 1					
Flanking TL for Path Df_4 Junction 4: Flanking STC for all paths			10 1001						
Flanking TL for Path Df_4 Junction 4: Flanking STC for all paths			10 1001						5
Flanking TL for Path Df_4									5

<u>Summary for Section 2.1: Calculation Examples for Constructions of Concrete and Concrete Masonry with Rigid Junctions</u>

The worked examples 2.1.1 to 2.1.6 illustrate the basic process for calculating the sound transmission between rooms in a building with bare concrete or hollow concrete block masonry walls and concrete floor assemblies with rigid junctions.

Here, "bare" means the assembly of concrete or masonry without a lining such as an added gypsum board finish on the walls or ceiling, or flooring over the concrete slab. Note that for a hollow concrete block masonry wall constructed using normal weight units, tests have shown that its surface could be painted or sealed, or have a thin coat of plaster with no effect on the sound transmission. "Rigid Junctions" implies that the assemblies meeting at the junction are firmly bonded so bending vibration is effectively transmitted between the elements. Loadbearing junctions are always rigid; non-loadbearing junctions may or may not be rigid.

The absence of finishing surface linings is not typical for occupied residential buildings in North America, but considering the "bare" case gives a clear presentation of the basic structure-borne transmission for a building with these structural subsystems. The effect of adding linings (such as gypsum board wall, ceiling finishes, or flooring) is presented in Section 2.3.

Overview of the Calculation Details:

There are recurrent patterns in the presented examples. The calculation process is in sections, dealing first with the separating wall or floor assembly, then with each of the junctions at the four edges of the separating assembly, In each section:

- In each section, the first few lines present input data (shaded light red), followed by the in-situ structural reverberation time for the pertinent separating or flanking surface, which is calculated using the procedures of Annex C in ISO 15712-1.
- For all the floor and wall assemblies in these examples, the structural reverberation time in-situ is shorter than that for the laboratory specimen, due to the higher edge losses when an assembly is attached to all adjacent assemblies in the building scenario.
- The in-situ sound transmission loss (TL) for the wall and floor assemblies (calculated from the laboratory TL and the ratio of structural reverberation times) is consistently higher than the laboratory TL, due to the greater losses in-situ.
- The coupling for each path (Ff, Fd, and Df) across the junctions (velocity level difference) is calculated from the K_{ij} values for each path, with corrections for losses and dimensions of the coupled assemblies, and is consistently higher than the corresponding K_{ij}.
- The flanking sound transmission loss for each path is calculated from the preceding values, followed by a summary value for the Flanking STC value for the junction.

Finally, the apparent sound transmission loss is calculated from the combined transmission via the direct and 12 flanking paths, and then used to determine the ASTC rating.

General Trends in the STC and ASTC Results:

For both side-by-side rooms (Examples 2.1.1, 2.1.3, and 2.1.5) and the rooms one-above-the-other (Example 2.1.2, 2.1.4, and 2.1.6), the ASTC rating is lower than the STC rating measured for the separating assembly. For the wall and floor assemblies in the examples, the differences between STC and ASTC values for the horizontal room pairs are 2 to 3 points, and for the vertical room pairs the differences are 3 to 4 points. Different mass ratios of the building elements or different laboratory structural decay times could alter the specific differences, but the trend in the results in the worked examples is clear.

The ASTC ratings are lower than the corresponding STC ratings, and the total flanking sound transmission loss (due to the combination of 12 flanking paths) is quite similar to the direct sound transmission loss through the separating wall. However, as shown in Section 2.3, the balance among the various paths can be significantly altered by adding linings to the floor, ceiling, or wall surfaces.

This page was intentionally left blank.

2.2. Non-Rigid Junctions in Concrete and Concrete Masonry Buildings

This section presents worked examples for adjacent rooms in a building which has structural floor slabs of bare concrete and walls of bare concrete or hollow concrete block masonry, but which also includes some non-rigid junctions. As before, "bare" is taken to mean the assembly of concrete or masonry without a lining such as an added gypsum board finish on the walls or ceiling, or flooring over the concrete floor assembly. The effect of adding a lining is discussed in detail in Section 2.3.

The calculations follow the steps of the Detailed Method of ISO 15712-1, as described at the beginning of Chapter 2, but with adaptations for non-rigid joints. Two specific cases are relevant:

- 1. Non-loadbearing normal weight hollow concrete block masonry walls can be evaluated through a minor adaptation of the procedure presented in the examples of Section 2.1. Such walls would normally have sealant or a fire stop installed between the top of the hollow concrete block masonry wall assembly and the bottom of the concrete floor above, as shown in the detail drawings in Examples 2.2.1 and 2.2.2. A common type of fire stop would comprise compressible rock fiber faced with pliable sealant. Such fire stops would transmit negligible vibration between the top of the wall and the floor above so they do not fit the context for Eq. E.5. However, such junctions can readily be treated in the calculation procedure by altering the calculated vibration reduction index for the affected junctions (assuming no connections through the fire stop) and making the corresponding changes to the in-situ losses for the adjacent surfaces. As discussed in the summary at the end of this Section, switching from rigid junctions to non-loadbearing junctions only slightly alters the overall calculated ASTC rating.
- 2. Wall/wall junctions with flexible interlayers are considered in ISO 15712-1. The vibration reduction index for these can be calculated using Equation E.5. The calculation is like that for rigid junctions except that different expressions are used for junction attenuation which depends on the characteristics of the interlayer. No example is included here for such cases, for which one needs specific data on the material properties of the flexible interlayer.

EXAMPLE 2.2.1:

DETAILED METHOD

- Rooms side-by-side
- Concrete floors walls with non-rigid junctions at top of nonloadbearing concrete block separating wall
- (Same as 2.1.1 except non-rigid junction at top of walls)

Separating wall assembly (non-loadbearing) with:

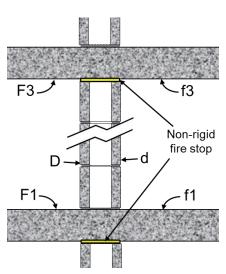
 One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

Junction 1: Bottom Junction (separating wall / floor) with:

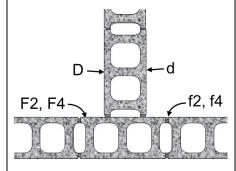
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared T- junction with concrete block wall assembly above, with negligible connection through fire stop to wall below

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:

- Abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m², with no lining
- · Rigid mortared T-junctions


Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Non-loadbearing junction between concrete ceiling assembly and top of concrete block wall, (with fire stop of flexible materials such as rock fiber and sealant that transmit negligible vibration).


Acoustical Parameters:

For separati	ng assembly:					
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
T-Junction 1	ISO 15712-1, Eq. E.4	3.6		5.8	5.8	0.925
T-Junction 2 or 4	ISO 15712-1, Eq. E.4	5.70		5.7	5.7	0.420
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.038	(at 500	Hz)
Similarly, fo	r flanking elements F	and f at	Junction	1 & 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.032	(at 500	Hz)
Similarly, fo	r flanking elements F	and f at	Junction	2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Junction of 190 mm non-loadbearing concrete block separating wall with 150 mm thick Concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with side wall, both of 190 mm concrete block. (Plan view of Junctions 2 or 4)

ISO Symbol	Reference	1	.25	250	500	1000	2000	4000	STC or ASTC
R_D,lab	RR-334, Mean-BLK190(NW)	3	35	38	44	50	58	62	49
T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.	394	0.255	0.168	0.101	0.056	0.041	
ΔR_D	No lining		0	0	0	0	0	0	
ΔR_d	No lining		0	0	0	0	0	0	
T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.	278	0.182	0.115	0.071	0.042	0.024	
	Sealed & Blocked	C	0.0	0.0	0.0	0.0	0.0	0.0	
R_D,situ	ISO 15712-1, Eq. 24	3	37	39	46	52	59	64	50
	R_D,lab T_s,lab ΔR_D ΔR_d T_s,situ	R_D,lab RR-334, Mean-BLK190(NW) T_s,lab RR-334, RT-Mean-BLK190(NW) ΔR_D No lining ΔR_d No lining T_s,situ ISO 15712-1, Eq. C.1-C.3 Sealed & Blocked	R_D,lab RR-334, Mean-BLK190(NW) T_s,lab RR-334, RT-Mean-BLK190(NW) 0. ΔR_D No lining ΔR_d No lining T_s,situ ISO 15712-1, Eq. C.1-C.3 0. Sealed & Blocked (R_D,lab RR-334, Mean-BLK190(NW) 35 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 ΔR_D No lining 0 ΔR_d No lining 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.278 Sealed & Blocked 0.0	R_D,lab RR-334, Mean-BLK190(NW) 35 38 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 0.255 ΔR_D No lining 0 0 ΔR_d No lining 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.278 0.182 Sealed & Blocked 0.0 0.0	R_D,lab RR-334, Mean-BLK190(NW) 35 38 44 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 0.255 0.168 ΔR_D No lining 0 0 0 ΔR_d No lining 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.278 0.182 0.115 Sealed & Blocked 0.0 0.0 0.0	R_D,lab RR-334, Mean-BLK190(NW) 35 38 44 50 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 0.255 0.168 0.101 ΔR_D No lining 0 0 0 0 ΔR_d No lining 0 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.278 0.182 0.115 0.071 Sealed & Blocked 0.0 0.0 0.0 0.0	R_D,lab RR-334, Mean-BLK190(NW) 35 38 44 50 58 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 0.255 0.168 0.101 0.056 ΔR_D No lining 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R_D,lab RR-334, Mean-BLK190(NW) 35 38 44 50 58 62 T_s,lab RR-334, RT-Mean-BLK190(NW) 0.394 0.255 0.168 0.101 0.056 0.041 ΔR_D No lining 0 0 0 0 0 0 ΔR_d No lining 0 0 0 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.278 0.182 0.115 0.071 0.042 0.024 Sealed & Blocked 0.0 0.0 0.0 0.0 0.0 0.0 0.0

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or A	STC
Junction 1: Wall/Floor										
Sound Transmission Loss, F1 or f1	R_F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53	
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0.439	0.369	0.250	0.205	0.146	0.077		
Change by Lining on source side	ΔR_F1	No lining	0	0	0	0	0	0		
Change by Lining on receive side	ΔR_f1	No lining	0	0	0	0	0	0		
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.293	0.202	0.136	0.090	0.058	0.036		
TL in-situ for F1		ISO 15712-1, Eq. 19	41.8	44.6	52.6	61.6	70.0	78.3	56	
TL in-situ for f1	R f1,situ	ISO 15712-1, Eq. 19	41.8	44.6	52.6	61.6	70.0	78.3	56	
Junction J1 - Coupling		, ,								
Velocity Level Difference for Ff	D v.Ff 1.situ	ISO 15712-1, Eq. 21, 22	7.5	7.6	7.8	8.1	8.5	9.1		
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	8.8	9.0	9.4	9.8	10.4	11.1		
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	8.8	9.0	9.4	9.8	10.4	11.1		
Flanking Transmission Loss - Path data		.00 13712 1, 24. 21, 22	0.0	3.0	3	3.0	20			
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	47	50	58	68	76	85	61	
Flanking TL for Path Fd 1	R Fd	ISO 15712-1, Eq. 25a	47	50	58	66	74	81	61	
Flanking TL for Path Df 1	R_Df	ISO 15712-1, Eq. 25a	47	50	58	66	74	81	61	
Junction 1: Flanking STC for all paths	K_DI	130 13712-1, Eq. 238	- 10*LOG1							56
Junction 1. Flanking 31C for all patris			- 10 1001	.0(10**-	0.1 + 1	0.1	+ 10	0.1) -)(
lunction 2: Mall /Mall										
Junction 2: Wall/Wall	D F2 ! !	DD 224 Massa DLV400/504/	25	20		F.0	F.0	63	40	
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49	
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)				0.101				
Change by Lining on source side	ΔR_F2	No lining	0	0	0	0	0	0		
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0		
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3				0.059				
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51	
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51	
Junction J2 - Coupling										
Velocity Level Difference for Ff	D_v,Ff_2,situ	ISO 15712-1, Eq. 21, 22	10.9	11.1	11.5	12.0	12.7	13.5		
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	10.9	11.1	11.6	12.1	12.9	13.7		
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	10.9	11.1	11.6	12.1	12.9	13.7		
Flanking Transmission Loss - Path data										
Flanking TL for Path Ff_2	R Ff	ISO 15712-1, Eq. 25a	49	53	59	65	74	79	64	
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	49	51	58	65	73	79	63	
Flanking TL for Path Df 2	R Df	ISO 15712-1, Eq. 25a	49	51	58	65	73	79	63	
Junction 2: Flanking STC for all paths	_	, ,	- 10*LOG1	.0(10^-	6.4 + 1	0^- 6.3	+ 10^-	6.3)=		59
Junction 3: Wall/Ceiling										
Input data like Junction 1 except wall/	loor connection	ons								
Flanking TL for Path Ff_3	R_Ff	ISO 15712-1, Eq. 25a	50	53	61	71	79	88	64	
Flanking TL for Path Fd 3	R Fd	Negligible connection	90	90	90	90	90	90	90	
Flanking TL for Path Df 3	R_Df	Negligible connection	90	90	90	90	90	90	90	
Junction 3: Flanking STC for all paths	11_51	Tregnigible confidential				+ 10^-				64
Junetion 3. Hanking Ste for all patris			10 L	0010(.	10 0.4	1 10	3 1 10	3 -		0-
Junction 4: Wall/Wall										
	2 hut differs	nt junctions at ceiling and floor change	in citu les	factor	C VC I	inction	2 0200			
•						0.063		0.024		
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3								
TL in-situ for F4		ISO 15712-1, Eq. 19				52.0			51	
TL in-situ for f4	K_T4,SITU	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51	
Junction J4 - Coupling										
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	10.5	10.8	11.2	11.8		13.3		
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.7	11.0	11.4	12.0	12.7	13.6		
Velocity Level Difference for Df	D_v,Df_4,situ	ISO 15712-1, Eq. 21, 22	10.7	11.0	11.4	12.0	12.7	13.6		
Flanking Transmission Loss - Path data										
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	49	52	58	65	73	79	63	
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	48	51	58	65	73	78	62	
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	48	51	58	65	73	78	62	
Junction 4: Flanking STC for all paths		•	- 10*LOG1	.0(10^-	6.3 + 1		+ 10^-	6.2)=		5
1								,		
Total Flanking (for all 4 junctions)										5
										J

EXAMPLE 2.2.2:

DETAILED METHOD

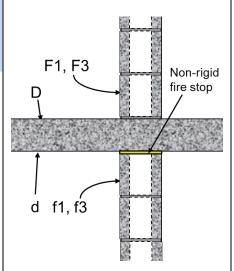
- Rooms one-above-the-other
- Concrete floor and normal weight concrete block walls (like Example 2.1.2 except two rigid wall/ceiling junctions replaced by non-rigid (non-loadbearing) junctions

Separating floor/ceiling assembly with:

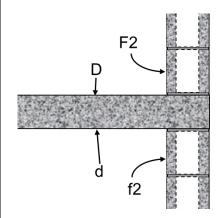
 Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping / flooring on top surface, or ceiling lining below

Junction 1 and 3: Separating floor with non-loadbearing flanking walls:

- Rigid mortared cross-junction to concrete floor slab at bottom of concrete block wall assemblies
- Non-loadbearing junction (fire stop system of non-rigid materials that transmit negligible vibration) between top of wall and underside of concrete slab above
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Junction 2 or 4: Rigid Junction of separating floor / flanking wall with:

- Rigid mortared junctions with concrete block wall assemblies (T- and cross-junctions at Junctions 2 and 4, respectively)
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Acoustical Parameters:

For separa	ting assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
T-Junction 1 or 3	ISO 15712-1, Eq. E.4		3.6	5.8		1.178
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
X-Junction 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.674
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.032		(Eq. C.2)
				(at 500	Hz)	
Similarly, fo	or flanking elements F	and f at	Junction	n 1 & 3,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.038	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at	Junction	n 2 & 4,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Junction of separating floor of 150 mm thick concrete with non-loadbearing 190 mm concrete block wall. (Side view of Junctions 1 and 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same details, but cross-junction)

ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
R_D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
T_s,lab	RR-334, Measured T_s for CON150	0.439	0.369	0.250	0.205	0.146	0.077	
ΔR_D	No lining	0	0	0	0	0	0	
ΔR_d	No lining	0	0	0	0	0	0	
T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.293	0.202	0.136	0.090	0.058	0.036	
	No leakage	0.0	0.0	0.0	0.0	0.0	0.0	
R_D,situ	ISO 15712-1, Eq. 24	42	45	53	62	70	78	56
	R_D,lab T_s,lab ΔR_D ΔR_d T_s,situ	R_D,lab RR-334, CON150, TLF-15-045 T_s,lab RR-334, Measured T_s for CON150 ΔR_D No lining ΔR_d No lining T_s,situ ISO 15712-1, Eq. C.1-C.3 No leakage	R_D,lab RR-334, CON150, TLF-15-045 40 T_s,lab RR-334, Measured T_s for CON150 0.439 ΔR_D No lining 0 ΔR_d No lining 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.293 No leakage 0.00	R_D,lab RR-334, CON150, TLF-15-045 40 42 T_s,lab RR-334, Measured T_s for CON150 0.439 0.369 ΔR_D No lining 0 0 ΔR_d No lining 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.293 0.202 No leakage 0.0 0.0	R_D,lab RR-334, CON150, TLF-15-045 40 42 50 T_s,lab RR-334, Measured T_s for CON150 0.439 0.369 0.250 ΔR_D No lining 0 0 0 ΔR_d No lining 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.293 0.202 0.136 No leakage 0.0 0.0 0.0	R_D,lab RR-334, CON150, TLF-15-045 40 42 50 58 T_s,lab RR-334, Measured T_s for CON150 0.439 0.369 0.250 0.205 ΔR_D No lining 0 0 0 0 0 ΔR_d No lining 0 0 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.293 0.202 0.136 0.090 No leakage 0.0 0.0 0.0 0.0	R_D,lab RR-334, CON150, TLF-15-045 40 42 50 58 66 T_s,lab RR-334, Measured T_s for CON150 0.439 0.369 0.250 0.205 0.146 ΔR_D No lining 0 0 0 0 0 0 ΔR_d No lining 0 0 0 0 0 0 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.293 0.202 0.136 0.090 0.058 No leakage 0.0 0.0 0.0 0.0 0.0	R_D,lab RR-334, CON150, TLF-15-045 40 42 50 58 66 75 T_s,lab RR-334, Measured T_s for CON150 0.439 0.369 0.250 0.205 0.146 0.077 ΔR_D No lining 0 0 0 0 0 0 0 0 ΔR_d No lining 0<

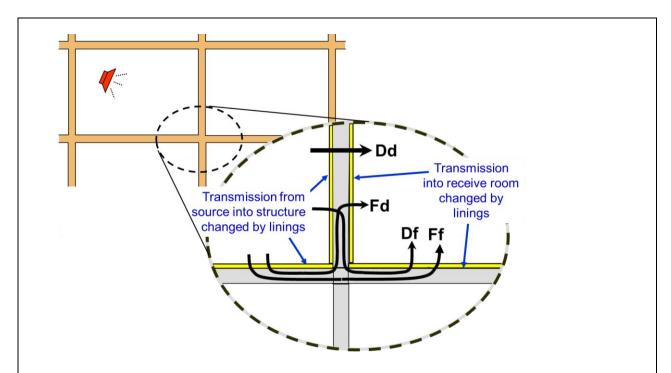
	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Floor/Wall									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)		0.255					
Change by Lining on source side	ΔR_F1	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3	0.278	0.182	0.115	0.071	0.042	0.024	
TL in-situ for F1		ISO 15712-1, Eq. 19	36.5	39.5	45.6	51.5	59.3	64.3	50
TL in-situ for f1		ISO 15712-1, Eq. 19	36.5	39.5	45.6	51.5	59.3	64.3	50
Junction J1 - Coupling	_ /	, ,							
Velocity Level Difference for Ff	D v.Ff 1.situ	Negligible connection							
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	8.8	9.0	9.4	9.8	10.4	11.1	
Velocity Level Difference for Df		Negligible connection							
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_1	R Ff	Negligible connection	90	90	90	90	90	90	90
Flanking TL for Path Fd 1	R Fd	ISO 15712-1, Eq. 25a	49	52	60	68	76	83	64
Flanking TL for Path Df 1	R Df	Negligible connection	90	90	90	90	90	90	90
Junction 1: Flanking STC for all paths	II_DI	regulation confidential		OG10(1					6
Junetion 1. Hanking Ste for all patris	1		10 L	0010(1	10 3 1	10 0	. 4 1 10	3 -	U
Junction 2: Floor/Wall									
Sound Transmission Loss, F2 or f2	R F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time		RR-334, RT-Mean-BLK190(NW)		0.255					49
	T_s,lab			0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_F2	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f2 T s,situ	No lining		0.145					
Structural Reverb. Time in-situ	_ ·	ISO 15712-1, Eq. C.1-C.3							
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	K_TZ,SITU	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling	D E(3 ::	150 45742 4 5 24 22	44.2	44.5	44.0	12.1	42.4	42.0	
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	11.3	11.5	11.9	12.4	13.1	13.9	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	9.8	10.0	10.3	10.7	11.2	11.9	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	9.8	10.0	10.3	10.7	11.2	11.9	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	52	55	61	68	76	82	66
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	51	54	62	69	78	85	65
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	51	54	62	69	78	85	65
Junction 2: Flanking STC for all paths	1		- 10*LOG1	10(10^-	6.6 + 1	0^- 6.5	+ 10^-	6.5)=	6
Junction 3: Floor/Wall									
All values the same as for Junction 1									
	D Ef	Negligible connection	90	90	90	90	90	90	90
Flanking TL for Path Ff_3	R_Ff	Negligible connection							
Flanking TL for Path Fd_3	R_Fd	ISO 15712-1, Eq. 25a	49 90	52 90	60 90	68 90	76 90	83 90	64 90
Flanking TL for Path Df_3	R_Df	Negligible connection							
Junction 3: Flanking STC for all paths			- 10 · L	OG10(1	107-9 +	10,,- 0	.4 + 10	N-9)=	6
Junction 4: Floor/Wall									
All input data the same as for Junction	2 but difford	nt impetions at sailing and floor shane	o loss fosto	es from	Lunatio				
•		, ,					0.020	0.021	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.157					F4
TL in-situ for F4		ISO 15712-1, Eq. 19		40.1					51
TL in-situ for f4	K_T4,SITU	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59./	64./	51
Junction J4 - Coupling		100.1501.5.55							
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	14.4	14.7		15.6		17.2	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.6		13.1	13.6		14.8	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.6	12.8	13.1	13.6	14.1	14.8	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	55	58	64	71	79	85	69
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	54	57	64	72	80	88	68
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	54	57	64	72	80	88	68
Junction 4: Flanking STC for all paths			- 10*LOG1	0(10^-	6.9 + 1	0^- 6.8	+ 10^-	6.8)=	- 6
Total Flanking (for all 4 junctions)									5
ASTC due to Direct plus Flanking Path									
		RR-331, Eq. 1.4	39	42	50	58	66	73	53

<u>Summary for Section 2.2: Calculation Examples for Concrete and Concrete Masonry Constructions with Non-Rigid Junctions</u>

The worked examples 2.2.1 and 2.2.2 illustrate the process for calculating the sound transmission between rooms in a building with bare concrete floor/ceilings and hollow concrete block masonry wall assemblies where there is a non-rigid (non-loadbearing) junction between the top of the hollow concrete block masonry wall and the concrete floor above (due to the presence of a soft firestop material).

For both the side-by-side room pair (Example 2.2.1) and the rooms one-above-the-other (Example 2.2.2) the ASTC rating is equal to or lower than the STC rating of the separating assembly. For the specific wall and floor assemblies in the examples, the difference is 2 points for the horizontal pair and 3 points for the vertical pair. Different mass ratios of the building elements could change the difference between the STC rating and the ASTC rating. The basic issue is that ASTC ratings are lower than the corresponding STC rating, and that the total flanking sound transmission loss (due to the combination of 12 flanking paths) is of similar importance to the direct sound transmission loss through the separating wall or floor.

Examination of the individual flanking paths in the examples of Section 2.1 and 2.2 shows that some junctions transmit less vibration energy when a non-rigid junction is used, because the soft junction blocks some transmission paths. But this has only a small effect on the ASTC rating of the complete system because the paths via the remaining rigid connections transmit more vibration energy. Overall, the ASTC rating for these examples remains the same compared with the rigid case for side-by-side rooms, and increases by 1 point where one room is above the other.


The key conclusion is that introducing non-loadbearing hollow concrete block masonry walls has only a small effect on the overall ASTC ratings between adjacent rooms, and can readily be offset by the choice of suitable linings as shown in the following Section.

2.3. Adding "Linings" to Walls, Floors, and Ceilings in Concrete/Masonry Buildings

The practicality of the calculation framework of ISO 15712-1 comes from the straightforward extension to deal with the incremental effect of "linings" added to the bare structural elements. Here, as before, "bare" is taken to mean the assembly of concrete or masonry without a lining such as an added gypsum board finish on the walls or ceiling, or flooring over the concrete slab. The "bare" surface could be painted or sealed, or have a thin coat of plaster.

It is common practice, especially in residential buildings, to add finish surfaces to the basic structural wall and floor assemblies – for example, various flooring products, and gypsum board wall or ceiling surfaces that conceal both the bare concrete surfaces and building services such as electrical wiring, water pipes and ventilation ducts. These are described in ISO 15712-1 as "linings" or "liners" or "layers". The first term, "linings" is used in this Guide.

<u>Wall or ceiling linings</u> typically include lightweight framing supporting the gypsum board surface layer and often include sound absorptive material³ in the cavities between the bare assembly and the gypsum board.

Figure 2.3: Transmission combines direct path through separating wall (Dd) and structure-borne flanking via paths Df, Fd, and Ff at each of the four edges of the separating assembly. Transmission via these paths is altered by addition of linings in the source room and/or receiving room.

Adding a lining can significantly improve the sound attenuation by changing the flow of sound power from the reverberant sound field in the source room to the resonant vibration in the structural assembly. It is assumed that adding the linings does not alter power flow between the heavy structural assemblies. As shown conceptually in Figure 2.3, the practical calculation combines the basic flow of structure-borne power via the coupled structural elements, with simple additive changes due to the linings. This approach works very well for common monolithic supporting structures of concrete or masonry that are much heavier than the linings.

Input Data for the Improvement due to Linings

A standard process for evaluating linings is given in ISO 10140-1; its ASTM counterpart uses ASTM E90 to measure the change between the TL for a bare concrete or masonry assembly and the TL for the same assembly with the lining added. The improvement depends slightly on mass and porosity of the bare assembly. Theoretically, this change in TL should be corrected to remove the non-resonant part of the transmission for flanking paths, but as noted in ISO 15712-1, the laboratory result gives a good (slightly conservative) estimate. Uncorrected ASTM E90 test data for linings are used in this Guide.

Note that the lining may be installed on either the source or the receiving side of the base assembly for the ASTM E90 test, and the result may be used for a lining added on either side of a matching assembly.

Including Linings in the Calculation Process

Adding the changes in sound transmission due to linings requires only minor extensions from the eight steps described at the beginning of Chapter 2:

- At Step 4: to calculate direct sound transmission loss in-situ through the separating assembly, add the laboratory data for the TL change due to an added lining on the source side and the laboratory data for the TL change due to an added lining on the receiving side using Eq. 24 of ISO 15712-1. The changes are identified in Eq. 24 as $\Delta R_{D,situ}$ and $\Delta R_{d,situ}$ respectively.
- At Step 8: to calculate flanking sound transmission via each flanking path, add the laboratory data for the TL change due to an added lining on the assembly in the source room and the laboratory data for the TL change due to an added lining on the assembly in the receiving room, using Eq. 24 of ISO 15712-1. The changes are identified in the equation as $\Delta R_{i,situ}$ and $\Delta R_{i,situ}$ respectively.

Other than these two additions, the process remains unchanged from that described in Section 2.1.

This page was intentionally left blank.

EXAMPLE 2.3.1:

DETAILED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.1, plus lining of walls

Separating wall assembly (loadbearing) with:

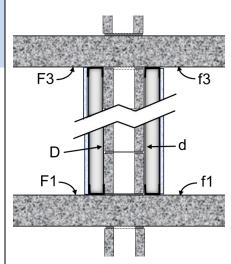
- One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Both sides lined with 13 mm gypsum board⁴ supported on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with no absorptive material³ filling stud cavities

<u>Junction 1: Bottom Junction (separating wall / floor) with:</u>

- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall /abutting side wall) with:

- Abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m², with rigid mortared Tjunctions
- Flanking walls lined with 13 mm gypsum board⁴ supported on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ filling stud cavities


Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly

Acoustical Parameters:

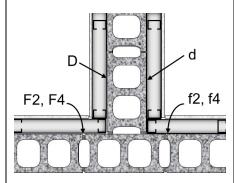

For separat	ing assembly:					
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 or 3	ISO 15712-1, Eq. E.3	6.1	11.6	8.8	8.8	0.571
T-Junction 2 of	ISO 15712-1, Eq. E.4	5.7		5.7	5.7	0.420
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at .	Junction	1 & 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at .	Junction	2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Junction of 190 mm concrete block separating wall (with gypsum board lining) with 150 mm thick concrete floor and ceiling.

(Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both of 190 mm concrete block with gypsum board linings. (Plan view of Junction 2 or 4)

	ISO Symbol	Reference		125	250	500	1000	2000	4000	STC or ASTC
Separating Partition										
Sound Transmission Loss (TL)	R_D,lab	RR-334, Mean-BLK190(NW)		35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	C	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_D	RR-334, ΔTL-BLK190(NW)-61, SS65_G13		-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_d	RR-334, ΔTL-BLK190(NW)-61, SS65_G13		-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	C	0.256	0.169	0.108	0.067	0.040	0.023	
Leakage or Airborne Flanking		Sealed & Blocked		0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24		29	56	74	82	85	90	53

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
unction 1: Separating Wall/Floor	,	· - · · · · · ·							
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150	0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_F1	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3	0.347	0.238	0.159	0.104	0.066	0.041	
ΓL in-situ for F1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
TL in-situ for f1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
Junction J1 - Coupling									
Velocity Level Difference for Ff	D_v,Ff_1,situ	ISO 15712-1, Eq. 21, 22	9.3	9.4	9.7	10.0	10.5	11.1	
Velocity Level Difference for Fd	D v,Fd 1,situ	ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Velocity Level Difference for Df	D_v,Df_1,situ	ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Flanking Transmission Loss - Path dat									
Flanking TL for Path Ff_1	R Ff	ISO 15712-1, Eq. 25a	48	51	60	69	78	87	62
Flanking TL for Path Fd 1	R_Fd	ISO 15712-1, Eq. 25a	46	61	74	83	89	90	70
Flanking TL for Path Df 1	R Df	ISO 15712-1, Eq. 25a	46	61	74	83	89	90	70
lunction 1: Flanking STC for all paths	_		- 10*L	OG10(1	0^-6.2	+ 10^-	7 + 10	^-7)=	61
Junction 2: Separating Wall/Wall									
Sound Transmission Loss, F2 or f2		RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)		0.255					
Change by Lining on source side	ΔR_F2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13		8	14	15	13	16	
Change by Lining on receive side		RR-334, ΔTL-BLK190(NW)-61, SS65_G13		8	14	15	13	16	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.146					
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	10.9	11.1	11.5	12.0	12.7	13.5	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Flanking Transmission Loss - Path dat	_								
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	41	69	87	90	90	90	65
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	41	68	86	90	90	90	65
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	41	68	86	90	90	90	65
Junction 2: Flanking STC for all paths		-:	10*LOG1	.0(10^-	6.5 + 1	0^- 6.5	+ 10^-	6.5)=	60
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									61
_									
Junction 4: Separating Wall/Wall	2 1 1 1:00			_					
		nt junctions at ceiling and floor change lo							
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.158					
TL in-situ for F4		ISO 15712-1, Eq. 19		40.1				64.7	51
TL in-situ for f4	R_f4,situ	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
Junction J4 - Coupling		100 15710 1 5 01 5							
		ISO 15712-1, Eq. 21, 22		10.8					
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.8	11.1	11.6		12.9	13.7	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	10.8	11.1	11.6	12.1	12.9	13.7	
Flanking Transmission Loss - Path dat	_								
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	41	68	86	90	90	90	65
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	40	68	86	90	90	90	64
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	40	68	86	90	90	90	64
unction 4: Flanking STC for all paths		- :	10*LOG1	.0(10^-	6.5 + 1	0^- 6.4	+ 10^-	6.4)=	60
otal Flanking (for all 4 junctions)									5
Total Fluiding (for all 4 junctions)).
		RR-331, Eq. 1.4	27	46	57	65	73	78	51
ASTC due to Direct plus Flanking Path	ns	RR-331, EQ. 1.4	4/	40	3/	00	/3	/0	31

EXAMPLE 2.3.2:

DETAILED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.1, enhanced lining of walls

Separating wall assembly (loadbearing) with:

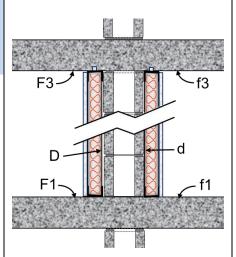
- One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Separating wall lined both sides with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling stud cavities

Junction 1: Bottom Junction (separating wall / floor) with:

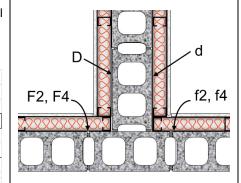
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall /abutting side wall) with:

- Rigid mortared T-junctions of abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling stud cavities


Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly.


Acoustical Parameters:

For separat	ing assembly:					
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 or 3	ISO 15712-1, Eq. E.3	6.1	11.6	8.8	8.8	0.571
T-Junction 2 or	ISO 15712-1, Eq. E.4	5.7		5.7	5.7	0.420
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	r flanking elements F a	nd f at J	unction	1 & 3,		
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Similarly, fo	or flanking elements F a	nd f at J	unction	2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Junction of 190 mm concrete block separating wall (with enhanced gypsum board lining) with 150 mm thick concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both of 190 mm concrete block with enhanced gypsum board linings.

(Plan view of Junction 2 or 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_D	RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6	! 11	19	21	18	17	21	
Change by Lining on receive side	ΔR_d	RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6	! 11	19	21	18	17	21	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.256	0.169	0.108	0.067	0.040	0.023	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	59	78	88	88	90	90	83

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150	0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side		No lining	0	0	0	0	0	0	
Change by Lining on receive side		No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3	0.347	0.238	0.159	0.104	0.066	0.041	
TL in-situ for F1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
TL in-situ for f1		ISO 15712-1, Eq. 19	41.0	43.9	52.0	60.9	69.4	77.8	55
Junction J1 - Coupling	_ /- /-	, ,							
Velocity Level Difference for Ff	D v.Ff 1.situ	ISO 15712-1, Eq. 21, 22	9.3	9.4	9.7	10.0	10.5	11.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.6	11.8	12.2	12.6	13.2	14.0	
Flanking Transmission Loss - Path data		,,,							
Flanking TL for Path Ff 1	_	ISO 15712-1, Eq. 25a	48	51	60	69	78	87	62
Flanking TL for Path Fd_1		ISO 15712-1, Eq. 25a	61	72	81	86	90	90	83
Flanking TL for Path Df 1		ISO 15712-1, Eq. 25a	61	72	81	86	90	90	83
Junction 1: Flanking STC for all paths	I_DI	130 137 12-1, Eq. 238	- 10*LOG						62
Janetion 1. Hanking 51c for an patris			10 100	10(10	0.2 1 1	0.5	. 10	0.5 / -	02
Junction 2: Separating Wall/Wall									
	D E2 lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Sound Transmission Loss, F2 or f2		RR-334, RT-Mean-BLK190(NW)							49
Structural Reverberation Time Change by Lining on source side	- ·			0.255 19	21	18	17	21	
		RR-334, ΔTL-BLK190(NW)-62, SS65_G RR-334, ΔTL-BLK190(NW)-62, SS65_G		19	21	18	17 17	21	
Change by Lining on receive side									
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3		0.146					
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	10.9	11.1	11.5	12.0	12.7	13.5	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.0	11.3	11.7	12.3	13.0	13.8	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_2		ISO 15712-1, Eq. 25a	71	90	90	90	90	90	89
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	71	90	90	90	90	90	89
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	71	90	90	90	90	90	89
Junction 2: Flanking STC for all paths			- 10*LOG	10(10^-	8.9 + 1	0^- 8.9	+ 10^-	8.9)=	84
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									62
Junction 4: Separating Wall/Wall									
All input data the same as for Junction	n 2, but differe	nt junctions at ceiling and floor change	loss factor	s from	Junctio	n 2			
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.238	0.158	0.102	0.063	0.038	0.021	
TL in-situ for F4	R_F4,situ	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
TL in-situ for f4		ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
Junction J4 - Coupling	_ /- /-	, , -							
Velocity Level Difference for Ff	D v,Ff 4,situ	ISO 15712-1, Eq. 21, 22	10.5	10.8	11.2	11.8	12.5	13.3	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	10.8			12.1	12.9	13.7	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	10.8	11.1	11.6	12.1	12.9	13.7	
Flanking Transmission Loss - Path data		,,,	10.0					23.,	
Flanking TL for Path Ff 4	R Ff	ISO 15712-1, Eq. 25a	71	90	90	90	90	90	89
Flanking TL for Path Fd 4		ISO 15712-1, Eq. 25a	70	90	90	90	90	90	89
Flanking TL for Path Df 4		ISO 15712-1, Eq. 25a	70	90	90	90	90	90	89
Junction 4: Flanking STC for all paths	וע_טו	130 13/12-1, Ly. 23d	- 10*LOG						84
Tanking STC IOI all patils			10 100	10(10	J.J T 1	0.5	1 10.1-	0.5 -	02
Tatal Flanking (for all 4 innations)									
Total Flanking (for all 4 junctions)									59
ASTC due to Direct plus Flanking Path		RR-331, Eq. 1.4	45	48	57	66	74	79	59

EXAMPLE 2.3.3:

DETAILED METHOD

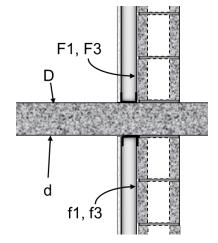
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.2, plus lining of walls

Separating floor/ceiling assembly with:

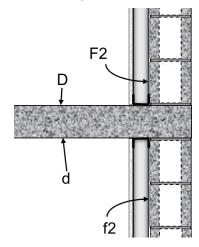
 Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring on top, or ceiling lining below

<u>Junction 1, 3 or 4: Cross-junction of separating floor / flanking wall with:</u>

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ filling stud cavities


<u>Junction 2: T-Junction of separating floor / flanking wall with:</u>

- Rigid mortared T-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ filling stud cavities


Acoustical Parameters:

For separat	ing assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.843
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Similarly, fo	r flanking elements F	and f at	Junction	1 & 3,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	r flanking elements F	and f at	Junction	1 2 & 4,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junctions 1 or 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same lining details, but cross-junction)

	ISO Symbol	Reference	1	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition										
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045		40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0	.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining		0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining		0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0	.346	0.237	0.159	0.104	0.066	0.041	
Leakage or Airborne Flanking		Sealed & Blocked		0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24		41	44	52	61	69	78	55

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Floor/Wall									
Sound Transmission Loss, F1 or f1	R_F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR F1	RR-334, ΔTL-BLK190(NW)-61, SS65 G13	-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_f1	RR-334, ΔTL-BLK190(NW)-61, SS65 G13	-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3					0.040		
TL in-situ for F1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
TL in-situ for f1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
Junction J1 - Coupling	11_12/5/10	100 107 12 1) 141 13	50.5	33.0	.0.5	02.0	33.3	05	01
Velocity Level Difference for Ff	D v Ff 1 situ	ISO 15712-1, Eq. 21, 22	14.1	14.4	14.8	15.4	16.1	17.0	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Flanking Transmission Loss - Path data		13O 13712-1, Eq. 21, 22	11.0	11.5	12.2	12.7	13.2	14.0	
	_	ICO 15712 1 50 250	45	72	90	90	90	90	69
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	45	72 63	76		90	90	72
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	48			85			
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	48	63	76	85	90	90	72
Junction 1: Flanking STC for all paths		-1	0*LOG1	.0(10^-	6.9 + 1	U^- /.2	+ 10^-	7.2)=	6
Lunction 2: Consecting Floor (Male)									
Junction 2: Separating Floor/Wall	D E3 I-1	DD 224 Many DIVIONANA	25	20	4.4	F.0	Ε0.	63	40
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)					0.056		
Change by Lining on source side	ΔR_F2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_f2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3					0.036		
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	11.3	11.5	11.9	12.4	13.1	13.9	
Velocity Level Difference for Fd	D_v,Fd_2,site	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Flanking Transmission Loss - Path data	a								
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	44	71	89	90	90	90	68
Flanking TL for Path Fd_2	R_Fd	ISO 15712-1, Eq. 25a	46	61	75	84	90	90	70
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	46	61	75	84	90	90	70
Junction 2: Flanking STC for all paths	_	'	- 10*L	OG10(1	10^-6.8	+ 10^-	7 + 10	^-7)=	6
Junction 3: Separating Floor/Wall									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									6
Junction 4: Separating Floor/Wall									
All input data the same as for Junction	n <mark>2, but differ</mark> e	nt junctions at ceiling and floor change los	s factor	s and j	unctior	atteni	uation f	rom Ju	nction 2
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.237	0.157	0.101	0.063	0.038	0.021	
TL in-situ for F4		ISO 15712-1, Eq. 19	37.2	40.1	46.2		59.7		51
TL in-situ for f4		ISO 15712-1, Eq. 19	37.2	40.1	46.2		59.7		51
Junction J4 - Coupling									
Velocity Level Difference for Ff	D v,Ff 4,situ	ISO 15712-1, Eq. 21, 22	14.4	14.7	15.1	15.6	16.3	17.2	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3		14.5	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
Flanking Transmission Loss - Path data		, -q·, 				_5.5			
Flanking TL for Path Ff 4	R_Ff	ISO 15712-1, Eq. 25a	47	74	90	90	90	90	71
Flanking TL for Path Fd 4	R Fd	ISO 15712-1, Eq. 25a	49	64	77	86	90	90	73
Flanking TL for Path Pd_4	R_Fu R Df	ISO 15712-1, Eq. 25a	49	64	77	86	90	90	73
Junction 4: Flanking STC for all paths			0*LOG1						73
Addition 4. Hallking STC for all patris		- 1	0 1001	0(10	/.1 T 1	0 - 7.3	1 10.1-	,.5] -	
									6
Total Flanking (for all 4 innetional									6
Total Flanking (for all 4 junctions)									
Total Flanking (for all 4 junctions) ASTC due to Direct plus Flanking Path		RR-331, Eq. 1.4	35	44	52	61	69	76	54

EXAMPLE 2.3.4:

DETAILED METHOD

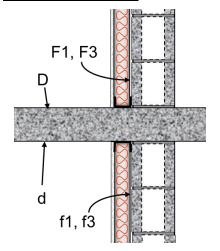
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.2, enhanced lining of walls

Separating floor/ceiling assembly with:

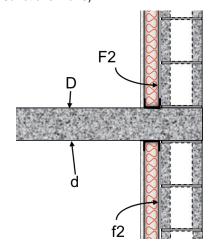
 Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring on top, or ceiling lining below

Junction 1, 3, 4: Cross-junction of separating floor / flanking wall with:

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with absorptive material³ filling stud cavities


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with absorptive material³ filling stud cavities


Acoustical Parameters:

For separat	ing assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.843
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at	Junction	า 1 & 3,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at	Junction	ո 2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junctions 1 or 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same lining details, but cross-junction)

	ISO Symbol	Reference	П	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition										
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045		40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150		0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining		0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining		0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3		0.346	0.237	0.159	0.104	0.066	0.041	
Leakage or Airborne Flanking		Sealed & Blocked		0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24		41	44	52	61	69	78	55

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Junction 1: Separating Floor/Wall									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time		RR-334, RT-Mean-BLK190(NW)			0.168				
Change by Lining on source side		RR-334, ΔTL-BLK190(NW)-62, SS65 GFB6		19	21	18	17	21	
Change by Lining on receive side	ΔR f1	RR-334, ΔTL-BLK190(NW)-62, SS65 GFB6		19	21	18	17	21	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3			0.108				
TL in-situ for F1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
TL in-situ for f1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
Junction J1 - Coupling	N_11,31tu	130 137 12 1, Eq. 13	30.3	33.0	43.3	31.0	33.3	04.5	31
Velocity Level Difference for Ff	D v Ef 1 citu	ISO 15712-1, Eq. 21, 22	14.1	14.4	14.8	15.4	16.1	17.0	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22		11.9	12.2	12.7	13.2		
,		ISO 15/12-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Flanking Transmission Loss - Path data		ICO 45742 4 F- 25-	75	00	00	00	00	00	00
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	75	90	90	90	90	90	90
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	63	74	83	88	90	90	85
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	63	74	83	88	90	90	85
Junction 1: Flanking STC for all paths		-	10*LO	10(10	^-9 + 1	0^- 8.5	+ 10^-	8.5)=	8
Junction 2: Separating Floor/Wall	D F2 ! !	DD 224 Massa DLK4CO(NIIA)	25	20		F.2	F.0	63	40
Sound Transmission Loss, F2 or f2		RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)			0.168				
Change by Lining on source side	ΔR_F2	RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6		19	21	18	17	21	
Change by Lining on receive side	ΔR_f2	RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6		19	21	18	17	21	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3			0.094				
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	11.3	11.5	11.9	12.4	13.1	13.9	
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	74	90	90	90	90	90	90
Flanking TL for Path Fd 2	R Fd	ISO 15712-1, Eq. 25a	61	72	82	87	90	90	83
Flanking TL for Path Df_2	R_Df	ISO 15712-1, Eq. 25a	61	72	82	87	90	90	83
Junction 2: Flanking STC for all paths			10*LO	310(10	^-9 + 1	0^-8.3	+ 10^-	8.3)=	8
Junction 3: Separating Floor/Wall									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									8
Junction 4: Separating Floor/Wall									
All input data the same as for Junction	2, but differe	nt junctions at ceiling and floor change los	s factor	s and j	unction	atteni	uation 1	rom Ju	nction 2
Structural Reverb. Time in-situ	T s,situ	ISO 15712-1, Eq. C.1-C.3	0.237	0.157	0.101	0.063	0.038	0.021	
TL in-situ for F4		ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
TL in-situ for f4		ISO 15712-1, Eq. 19	37.2		46.2			64.7	51
Junction J4 - Coupling	_ ,= ,=								_
	D v.Ff 4.situ	ISO 15712-1, Eq. 21, 22	14.4	14.7	15.1	15.6	16.3	17.2	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.3		12.8	13.3		14.5	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
Flanking Transmission Loss - Path data		, , ,			5	23.3	25.5	2 1.3	
Flanking TL for Path Ff 4	R_Ff	ISO 15712-1, Eq. 25a	77	90	90	90	90	90	90
Flanking TL for Path Fd 4	R Fd	ISO 15712-1, Eq. 25a	64	75	84	89	90	90	86
Flanking TL for Path Df 4	R_Df	ISO 15712-1, Eq. 25a	64	75	84	89	90	90	86
Junction 4: Flanking STC for all paths	IDI		10*LO						
rancaon 4. Flanking STC for an paths			TO LOC	710(10	-5 + 1	0.0	L TO.,-	0.0] =	8
Total Flanking (for all 4 junctions)									-
iotal rianking (for all 4 junctions)									7
				44	52	61	69		
ASTC due to Direct plus Flanking Path		RR-331, Eq. 1.4	41					76	55

EXAMPLE 2.3.5:

DETAILED METHOD

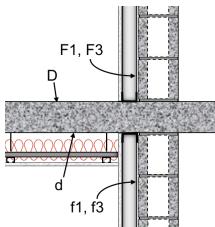
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.2, lining of walls and ceiling

Separating floor/ceiling assembly with:

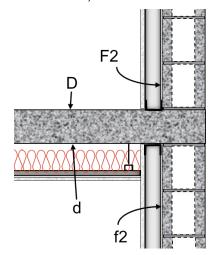
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Ceiling lining: 16 mm gypsum board⁴ fastened to hat-channels⁷ supported on cross-channels hung on wires, cavity of 150 mm between concrete and ceiling, with 150 mm absorptive material³

Junction 1, 3 or 4: Cross-junction of separating floor / flanking wall with:

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ filling stud cavities


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ filling stud cavities


Acoustical Parameters:

Accusical Falai	Heleis.					
For separati	ng assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.843
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Similarly, for	r flanking elements F a	nd f at J	unction	<u>1 & 3,</u>		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	<u>r flanking elements F a</u>	nd f at J	unction	2 & 4,		
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500	Hz)

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junctions 1 or 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same lining details, but cross-junction)

	ISO Symbol	Reference		125	250	500	1000	2000	4000	STC or ASTC
Separating Partition										
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045		40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	(0.439	0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining		0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	RR-334, ΔTL-CON150-C01		12	23	25	24	19	18	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	(0.346	0.237	0.159	0.104	0.066	0.041	
Leakage or Airborne Flanking		Sealed & Blocked		0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24		49	65	76	85	90	90	73

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Junction 1: Separating Floor/Wall									
Sound Transmission Loss, F1 or f1	R_F1,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR F1	RR-334, ΔTL-BLK190(NW)-61, SS65 G13	-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_f1	RR-334, ATL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T s,situ	ISO 15712-1, Eq. C.1-C.3	0.256	0.169	0.108	0.067			
TL in-situ for F1		ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
TL in-situ for f1	R f1,situ	ISO 15712-1, Eq. 19	36.9	39.8	45.9	51.8	59.5	64.5	51
Junction J1 - Coupling	K_11,51ca	130 137 12 1, Eq. 13	30.3	33.0	13.3	31.0	33.3	01.5	31
Velocity Level Difference for Ff	D v Ef 1 citu	ISO 15712-1, Eq. 21, 22	14.1	14.4	14.8	15.4	16.1	17.0	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Velocity Level Difference for Df					12.2		13.2		
		ISO 15712-1, Eq. 21, 22	11.6	11.9	12.2	12.7	13.2	14.0	
Flanking Transmission Loss - Path data		100 45742 4 5 25			-00		-00		
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	45	72	90	90	90	90	69
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	56	84	90	90	90	90	80
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	48	63	76	85	90	90	72
Junction 1: Flanking STC for all paths		-	10*LO	510(10	^-6.9 +	10^-8	+ 10^-	7.2)=	67
Junction 2: Separating Floor/Wall									
	ם בז וה	DD 224 Moan DI K100/NIM/	25	20	11	ΕO	EO	63	40
Sound Transmission Loss, F2 or f2 Structural Reverberation Time	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50 0.101	58	62	49
	T_s,lab	RR-334, RT-Mean-BLK190(NW)							
Change by Lining on source side	ΔR_F2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_f2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3				0.059			
TL in-situ for F2		ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	11.3	11.5	11.9	12.4	13.1	13.9	
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	44	71	89	90	90	90	68
Flanking TL for Path Fd 2	R_Fd	ISO 15712-1, Eq. 25a	54	82	90	90	90	90	78
Flanking TL for Path Df 2	R_Df	ISO 15712-1, Eq. 25a	46	61	75	84	90	90	70
Junction 2: Flanking STC for all paths	_		10*LO	310(10	^-6.8 +	10^- 7	.8 + 10	^-7)=	66
Junction 3: Separating Floor/Wall									
All values the same as for Junction 1									
Junction 3: Flanking STC for all paths									67
Junction 4: Separating Floor/Wall	2 1 1 1:00						ļ ,		
		nt junctions at ceiling and floor change los							nction 2
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3				0.063			
TL in-situ for F4	- '	ISO 15712-1, Eq. 19	37.2		46.2			64.7	51
TL in-situ for f4	R_f4,situ	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
Junction J4 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22				15.6			
Velocity Level Difference for Fd	D_v,Fd_4,situ	ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
Velocity Level Difference for Df	D_v,Df_4,situ	ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
<u> Flanking Transmission Loss - Path data</u>									
Flanking TL for Path Ff_4	R_Ff	ISO 15712-1, Eq. 25a	47	74	90	90	90	90	71
Flanking TL for Path Fd_4	R_Fd	ISO 15712-1, Eq. 25a	57	85	90	90	90	90	81
Flanking TL for Path Df_4	R_Df	ISO 15712-1, Eq. 25a	49	64	77	86	90	90	73
Junction 4: Flanking STC for all paths			0*LOG1						69
									61
Total Flanking (for all 4 junctions)									
Total Flanking (for all 4 junctions) ASTC due to Direct plus Flanking Path			37	56		76	79		

EXAMPLE 2.3.6:

DETAILED METHOD

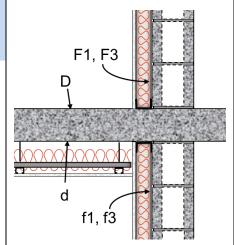
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.2, lining of walls and ceiling

Separating floor/ceiling assembly with:

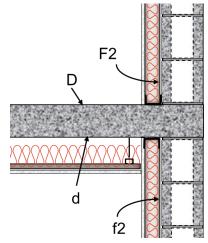
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Ceiling lining: 16 mm gypsum board⁴ fastened to hat-channels⁷ supported on cross-channels hung on wires, cavity of 150 mm between concrete and ceiling, with 150 mm absorptive material³

<u>Junction 1, 3 or 4: Cross-junction of separating floor / flanking wall with:</u>

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with absorptive material³ filling stud cavities


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junctions with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with absorptive material³ filling stud cavities


Acoustical Parameters:

For separat	ing assembly:					
internal loss, η_i =	0.006		c_L =	3500		
mass (kg/m²) =	345		f_c =	124		(Eq. C.2)
	Reference	K_Ff	K_Dd'	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1, 3, 4	ISO 15712-1, Eq. E.3	11.6	6.1	8.8	8.8	0.843
T-Junction 2	ISO 15712-1, Eq. E.4	8.1		5.8	5.8	0.657
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.028	(at 500	Hz)
Cincilant, fa	u flankina alamanta F		luu atia a	102		
Similarly, fo	r flanking elements F	and f at	Junction	11&3,	-	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot	ISO 15712-1, Eq. C.1			0.041	(at 500	Hz)
Similarly, fo	or flanking elements F	and f at	Junction	12&4,	_	
internal loss, η_i =	0.015		c_L =	3500		
mass (kg/m²) =	238		f_c =	98		
Total loss, η_tot,2	ISO 15712-1, Eq. C.1			0.047	(at 500	Hz)
Total loss, η_tot,4	ISO 15712-1, Eq. C.1			0.043	(at 500 l	Hz)

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junctions 1 or 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same lining details, but cross-junction)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150	0.439	9 0.369	0.250	0.205	0.146	0.077	
Change by Lining on source side	ΔR_D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	RR-334, ΔTL-CON150-C01	8	21	24	24	22	19	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.346	6 0.237	0.159	0.104	0.066	0.041	
Leakage or Airborne Flanking		Sealed & Blocked	0.0	0.0	0.0	0.0	0.0	0.0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	49	65	76	85	90	90	73

ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or ASTC
.50 0 1 111001				-50				
R F1 lah	RR-334 Mean-RI K190(NW)	35	38	44	50	58	62	49
								-13
R F1 situ								51
R f1 situ	ISO 15712-1, Eq. 19							51
11_11,510	130 137 12 1, Eq. 13	30.3	33.0	13.3	31.0	33.3	0 1.5	31
D v Ff 1 situ	ISO 15712-1 Fg 21 22	14 1	144	14.8	15.4	16.1	17.0	
	130 13712-1, Eq. 21, 22	11.0	11.9	12.2	12.7	15.2	14.0	
	ISO 15712 1 For 250	75	00	00	00	00	00	90
								89
K_DT								85
		10*LO	10(10	^-9 + 1	0^- 8.9	+ 10^-	8.5)=	8
R F2 lab	RR-334. Mean-BLK190(NW)	35	38	44	50	58	62	49
								-13
								51
K_TZ,SITU	ISO 15/12-1, Eq. 19	37.6	40.4	46.5	52.3	59.9	64.9	51
D E(2 ::	100 45742 4 5 24 22	44.2	44.5	44.0	42.4	12.1	42.0	
	ISO 15/12-1, Eq. 21, 22	9.5	9.7	10.0	10.4	11.0	11.6	
	100 15710 1 5 05							
								90
								89
R_Df								83
	-	10*LO	510(10	^-9 + 1	0^- 8.9	+ 10^-	8.3)=	8
								8
- 1 . 1155								
								nction 2
								51
R_t4,situ	ISO 15712-1, Eq. 19	37.2	40.1	46.2	52.0	59.7	64.7	51
			12.5				14.5	
	ISO 15712-1, Eq. 21, 22	12.3	12.5	12.8	13.3	13.8	14.5	
R_Ff	ISO 15712-1, Eq. 25a	77	90	90	90	90	90	90
R_Fd	ISO 15712-1, Eq. 25a	72	90	90	90	90	90	90
R_Df	ISO 15712-1, Eq. 25a	64	75	84	89	90	90	86
	·	- 10*L	OG10(1	LO^-9 +	10^-9	+ 10^-	8.6)=	8
								7
								,
	T_s,lab \[\Delta R_F1 \] \[\Delta R_F1 \] \[\Delta R_F1 \] \[\R_F1, \situ \] \[\R_F1, \situ \] \[\D_v, \reft \] \	R_F1,lab T_s,lab RR-334, Mean-BLK190(NW) T_s,lab RR-334, RT-Mean-BLK190(NW) AR_F1 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 AR_F1 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 T_s,situ ISO 15712-1, Eq. C.1-C.3 R_F1,situ ISO 15712-1, Eq. 19 D_v,Ff_1,situ ISO 15712-1, Eq. 21, 22 D_v,Df_1,situ ISO 15712-1, Eq. 21, 22 D_v,Df_1,situ ISO 15712-1, Eq. 21, 22 D_v,Df_1,situ ISO 15712-1, Eq. 21, 22 R_Ff ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a R_Df ISO 15712-1, Eq. 25a R_Df ISO 15712-1, Eq. 25a R_S,Iab RR-334, Mean-BLK190(NW) T_s,lab RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 ΔR_F2 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 ΔR_F2 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 ΔR_F2 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6 ΔR_F2, Situ ISO 15712-1, Eq. 19 R_f2,situ ISO 15712-1, Eq. 19 D_v,Ff_2,situ ISO 15712-1, Eq. 21, 22 D_v,Fd_2,situ ISO 15712-1, Eq. 21, 22 D_v,Df_2,situ ISO 15712-1, Eq. 22, 22 D_v,Df_2,situ ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a R_Df ISO 15712-1, Eq. 25a R_Df ISO 15712-1, Eq. 25a R_Df ISO 15712-1, Eq. 25a R_Fd, ISO 15712-1, Eq. 25a R_Fd, ISO 15712-1, Eq. 21, 22 D_v,Fd_4,situ ISO 15712-1, Eq. 21, 22 D_v,Fd_5,situ ISO 15712-1, Eq. 21, 22 R_Ff ISO 15712-1, Eq. 21, 22 D_v,Fd_4,situ ISO 15712-1, Eq. 21, 22 D_v,Fd_4,situ ISO 15712-1, Eq. 21, 22 R_Ff ISO 15712-1, Eq. 21, 22 R_Ff ISO 15712-1, Eq. 21, 22 D_v,Fd_4,situ ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a R_Fd ISO 15712-1, Eq. 25a	R_F1,lab RR-334, Mean-BLK190(NW) 0.394 ΔR_F1 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6! 11 ΔR_f1 RR-334, ΔTL-BLK190(NW)-62, SS65_GFB6! 11 T_s,situ ISO 15712-1, Eq. C.1-C.3 0.256 R_F1,situ ISO 15712-1, Eq. 19 36.9 R_f1,situ ISO 15712-1, Eq. 21, 22 11.6 D_v,Fd_1,situ ISO 15712-1, Eq. 21, 22 11.6 D_v,Fd_1,situ ISO 15712-1, Eq. 21, 22 11.6 D_v,Df_1,situ ISO 15712-1, Eq. 21, 22 11.6 R_Ff ISO 15712-1, Eq. 25a 75 R_Fd ISO 15712-1, Eq. 25a 75 R_Df ISO 15712-1, Eq. 25a 71 R_Df ISO 15712-1, Eq. 25a 71 AR_f2 RR-334, Mean-BLK190(NW) 35 ΔR_F2 RR-334, ΔTL-BLK190(NW) 0.394 ΔR_F2 RR-334, ΔTL-BLK190(NW) 37.6 R_F2,situ ISO 15712-1, Eq. 19 37.6 D_v,Fd_2,situ ISO 15712-1, Eq. 19 37.6 D_v,Fd_2,situ ISO 15712-1, Eq. 21, 22 11.3 D_v,Fd_2,situ ISO 15712-1, Eq. 21, 22 9.5 D_v,Df_2,situ ISO 15712-1, Eq. 21, 22 9.5 R_Fd ISO 15712-1, Eq. 25a 74 R_Fd ISO 15712-1, Eq. 21, 22 9.5 R_Fd ISO 15712-1, Eq. 21, 22 9.5 R_Fd ISO 15712-1, Eq. 21, 22 9.5 R_Fd ISO 15712-1, Eq. 25a 74 R_Fd ISO 15712-1, Eq. 25a 69 R_Df ISO 15712-1, Eq. 25a 61 L0*LOC 2, but different junctions at ceiling and floor change loss factor 75.5 R_Fd,situ ISO 15712-1, Eq. 21, 22 9.5 R_Fd ISO 15712-1, Eq. 25a 69 R_Df ISO 15712-1, Eq. 25a 69 R_Df ISO 15712-1, Eq. 21, 22 12.3 D_v,Fd_4,situ ISO 15712-1, Eq. 21, 22 12.3 D_v,Fd_4,situ ISO 15712-1, Eq. 21, 22 12.3 R_F4,situ ISO 15712-1, Eq. 21, 22 12.3 R_F6 ISO 15712-1, Eq. 21, 22 12.3 R_F6 ISO 15712-1, Eq. 21, 22 12.3 R_F6 ISO 15712-1, Eq. 25a 77 R_F6 ISO 15712-1, Eq. 25a 72 R_Df ISO 15712-1, Eq. 25a 74	R_F1,lab	R_F1,lab RR-334, Mean-BLK190(NW) 0.394 0.255 0.168 AR_F1 RR-334, ATI-BLK190(NW)-62, SS65_GFB6: 11 19 21 T_s,situ ISO 15712-1, Eq. C1-C.3 0.256 0.169 0.108 R_F1,situ ISO 15712-1, Eq. C1-C.3 0.256 0.169 0.108 R_F1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 D_v,Ff_1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 D_v,Ff_1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 D_v,Df_1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 R_F1 ISO 15712-1, Eq. 25a 75 90 90 R_Df ISO 15712-1, Eq. 25a 75 90 90 R_Df ISO 15712-1, Eq. 25a 76 83 A4.8 AF.2 RR-334, ATI-BLK190(NW) 0.394 0.255 0.168 AR_F2 RR-334, ATI-BLK190(NW)-62, SS65_GFB6: 11 19 21 T_s,Iab RR-334, ATI-BLK190(NW)-62, SS65_GFB6: 11 19 21 T_s,Iab ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 D_v,Fd_2,Situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 D_v,Fd_2,Situ ISO 15712-1, Eq. 25a 77.1 90 90 R_Df ISO 15712-1, Eq. 21.2 9.5 9.7 10.0 R_F2,Situ ISO 15712-1, Eq. 21.2 9.5 9.5 9.7 10.0 P_v,Fd_2,Situ ISO 15712-1, Eq. 21.2 9.5 9.5 9.7 10.0 P_v,Fd_2,Situ ISO 15712-1, Eq. 21.2 9.5 9.5 9.7 10.0 R_F6 ISO 15712-1, Eq. 25a 74 90 90 90 R_Df ISO 15712-1, Eq. 25a 74 90 90 90 R_Df ISO 15712-1, Eq. 25a 74 90 90 90 PO	R_F1,lab	R_F1,lab RR-334, Mean-BLK190(NW) 0.394 0.255 0.168 0.101 0.056 AR_F1 RR-334, ATL-BLK190(NW)-62, SS65_GFB6: 11 19 21 18 17 T.s,situ ISO 15712-1, Eq. C.1-C.3 36.9 39.8 45.9 51.8 59.5 R_f1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 12.7 13.2 D_v,IG_1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 12.7 13.2 D_v,IG_1,situ ISO 15712-1, Eq. 21, 22 11.6 11.9 12.2 12.7 13.2 R_Ff ISO 15712-1, Eq. 25a 71 90 90 90 90 90 90 90 90 90 90 90 90 90	R_F1,lab RR-334, Mean-BLK190(NW)

<u>Summary for Section 2.3: Calculation Examples for Adding Linings to Constructions of Concrete and Concrete Masonry</u>

The worked examples 2.3.1 to 2.3.6 demonstrate the calculation of sound transmission between rooms in a building of concrete/masonry when linings are added to some or all of the bare floor and wall assemblies. The examples show improvements in direct and/or flanking transmission loss via specific paths due to the addition of some common types of linings using gypsum board, lightweight steel framing, and sound absorbing material. Many other lining options are possible, and may be easily substituted if the necessary laboratory test data is available. Note that for a hollow concrete block masonry wall constructed using normal weight units, tests have shown that its surface could be painted or sealed, or have a thin coat of plaster without effect on the sound transmission.

Examples 2.3.1 and 2.3.2 for the horizontal room pair show the improvements relative to Example 2.1.1, which has the same concrete and masonry elements but no linings. For both of these examples, linings of gypsum board mounted on 65 mm lightweight steel studs are installed on all the wall surfaces; for Example 2.3.2, the cavities between the studs are filled with absorptive material. In both cases, the ASTC rating is increased – from 48 with bare walls, to 51 with the basic lining, and to 59 with addition of absorptive material. In Example 2.3.1 with the basic lining (SS65_G13), the combined Flanking STC of 56 is better than the Direct STC of 53, but the contributions of the flanking paths still decrease the ASTC to 51. The better wall linings in Example 2.3.2 raise the Direct STC for the separating partition to over 80, and provide a similar improvement for the wall/wall junctions. The apparent sound insulation of the complete system is limited by the significant transmission via junctions 1 and 3, particularly the floorfloor and ceiling-ceiling paths which are still bare concrete. Adding a lining to the ceiling could make flanking transmission via the ceiling insignificant, but would increase the ASTC by only 3 points to 62. To raise the ASTC to over 62, a substantial improvement to the floor surfaces would be required.

Examples 2.3.3 and 2.3.4 for the vertical room pair show the improvements relative to Example 2.1.2 when the flanking wall surfaces are lined. The ASTC is increased from 52 with bare concrete masonry walls to 54 (for 2.3.3, with the basic lining SS65_G13) and to 55 (for 2.3.4, with absorptive material filling the wall cavities). In both cases, the higher flanking TL due to the wall linings is short-circuited by direct transmission through the floor.

Examples 2.3.5 and 2.3.6 have the same structural assemblies and wall linings as 2.3.3 and 2.3.4 respectively, but show the effect of adding a ceiling lining. The ASTC rises to 61 with the ceiling plus the basic wall lining, and to 72 with ceiling and better wall lining with absorptive material filling the interstud cavities. In Example 2.3.5, with the basic SS65_G13 lining on the walls, the ASTC is limited by the flanking paths. With the addition of absorptive material to the wall linings in 2.3.6, the ASTC is mainly limited by direct transmission but an excellent ASTC rating is achieved.

Overall, these examples show the clear benefit of wall and ceiling linings in achieving high ASTC values, and emphasize the need to focus improvements on the weakest path(s).

2.4. Simplified Calculation Method for Concrete/Masonry Buildings

Section 4.4 of ISO 15712-1 presents a "Simplified model for structure-borne transmission." The Simplified Method has some clearly stated limitations, and some implicit cautions including that:

- The Simplified Method uses a set of ad hoc approximations that are appropriate for buildings with concrete and concrete masonry construction, with or without linings.
- The application of the Simplified Method "is restricted to primarily homogeneous constructions," further restricted here to homogeneous lightly-damped structural assemblies. Here, "lightly-damped" implies a reverberant vibration field that can be characterized by a mean vibration level, and "homogeneous" implies similar bending stiffness in all directions across the surface. This limitation excludes wood-framed and steel-framed assemblies, but includes typical concrete or hollow concrete block masonry walls and concrete floors.
- Within that restricted context, the calculation has been structured to predict an ASTC rating slightly lower than that from the Detailed Method used in the examples presented in this Guide, especially if linings are applied to the assemblies.

The calculation method of Section 4.4 of ISO 15712-1 is based on two main simplifications:

- The most significant simplification is that losses to connected assemblies are dealt with "in an
 average way", ignoring the difference between the losses for laboratory specimens and the
 (usually higher) in-situ sound transmission loss due to edge losses to adjoining wall and floor
 constructions in the building.
- The procedure uses only single-number quantities as input data, namely laboratory STC ratings for the wall and floor assemblies, Δ STC values for any linings, and mean K_{ij} values for the junction attenuation.
- These simplifications eliminate much of the calculation process of the Detailed Method.
 However, the Simplified Method tends to predict an ASTC which is slightly lower than that from the Detailed Method described in Section 2.1 of this Guide.

The Simplified Method predicts the overall ASTC rating by following the steps indicated in Figure 2.4.1 and explained in more detail below.

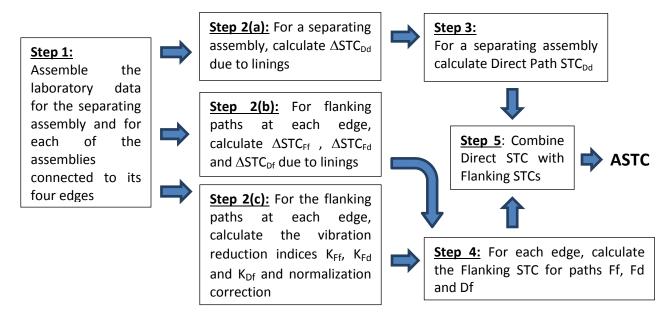


Figure 2.4.1: Steps to calculate the Direct STC and the Flanking STC for each flanking path.

Step 1: Assemble the required laboratory test data for the constructions including the:

- Laboratory sound transmission class (STC) values based on the TL measured according to ASTM E90 for the structural floor or wall assemblies (of bare concrete or masonry),
- Mass per area for these bare assemblies,
- \circ Measured change in sound transmission class (Δ STC) determined according to Appendix A1 of this Guide for each lining that will be added to the bare structural floor or wall assemblies.

Step 2: Determine the correction terms as follows:

- a) For linings on the source and/or receiving side of the separating assembly, the correction ΔSTC_{Dd} is the sum of the larger of the ΔSTC values for these two linings plus half of the smaller value.
- b) For each flanking path ij, the correction ΔSTC_{ij} for linings on the source surface i and/or the receiving surface j, is the sum of the larger of the ΔSTC values for these two linings plus half of the smaller value.
- c) For each edge of the separating assembly, calculate the vibration reduction indices K_{Ff}, K_{Fd}, and K_{Df} for the flanking paths between the assembly in the source room (D or F) and the attached assembly in the receiving room (f or d) using the appropriate case from Annex E of ISO 15712-1. These values depend on the junction geometry and the ratio of the mass per area for the connected assemblies. Also calculate the normalization correction, which depends on the length of the flanking junction and the area of the separating assembly.
- Step 3: Calculate the Direct STC rating for the direct sound transmission through the separating assembly (STC_{Dd}) using Eq. 27 of ISO 15712-1 with the inputs:
 - Laboratory STC value for the bare structural assembly,
 - o Correction for linings ΔSTC_{Dd} from Step 2(a).

- Step 4: Calculate the Flanking STC for transmission via each pair of connected assemblies at each edge of the separating assembly, using Eq. 28a of ISO 15712-1 with inputs:
 - Laboratory STC value for each bare structural assembly,
 - Correction for linings ΔSTC_{ii} from Step 2(b),
 - o Value of K_{ij} and normalization correction for this path from Step 2(c).
- Step 5: Combine the transmission via the direct and flanking paths to determine the ASTC. In the worked examples, the Direct STC and Flanking STC values are rounded to the nearest integer before they are combined, and the ASTC is also rounded to the nearest integer, to match the nominal precision of the ASTM ratings.

Expressing the Process using Equations

The ASTC rating between two rooms (neglecting sound that is by-passing the building structure, e.g. through leaks or ducts) is estimated using the Simplified Method from the logarithmic expression of the combination of the Direct STC rating (STC_{Dd}) of the separating wall or floor assembly and the combined Flanking STC ratings of the three flanking paths for every junction at the four edges of the separating assembly. This may be expressed as:

$$ASTC = -10\log_{10}\left[10^{-0.1 \cdot STC_{Dd}} + \sum_{edge=1}^{4} \left(10^{-0.1 \cdot STC_{Ff}} + 10^{-0.1 \cdot STC_{Fd}} + 10^{-0.1 \cdot STC_{Df}}\right)\right]$$
 Eq. 2.4.1

Eq. 2.4.1 is appropriate for all types of building systems similar to the Standard Scenario. The following expressions are used to calculate the transmission for each individual path:

 For the direct path, STC_{Dd} is obtained according to Eq. 2.4.2 from the laboratory STC of the bare separating assembly and the ΔSTC changes due to linings on source "D" and/or receiving side "d" of the assembly. This is the counterpart in ASTM metrics for Eq. 30 of ISO 15712-1.

$$STC_{Dd} = STC_{lab} + \max(\Delta STC_D, \Delta STC_d) + \frac{\min(\Delta STC_D, \Delta STC_d)}{2}$$
 Eq. 2.4.2

• For each flanking path, STC_{ij} is calculated using Eq. 2.4.3 where index i and j refer to the coupled flanking assemblies; thus, "i" can either be "D" or "F" and "j" can be "f" or "d". The geometric correction factor at the end depends on the surface area of the separating assembly (S_s) and the length of the junction between flanking and separating assemblies (I_{ij}), with I₀ = 1 m. Eq. 2.4.3 is the counterpart in ASTM metrics for Equations 28a and 31 of ISO 15712-1.

$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + \max(\Delta STC_i, \Delta STC_j) + \frac{\min(\Delta STC_i, \Delta STC_j)}{2} + 10 \cdot \log_{10} \frac{S_S}{l_0 \cdot l_{ij}}$$
 Eq. 2.4.3

EXAMPLE 2.4.1:

SIMPLIFIED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.1

Separating wall assembly (loadbearing) with:

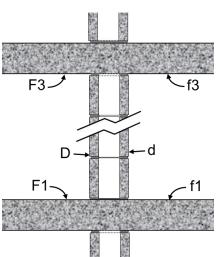
 One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

<u>Junction 1: Bottom Junction (separating wall / floor) with:</u>

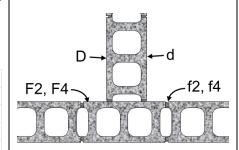
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall /abutting side wall) with:

- Abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m², with no lining
- Rigid mortared T-junctions


Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly


Acoustical Parameters:

For 190 mm concrete block walls:		
Mass/unit area (kg/m ²) =	238	(Separating wall)
	238	(Flanking wall)
For 150 mm concrete floor:		
Mass/unit area (kg/m²) =	345	
Separating partition area (m ²) =	12.5	
Floor/wall junction length (m) =	5.0	
Separating partition height (m) =	2.5	
10*log(S_Partition/l_junction 1&3) =	4.0	
10*log(S_Partition/l_junction 2&4) =	7.0	

Illustration for this case

Junction of 190 mm concrete block separating wall with 150 mm thick concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with side wall, both of 190 mm concrete block. (Plan view of Junction 2 or 4)

			Kij [dB]			
Junction		Mass ratio for Ff	Path Ff	Path Fd	Path Df	Reference
1	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
2	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4
3	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
4	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4

	ISO Symbol	Referen	ce	STC or ΔSTC	STC or A	STO
Separating Partition						
Laboratory STC for Dd	R_s,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining on D	ΔR_D,w	No lining		0		
ΔSTC change by Lining on d	ΔR d,w	No lining		0		
Direct STC in-situ	R Dd,w	RR-331, Eq. 2.4.2	49 +	MAX(0,0) + MIN(0,0)/2 =	49	
2.1.0000.0.1.0.1.0	<u>_</u>	332) 24. 22				
Junction 1: Separating Wall,	/Floor					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-334, CON150, TLF-15-045		53		
ΔSTC change by Lining	ΔR_F1,w	No lining		0		
Flanking Element f1:						
Laboratory STC for f1	R_f1,w	RR-334, CON150, TLF-15-045		53		
ΔSTC change by Lining	ΔR_f1,w	No lining		0		
Flanking STC for path Ff	R Ff,w	RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,0	0) + MIN(0,0)/2 + 6.1 + 4 =	63	
Flanking STC for path Fd	R_Fd,w	RR-331, Eq. 2.4.3		(0) + MIN(0,0)/2 + 8.8 + 4 =		
Flanking STC for path Df	R Df,w	RR-331, Eq. 2.4.3	49/2 + 53/2 + MAX(0,0	(0) + MIN(0,0)/2 + 8.8 + 4 =	64	
Junction 1: Flanking STC for		RR-331, subset of Eq. 2.4.1		.3 + 10^- 6.4 + 10^- 6.4) =		59
			·			
Junction 2: Separating Wall,	/Wall					
Flanking Element F2:						
Laboratory STC for F2	R_F2,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_F2,w	No lining		0		
Flanking Element f2:						
Laboratory STC for f2	R_f2,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_f2,w	No lining		0		
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3	49/2 + 49/2 + MAX(0,0	0) + $MIN(0,0)/2 + 5.7 + 7 =$	62	
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3	49/2 + 49/2 + MAX(0,0	0) + $MIN(0,0)/2 + 5.7 + 7 =$	62	
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4.3	49/2 + 49/2 + MAX(0,0	0) + $MIN(0,0)/2 + 5.7 + 7 =$	62	
Junction 2: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1	- 10*LOG10(10^-6	.2 + 10^- 6.2 + 10^- 6.2) =		57
	/o :::					
Junction 3: Separating Wall,	Ceiling					
Flanking Element F3:	5 -5					
Laboratory STC for F3	R_F3,w	RR-334, CON150, TLF-15-045	i	53		
Laboratory STC for F3 ΔSTC change by Lining	R_F3,w ΔR_F3,w	RR-334, CON150, TLF-15-045 No lining		53 0		
Laboratory STC for F3 ASTC change by Lining Flanking Element f3:	ΔR_F3,w	No lining		0		
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3	ΔR_F3,w R_f3,w	No lining RR-334, CON150, TLF-15-045		0 53		
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining	ΔR_F3,w R_f3,w ΔR_f3,w	No lining RR-334, CON150, TLF-15-045 No lining		0 53 0		
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff	ΔR_F3,w R_f3,w ΔR_f3,w R_ff,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 =		
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0,	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 =	64	
Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w R_Fd,w R_Df,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 =	64 64	
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w R_Fd,w R_Df,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 =	64 64	5
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	AR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 =	64 64	5
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	AR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 =	64 64	59
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4:	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w R_Fd,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) =	64 64	5
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w R_Fd,w R_Df,w all paths //wall R_F4,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW)	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) =	64 64	5
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w R_Fd,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) =	64 64	5
Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4:	AR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0	64 64	5
Laboratory STC for F3 \(\Delta\) STC change by Lining Flanking Element f3: Laboratory STC for f3 \(\Delta\) STC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 \(\Delta\) STC change by Lining Flanking Element f4: Laboratory STC for f4	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w R_f4,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW)	53/2 + 53/2 + MAX(0,0,0) 53/2 + 49/2 + MAX(0,0,0) 49/2 + 53/2 + MAX(0,0)	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0	64 64	5
Laboratory STC for F3 \(\Delta\) STC change by Lining Flanking Element f3: Laboratory STC for f3 \(\Delta\) STC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 \(\Delta\) STC change by Lining Flanking Element f4: Laboratory STC for f4 \(\Delta\) STC change by Lining Flanking Element f4: Laboratory STC for f4	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_f4,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0	64 64	5
Laboratory STC for F3 \(\Delta\) STC change by Lining Flanking Element f3: Laboratory STC for f3 \(\Delta\) STC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 \(\Delta\) STC change by Lining Flanking Element f4: Laboratory STC for f4 \(\Delta\) STC change by Lining Flanking STC for path Ff Flanking STC for path Ff	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_f4,w ΛR_f4,w R_Ff,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 =	64 64	5
Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Flunction 3: Flanking STC for Aunction 4: Separating Wally Flanking Element F4: Laboratory STC for F4 ASTC change by Lining Flanking Element f4: Laboratory STC for f4 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Ff	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_f4,w R_F6,w R_F6,w R_F6,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 =	64 64 62 62	5
Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wally Flanking Element F4: Laboratory STC for F4 ASTC change by Lining Flanking Element f4: Laboratory STC for f4 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Fd Flanking STC for path Fd	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0,	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0.3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 =	64 64 62 62 62 62	
Laboratory STC for F3 \(\Delta\) STC change by Lining Flanking Element f3: Laboratory STC for f3 \(\Delta\) STC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 \(\Delta\) STC change by Lining Flanking Element f4: Laboratory STC for f4	ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0,	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = .3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 =	64 64 62 62 62 62	5
Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path F6 Flanking STC for path F6 Flanking STC for path Df Flunction 3: Flanking STC for ASTC change by Lining Flanking Element F4: Laboratory STC for F4 ASTC change by Lining Flanking Element f4: Laboratory STC for f4 ASTC change by Lining Flanking STC for path F6 Flanking STC for path F6 Flanking STC for path F6 Flanking STC for path Df	AR_F3,w R_f3,w AR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_f4,w AR_f4,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Fd,w AR_Fd,w R_FD,w All paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Subset of Eq. 2.4.1	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, - 10*LOG10(10^-6	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0.3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 = 0.1 + MIN(0,0)/2 + 5.7 + 7 = 0.2 + 10^- 6.2 + 10^- 6.2) =	64 64 62 62 62	5
Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path F6 Flanking STC for path F6 Flanking STC for path Df Flunction 3: Flanking STC for AUDITION OF FA ASTC change by Lining Flanking Element F4: Laboratory STC for F4 ASTC change by Lining Flanking Element f4: Laboratory STC for f4 ASTC change by Lining Flanking STC for path F6 Flanking STC for path Df	AR_F3,w R_f3,w AR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_f4,w AR_f4,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Fd,w AR_Fd,w R_FD,w All paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, subset of Eq. 2.4.1 RR-334, Mean-BLK190(NW) No lining RR-334, Mean-BLK190(NW) No lining RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3 RR-331, Eq. 2.4.3	53/2 + 53/2 + MAX(0, 53/2 + 49/2 + MAX(0, 49/2 + 53/2 + MAX(0, - 10*LOG10(10^-6 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, 49/2 + 49/2 + MAX(0, - 10*LOG10(10^-6	0 53 0 0) + MIN(0,0)/2 + 6.1 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0) + MIN(0,0)/2 + 8.8 + 4 = 0.3 + 10^- 6.4 + 10^- 6.4) = 49 0 49 0 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 = 0) + MIN(0,0)/2 + 5.7 + 7 =	64 64 62 62 62	

EXAMPLE 2.4.2:

SIMPLIFIED METHOD

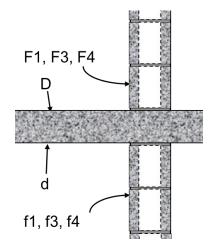
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.1.2

Separating floor/ceiling assembly with:

 Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping / flooring on top, or ceiling lining below

<u>Junction 1, 3,or 4: Cross-junction of separating floor / flanking wall with:</u>

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

<u>Acoustical Parameters:</u>

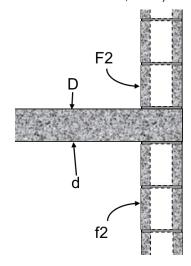

For 190 mm concrete block walls:		
Mass/unit area (kg/m²) =	238	(Junctions 1&3)
	238	(Junctions 2&4)
For 150 mm concrete floor:		
Mass/unit area (kg/m²) =	345	
Separating partition area (m ²) =	20	
Junction 1 & 3 length (m) =	5.0	
Junction 2 & 4 length (m) =	4.0	
10*log(S_Partition/l_junction 1&3) =	6.0	
10*log(S_Partition/l_junction 2&4) =	7.0	

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall.

(Side view of Junctions 1, 3 or 4)

T-Junction of separating floor of 150 mm thick concrete floor with 190 mm concrete block wall. (Side view of Junction 2)

	Kij [dB]					
Junction		Mass ratio for Ff	Path Ff	Path Fd	Path Df	Reference
1	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3
2	Rigid T-junction	1.45	8.1	5.8	5.8	ISO 15712-1, Eq. E.4
3	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3
4	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3

	ISO Symbol	Referer	nce	STC or ΔSTC	STC or A	ASTO
Separating Partition	1000/1111001			0.00.00		
Laboratory STC for Dd	R_s,w	RR-334, CON150, TLF-15-04	5	53		
ΔSTC change by Lining on D	ΔR D,w	No lining		0		
ΔSTC change by Lining on d	ΔR d,w	No lining		0		
Direct STC in-situ	R Dd.w	RR-331, Eq. 2.4.2	53 1	+ MAX(0,0) + MIN(0,0)/2 =	53	
				(=7=7)		
Junction 1: Separating Floor	/Wall					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_F1,w	No lining		0		
Flanking Element f1:						
Laboratory STC for f1	R_f1,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_f1,w	No lining		0		
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3	49/2 + 49/2 + MAX(0,0) + MIN(0,0)/2 + 11.6 + 6 =	67	
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3	49/2 + 53/2 + MAX(0,	0) + MIN(0,0)/2 + 8.8 + 6 =	66	
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4.3	53/2 + 49/2 + MAX(0,	0) + MIN(0,0)/2 + 8.8 + 6 =	66	
Junction 1: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1	- 10*LOG10(10^-6	5.7 + 10^- 6.6 + 10^- 6.6) =		62
Junction 2: Separating Floor	/Wall					
Flanking Element F2:	D 50	DD 224 M				
Laboratory STC for F2	R_F2,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_F2,w	No lining		0		
Flanking Element f2:						
Laboratory STC for f2	R_f2,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_f2,w	No lining		0		
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3		0) + MIN(0,0)/2 + 8.1 + 7 =		
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3	, , ,	0) + MIN(0,0)/2 + 5.8 + 7 =		
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4.3		0) + MIN(0,0)/2 + 5.8 + 7 =		
Junction 2: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1	- 10*LOG10(10^-6	6.4 + 10^- 6.4 + 10^- 6.4) =		59
Junction 3: Separating Floor	/Wall					
Flanking Element F3:						
Laboratory STC for F3	R F3,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR F3,w	No lining		0		
Flanking Element f3:	,	5				
Laboratory STC for f3	R f3,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR f3,w	No lining		0		
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3	49/2 + 49/2 + MAX(0.0) + MIN(0,0)/2 + 11.6 + 6 =	67	
Flanking STC for path Fd	R Fd,w	RR-331, Eq. 2.4.3	• • • • • • • • • • • • • • • • • • • •	0) + MIN(0,0)/2 + 8.8 + 6 =		
Flanking STC for path Df	R Df,w	RR-331, Eq. 2.4.3		0) + $MIN(0,0)/2 + 8.8 + 6 =$		
Junction 3: Flanking STC for		RR-331, subset of Eq. 2.4.1		6.7 + 10 [^] - 6.6 + 10 [^] - 6.6) =		6
Junction 4: Separating Floor	/Wall					
Flanking Element F4:						
Laboratory STC for F4	R_F4,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_F4,w	No lining		0		
Flanking Element f4:						
Laboratory STC for f4	R_f4,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining	ΔR_f4,w	No lining		0		
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3) + MIN(0,0)/2 + 11.6 + 7 =		
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3		0) + MIN(0,0)/2 + 8.8 + 7 =		
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4.3		0) + MIN(0,0)/2 + 8.8 + 7 =		
Junction 4: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1	- 10*LOG10(10^-6	5.8 + 10^- 6.7 + 10^- 6.7) =		6
Total Flanking STC (for all 4	iunctions)	RR-331, subset of Eq. 2.4.1	Combin	ning 12 Flanking STC values		5
. C.a. Harming J. C (IVI all 4	,	331, 3003Ct of Eq. 2.4.1	Combi	TE Harming STC values		J.
ASTC due to Direct plus Flan	<u> </u>	RR-331, Eq. 2.4.1		ith 12 Flanking STC values	51	

EXAMPLE 2.4.3:

SIMPLIFIED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure and lining as Example 2.3.2

Separating wall assembly (loadbearing) with:

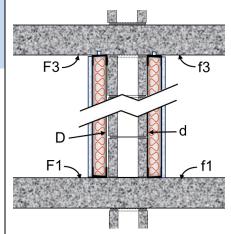
- One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Separating wall lined both sides with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling inter-stud cavities

Junction 1: Bottom Junction (separating wall / floor) with:

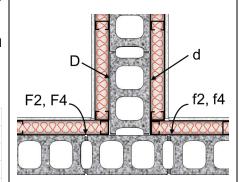
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall /abutting side wall) with:

- Rigid mortared T-junctions of abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling inter-stud cavities


<u>Junction 3: Top Junction (separating wall / ceiling) with:</u>

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly


Acoustical Parameters:

For 190 mm concrete block walls:		
Mass/unit area (kg/m²) =	238	(Separating wall)
	238	(Flanking wall)
For 150 mm concrete floor:		
Mass/unit area (kg/m²) =	345	
Separating partition area (m ²) =	12.5	
Floor/wall junction length (m) =	5.0	
Separating partition height (m) =	2.5	
10*log(S_Partition/l_junction 1&3) =	4.0	
10*log(S_Partition/l_junction 2&4) =	7.0	

Illustration for this case

Junction of 190 mm concrete block separating wall (with enhanced gypsum board lining) with 150 mm thick concrete floor and ceiling. (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both of 190 mm concrete block with enhanced gypsum board linings.

(Plan view of Junction 2 and 4)

			Kij [dB]			
Junction		Mass ratio for Ff	Path Ff	Path Fd	Path Df	Reference
1	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
2	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4
3	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
4	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4

	ISO Symbol	Reference STC or ΔSTC	STC or AST
Separating Partition	,		
Laboratory STC for Dd	R_s,w	RR-334, Mean-BLK190(NW) 49	
ΔSTC change by Lining on D	ΔR_D,w	RR-334, ΔTL-BLK(NW)-62, SS65 GFB65 G13	
ΔSTC change by Lining on d	ΔR_d,w	RR-334, Δ TL-BLK(NW)-62, SS65_GFB65_G13 19	
Direct STC in-situ	R_Dd,w	RR-331, Eq. 2.4.2 49 + MAX(19,19) + MIN(19,19)/2 =	78
Direct STC III Situ	N_Da,₩	TH 351, Eq. 2.4.2	70
Junction 1: Separating Wall,	/Floor		
Flanking Element F1:			
Laboratory STC for F1	R F1,w	RR-334, CON150, TLF-15-045 53	
ΔSTC change by Lining	ΔR_F1,w	No lining 0	
Flanking Element f1:			
Laboratory STC for f1	R f1,w	RR-334, CON150, TLF-15-045 53	
ΔSTC change by Lining	ΔR_f1,w	No lining 0	
Flanking STC for path Ff	R Ff,w	RR-331, Eq. 2.4.3 $53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 =$	63
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3 $53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = 4.3$	
Flanking STC for path Df	R_Td,W	RR-331, Eq. 2.4.3 $49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = 0.000$	
Junction 1: Flanking STC for		RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6.3 + 10^- 8.3 + 10^- 8.3)	
Junearon 1. Hanking Ste for	un putils	10 LOGIO(10 0.5 1 10 0.5 1 10 0.5)	
Junction 2: Separating Wall,	/Wall		
Flanking Element F2:			
Laboratory STC for F2	R_F2,w	RR-334, Mean-BLK190(NW) 49	
ΔSTC change by Lining	ΔR F2,w	RR-334, ATL-BLK(NW)-62, SS65_GFB65_G13 19	
Flanking Element f2:			
Laboratory STC for f2	R f2,w	RR-334, Mean-BLK190(NW) 49	
ΔSTC change by Lining	ΔR f2,w	RR-334, ΔTL-BLK(NW)-62, SS65 GFB65 G13 19	
Flanking STC for path Ff	R Ff,w	RR-331, Eq. 2.4.3 49/2 + 49/2 + MAX(19,19) + MIN(19,19)/2 + 5.7 + 7 =	90
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3 49/2 + 49/2 + MAX(19,19) + MIN(19,19)/2 + 5.7 + 7 =	
Flanking STC for path Df	R_Td,W	RR-331, Eq. 2.4.3 49/2 + 49/2 + MAX(19,19) + MIN(19,19)/2 + 5.7 + 7 =	
Junction 2: Flanking STC for		RR-331, subset of Eq. 2.4.1 $-10*\text{LOG}10(10^{-9} + 10^{-9} + 10^{-9}) =$	
Junearon E. Hanking Jie for	an patris	10 LOGIO(10 3 1 10 3 1 10 3)	
Junction 3: Separating Wall,	/Ceiling		
Junction 3: Separating Wall,	/Ceiling		
Flanking Element F3:		RR-334. CON150. TLF-15-045 53	
Flanking Element F3: Laboratory STC for F3	R_F3,w	RR-334, CON150, TLF-15-045 53 No lining 0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining			
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3:	R_F3,w ΔR_F3,w	No lining 0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3	R_F3,w ΔR_F3,w R_f3,w	No lining 0 RR-334, CON150, TLF-15-045 53	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 =	63
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Ff,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 =	63
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w	No lining 0 RR-334, CON150, TLF-15-045 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 =	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining 0 RR-334, CON150, TLF-15-045 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining 0 RR-334, CON150, TLF-15-045 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining 0 RR-334, CON150, TLF-15-045 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4:	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6.3 + 10^- 8.3 + 10^- 8.3) = RR-334, Mean-BLK190(NW) 49	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6.3 + 10^- 8.3 + 10^- 8.3) = RR-334, Mean-BLK190(NW) 49	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4:	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6.3 + 10^- 8.3 + 10^- 8.3) = RR-334, Mean-BLK190(NW) 49 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 19	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4	R_F3,w Δ R_F3,w R_f3,w Δ R_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w Δ R_F4,w R_f4,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)/2 + 8.8 + 4 = RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)/2 + 8.8 + 4 = RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6.3 + 10^- 8.3 + 10^- 8.3) = RR-334, Mean-BLK190(NW) 49 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 19	63 83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 88 + 4 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	63 83 83 6
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking Element F4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_f6,w R_Ff,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 8.7 + 8.7 + 1.7	63 83 83 6
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wally Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_f4,w R_F6,w R_F6,w R_F6,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 8.7 + 8.7 + 1.7	63 83 83 6
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wally Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Fd Flanking STC for path Fd	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΔR_F4,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w R_Ff,w	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 8.7 + 8.7 + 1.7	90 90 90
Flanking Element F3: Laboratory STC for F3 \(\Delta \text{STC change by Lining} \) Flanking Element f3: Laboratory STC for f3 \(\Delta \text{STC change by Lining} \) Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall, Flanking Element F4: Laboratory STC for F4 \(\Delta \text{STC change by Lining} \) Flanking Element f4: Laboratory STC for f4 \(\Delta \text{STC change by Lining} \) Flanking Element f4: Laboratory STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 4: Flanking STC for	R_F3,w \[\Delta_F3,w \] \[\Delta_F3,w \] \[\Delta_F13,w \] \[\Delta_F13,w \] \[\Delta_F13,w \] \[\Delta_F13,w \] \[\Delta_F14,w \] \[\Del	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 8.7 + 8.7 + 1.7	90 90 90 90
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wally Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Fd Flanking STC for path Fd	R_F3,w \[\Delta_F3,w \] \[\Delta_F5,w \] \[\Delta_F6,w \] \[\Delta_F4,w \] \[\Delta_F4,w \] \[\Delta_F4,w \] \[\Delta_F6,w \] \[\	No lining 0 RR-334, CON150, TLF-15-045 53 No lining 0 RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0)/2 + 6.1 + 4 = 8.7 + 8.7 + 1.7	90 90 90 90 90

EXAMPLE 2.4.4:

SIMPLIFIED METHOD

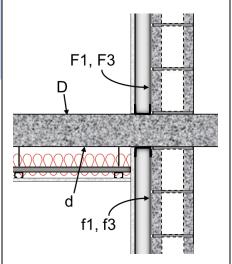
- Rooms one-above-the-other
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same structure as Example 2.3.5

Separating floor/ceiling assembly with:

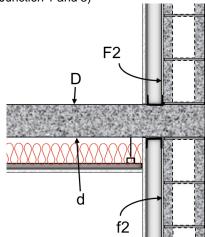
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Ceiling lining: 16 mm gypsum board⁴ fastened to hat-channels⁷ supported on cross-channels hung on wires, cavity of 150 mm between concrete and ceiling, with 150 mm absorptive material³

<u>Junction 1, 3 or 4: Cross-junction of separating floor / flanking wall with:</u>

- Rigid mortared cross-junction with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ in inter-stud cavities


Junction 2: T-Junction of separating floor / flanking wall with:

- Rigid mortared T-junctions with concrete block wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c. with no absorptive material³ in inter-stud cavities


Acoustical Parameters:

For 190 mm concrete block walls:		
Mass/unit area (kg/m²) =	238	(Junctions 1&3)
	238	(Junctions 2&4)
For 150 mm concrete floor:		
Mass/unit area (kg/m²) =	345	
Separating partition area (m ²) =	20	
Junction 1 & 3 length (m) =	5.0	
Junction 2 & 4 length (m) =	4.0	
10*log(S_Partition/I_junction 1&3) =	6.0	
10*log(S_Partition/l_junction 2&4) =	7.0	

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 1 and 3)

T-Junction of separating floor of 150 mm thick concrete with 190 mm concrete block wall. (Side view of Junction 2. Junction 4 has same lining details, but cross-junction)

			Kij [dB]			
Junction		Mass ratio for Ff	Path Ff Path Fo		Path Df	Reference
1	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3
2	Rigid T-junction	1.45	8.1	5.8	5.8	ISO 15712-1, Eq. E.4
3	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3
4	Rigid cross-junction	1.45	11.6	8.8	8.8	ISO 15712-1, Eq. E.3

	ISO Symbol	Reference	STC or ASTC	STC or AST
Separating Partition	io Cymine:	1,0,0,0,0,0	0.00.20.0	0.00.7.0
Laboratory STC for Dd	R_s,w	RR-334, CON150, TLF-15-045	53	
ΔSTC change by Lining on D	ΔR D,w	No lining	0	
ΔSTC change by Lining on d	ΔR d,w	RR-334, ΔTL-CON150-C01, SUS150 GFB150 G16	19	
Direct STC in-situ	R Dd,w		1AX(0,19) + MIN(0,19)/2 =	72
			(=) =	
Junction 1: Separating Floor	/Wall			
Flanking Element F1:				
Laboratory STC for F1	R_F1,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_F1,w	RR-334, ΔTL-BLK(NW)-61, SS65_G13	2	
Flanking Element f1:				
Laboratory STC for f1	R_f1,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	$\Delta R_f1,w$	RR-334, ΔTL-BLK(NW)-61, SS65_G13	2	
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3 49/2 + 49/2 + MAX(2,2) + MIN(2,2)/2 + 11.6 + 6 =	70
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(2,19) + MIN(2,19)/2 + 8.8 + 6 =	86
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,	2) + MIN(0,2)/2 + 8.8 + 6 =	68
Junction 1: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^	-7 + 10^- 8.6 + 10^- 6.8) =	(
Junction 2: Separating Floor	/Wall			
Flanking Element F2:		22.22.11		
Laboratory STC for F2	R_F2,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_F2,w	RR-334, ΔTL-BLK(NW)-61, SS65_G13	2	
Flanking Element f2:				
Laboratory STC for f2	R_f2,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_f2,w	RR-334, ΔTL-BLK(NW)-61, SS65_G13	2	
Flanking STC for path Ff	R_ Ff,w		2) + MIN(2,2)/2 + 8.1 + 7 =	
Flanking STC for path Fd	R_ Fd,w) + MIN(2,19)/2 + 5.8 + 7 =	
Flanking STC for path Df	R_ Df,w		2) + MIN(0,2)/2 + 5.8 + 7 =	
Junction 2: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-6	.7 + 10^- 8.4 + 10^- 6.6) =	(
Junction 3: Separating Floor	/Wall			
Flanking Element F3:	, wan			
Laboratory STC for F3	R F3,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR F3,w	RR-334, ΔTL-BLK(NW)-61, SS65 G13	2	
Flanking Element f3:	ΔΝ_1 3,00	MN 334, ATE BER(IVW) 01, 3303_013	2	
Laboratory STC for f3	R f3,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_f3,w	RR-334, ΔTL-BLK(NW)-61, SS65 G13	2	
Flanking STC for path Ff	R_ Ff,w	_) + MIN(2,2)/2 + 11.6 + 6 =	70
Flanking STC for path Fd	R Fd,w) + MIN(2,2)/2 + 11.0 + 6 =) + MIN(2,19)/2 + 8.8 + 6 =	
Flanking STC for path Df	R_Fu,w R_Df,w		2) + MIN(0,2)/2 + 8.8 + 6 =	
	/		-7 + 10 ⁰ - 8.6 + 10 ⁰ - 6.8) =	
Junction 3: Flanking STC for	ali patris	KK-351, Subset of Eq. 2.4.1 - 10 LOG10(10/10/10/10/10/10/10/10/10/10/10/10/10/1	-/ + 10 ² - 8.8 + 10 ² - 8.8) =	(
Junction 4: Separating Floor	/Wall			
Flanking Element F4:				
Laboratory STC for F4	R F4,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR F4,w	RR-334, ΔTL-BLK(NW)-61, SS65 G13	2	
Flanking Element f4:		12 ., 2.12 22	-	
Laboratory STC for f4	R_f4,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR f4,w	RR-334, ΔTL-BLK(NW)-61, SS65_G13	2	
Flanking STC for path Ff	R_ Ff,w) + MIN(2,2)/2 + 11.6 + 7 =	71
Flanking STC for path Fd	R_ Fd,w) + MIN(2,2)/2 + 11.0 + 7 =) + MIN(2,19)/2 + 8.8 + 7 =	
Flanking STC for path Df	R Df,w		2) + MIN(0,2)/2 + 8.8 + 7 =	
Junction 4: Flanking STC for			(0,2)/2 + 8.8 + 7 = (1.1 + 10^- 8.7 + 10^- 6.9) =	
Januardi T. Haliking Jie IVI	an patris	10 LOGIO(10 -7	.1 . 10 0.7 10 0.9 -	
Total Flanking STC (for all 4	iunctions)	RR-331, subset of Eq. 2.4.1 Combin	ing 12 Flanking STC values	
Total Flanking Sit Ifor all 4			TE HUMBING OF C VUILLO	
ASTC due to Direct plus Flan			ith 12 Flanking STC values	59

<u>Summary for Section 2.4: Calculation Examples for Simplified Calculation for Concrete</u> <u>and Masonry Constructions</u>

The worked examples 2.4.1 to 2.4.4 illustrate the use of the Simplified Method for calculating sound transmission between rooms in a building with concrete or hollow concrete block masonry walls and concrete floor assemblies, with or without linings added to some or all of the walls and floors.

The examples show the performance for two cases with "bare" concrete and masonry assemblies and two cases with improvements in direct and/or flanking transmission loss via specific paths due to the addition of some common types of linings using gypsum board, lightweight steel framing, and sound absorbing material. Many other lining options are possible, but evaluating the benefit of linings is not the focus of this section – rather, it provides a basis for comparing the Simplified Method with the Detailed Method presented in Sections 2.1 to 2.3.

Each of the examples has a counterpart in the detailed calculations in Sections 2.1 and 2.3, and the differences between the results (Detailed Method vs. Simplified Method) are readily compared:

Detailed Method		Simplified	<u>Metho</u> d	Comparison (Detailed vs Simplified)					
Example ASTC		Example	ASTC	Direct STC	Total Flanking STC	ASTC			
2.1.1	48	2.4.1	47	51 vs 49	52 vs 52	48 vs 47			
2.1.2	52	2.4.2	51	55 vs 53	55 vs 55	52 vs 51			
2.3.2	59	2.4.3	60	83 vs 78	59 vs 60	59 vs 60			
2.3.5	61	2.4.4	59	73 vs 72	61 vs 59	61 vs 59			

This limited set of comparisons is consistent with larger validation studies of the ISO procedure, which have shown that the Detailed Method tends to give slightly higher values of R'_w (the counterpart of ASTC) than the Simplified Method with a scatter of about \pm 1.5 dB.

The basic conclusion that can be drawn from these examples is that the Simplified and Detailed Methods predict similar ASTC values for concrete and masonry buildings – for these cases, the deviations are typically about ± 1 ASTC points. But the differences tend to increase with better linings, with the Simplified Method tending to fall farther below the Detailed Method.

A more detailed look at predictions for specific paths suggests that the balance among the direct path and the twelve flanking paths is not always well-reflected by the ad hoc corrections of the Simplified Method, especially where there are matching good linings on both path surfaces. Hence, any detailed design considerations to optimize the choice of linings should use the Detailed Method.

3. Buildings with CLT Wall and Floor Assemblies

Cross-laminated timber (CLT) construction is based on structural floor and wall assemblies fabricated by laminating timber elements together into panels with layers of alternating perpendicular orientation of the timber elements. Typical panels have three or more layers or plies, with an overall thickness ranging from about 75 mm to 250 mm.

Section 3.1 and Section 3.2 describe the calculation of the apparent sound insulation in CLT buildings using the Simplified Method and the Detailed Method of ISO 15712-1, respectively. More information on the direct and flanking sound insulation of CLT assemblies and building systems can be found in the NRC Research Report RR-335, "Apparent Sound Insulation in CLT Buildings." The report provides the data for direct and flanking sound insulation for a variety of CLT building configurations.

3.1. Simplified Calculation Procedure for CLT Constructions

ISO 15712-1 states that the application of the Simplified Method "is restricted to primarily homogeneous constructions", a requirement which is further restricted here to homogeneous lightly-damped structural assemblies. Here, "lightly-damped" implies a reverberant vibration field that can be characterized by a mean vibration level, and "homogeneous" implies similar bending stiffness in all directions across the surface. These definitions exclude wood-framed and steel-framed assemblies, but typical CLT wall or floor/ceiling assemblies are considered appropriate for the Simplified Method.

Within this restricted context, the Simplified Method has been structured to predict an ASTC rating which is slightly lower than that from the Detailed Method described in Section 3.2 of this Guide.

The Simplified Method uses two main simplifications:

- The most significant simplification is that losses to connected assemblies are dealt with "in an average way", ignoring the variation of in-situ sound transmission loss due to edge losses to adjoining wall and floor constructions. This simplification eliminates much of the calculation process of the Detailed Method. Since the internal losses of CLT assemblies are high enough that the laboratory sound transmission loss can be used as in-situ sound transmission loss as described in Section 3.2, this simplification does not lead to a loss of accuracy for CLT constructions (unlike for less-damped constructions such as concrete or concrete block).
- The procedure uses only single-number quantities as input data, namely laboratory STC ratings for the wall and floor assemblies, Δ STC values for any linings, and mean K_{ij} values for the junction attenuation. The output of the calculations using the Simplified Method is the ASTC rating.

The Simplified Method predicts the overall ASTC rating, by following the steps in Figure 3.1.1, which are also explained in more detail below the figure.

Figure 3.1.1: Steps to calculate the ASTC rating using the Simplified Method.

Step 1: Assemble the required laboratory test data for the constructions:

- Laboratory sound transmission class (STC) values based on direct sound transmission loss data measured according to ASTM E90 for the CLT floor or wall assemblies;
- \circ Measured change in sound transmission class (Δ STC) determined according to Appendix A1 for each lining that will be added to the base floor or wall assemblies.

Step 2: Determine the correction terms as follows:

- d) For linings on the separating assembly, the correction ΔSTC_{Dd} is the sum of the larger of the ΔSTC values for these two linings plus half of the smaller ΔSTC value.
- e) For each flanking path ij, the correction ΔSTC_{ij} for linings on the source surface i and/or the receiving surface j is the sum of the larger of the ΔSTC values for these two linings plus half of the smaller ΔSTC value.
- f) For each edge of the separating assembly, determine the vibration reduction indices K_{Ff} , K_{Fd} , and K_{Df} for the flanking paths between the assembly in the source room (D or F) and the attached assembly in the receiving room (f or d). Also calculate the normalization correction, which depends on the length of the flanking junction and the area of the separating assembly.
- <u>Step 3</u>: Calculate the Direct STC for direct sound transmission through the separating assembly (STC_{Dd}) according to Eq. 27 of ISO 15712-1 (and Eq. 3.1.2 in this Guide) using the laboratory STC rating for the Base CLT assembly plus any correction for linings Δ STC_{Dd} from Step 2(a).

- <u>Step 4</u>: Calculate the Flanking STC for sound transmission via each pair of connected assemblies at each edge of the separating assembly according to Eq. 28a of ISO 15712-1 (and Eq. 3.1.3 in this Guide) with the following inputs:
 - o laboratory STC rating for each Base CLT assembly plus lining correction ΔSTC_{ii} from Step 2(b);
 - \circ K_{ij} value and normalization correction for this path from Step 2(c).
- **Step 5**: Combine the sound transmission via the direct and flanking paths, using Equation 1.2 in Section 1.4 of this Guide (equivalent to Eq. 3.1.1 below and to Eq. 26 in Section 4.4 of ISO 15712-1).

Expressing the Process using Equations

The ASTC rating between two rooms (neglecting sound that is by-passing the building structure, e.g. through leaks or ducts) is estimated using the Simplified Method from the logarithmic expression of the combination of the Direct STC rating (STC_{Dd}) of the separating wall or floor assembly and the combined Flanking STC ratings of the three flanking paths for every junction at the four edges of the separating assembly. This may be expressed as:

$$ASTC = -10\log_{10}\left[10^{-0.1 \cdot STC_{Dd}} + \sum_{edge=1}^{4} \left(10^{-0.1 \cdot STC_{Ff}} + 10^{-0.1 \cdot STC_{Fd}} + 10^{-0.1 \cdot STC_{Df}}\right)\right]$$
 Eq. 3.1.1

Eq. 3.1.1 is appropriate for all types of building systems with the geometry of the Standard Scenario, and is applied here using the following expressions to calculate the transmission for each individual path:

 For the direct path, STC_{Dd} is obtained according to Eq. 4.1.2 from the laboratory STC of the Base CLT assembly and the ΔSTC changes due to linings on source "D" and/or receiving side "d" of the separating assembly. Eq. 3.1.2 is the counterpart in ASTM metrics for Eq. 30 of ISO 15712-1.

$$STC_{Dd} = STC_{lab} + \max(\Delta STC_D, \Delta STC_d) + \frac{\min(\Delta STC_D, \Delta STC_d)}{2}$$
 Eq. 3.1.2

• For each flanking path, STC_{ij} is calculated using Eq. 3.1.3 where indices i and j refer to the coupled flanking assemblies; thus, "i" can either be "D" or "F" and "j" can be "f" or "d". The geometric correction factor at the end depends on the surface area of the separating assembly (S_s) and the length of the junction between flanking and separating assemblies (I_{ij}), with I₀ = 1 m. Eq. 3.1.3 is the counterpart in ASTM metrics for Equations 28a and 31 of ISO 15712-1.

$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + \max(\Delta STC_i, \Delta STC_j) + \frac{\min(\Delta STC_i, \Delta STC_j)}{2} + 10 \cdot \log_{10} \frac{S_S}{l_0 \cdot l_{ij}}$$
 Eq. 3.1.3

EXAMPLE 3.1-H1:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- Bare CLT Floors and CLT Walls

Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT⁶ wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- · No added linings on either side

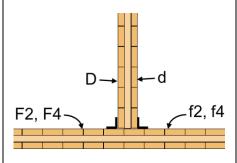
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added topping or flooring

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added linings

Junction 3: Top Junction (separating wall / ceiling) with:


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added ceiling lining

Acoustical Parameters:

Separating part	12.5			
Floor/separating wall junct	tion lengt	th (m) =	5.0	
Wall/separating wall junct	tion lengt	th (m) =	2.5	
	D-+ - Ef	D-+ - E-	Dath Df	Deference
	Path Fi	Path Fd	Path Di	<u>Reference</u>
For Junctions 1 and 3:				
Kij [dB] =	1.1	10.5	10.5	RR-335, CLT-WF-Xa-01
10*log(Sep. Area/Junction) =	4.0			or CLT-WC-Xa-01
For Junctions 2 and 4:				
Kij [dB] =	3.5	5.7	5.7	RR-335, CLT-WW-Tb-01
10*log(Sep. Area/Junction) =	7.0			
10*log(Sep. Area/Junction) = For Junctions 2 and 4: Kij [dB] =	4.0			or CLT-WC-Xa-01

F3 f3

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 175 mm thick 5-ply CLT floor and ceiling. (Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Refere	nce	STC or ∆STC	STC or A	ASTC
Separating Partition						
Laboratory STC for Dd	R_s,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on D	$\Delta R_D, w$	No lining		0		
ΔSTC change by Lining on d	ΔR_d,w	No lining		0		
If airborne flanking or bare Cl	LT	RR-335, STC(Bare CLT03) - S	TC(Base CLT03)	-3		
Direct STC in-situ	R_Dd,w	RR-335, Eq. 4.1.2	36 + MA	X(0,0) + MIN(0,0)/2 + -3 =	33	
Junction 1: Separating Wall/	Floor					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F1	ΔR F1,w	No lining		0		
Flanking Element f1:	_					
Laboratory STC for f1	R_f1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f1	ΔR_f1,w	No lining		0		
Flanking STC for path Ff 1	R_ Ff,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(0,0	0) + MIN(0,0)/2 + 1.1 + 4 =	47	
Flanking STC for path Fd 1	R Fd,w	RR-335, Eq. 4.1.3		+ MIN(0,0)/2 + 10.5 + 4 =	54	
Flanking STC for path Df_1	R Df,w	RR-335, Eq. 4.1.3		+ MIN(0,0)/2 + 10.5 + 4 =	54	
Junction 1: Flanking STC for		Subset of Eq. 4.1.1		7 + 10^- 5.4 + 10^- 5.4) =		4
Junction 2: Separating Wall/	Wall					
Flanking Element F2:						
Laboratory STC for F2	R F2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F2	ΔR_F2,w	No lining		0		
Flanking Element f2:		B		<u> </u>		
Laboratory STC for f2	R_f2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on f2	ΔR_f2,w	No lining		0		
Flanking STC for path Ff 2	R Ff,w	RR-335, Eq. 4.1.3	36/2 + 36/2 + MAX(0 (0) + MIN(0,0)/2 + 3.5 + 7 =	47	
Flanking STC for path Fd_2	R Fd,w	RR-335, Eq. 4.1.3		0) + MIN(0,0)/2 + 5.7 + 7 =		
Flanking STC for path Df_2	R_Td,W	RR-335, Eq. 4.1.3		0) + MIN(0,0)/2 + 5.7 + 7 =		
Junction 2: Flanking STC for		Subset of Eq. 4.1.1		.7 + 10^- 4.9 + 10^- 4.9) =	43	4:
Juneary 2. Hanking 510 lon	un putris	3053Ct 01 Eq. 4.1.1	10 10010(10 4.	7 10 4.5 10 4.5 1		т.
Junction 3: Separating Wall/	Ceiling					
Flanking Element F3:						
Laboratory STC for F3	R F3,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F3	ΔR_F3,w	No lining		0		
Flanking Element f3:	ZI(_1 3)**	THE IIIIII		Ü		
Laboratory STC for f3	R_f3,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f3	ΔR f3,w	No lining		0		
Flanking STC for path Ff_3	R_ Ff,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(0)	0) + MIN(0,0)/2 + 1.1 + 4 =	47	
Flanking STC for path Fd_3	R_ Fd,w	RR-335, Eq. 4.1.3		+ MIN(0,0)/2 + 10.5 + 4 =	54	
Flanking STC for path Df_3	R_Tu,w R_Df,w	RR-335, Eq. 4.1.3		+ MIN(0,0)/2 + 10.5 + 4 =		
Junction 3: Flanking STC for		Subset of Eq. 4.1.1		$\frac{1}{1000}$	34	4
function 3. Flanking 31C for	an patris	Subset of Eq. 4.1.1	- 10 LOG10(10 ⁻¹ -4.	.7 + 10 - 3.4 + 10 - 3.4 -		4
Junction 4: Separating Wall/	'Mall					
Flanking Element F4:	VVali					
Laboratory STC for F4	R F4,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F4	K_F4,W ΔR F4,W	No lining		0		
Flanking Element f4:	ΔI_F4,W	NO IIIIIII		U		
Laboratory STC for f4	R f4,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on f4	/	•		0		
Flanking STC for path Ff 4	ΔR_f4,w	No lining RR-335, Eq. 4.1.3	26/2 - 26/2 - NANY/0 (0 0) + MIN(0,0)/2 + 3.5 + 7 =	47	
• • •	R_Ff,w			, , ,,	47	
Flanking STC for path Fd_4 Flanking STC for path Df_4	R_Fd,w	RR-335, Eq. 4.1.3		0) + MIN(0,0)/2 + 5.7 + 7 =	49	
rianking SIC for path Df 4	R_ Df,w	RR-335, Eq. 4.1.3	, , ,	0) + MIN(0,0)/2 + 5.7 + 7 =	49	,
	ali paths	Subset of Eq. 4.1.1	- 10*LOG10(10^-4.	7 + 10^- 4.9 + 10^- 4.9) =		4
Junction 4: Flanking STC for						
Junction 4: Flanking STC for				40 51 11		_
		Subset of Eq. 4.1.1	Combini	ng 12 Flanking STC values:		3

EXAMPLE 3.1-H2:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- CLT Floors and CLT Walls (Same as example 3.1-H1, plus linings)

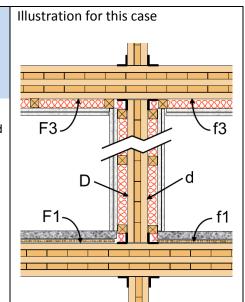
Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

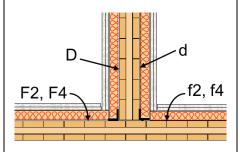
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Junction 3: Top Junction (separating wall / ceiling) with:


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Acoustical Parameters:

Separating partition area (m ²) =						
tion lengt	th (m) =	5.0				
tion lengt	th (m) =	2.5				
Path Ff	Path Fd	Path Df	Reference			
1 4 4 1 1 1	raciira	<u>racir bi</u>	nererenee			
1.1	10.5	10.5	RR-335, CLT-WF-Xa-01			
4.0			or CLT-WC-Xa-01			
Kij [dB] = 3.5 5.7						
7.0						
	Path Ff 1.1 4.0	tion length (m) = tion length (m) = Path Ff Path Fd 1.1 10.5 4.0 3.5 5.7	tion length (m) = 5.0 tion length (m) = 2.5 Path Ff Path Fd Path Df 1.1 10.5 10.5 4.0			

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 150 mm thick 5-ply CLT floor and ceiling.
(Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Refere	ence	STC or ∆STC	STC or A	STC
Separating Partition						
Laboratory STC for Dd	R_s,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on D	$\Delta R_D, w$	RR-335, ΔTL-CLT03-W03		9		
ΔSTC change by Lining on d	ΔR_d,w	RR-335, ΔTL-CLT03-W03		9		
If airborne flanking or bare Cl	LT	RR-335, STC(Bare CLT03) -	STC(Base CLT03)	N/A		
Direct STC in-situ	R_Dd,w	RR-335, Eq. 4.1.2	36 +	MAX(9,9) + MIN(9,9)/2 =	50	
Junction 1: Separating Wall/	Floor					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F1	ΔR F1,w	RR-335, ΔTL-CLT-F03		10		
Flanking Element f1:						
Laboratory STC for f1	R_f1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f1	ΔR_f1,w	RR-335, ΔTL-CLT-F03		10		
Flanking STC for path Ff 1	R_ Ff,w	· · · · · · · · · · · · · · · · · · ·	42/2 + 42/2 + MAX(10,10) -	+ MIN(10.10)/2 + 1.1 + 4 =	62	
Flanking STC for path Fd 1	R Fd,w	RR-335, Eq. 4.1.3	42/2 + 36/2 + MAX(10,9)			
Flanking STC for path Df_1	R Df,w	RR-335, Eq. 4.1.3		+ MIN(9,10)/2 + 10.5 + 4 =		
Junction 1: Flanking STC for		Subset of Eq. 4.1.1		.2 + 10^- 6.8 + 10^- 6.8) =		6
			10 10 10 10 10			
Junction 2: Separating Wall/	Wall					
Flanking Element F2:						
Laboratory STC for F2	R F2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F2	ΔR_F2,w	RR-335, ΔTL-CLT03-W03		9		
Flanking Element f2:	ΔI(_I 2, W	MN 333, MIE CE103 W03		3		
Laboratory STC for f2	R_f2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on f2	ΔR_f2,w	RR-335, ΔTL-CLT03-W03		9		
Flanking STC for path Ff 2	R Ff,w	·	26/2 + 26/2 + MAY(0.0	9) + MIN(9,9)/2 + 3.5 + 7 =	60	
• • -		RR-335, Eq. 4.1.3		, , , ,,		
Flanking STC for path Fd_2	R_ Fd,w	RR-335, Eq. 4.1.3		9) + MIN(9,9)/2 + 5.7 + 7 =		
Flanking STC for path Df_2	R_ Df,w	RR-335, Eq. 4.1.3		9) + MIN(9,9)/2 + 5.7 + 7 = <mark>-6 + 10^- 6.2 + 10^- 6.2) =</mark>		50
Junction 2: Flanking STC for	an patris	Subset of Eq. 4.1.1	- 10.10010(10/	-0 + 10 ² - 0.2 + 10 ² - 0.2 =		50
Junction 3: Separating Wall/	Cailing					
Flanking Element F3:	Cening					
Laboratory STC for F3	R F3,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F3	ΔR_F3,w	RR-335, ATL-CLT-CO1		7		
0 , 0	ΔK_F3,W	KK-333, Δ1L-CL1-CU1		,		
Flanking Element f3:	D f2	RR-335, Base CLT05-Mean		42		
Laboratory STC for f3	R_f3,w	•				
ΔSTC change by Lining on f3	ΔR_f3,w	RR-335, ΔTL-CLT-C01	12/2 . 12/2 . 14/2/7	7		
Flanking STC for path Ff_3	R_Ff,w	RR-335, Eq. 4.1.3		7) + MIN(7,7)/2 + 1.1 + 4 =		
Flanking STC for path Fd_3	R_ Fd,w	RR-335, Eq. 4.1.3) + MIN(7,9)/2 + 10.5 + 4 =		
Flanking STC for path Df_3	R_Df,w	RR-335, Eq. 4.1.3) + MIN(9,7)/2 + 10.5 + 4 =		
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1	- 10*LOG10(10^-5	.8 + 10^- 6.6 + 10^- 6.6) =		5
Junction 4: Separating Wall/	Wall					
Flanking Element F4:						
Laboratory STC for F4	R_F4,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F4	ΔR_F4,w	RR-335, ΔTL-CLT-W03		9		
Flanking Element f4:						
Laboratory STC for f4	R_f4,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on f4	ΔR_f4,w	RR-335, ΔTL-CLT-W03		9		
Flanking STC for path Ff_4	R_ Ff,w	RR-335, Eq. 4.1.3	36/2 + 36/2 + MAX(9,9	9) + MIN(9,9)/2 + 3.5 + 7 =	60	
Flanking STC for path Fd_4	R_ Fd,w	RR-335, Eq. 4.1.3		9) + MIN(9,9)/2 + 5.7 + 7 =		
Flanking STC for path Df_4	R_ Df,w	RR-335, Eq. 4.1.3		9) + MIN(9,9)/2 + 5.7 + 7 =		
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1	- 10*LOG10(10^	-6 + 10^- 6.2 + 10^- 6.2) =		5
Total Flanking STC (for all 4 j	unctions)	Subset of Eq. 4.1.1	Combini	ng 12 Flanking STC values:		5
ASTC due to Direct plus Flan		· ·				
	VING Dathe	Eq. 4.1.1	Combining Direct STC ar	M T / Flanking STC values	48	

EXAMPLE 3.1-H3:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- CLT Floors and CLT Walls (Same as example 3.1-H2, except enhanced linings)

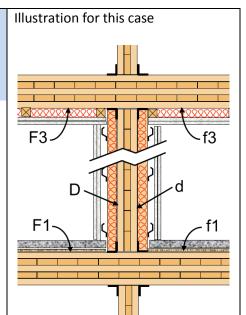
Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- Two layers of 12.7 mm gypsum board⁴ on resilient metal channels⁷ spaced 600 mm o.c., on 38 x 38 mm wood furring spaced 400 mm o.c. with absorptive material³ in cavities

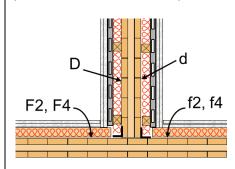
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Junction 3: Top Junction (separating wall / ceiling) with:


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Acoustical Parameters:

Separating parti	12.5				
Floor/separating wall juncti	on lengt	h (m) =	5.0		
Wall/separating wall juncti	on lengt	h (m) =	2.5		
	Path Ff Path Fd				
For Junctions 1 and 3:					
Kij [dB] =	1.1	10.5	10.5	RR-335, CLT-WF-Xa-01	
10*log(Sep. Area/Junction) =	4.0			or CLT-WC-Xa-01	
For Junctions 2 and 4:					
Kij [dB] =	3.5	5.7	5.7	RR-335, CLT-WW-Tb-01	
10*log(Sep. Area/Junction) =	10*log(Sep. Area/Junction) = 7.0				

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 150 mm thick 5-ply CLT floor and ceiling.
(Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Refe	rence	STC or ∆STC	STC or A	\STC
Separating Partition	•					
Laboratory STC for Dd	R_s,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on D	$\Delta R_D, w$	RR-335, ΔTL-CLT-W04		15		
ΔSTC change by Lining on d	ΔR d,w	RR-335, ΔTL-CLT-W04		15		
If airborne flanking or bare C	LT	RR-335, STC(Bare CLT03)	- STC(Base CLT03)	N/A		
Direct STC in-situ	R_Dd,w	RR-335, Eq. 4.1.2		((15,15) + MIN(15,15)/2 =	59	
Junction 1: Separating Wall/	['] Floor					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-335, Base CLT05-Mean	า	42		
ΔSTC change by Lining on F1	ΔR F1,w	RR-335, ΔTL-CLT-F03		10		
Flanking Element f1:	_					
Laboratory STC for f1	R f1,w	RR-335, Base CLT05-Mean	า	42		
ΔSTC change by Lining on f1	ΔR_f1,w	RR-335, ΔTL-CLT-F03		10		
Flanking STC for path Ff 1	R_ Ff,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(10,10) -	+ MIN(10.10)/2 + 1.1 + 4 =	62	
Flanking STC for path Fd 1	R Fd,w		12/2 + 36/2 + MAX(10,15) +		74	
Flanking STC for path Df_1	R Df,w		36/2 + 42/2 +MAX(15,10) +			
Junction 1: Flanking STC for		Subset of Eq. 4.1.1		.2 + 10^- 7.4 + 10^- 7.4) =		6
	un puuno	Judget of Eq. 11212	10 10 10 10 10			
Junction 2: Separating Wall/	'Wall					
Flanking Element F2:						
Laboratory STC for F2	R F2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F2	ΔR_F2,w	RR-335, ΔTL-CLT03-W03		9		
Flanking Element f2:		M 333, E12 C2103 W03		3		
Laboratory STC for f2	R_f2,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on f2	ΔR_f2,w	RR-335, ΔTL-CLT03-W03		9		
Flanking STC for path Ff 2	R Ff,w	RR-335, Eq. 4.1.3	26/2 + 26/2 + MAY(0.0	9) + MIN(9,9)/2 + 3.5 + 7 =	60	
Flanking STC for path Fd_2	R Fd,w	RR-335, Eq. 4.1.3) + MIN(9,15)/2 + 5.7 + 7 =		
Flanking STC for path Df_2	R_Fu,w R_Df,w	RR-335, Eq. 4.1.3) + MIN(15,9)/2 + 5.7 + 7 =		
Junction 2: Flanking STC for		Subset of Eq. 4.1.1		-6 + 10^- 6.8 + 10^- 6.8) =	00	5
Junetion 2. Hanking 51c lor	an patris	3003Ct 01 Eq. 4.1.1	01)010010(10	0 1 10 - 0.8 1 10 - 0.8 / -		J.
Junction 3: Separating Wall/	Ceiling					
Flanking Element F3:						
Laboratory STC for F3	R F3,w	RR-335, Base CLT05-Mear	า	42		
ΔSTC change by Lining on F3	ΔR F3,w	RR-335, ΔTL-CLT-C01		7		
Flanking Element f3:	ДК_1 3,W	KK 333, ATE CET COT		,		
Laboratory STC for f3	R_f3,w	RR-335, Base CLT05-Mear	1	42		
ΔSTC change by Lining on f3	ΔR f3,w	RR-335, ΔTL-CLT-C01		7		
Flanking STC for path Ff_3	R Ff,w	RR-335, Eq. 4.1.3	12/2 + 12/2 + NAY/7	7) + MIN(7,7)/2 + 1.1 + 4 =	58	
Flanking STC for path Fd_3	R_ Fd,w	RR-335, Eq. 4.1.3	42/2 + 36/2 + MAX(7,15)	, , , ,,	72	
Flanking STC for path Df_3	R_Td,W	RR-335, Eq. 4.1.3		+ MIN(15,7)/2 + 10.5 + 4 =		
Junction 3: Flanking STC for		Subset of Eq. 4.1.1		$\frac{10.01}{10.01}$ $\frac{10.01}{10.01}$ $\frac{10.01}{10.01}$ $\frac{10.01}{10.01}$ $\frac{10.01}{10.01}$	12	5
runction 3. Flanking 31C for	an patris	Subset of Eq. 4.1.1	- 10 [0010(103	.0 + 10"- 7.2 + 10"- 7.2 -)
Junction 4: Separating Wall/	/Wall					
Flanking Element F4:	van					
Laboratory STC for F4	R F4,w	RR-335, Base CLT03		36		
ΔSTC change by Lining on F4	K_F4,W ΔR F4,W	RR-335, ΔTL-CLT03-W03		9		
Flanking Element f4:	ΔN_F4,W	M 333, 411-CL103-W03		3		
	R f4,w	RR-335, Base CLT03		36		
Laboratory STC for f4		-		36 9		
ASTC change by Lining on f4	ΔR_f4,w	RR-335, ΔTL-CLT03-W03	20/2 - 20/2 - 2423/2			
Flanking STC for path Ff_4	R_ Ff,w	RR-335, Eq. 4.1.3		9) + MIN(9,9)/2 + 3.5 + 7 =	60	
Flanking STC for path Fd_4	R_ Fd,w	RR-335, Eq. 4.1.3) + MIN(9,15)/2 + 5.7 + 7 =	68	
	R_ Df,w	RR-335, Eq. 4.1.3 Subset of Eq. 4.1.1) + MIN(15,9)/2 + 5.7 + 7 =	68	
		SUDCAT OF EG /I 1 1	- 10*LOG10(10^	-6 + 10^- 6.8 + 10^- 6.8) =		5
	all paths	3003Ct 01 Eq. 4.1.1	,			
Flanking STC for path Df_4 Junction 4: Flanking STC for				42 F 1 2 2 1		
		Subset of Eq. 4.1.1		all 12 Flanking STC values:		5

EXAMPLE 3.1-V1:

(SIMPLIFIED METHOD)

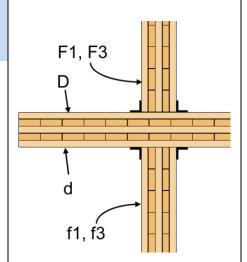
- Rooms one-above-the-other
- Bare CLT Floors and CLT Walls

Separating floor assembly with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with CLT wall assemblies at Junctions 1 and 3 and oriented so that face ply strands are perpendicular to loadbearing Junctions 1 and 3
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting wall assemblies
- No added linings (floor topping or ceiling)

Junction 1, 3 or 4: Separating floor / walls with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below cross-junctions with separating assembly that is continuous or lapped and glued across these junctions
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to the wall assemblies and to the floor assembly
- No added lining on walls


Junction 2: Separating floor / walls with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below T-junction with separating assembly that terminates at this junction
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to one side of the wall assembly and to the abutting floor assemblies
- · No added lining on walls

Acoustical Parameters:

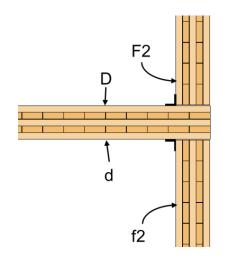

Separating partition area (m ²) =						
ion lengt	:h (m) =	5.0				
ion lengt	:h (m) =	4.0				
Path Ff	Path Fd	Path Df	<u>Reference</u>			
17.6	10.2	10.2	RR-335, CLT-FW-Xa-05			
6.0	For Junc	tions 1 and 3				
7.0	For Junc	tion 4				
Kij [dB] = 12.9 6.8						
7.0						
	Path Ff 17.6 6.0 7.0	ion length (m) = ion length (m) = Path Ff Path Fd 17.6 10.2 6.0 For Junct 7.0 For Junct 12.9 6.8	ion length (m) = 5.0 ion length (m) = 4.0 Path Ff Path Fd Path Df 17.6 10.2 10.2 6.0 For Junctions 1 at 7.0 For Junction 4			

Illustration for this case

Cross-junction of separating floor of continuous 175 mm thick 5-ply CLT with 5-ply CLT wall assemblies above and below.

(Side view of Junctions 1, 3 and 4, except orientation of floor assemblies differs for Junction 4)

T-junction of 175 mm thick 5-ply CLT floor with 5-ply CLT walls above and below.

(Side view of Junction 2)

Alboratory STC for Dd		ISO Symbol	Refere	nce	STC or ΔSTC	STC or A	ASTC
ASTC change by Uning on 0 AR D, w AR BOR (W) AR BOR	Separating Partition						
ASTC change by Uning on D AR, D, w SID Ining of a SSTC change by Uning on D AR, D, w SID Ining of a John Charles of the Company of the Compan	Laboratory STC for Dd	R_s,w	RR-335, Base CLT05-Mean		42		
No lining	ΔSTC change by Lining on D		No lining		0		
Fairborne Fair	ΔSTC change by Lining on d		No lining		0		
Part				TC(Base CLT05)	-1		
Rabing Element F1:	Direct STC in-situ	R_Dd,w			X(0,0) + MIN(0,0)/2 + -1 =	41	
Rabing Element F1:							
Laboratory STC for F1	·	/Wall					
AST C change by Lining on F1		D 51	DD 225 Date CITOS Maria		42		
Elanking STC for path F1 R, F1, w RR-335, Base CLTOS-Mean A2 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 58 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 A2/2 + MAX(0	•						
Laboratory STC for f1	0 , 0	ΔR_F1,W	No lining		0		
ASTC change by Lining on f1		5 (4	22.22.2				
Flanking STC for path Ff_1	•		·				
Flanking STC for path Fd_1	0 , 0				ŭ		
Flanking STC for path Df_1							
Subset of Eq. 4.1.1							
Flanking Element F2: R	Junction 1: Flanking STC for a	all paths	Subset of Eq. 4.1.1	- 10*LOG10(10^-6	<u>.6 + 10^- 5.8 + 10^- 5.8) =</u>		55
Flanking Element F2: R	Junction 2: Separating Floor	/Wall					
Laboratory STC for F2 AST C change by Lining on F2 AR F2,w RR-335, Base CLT05-Mean AST C change by Lining on F2 AR F2,w RR-335, Base CLT05-Mean AST C change by Lining on F2 AR F2,w RR-335, Base CLT05-Mean AST C change by Lining on F2 AR F2,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 12.9 + 7 = 62 Flanking STC for path F1_2 R F1,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 6.8 + 7 = 56 Flanking STC for path F1_2 R F3,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 6.8 + 7 = 56 Flanking STC for path F3 Laboratory STC for F3 R F3,w RR-335, Base CLT05-Mean AST C change by Lining on F3 R F3,w RR-335, Base CLT05-Mean AST C change by Lining on F3 R F3,w RR-335, Base CLT05-Mean AST C change by Lining on F3 R F4,w RR-335, Base CLT05-Mean AST C change by Lining on F3 R F4,w RR-335, Base CLT05-Mean AST C change by Lining on F3 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 6 = 66 Flanking STC for path F4_3 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 6 = 66 Flanking STC for path F4_3 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path F4_3 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path F4_3 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking Element F4: Laboratory STC for F4 AST C change by Lining on F4 AST C change by Lining on F4 AR F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path F4_4 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path F4_4 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path F4_4 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path F4_4 R F4,w RR-335, Eq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path F4_4 R F4,	Flanking Element F2:						
AST C change by Lining on F2 AR F2,w No lining Flanking Element f2: Laboratory STC for F2 AR F2,w RR-335, Base CLT05-Mean		R F2.w	RR-335, Base CLT05-Mean		42		
Flanking Element f2: Laboratory STC for f2 R_f2,w SATC change by Lining on f2 AR_f2,w No lining O			•				
ASTC change by Lining on f2 AR_ f2, w AR_ f3, w AR_ f4, w AR_ f5, cq. 4.1.3 A2/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 1.0.2 + 7 = 56 AR_ f5, w AR_ f4, w							
ASTC change by Lining on f2 A	_	R f2 w	RR-335 Base CITOS-Mean		42		
Flanking STC for path Ff_2 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 12.9 + 7 = 62 Flanking STC for path Fd_2 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 6.8 + 7 = 56 Flanking STC for path Df_2 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 6.8 + 7 = 56 Flanking STC for all paths Subset of Eq. 4.1.1 -0°LOG10(10^-6.2 + 10^- 5.6 + 10^- 5.6) = 5 Flanking STC for Bl paths Subset of Eq. 4.1.1 -10°LOG10(10^-6.2 + 10^- 5.6 + 10^- 5.6) = 5 Flanking Element F3: Laboratory STC for F3 R_F3,w RR-335, Base CLT05-Mean No lining 0 OFFI AR Pf. NO Lining 0 OFF	•		•				
Flanking STC for path Fd_2 R_Fd,w RR-335, Eq. 4.1.3	0 , 0		Ü	42/2 + 42/2 + MAY(0.0)		62	
Flanking STC for path Df_2 R_Df,w RR-335, Eq. 4.1.3	• • •						
Subset of Eq. 4.1.1				• • • • • • • • • • • • • • • • • • • •	, , ,,		
### Company STC for F3 R							52
Flanking Element F3:	Junction 2. Flanking STC for a	an pauls	Subset of Eq. 4.1.1	- 10 10010(100	.2 + 10 - 3.0 + 10 - 3.0) -		32
Laboratory STC for F3 R_F3,w RR-33,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on F3 ΔR_F3,w No lining 0 Laboratory STC for f3 R_f3,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on f3 ΔR_f3,w No lining 0 Flanking STC for path Ff_3 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 6 = 66 Flanking STC for path Fd_3 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Junction 3: Flanking STC for all paths Subset of Eq. 4.1.1 -10*LOG10(10^-6.6 + 10^-5.8 + 10^-5.8) = 5 Junction 4: Separating Floor/Wall Subset of Eq. 4.1.1 -10*LOG10(10^-6.6 + 10^-5.8 + 10^-5.8) = 5 Junction 4: Separating on F4 A_F4,w RR-335, Base CLT05-Mean 42 ASTC change by Lining on F4 A_F4,w No lining 0 Flanking Element f4: A A A Laboratory STC for f4 R_F4,w RN-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Ff_4 <	Junction 3: Separating Floor/	/Wall					
ΔSTC change by Lining on F3	Flanking Element F3:						
Flanking Element f3: Laboratory STC for f3	Laboratory STC for F3	R_F3,w	RR-335, Base CLT05-Mean		42		
Flanking Element f3: Laboratory STC for f3 R_f3,w No lining O Flanking STC for path Ff_3 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 6 = 66 Flanking STC for path Fd_3 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for all paths Subset of Eq. 4.1.1 -10*LOG10(10^-6.6 + 10^-5.8 + 10^-5.8) = 5 Flanking Element F4: Laboratory STC for F4 ASTC change by Lining on F4 AR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w No lining 0 Flanking STC for path Ff_4 R_F4,w RR-335, Base CLT05-Mean ASTC change by Lining on f4 AR_F4,w No lining 0 Flanking STC for path Ff_4 R_F6,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_F6,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	ΔSTC change by Lining on F3	ΔR F3,w	No lining		0		
Laboratory STC for f3 R_f3,w ASR-335, Base CLT05-Mean	Flanking Element f3:						
ΔSTC change by Lining on f3	Laboratory STC for f3	R f3,w	RR-335, Base CLT05-Mean		42		
Flanking STC for path Ff_3 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 6 = 66 Flanking STC for path Fd_3 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.6 + 10^-5.8 + 10^-5.8) = 5 Flanking Element F4: Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean ΔΣTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean ΔΣTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^-5.9) + 10^-5.9) = 5 Flotal Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	ΔSTC change by Lining on f3	ΔR f3,w	No lining		0		
Flanking STC for path Fd_3 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 6 = 58 Flanking STC for all paths Subset of Eq. 4.1.1 -10*LOG10(10^-6.6 + 10^- 5.8 + 10^- 5.8) = 5 Flanking Element F4: Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element F4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.1 Combining all 12 Flanking STC values: 4 Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	Flanking STC for path Ff 3			42/2 + 42/2 + MAX(0,0)	+ MIN(0,0)/2 + 17.6 + 6 =	66	
Flanking STC for path Df_3 R_Df,w RR-335, Eq. 4.1.3	Flanking STC for path Fd 3						
Junction 3: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.6 + 10^-5.8 + 10^-5.8) = 5 Junction 4: Separating Floor/Wall Flanking Element F4: Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on F4 R_F4,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on f4 R_F4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_F6,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^- 5.9 + 10^- 5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	• -						
Flanking Element F4: Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4		_ ′					55
Flanking Element F4: Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4							
Laboratory STC for F4 R_F4,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^- 5.9 + 10^- 5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values:		Wall					
ΔSTC change by Lining on F4 ΔR_F4,w No lining 0 Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^-5.9 + 10^-5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4		D F:	DD 225 D 2:727 11		4.2		
Flanking Element f4: Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean Δ STC change by Lining on f4 Δ R_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^- 5.9 + 10^- 5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values:							
Laboratory STC for f4 R_f4,w RR-335, Base CLT05-Mean 42 ΔSTC change by Lining on f4 ΔR_f4,w No lining 0 Flanking STC for path Ff_4 R_Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 -10*LOG10(10^-6.7 + 10^-5.9 + 10^-5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	0 , 0	ΔR_F4,w	No lining		0		
		_					
Flanking STC for path Ff_4 R_ Ff,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 17.6 + 7 = 67 Flanking STC for path Fd_4 R_ Fd,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flanking STC for path Df_4 R_ Df,w RR-335, Eq. 4.1.3 42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59 Flunction 4: Flanking STC for all paths Subset of Eq. 4.1.1 - 10*LOG10(10^-6.7 + 10^-5.9 + 10^-5.9) = 5 Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4			· ·				
Flanking STC for path Fd_4 R_ Fd,w RR-335, Eq. 4.1.3 $42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59$ Flanking STC for path Df_4 R_ Df,w RR-335, Eq. 4.1.3 $42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59$ Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 $-10*LOG10(10^{4}-6.7 + 10^{4}-5.9 + 10^{4}-5.9) = 5$ Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4			- 0		~		
Flanking STC for path Df_4 R_ Df,w RR-335, Eq. 4.1.3 $42/2 + 42/2 + MAX(0,0) + MIN(0,0)/2 + 10.2 + 7 = 59$ Junction 4: Flanking STC for all paths Subset of Eq. 4.1.1 $-10*LOG10(10^{4}-6.7 + 10^{4}-5.9 + 10^{4}-5.9) = 5$ Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4							
Junction 4: Flanking STC for all pathsSubset of Eq. $4.1.1$ $-10*LOG10(10^{4}-6.7+10^{4}-5.9+10^{4}-5.9)=$ 5Total Flanking STC (for all 4 junctions)Subset of Eq. $4.1.1$ Combining all 12 Flanking STC values:4	Flanking STC for path Fd_4						
Total Flanking STC (for all 4 junctions) Subset of Eq. 4.1.1 Combining all 12 Flanking STC values: 4	Flanking STC for path Df_4						
	Junction 4: Flanking STC for a	all paths	Subset of Eq. 4.1.1	- 10*LOG10(10^-6	.7 + 10^- 5.9 + 10^- 5.9) =		56
ASTC due to Direct plus Flanking Paths Fig. 4.1.1 Combining Direct STC and 12 Flanking STC values: 40	Total Flanking STC (for all 4 j	unctions)	Subset of Eq. 4.1.1	Combining	all 12 Flanking STC values:		48
	ASTC due to Direct plus Flank	king Paths	Eq. 4.1.1				

EXAMPLE 3.1-V2:

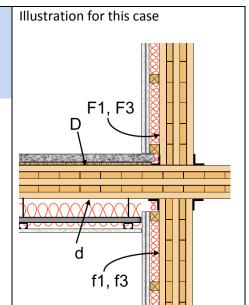
(SIMPLIFIED METHOD)

- Rooms one-above-the-other
- CLT Floors and CLT Walls (Same as example 3.1-V1, plus linings)

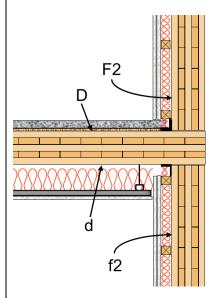
Separating floor assembly with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with CLT wall assemblies at Junctions 1 and 3 and oriented so that face ply strands are perpendicular to loadbearing Junctions 1 and 3
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting wall assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board
- Ceiling lining of 15.9 mm gypsum board⁴ fastened to hat-channels⁷ supported on cross-channels hung on wires, cavity of 150 mm between CLT and ceiling, with 140 mm absorptive material³

Junction 1, 3 or 4: (separating floor / flanking walls) with:


- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below cross-junctions with separating assembly that is continuous or lapped and glued across these junctions
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to the wall assemblies and to the floor assembly
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Junction 2: Each Side (separating floor / flanking walls) with:


- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below T-junction with separating assembly that terminates at this junction
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to one side of the wall assembly and to the abutting floor assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Acoustical Parameters:

Separating part	20.0			
Wall/separating floor junct	tion lengt	th (m) =	5.0	
Wall/separating floor junct	tion lengt	:h (m) =	4.0	
	Path Ff	Path Fd	Path Df	<u>Reference</u>
For Junctions 1 and 3 and 4:				
Kij [dB] =	17.6	10.2	10.2	RR-335, CLT-FW-Xa-05
10*log(Sep. Area/Junction) =	6.0	For Junc	tions 1 aı	nd 3
10*log(Sep. Area/Junction) =	7.0	For June	tion 4	
For Junction 2:				
Kij [dB] =	12.9	6.8	6.8	RR-335, CLT-FW-Ta-05
10*log(Sep. Area/Junction) =	7.0			

Cross-junction of separating floor of continuous 175 mm thick 5-ply CLT with 5-ply CLT walls above and below. (Side view of Junctions 1, 3 and 4, except orientation of floor assemblies differs for Junction 4)

T-junction of 175 mm thick 5-ply CLT floor with 5-ply CLT walls above and below.

(Side view of Junction 2)

	ISO Symbol	Refer	ence	STC or ΔSTC	STC or AS	тс
Separating Partition						
Laboratory STC for Dd	R_s,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on D	$\Delta R_D, w$	RR-335, ΔTL-CLT-F03		10		
ΔSTC change by Lining on d	ΔR_d,w	RR-335, ΔTL-CLT-C03		25		
If airborne flanking or bare Cl	LT	RR-335, STC(Bare CLT05) -	STC(Base CLT05)	N/A		
Direct STC in-situ	R_Dd,w	RR-335, Eq. 4.1.2	42 + MAX	((10,25) + MIN(10,25)/2 =	72	
Junction 1: Separating Floor	/Wall					
Flanking Element F1:						
Laboratory STC for F1	R_F1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F1	ΔR_F1,w	RR-335, ΔTL-CLT05-W03		8		
Flanking Element f1:	2.1 2,11	555, 2.12 62.65 1165				
Laboratory STC for f1	R_f1,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f1	ΔR f1,w	RR-335, ΔTL-CLT05-W03		8		
Flanking STC for path Ff_1	R Ff,w	RR-335, Eq. 4.1.3	12/2 + 12/2 + NAAY(8 8) + MIN(8,8)/2 + 17.6 + 6 =	78	
Flanking STC for path Fd 1	R_ Fd,w	RR-335, Eq. 4.1.3		+ MIN(8,25)/2 + 10.2 + 6 =		
Flanking STC for path Df 1	R_Fu,w R_Df,w	RR-335, Eq. 4.1.3		+ MIN(10,8)/2 + 10.2 + 6 =		
· -						7
Junction 1: Flanking STC for	an paths	Subset of Eq. 4.1.1	- 10 LOG10(10/-7	.8 + 10^- 8.7 + 10^- 7.2) =		7:
Junction 2: Separating Floor	/Wall					
Flanking Element F2:						
Laboratory STC for F2	R_F2,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F2	$\Delta R_F2,w$	RR-335, ΔTL-CLT05-W03		8		
Flanking Element f2:						
Laboratory STC for f2	R_f2,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f2	ΔR f2,w	RR-335, ΔTL-CLT05-W03		8		
Flanking STC for path Ff_2	R_ Ff,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(8,8)) + MIN(8,8)/2 + 12.9 + 7 =	74	
Flanking STC for path Fd 2	R_ Fd,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(8,25) + MIN(8,25)/2 + 6.8 + 7 =	85	
Flanking STC for path Df 2	R Df,w	RR-335, Eq. 4.1.3) + MIN(10,8)/2 + 6.8 + 7 =		
Junction 2: Flanking STC for		Subset of Eq. 4.1.1		-7.4 + 10 [^] - 8.5 + 10 [^] - 7) =		68
Junction 3: Separating Floor	/Wall					
Flanking Element F3:						
Laboratory STC for F3	R F3,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on F3	ΔR F3,w	RR-335, ΔTL-CLT05-W03		8		
Flanking Element f3:	ДК_1 3,W	MK 333, MIE CE103 W03		J		
Laboratory STC for f3	R f3,w	RR-335, Base CLT05-Mean		42		
ΔSTC change by Lining on f3	ΔR f3,w	RR-335, ΔTL-CLT05-W03		8		
Flanking STC for path Ff_3	R_ Ff,w	RR-335, Eq. 4.1.3	12/2 + 12/2 + NAAY(8 8) + MIN(8,8)/2 + 17.6 + 6 =	78	
Flanking STC for path Fd 3	R Fd,w	RR-335, Eq. 4.1.3		+ MIN(8,25)/2 + 10.2 + 6 =		
Flanking STC for path Df 3	R_Fu,w R_Df,w	RR-335, Eq. 4.1.3		+ MIN(10,8)/2 + 10.2 + 6 =		
• • -		Subset of Eq. 4.1.1				7
unction 3: Flanking STC for	ali patns	Subset of Eq. 4.1.1	- 10*LOG10(10^-/	.8 + 10^- 8.7 + 10^- 7.2) =		7
unction 4: Separating Floor	/Wall					
Flanking Element F4:						
Laboratory STC for F4	R_F4,w	RR-335, Base CLT05-Mean		42		
∆STC change by Lining on F4	ΔR_F4,w	RR-335, ΔTL-CLT05-W03		8		
lanking Element f4:						
aboratory STC for f4	R_f4,w	RR-335, Base CLT05-Mean		42		
∆STC change by Lining on f4	ΔR_f4,w	RR-335, ΔTL-CLT05-W03		8		
Flanking STC for path Ff_4	R_ Ff,w	RR-335, Eq. 4.1.3	42/2 + 42/2 + MAX(8,8)) + MIN(8,8)/2 + 17.6 + 7 =	79	
lanking STC for path Fd_4	R_Fd,w	RR-335, Eq. 4.1.3		+ MIN(8,25)/2 + 10.2 + 7 =		
lanking STC for path Df_4	R Df,w	RR-335, Eq. 4.1.3		+ MIN(10,8)/2 + 10.2 + 7 =		
unction 4: Flanking STC for		Subset of Eq. 4.1.1		.9 + 10^- 8.8 + 10^- 7.3) =		7
Total Flanking STC (for all 4 j	iunctions)	Subset of Eq. 4.1.1	Combining	all 12 Flanking STC values:		6
		<u> </u>				J
ASTC due to Direct plus Flan	king Paths	Eq. 4.1.1	Combining Direct STC ar	nd 12 Flanking STC values:	64	

Summary for Section 3.1: Calculation Examples using the Simplified Method

The worked examples (3.1-H1 to H3 and 3.1-V1 to V2) illustrate the use of the Simplified Method for calculating the sound transmission between rooms in a building with CLT floor and wall assemblies, with or without linings added to some or all of the walls and floors.

The examples show the performance for two cases with bare CLT assemblies without linings (Examples 3.1-H1 and 3.1-V1) and for three cases with improvements in direct and/or flanking sound transmission loss via specific paths due to the addition of some common types of linings using gypsum board, supporting framing, and sound absorbing material. Many other lining options are possible using the Δ STC values for linings in NRC Research Report RR-335, "Apparent Sound Insulation in CLT Buildings."

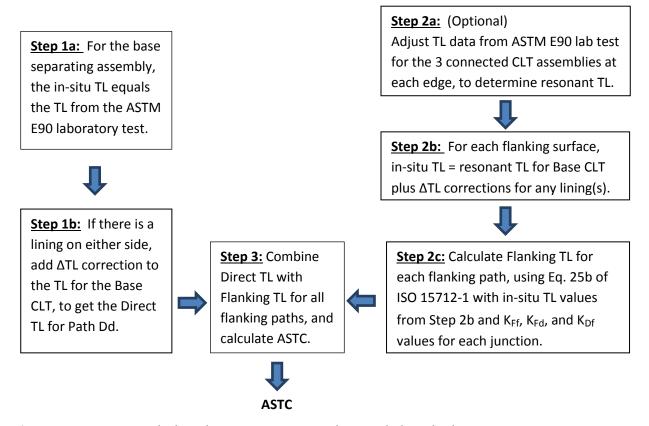
For a side-by-side pair of rooms, Examples 3.1-H2 and 3.1-H3 show typical improvements relative to Example 3.1-H1. Even with the rather light 3-ply CLT separating wall assembly, the addition of a gypsum board lining screwed directly to wood furring on all wall surfaces (Example 3.1-H2) increases the ASTC rating to 48. Inspection of the flanking path STC ratings in Example 3.1-H2 shows that direct sound transmission through the separating wall is dominant, and that flanking paths involving the surfaces of the separating wall are also significant. Improving these weak paths by adding resilient channels to the lining on the separating wall, raises the Direct STC to 59 and the overall ASTC rating to 52. Further improvement is possible but would require changes to all the flanking surfaces to raise the ASTC rating above 60.

For a vertical room pair, Example 3.1-V2 shows the improvement relative to Example 3.1-V1 when some typical linings are added. Even with rather basic wall linings with Δ STC = 8, the ASTC rating is increased to 64, and higher values could be achieved by better wall linings and/or improvements to the floor surface.

Section 3.2 presents worked examples for the same set of constructions presented in Section 3.1, but uses the Detailed Method for calculating the sound transmission between rooms. Comparison of the corresponding examples in the two sections provides a clear indication of the difference in results with the two calculation methods.

3.2. Detailed Calculation Procedure for CLT Constructions

The calculation process of the Detailed Method of ISO 15712-1 is designed for constructions involving heavy, homogeneous building elements which support reverberant vibration fields. Although CLT assemblies have lower mass and higher internal losses than the heavy concrete and masonry walls and floor assemblies considered in Chapter 2, flanking sound transmission in buildings composed of CLT assemblies can also be predicted using the Detailed Method of ISO 15712-1. However, the differences between CLT assemblies and walls or floors of bare concrete or masonry require some changes to the calculation approach and the laboratory test data required as inputs.


There are five key changes in the calculations due to properties of CLT assemblies and their junctions:

- 1. The internal loss factors for CLT assemblies are much higher than those typical of concrete and masonry (which range from 0.006 for solid concrete to 0.015 for typical concrete masonry). For CLT assemblies, measurements of the loss factors for laboratory wall and floor assemblies have established values of 0.03 or higher for most of the frequency range of interest (see Section 2.4 in NRC Research Report RR-335). This is above the threshold specified in ISO 15712-1 above which the effect of edge losses can be safely ignored, and hence there is no need to apply an absorption correction to obtain the in-situ sound transmission loss from the laboratory sound transmission loss in Equation 19 of ISO 15712-1. Thus, the direct sound transmission loss of the bare separating CLT wall or floor (and the in-situ sound transmission loss for each bare CLT flanking surface) is taken as equal to the laboratory sound transmission loss determined according to ASTM E90.
- 2. For flanking surfaces, Section 4.2.2 in ISO 15712-1 notes that only resonant sound transmission should be included. This requires a correction of the sound transmission loss measured in the laboratory below the critical frequency. For bare concrete and masonry assemblies, the critical frequency is below 125 Hz, so no correction to remove the non-resonant sound transmission is needed. For 3-ply CLT assemblies, the critical frequency is about 500 Hz, i.e. in the middle of the frequency range of interest when calculating the ASTC rating. Corrections to the laboratory sound transmission loss are therefore recommended at lower frequencies. Unfortunately, the current version of ISO 15712-1 does not specify a method to obtain the resonant sound transmission loss from the measured sound transmission loss. Hence, in the procedure below and in the worked examples, the uncorrected laboratory sound transmission loss is used as input data. This should lead to conservative results, especially for the flanking sound transmission loss of thin 3-ply CLT assemblies.
- 3. The effect of adding linings to the surfaces of CLT wall and floor assemblies can be treated with an additive correction, as for concrete and masonry assemblies (see discussion in Section 2.3 of this Guide). Because the mass of the CLT assemblies is much closer to that of typical linings than it is for the concrete and masonry assemblies in Section 2.3, the improvement due to linings is affected by the mass of the bare assembly. Data on the improvements due to linings for several common types of CLT assemblies are provided in NRC Research Report RR-335.

- 4. Because the connections provided by angle brackets at CLT junctions are not consistent with the symmetric rigid junction assumptions of Annex E of ISO 15712-1 (which are suitable for mortar-bonded junctions of concrete and masonry), the junction attenuation for a range of cases needs to be determined using measurements of junction transmission following the appropriate parts of ISO 10848. NRC Research Report RR-335 provides vibration reduction index data for a variety of floor/wall and wall/wall CLT junctions.
- 5. Because of the high internal losses in CLT assemblies, the equivalent absorption length a_{situ} is set numerically equal to the surface area of the CLT assembly when calculating the velocity level difference from measured K_{ij} values using Equation 21 of ISO 15712-1, following Section 4.2.2 of ISO 15712-1.

The input data required for the calculations include both laboratory sound transmission loss data measured according to ASTM E90 (for the Base CLT assemblies and for the change in sound transmission loss due to linings applied to these assemblies) and junction attenuation data measured according to ISO 10848.

The calculation process follows the steps illustrated in Figure 3.2.1, and explained in detail below.

Figure 3.2.1: Steps to calculate the ASTC rating using the Detailed Method.

Step 1: Determine the sound transmission loss of the separating assembly (Direct TL):

- (a) For the base separating assembly, the in-situ sound transmission loss for each frequency is equal to the sound transmission loss measured in the laboratory according to ASTM E90.
- (b) Add ΔTL corrections obtained following the procedures of ASTM E90 for changes due to added lining(s) on the source room and/or receiving room side of the separating assembly (surfaces D and d) to obtain the Direct TL.

Step 2: Determine the sound transmission loss of the flanking assemblies (Flanking TL):

- (a) For each flanking surface, use the laboratory sound transmission loss determined according to ASTM E90 as a conservative estimate of the resonant sound transmission loss. A correction to calculate the resonant sound transmission loss is recommended in ISO 15712-1, but not defined, and hence not used here. Set the equivalent absorption length for each surface numerically equal to the area of the CLT assembly, as required in Section 4.2.2 of ISO 15712-1.
- (b) Add ΔTL corrections, obtained in accordance with ASTM E90 for changes due to adding a lining on a matching CLT assembly, to calculate the in-situ sound transmission loss values.
- (c) For each flanking path, combine the values of the vibration reduction index (K_{Ff} , K_{Fd} , and K_{Df} measured following the procedures of ISO 10848) with in-situ sound transmission loss values (including the change due to linings from Step 2b) using Eq. 25b of ISO 15712-1 to obtain the Flanking TL values.

Step 3: Calculate the Apparent TL by combining Direct TL and Flanking TL:

Combine the sound transmission via the direct path and the flanking paths, using Equation 1.1 in Chapter 1 of this Guide (equivalent to Eq. 26 in Section 4.4 of ISO 15712-1), and calculate the ASTC rating using the combined sound transmission loss values as apparent transmission loss in the procedure of ASTM E413.

EXAMPLE 3.2-H1:

(DETAILED METHOD)

- Rooms side-by-side
- Bare CLT Floors and CLT Walls

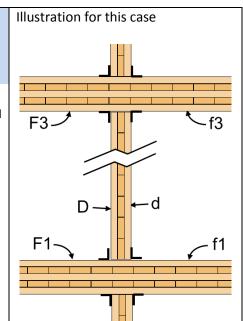
Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- · No added linings on either side

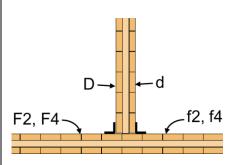
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added topping or flooring

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added linings

Junction 3: Top Junction (separating wall / ceiling) with:


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- No added ceiling lining

Acoustical Parameters:

Separating wall a	12.5	Sep	. wall in	ternal lo	ss, η_i =	>0.03		
Floor/sep. wall junc	tion (m) =	5.0		Floor internal loss, η_i =				
Wall/sep. wall junc	tion (m) =	2.5	Fla	nking wa	all int. lo	ss, η_i =	>0.03	
		Path Ff	Path Fd	Path Df	<u> </u>	Reference	<u>e</u>	
	For June	ctions 1	and 3:					
	Kij [dB] =	1.1	10.5	10.5	RR-335,	CLT-WF	-Xa-01	
10*log(Sep. Area/J	unction) =	4.0			or CLT-\	VC-Xa-0	1	
	For June	ctions 2	and 4:					
	3.5	5.7	5.7	RR-335,	CLT-WV	V-Tb-01		
10*log(Sep. Area/J	10*log(Sep. Area/Junction) =							

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 175 mm thick 5-ply CLT floor and ceiling. (Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AS
Separating Partition									
aboratory Transmission Loss	R_D,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
orrection Resonant Transmission	_ ,	N/A	0	0	0	0	0	0	
TL change by Lining on D	ΔR D	No lining	0	0	0	0	0	0	
0 , 0									
TL change by Lining on d	ΔR_d	No lining	0	0	0	0	0	0	
airborne flanking or bare CLT		RR-335, TL(Bare CLT03) - TL(Base CLT03)	-1	-3	-3	-3	-4	-1	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	25	25	28	34	42	49	33
unation 1. Consection Moll/Flags									
unction 1: Separating Wall/Floor Transmission Loss of Flanking Elemen	ntc.								
		DD 225 D CITOS	22	20	20	42		40	42
L of element F1, laboratory	R_F1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
L of element f1, laboratory	R_f1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
orrection Resonant Transmission F1		N/A	0	0	0	0	0	0	
orrection Resonant Transmission f1		N/A	0	0	0	0	0	0	
L of element F1, in-situ	R F1,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42
•	R_f1,situ		32	30	39	43	52	49	42
L of element f1, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab							42
TL change by Lining on F	ΔR_F1	No lining	0	0	0	0	0	0	
TL change by Lining on f	ΔR_f1	No lining	0	0	0	0	0	0	
unction Coupling									
fibration Reduction Index for Ff	K Ff,1	RR-335, CLT-WF-Xa-01	1.1	1.1	1.1	1.1	1.1	1.1	
		-							
ibration Reduction Index for Fd	K_Fd,1	RR-335, CLT-WF-Xa-01	10.5	10.5	10.5	10.5	10.5	10.5	
ibration Reduction Index for Df	K_Df,1	RR-335, CLT-WF-Xa-01	10.5	10.5	10.5	10.5	10.5	10.5	
lanking Transmission Loss									
lanking TL for path Ff_1	R Ff	ISO 15712-1, Eq. 25b	37	35	44	48	57	54	47
lanking TL for path Fd 1		1 1	44	44	50	55	64	64	54
• • -	R_Fd	ISO 15712-1, Eq. 25b							
lanking TL for path Df_1	R_Df	ISO 15712-1, Eq. 25b	44	44	50	55	64	64	54
unction 1: Flanking TL for all paths			36	34	42	47	56	53	
unction 2: Separating Wall/Wall									
ransmission Loss of Flanking Elemen	rtc.								
		DD 225 D CITO2	2.0	20	24	0.7	4.0	50	2.5
L of element F2, laboratory	R_F2,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
L of element f2, laboratory	R_f2,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
orrection Resonant Transmission F2		N/A	0	0	0	0	0	0	
Correction Resonant Transmission f2		N/A	0	0	0	0	0	0	
L of element F2, in-situ	R F2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
L of element f2, in-situ	R_f2,situ								30
ATL change by Lining on F	ΔR_F2	No lining	0	0	0	0	0	0	
ATL change by Lining on f	ΔR_f2	No lining	0	0	0	0	0	0	
unction Coupling									
ibration Reduction Index for Ff	K Ff,2	RR-335, CLT-WW-Tb-01	3.5	3.5	3.5	3.5	3.5	3.5	
ibration Reduction Index for Fd	K_Fd,2	RR-335, CLT-WW-Tb-01	5.7	5.7	5.7	5.7	5.7	5.7	
ibration Reduction Index for Df	K_Df,2	RR-335, CLT-WW-Tb-01	5.7	5.7	5.7	5.7	5.7	5.7	
lanking Transmission Loss									
lanking TL for path Ff_2	R Ff	ISO 15712-1, Eq. 25b	37	39	42	48	57	61	47
lanking TL for path Fd 2	R_Fd	ISO 15712-1, Eq. 25b	39	41	44	50	59	63	49
• • -		1 1							
lanking TL for path Df_2 unction 2: Flanking TL for all paths	R_ Df	ISO 15712-1, Eq. 25b	39	41 35	44 38	50	59 53	63 57	49
Anction 2. Flanking IL for all paths			33	33	30	44	JO	37	
unction 3: Separating Wall/Ceiling									
ll values the same as for Junction 1									
lanking TL for path Ff 3	R Ff	ISO 15712-1, Eq. 25b	37	35	44	48	57	54	47
lanking TL for path Fd 3			44	44	50	55	64	64	54
•	R_Fd	ISO 15712-1, Eq. 25b							
lanking TL for path Df_3	R_Df	ISO 15712-1, Eq. 25b	44	44	50	55	64	64	54
unction 3: Flanking TL for all paths			36	34	42	47	56	53	
unction 4: Separating Wall/Wall									
Il values the same as for Junction 2									
	D Lt	ISO 15712 1 Fo 25h	27	20	42	40	F 7	61	47
lanking TL for path Ff_4	R_Ff	ISO 15712-1, Eq. 25b	37	39	42	48	57	61	47
lanking TL for path Fd_4	R_ Fd	ISO 15712-1, Eq. 25b	39	41	44	50	59	63	49
lanking TL for path Df_4	R_ Df	ISO 15712-1, Eq. 25b	39	41	44	50	59	63	49
metica 4. Floridas TI for all metho			33	35	38	44	53	57	
unction 4: Flanking TL for all paths									
-									
otal Flanking (for all 4 junctions)			28	29	34	39	48	49	

EXAMPLE 3.2-H2:

(DETAILED METHOD)

- Rooms side-by-side
- CLT Floors and CLT Walls (Same as example 3.2-H1, plus linings)

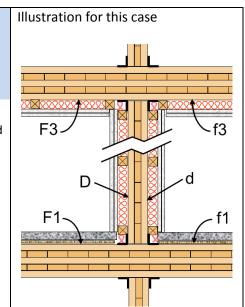
Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

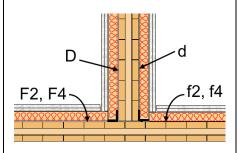
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Junction 3: Top Junction (separating wall / ceiling) with:


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Acoustical Parameters:

Separating v	wall area (r	12.5	Sep	. wall in	ternal los	ss, η_i =	>0.03	
Floor/sep. wal	l junction (m) =	5.0		>0.03			
Wall/sep. wal	l junction (m) =	2.5	Fla	nking wa	all int. los	ss, η_i =	>0.03
			Path Ff	Path Fd	Path Df	<u>F</u>	Referenc	<u>e</u>
	Fo	or Juno	tions 1	and 3:				
	Kij [d	dB] =	1.1	10.5	10.5	RR-335,	CLT-WF	-Xa-01
10*log(Sep. A	Area/Junctio	on) =	4.0			or CLT-V	VC-Xa-0	1
	Fc	or Junc	tions 2	and 4:				
	Kij [d	dB] =	3.5	5.7	5.7	RR-335,	CLT-WV	V-Tb-01
10*log(Sep. A	10*log(Sep. Area/Junction) =							

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 150 mm thick 5-ply CLT floor and ceiling.
(Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Separating Partition									ļ
Laboratory Transmission Loss	R_D,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
Correction Resonant Transmission		N/A	0	0	0	0	0	0	
ΔTL change by Lining on D	ΔR_D	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
ΔTL change by Lining on d	ΔR d	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
If airborne flanking or bare CLT		N/A	0	0	0	0	0	0	
Direct TL in-situ	R D,situ	ISO 15712-1, Eq. 24	34	42	49	61	66	70	52
Direct 12 iii Situ	11_5,510	130 137 12 1, Eq. 24						,,,	
Junction 1: Separating Wall/Floor									
Transmission Loss of Flanking Eleme	nts								
TL of element F1, laboratory	R_F1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
TL of element f1, laboratory	R f1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
Correction Resonant Transmission F1		N/A	0	0	0	0	0	0	
Correction Resonant Transmission f1		N/A	0	0	0	0	0	0	
TL of element F1, in-situ	R F1,situ	ISO 15712-1, Eq. 19, T s,situ = T s,lab	32	30	39	43	52	49	42
TL of element f1, in-situ	R f1,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42
									42
ΔTL change by Lining on F	ΔR_F1	RR-335, ΔTL-CLT-F03	4	11	8	21	29	32	
ΔTL change by Lining on f	ΔR_f1	RR-335, ΔTL-CLT-F03	4	11	8	21	29	32	
Junction Coupling									
Vibration Reduction Index for Ff	K_Ff,1	RR-335, CLT-WF-Xa-01	1.1	1.1	1.1	1.1	1.1	1.1	
Vibration Reduction Index for Fd	K_Fd,1	RR-335, CLT-WF-Xa-01	10.5	10.5	10.5	10.5	10.5	10.5	
Vibration Reduction Index for Df	K Df,1	RR-335, CLT-WF-Xa-01	10.5			10.5		10.5	
	01,1	213, 32 31	10.5	10.0	10.0	10.0	10.0	10.5	
Flanking Transmission Loss									
Flanking TL for path Ff_1	R_ Ff	ISO 15712-1, Eq. 25b	45	57	60	90	90	90	67
Flanking TL for path Fd_1	R_ Fd	ISO 15712-1, Eq. 25b	52	62	67	88	90	90	73
Flanking TL for path Df_1	R_ Df	ISO 15712-1, Eq. 25b	52	62	67	88	90	90	73
Junction 1: Flanking TL for all paths			44	55	59	84	85	85	6
Junction 2: Separating Wall/Wall Transmission Loss of Flanking Eleme	ntc								
TL of element F2, laboratory	R F2,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
			26	28	31	37		50	36
TL of element f2, laboratory	R_f2,lab	RR-335, Base CLT03					46		30
Correction Resonant Transmission F2		N/A	0	0	0	0	0	0	
Correction Resonant Transmission f2		N/A	0	0	0	0	0	0	
TL of element F2, in-situ	R_F2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
TL of element f2, in-situ	R_f2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
ΔTL change by Lining on F	ΔR_F2	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
ΔTL change by Lining on f	ΔR_f2	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
Junction Coupling									
Vibration Reduction Index for Ff	K Ff,2	RR-335, CLT-WW-Tb-01	3.5	3.5	3.5	3.5	3.5	3.5	
			5.7	5.7	5.7				
Vibration Reduction Index for Fd	K_Fd,2	RR-335, CLT-WW-Tb-01				5.7	5.7	5.7	
Vibration Reduction Index for Df	K_Df,2	RR-335, CLT-WW-Tb-01	5.7	5.7	5.7	5.7	5.7	5.7	
Flanking Transmission Loss									
Flanking TL for path Ff_2	R Ff	ISO 15712-1, Eq. 25b	45	53	60	72	77	81	63
Flanking TL for path Fd_2	R_ Fd	ISO 15712-1, Eq. 25b	47	55	62	74	79	83	65
Flanking TL for path Df 2	R_Df	ISO 15712-1, Eq. 25b	47	55	62	74	79	83	65
Junction 2: Flanking TL for all paths	וע_טו	130 13/12-1, Ly. 230	41	49	56	68	73	77	5
Junearon Z. Franking IL 101 an patris			41	47	50	00	/3	, ,	3:
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1,									
ΔTL change by Lining on F	ΔR_F3	RR-335, ΔTL-CLT-C01	2	11	5	12	11	11	
ΔTL change by Lining on f	ΔR_f3	RR-335, ΔTL-CLT-C01	2	11	5	12	11	11	
Flanking Transmission Loss									
Flanking TL for path Ff 3	R_ Ff	ISO 15712-1, Eq. 25b	41	57	54	72	79	76	62
Flanking TL for path Fd 3	R_ Fd	ISO 15712-1, Eq. 25b	50	62	64	79	85	85	70
Flanking TL for path Df_3		ISO 15712-1, Eq. 25b	50	62	64	79	85	85	70
Junction 3: Flanking TL for all paths	R_ Df	130 13712-1, Lq. 230	40	55	53	71	77	75	6
Junction 5: Flanking 1L for all paths			40	55	55	/1	//	/5	6
Junction 4: Separating Wall/Wall									
All values the same as for Junction 2									
Flanking TL for path Ff_4	R_ Ff	ISO 15712-1, Eq. 25b	45	53	60	72	77	81	63
Flanking TL for path Fd_4	R_ Fd	ISO 15712-1, Eq. 25b	47	55	62	74	79	83	65
Flanking TL for path Df_4	R Df	ISO 15712-1, Eq. 25b	47	55	62	74	79	83	65
Junction 4: Flanking TL for all paths	1 51	10.12 1, 24. 200	41	49	56	68	73	77	5
			-	_			_		
			35	4.5	FΩ	64	70	72	5
Total Flanking (for all 4 junctions)			33	45	50	04	70	72	J.

EXAMPLE 3.2-H3:

(DETAILED METHOD)

- Rooms side-by-side
- CLT Floors and CLT Walls (Same as example 3.2-H2, except enhanced linings)

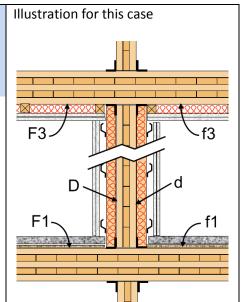
Separating wall assembly (loadbearing) with:

- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², oriented so that face ply strands are vertical
- Two layers of 12.7 mm gypsum board⁴ on resilient metal channels⁷ spaced 600 mm o.c., on 38 x 38 mm wood furring spaced 400 mm o.c. with absorptive material³ in cavities

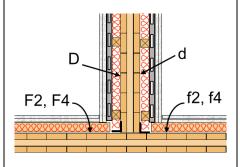
Junction 1: Bottom Junction (separating wall / floor) with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board

Junction 2 or 4: Each Side (separating wall / abutting side wall) with:


- 3-ply 78 mm thick CLT wall assembly with mass 42.4 kg/m², continuous through T-junction with separating assembly and oriented so that face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 600 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

<u>Junction 3: Top Junction (separating wall / ceiling) with:</u>


- 5-ply 175 mm thick CLT ceiling assembly with mass 92.1 kg/m², continuous through cross-junction with separating assembly and oriented so that face ply strands are perpendicular to the junction
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities

Acoustical Parameters:

Separating v	vall area (m²) =	12.5	Sep	>0.03			
Floor/sep. wal	l junction (m) =	5.0		>0.03			
Wall/sep. wal	l junction (m) =	2.5	Fla	nking wa	all int. lo	ss, η_i =	>0.03
		Path Ff	Path Fd	Path Df	<u> </u>	<u>e</u>	
	For June	ctions 1	and 3:				
	Kij [dB] =	1.1	10.5	10.5	RR-335,	, CLT-WF	-Xa-01
10*log(Sep. A	rea/Junction) =	4.0			or CLT-\	NC-Xa-0	1
	For June	ctions 2	and 4:				
	Kij [dB] =	3.5	5.7	5.7	RR-335	, CLT-W	V-Tb-01
10*log(Sep. A	rea/Junction) =	7.0					

Cross-junctions of 78 mm thick 3-ply CLT separating wall with 150 mm thick 5-ply CLT floor and ceiling.
(Side view of Junctions 1 and 3)

T-junction of separating wall with side wall, both of 78 mm thick 3-ply CLT. (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AST
Separating Partition									
Laboratory Transmission Loss	R_D,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
Correction Resonant Transmission		N/A	0	0	0	0	0	0	
ΔTL change by Lining on D	ΔR D	RR-335, ΔTL-CLT-W04	6	17	20	24	20	22	
ΔTL change by Lining on d	ΔR d	RR-335, ΔTL-CLT-W04	6	17	20	24	20	22	
If airborne flanking or bare CLT	u	N/A	0	0	0	0	0	0	
Direct TL in-situ	R D,situ	ISO 15712-1, Eq. 24	38	62	71	85	86	90	62
Direct IL III-situ	N_D,Situ	130 137 12-1, Eq. 24	30	02	7.1	65	80	30	UZ
Junction 1: Separating Wall/Floor									
Transmission Loss of Flanking Eleme	nts								
TL of element F1, laboratory	R F1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
TL of element f1, laboratory	R f1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42
Correction Resonant Transmission F1	,	N/A	0	0	0	0	0	0	
Correction Resonant Transmission f1		N/A	0	0	0	0	0	0	
	D 51 -it.			30				49	42
TL of element F1, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32		39	43	52		
TL of element f1, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42
ΔTL change by Lining on F	ΔR_F1	RR-335, ΔTL-CLT-F03	4	11	8	21	29	32	
ΔTL change by Lining on f	ΔR_f1	RR-335, ΔTL-CLT-F03	4	11	8	21	29	32	
Junction Coupling									
Vibration Reduction Index for Ff	K Ff,1	RR-335, CLT-WF-Xa-01	1.1	1.1	1.1	1.1	1.1	1.1	
Vibration Reduction Index for Fd	K_Fd,1	RR-335, CLT-WF-Xa-01	10.5	10.5	10.5	10.5	10.5	10.5	
Vibration Reduction Index for Df	K_Df,1	RR-335, CLT-WF-Xa-01	10.5	10.5	10.5	10.5	10.5	10.5	
Flanking Transmission Loss									
Flanking TL for path Ff_1	R_Ff	ISO 15712-1, Eq. 25b	45	57	60	90	90	90	67
Flanking TL for path Fd_1	R Fd	ISO 15712-1, Eq. 25b	54	72	78	90	90	90	78
Flanking TL for path Df_1	R_Df	ISO 15712-1, Eq. 25b	54	72	78	90	90	90	78
Junction 1: Flanking TL for all paths			44	57	60	85	85	85	67
Junction 2: Separating Wall/Wall									
Transmission Loss of Flanking Eleme	nts								
TL of element F2, laboratory	R F2,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
TL of element f2, laboratory	R f2,lab	RR-335, Base CLT03	26	28	31	37	46	50	36
Correction Resonant Transmission F2	11_12,100	N/A	0	0	0	0	0	0	30
Correction Resonant Transmission f2		N/A	0	0	0	0	0	0	
TL of element F2, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
TL of element f2, in-situ	R_f2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	26	28	31	37	46	50	36
ΔTL change by Lining on F	ΔR_F2	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
ΔTL change by Lining on f	ΔR_f2	RR-335, ΔTL-CLT03-W03	4	7	9	12	10	10	
Junction Coupling									
Vibration Reduction Index for Ff	K Ff,2	RR-335, CLT-WW-Tb-01	3.5	3.5	3.5	3.5	3.5	3.5	
			5.7	5.7					
Vibration Reduction Index for Fd	K_Fd,2	RR-335, CLT-WW-Tb-01			5.7	5.7	5.7	5.7	
Vibration Reduction Index for Df	K_Df,2	RR-335, CLT-WW-Tb-01	5.7	5.7	5.7	5.7	5.7	5.7	
Flanking Transmission Loss									
Flanking TL for path Ff_2	R Ff	ISO 15712-1, Eq. 25b	45	53	60	72	77	81	63
Flanking TL for path Fd_2	R_ Fd	ISO 15712-1, Eq. 25b	49	65	73	86	89	90	73
Flanking TL for path Df_2	R_Df	ISO 15712-1, Eq. 25b	49	65	73	86	89	90	73
Junction 2: Flanking TL for all paths	וע_טו	130 13/12-1, Lq. 230	49	52	60	72	76	80	63
annung it ioi an patils			72	32		,,,	, 3		0.
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1,									
ΔTL change by Lining on F	ΔR_F3	RR-335, ΔTL-CLT-C01	2	11	5	12	11	11	
ΔTL change by Lining on f	ΔR_f3	RR-335, ΔTL-CLT-C01	2	11	5	12	11	11	
Flanking Transmission Loss									
Flanking TL for path Ff 3	R_Ff	ISO 15712-1, Eq. 25b	41	57	54	72	79	76	62
Flanking TL for path Fd_3	R_ Fd	ISO 15712-1, Eq. 25b	52	72	75	90	90	90	76
Flanking TL for path Df_3	R_Df	ISO 15712-1, Eq. 25b	52	72	75	90	90	90	76
Junction 3: Flanking TL for all paths			40	57	54	72	78	76	6
Junction 4: Separating Wall/Wall									
All values the same as for Junction 2									
Flanking TL for path Ff_4	R_Ff	ISO 15712-1, Eq. 25b	45	53	60	72	77	81	63
Flanking TL for path Fd_4	R_ Fd	ISO 15712-1, Eq. 25b	49	65	73	86	89	90	73
Flanking TL for path Df 4									
· -	R_Df	ISO 15712-1, Eq. 25b	49	65	73	86	89	90	73
Junction 4: Flanking TL for all paths			42	52	60	72	76	80	6:
Total Flanking (for all 4 junctions)			36	48	51	67	72	73	5
			30				_		J
ASTC due to Direct plus Flanking Path		RR-335, Eq. 1.1	34	48	51	67	72		57

EXAMPLE 3.2-V1:

(DETAILED METHOD)

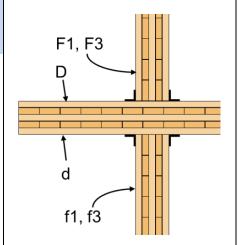
- Rooms one-above-the-other
- Bare CLT Floors and CLT Walls

Separating floor assembly with:

- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with CLT wall assemblies at Junctions 1 and 3 and oriented so that face ply strands are perpendicular to loadbearing Junctions 1 and 3
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting wall assemblies
- No added linings (floor topping or ceiling)

Junction 1, 3 or 4: Separating floor / walls with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below cross-junctions with separating assembly that is continuous or lapped and glued across these junctions
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to the wall assemblies and to the floor assembly
- No added lining on walls


Junction 2: Separating floor / walls with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below T-junction with separating assembly that terminates at this junction
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to one side of the wall assembly and to the abutting floor assemblies
- · No added lining on walls

Acoustical Parameters:

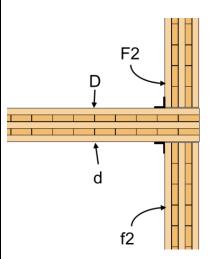

Sepa	rating fl	oor area	$(m^2) =$	20.0		Floor int	ss, η_i =	>0.03	
or/wall	junction	s 1 and 3	3 (m) =	5.0		Wall int	>0.03		
oor/wall	oor/wall junctions 2 and 4 (m) =					Wall int	ternal los	ss, η_i =	>0.03
				Path Ff	Path Fd	Path Df	<u>F</u>	Referenc	<u>e</u>
			For June	ctions 1	and 3 an	d 4:			
		K	ij [dB] =	17.6	10.2	10.2	RR-335,	CLT-FW	-Xa-05
10*lc	g(Sep. A	rea/Jun	ction) =	6.0	For June	ctions 1 a	and 3		
10*lc	g(Sep. A	rea/Jun	ction) =	7.0	For June	ction 4			
			For June	ction 2:					
	Kij [dB] =				6.8	6.8	RR-335,	CLT-FW	-Ta-05
10*lo	10*log(Sep. Area/Junction) =				For June	ction 2			

Illustration for this case

Cross-junction of separating floor of continuous 175 mm thick 5-ply CLT with 5-ply CLT wall assemblies above and below.

(Side view of Junctions 1, 3 and 4, except orientation of floor assemblies differs for Junction 4)

T-junction of 175 mm thick 5-ply CLT floor with 5-ply CLT walls above and below.

(Side view of Junction 2)

	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or A	STC
Separating Partition	_ : : ; ;									
aboratory Transmission Loss	R D,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission	II_D,Idb	N/A	0	0	0	0	0	0	72	
	4D D	•								
ATL change by Lining on D	ΔR_D	No lining	0	0	0	0	0	0		
ATL change by Lining on d	ΔR_d	No lining	0	0	0	0	0	0		
f airborne flanking or bare CLT		RR-335, TL(Bare CLT05) - TL(Base CLT05)	0	-1	-3	1	-1	-3		
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	32	29	36	44	51	46	40	
unction 1: Separating Floor/Wall										
Transmission Loss of Flanking Eleme										
L of element F1, laboratory	R_F1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
L of element f1, laboratory	R_f1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission F1		N/A	0	0	0	0	0	0		
Correction Resonant Transmission f1		N/A	0	0	0	0	0	0		
L of element F1, in-situ	R F1,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
L of element f1, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
ATL change by Lining on F	ΔR_F1	No lining	0	0	0	0	0	0		
ATL change by Lining on f	ΔR f1	No lining	0	0	0	0	0	0		
TIL Change by Linning Oil i	ΔN_11	NO IIIIIIIg	U	U	U	U	U	U		
unction Coupling										
/ibration Reduction Index for Ff	K Ff,1	RR-335, CLT-FW-Xa-05	17.6	17.6	17.6	17.6	17.6	17.6		
/ibration Reduction Index for Fd	K_Fd,1	RR-335, CLT-FW-Xa-05	10.2			10.2				
/ibration Reduction Index for Df	K_TU,1 K Df,1	RR-335, CLT-FW-Xa-05	10.2			10.2				
initiation neduction muex for DI	K_01,1	III 333, CEI-I W-Ad-U3	10.2	10.2	10.2	10.2	10.2	10.2		
lanking Transmission Loss										
Flanking TL for path Ff_1	R_Ff	ISO 15712-1, Eq. 25b	56	54	63	67	76	73	66	
lanking TL for path Fd_1	R_ Fd	ISO 15712-1, Eq. 25b	48	46	55	59	68	65	58	
lanking TL for path Df_1	R_Df	ISO 15712-1, Eq. 25b	48	46	55	59	68	65	58	
unction 1: Flanking TL for all paths	II_DI	130 13712-1, Eq. 230	45	43	52	56	65	62	30	5!
unction 1: Flanking 11 for all paths			45	45	52	50	05	02		Э.
unction 2: Separating Floor/Wall										
ransmission Loss of Flanking Elemei	atc									
		DD 225 D CITOS	22	20	20	42		40	42	
L of element F2, laboratory	R_F2,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
L of element f2, laboratory	R_f2,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission F2		N/A	0	0	0	0	0	0		
Correction Resonant Transmission f2		N/A	0	0	0	0	0	0		
TL of element F2, in-situ	R_F2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
TL of element f2, in-situ	R_f2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
ATL change by Lining on F	ΔR_F2	No lining	0	0	0	0	0	0		
ATL change by Lining on f	ΔR_f2	No lining	0	0	0	0	0	0		
unction Coupling										
/ibration Reduction Index for Ff	K_Ff,2	RR-335, CLT-FW-Ta-05	12.9	12.9	12.9	12.9	12.9	12.9		
/ibration Reduction Index for Fd	K_Fd,2	RR-335, CLT-FW-Ta-05	6.8	6.8	6.8	6.8	6.8	6.8		
ibration Reduction Index for Df	K_Df,2	RR-335, CLT-FW-Ta-05	6.8	6.8	6.8	6.8	6.8	6.8		
Jankina Transcritecters t										
Flanking Transmission Loss										
lanking TL for path Ff_2	R_Ff	ISO 15712-1, Eq. 25b	52	50	59	63	72	69	62	
lanking TL for path Fd_2	R_ Fd	ISO 15712-1, Eq. 25b	46	44	53	57	66	63	56	
lanking TL for path Df_2	R_ Df	ISO 15712-1, Eq. 25b	46	44	53	57	66	63	56	
unction 2: Flanking TL for all paths			42	40	49	53	62	59		5
unction 3: Separating Floor/Wall										
All values the same as for Junction 1										
lanking TL for path Ff 3	R_Ff	ISO 15712-1, Eq. 25b	56	54	63	67	76	73	66	
lanking TL for path Fd_3	R_Fd	ISO 15712-1, Eq. 25b	48	46	55	59	68	65	58	
lanking TL for path Df 3	R_Df	ISO 15712-1, Eq. 25b	48	46	55	59	68	65	58	
unction 3: Flanking TL for all paths	IV_ DI	130 13/12-1, Lq. 230	45	43	52	56	65	62	36	5.
unction 3. Flanking IL for all paths			43	43	32	30	UD	02		Э.
unction 4: Separating Floor/Wall										
. •	ements are th	e same as for Junction 2, but Kij values are	the co	me as f	or lune	tion 1	and 2 /	rocc i	action)	
								_		
Flanking TL for path Ff_4	R_Ff	ISO 15712-1, Eq. 25b	57	55	64	68	77	74	67	
lanking TL for path Fd_4	R_ Fd	ISO 15712-1, Eq. 25b	49	47	56	60	69	66	59	
lanking TL for path Df_4	R_ Df	ISO 15712-1, Eq. 25b	49	47	56	60	69	66	59	
unction 4: Flanking TL for all paths			46	44	53	57	66	63		5
otal Flanking (for all 4 junctions)			38	36	45	49	58	55		4

EXAMPLE 3.2-V2:

(DETAILED METHOD)

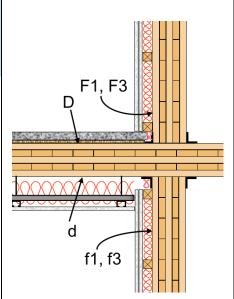
- Rooms one-above-the-other
- CLT Floors and CLT Walls (Same as example 3.2-V1, plus linings)

Separating floor assembly with:

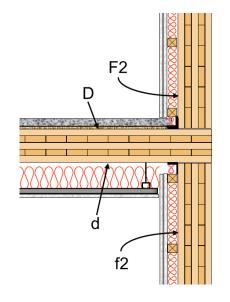
- 5-ply 175 mm thick CLT floor assembly with mass 92.1 kg/m², continuous through cross-junction with CLT wall assemblies at Junctions 1 and 3 and oriented so that face ply strands are perpendicular to loadbearing Junctions 1 and 3
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to both sides of the separating assembly and to the abutting wall assemblies
- Floor lining of 38 mm concrete over 13 mm wood fiber board
- Ceiling lining of 15.9 mm gypsum board⁴ fastened to hat-channels⁷ supported on cross-channels hung on wires, cavity of 150 mm between CLT and ceiling, with 140 mm absorptive material³

Junction 1, 3 or 4: (separating floor / flanking walls) with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below cross-junctions with separating assembly that is continuous or lapped and glued across these junctions
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to the wall assemblies and to the floor assembly
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities


Junction 2: Each Side (separating floor / flanking walls) with:

- 5-ply 175 mm thick CLT wall assembly with mass 94.1 kg/m², above and below T-junction with separating assembly that terminates at this junction
- CLT wall assembly oriented so face ply strands are vertical
- Connected with 90 mm equal leg angle brackets nailed/screwed at 300 mm o.c. to one side of the wall assembly and to the abutting floor assemblies
- Two layers of 12.7 mm gypsum board⁴ supported on 38 x 38 mm wood furring spaced 600 mm o.c., absorptive material³ in cavities


Acoustical Parameters:

Separating fl	oor area (m²) =	20.0		Floor int	ternal los	ss, η_i =	>0.03		
or/wall junction	s 1 and 3 (m) =	5.0		Wall int	>0.03				
or/wall junction	oor/wall junctions 2 and 4 (m) =			Wall int	ternal los	ss, η_i =	>0.03		
		Path Ff	Path Fd	Path Df	Referenc	<u>ce</u>			
	For June	tions 1	and 3 an	d 4:	d 4:				
	Kij [dB] =	17.6	10.2	10.2	RR-335,	CLT-FW	-Xa-05		
10*log(Sep. A	rea/Junction) =	6.0	For June	ctions 1	and 3				
10*log(Sep. A	rea/Junction) =	7.0	For June	ction 4					
	For June	tion 2:							
	Kij [dB] =	12.9	6.8	6.8	RR-335,	CLT-FW	-Ta-05		
10*log(Sep. A	10*log(Sep. Area/Junction) =			ction 2					

Illustration for this case

Cross-junction of separating floor of continuous 175mm thick 5-ply CLT with 5-ply CLT walls above and below. (Side view of Junctions 1, 3 and 4, except orientation of floor assemblies differs for Junction 4)

T-junction of 175mm thick 5-ply CLT floor with 5-ply CLT walls above and below.

(Side view of Junction 2)

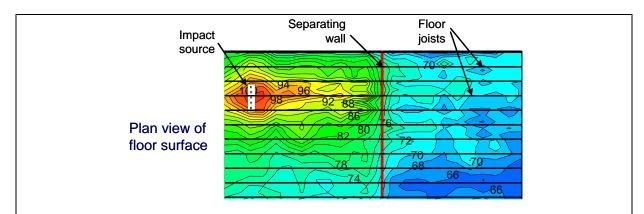
	ISO Symbol	Reference	125	250	500	1000	2000	4000	STC or AS	STO
Separating Partition		11010101100								
Laboratory Transmission Loss	R D,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission	N_D,lab	N/A	0	0	0	0	0	0	42	
	40.0	· ·								
ΔTL change by Lining on D	ΔR_D	RR-335, ΔTL-CLT-F03	4	11	8	21	29	32		
ΔTL change by Lining on d	ΔR_d	RR-335, ΔTL-CLT-C03	15	25	30	36	34	30		
If airborne flanking or bare CLT		N/A	0	0	0	0	0	0		
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	51	66	77	90	90	90	75	
Junction 1: Separating Floor/Wall										
Transmission Loss of Flanking Eleme	nts									
TL of element F1, laboratory	R F1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
TL of element f1, laboratory	R_f1,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission F1		N/A	0	0	0	0	0	0		
Correction Resonant Transmission f1		N/A	0	0	0	0	0	0		
TL of element F1, in-situ	D E1 citu	-	32	30	39	43	52	49	42	
		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab								
TL of element f1, in-situ		ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
ATL change by Lining on F	ΔR_F1	RR-335, ΔTL-CLT05-W03	3	8	5	11	10	11		
ATL change by Lining on f	ΔR_f1	RR-335, ΔTL-CLT05-W03	3	8	5	11	10	11		
unation Counling										
unction Coupling	N Et 1	DD 225 CIT FW V- 05	47.0	17.0	17.0	17.0	17.0	17.0		
/ibration Reduction Index for Ff	K_Ff,1	RR-335, CLT-FW-Xa-05	17.6					17.6		
/ibration Reduction Index for Fd	K_Fd,1	RR-335, CLT-FW-Xa-05	10.2			10.2				
Vibration Reduction Index for Df	K_Df,1	RR-335, CLT-FW-Xa-05	10.2	10.2	10.2	10.2	10.2	10.2		
Inchina Transmissis 1										
Flanking Transmission Loss										
Flanking TL for path Ff_1	R_ Ff	ISO 15712-1, Eq. 25b	62	70	73	89	90	90	81	
Flanking TL for path Fd_1	R_ Fd	ISO 15712-1, Eq. 25b	66	79	90	90	90	90	88	
Flanking TL for path Df_1	R_ Df	ISO 15712-1, Eq. 25b	55	65	68	90	90	90	76	
lunction 1: Flanking TL for all paths			54	64	67	85	85	85		7.
Junction 2: Separating Floor/Wall										
Transmission Loss of Flanking Eleme	nts									
TL of element F2, laboratory		DD 225 Daga CLTOF	32	20	39	42	52	49	42	
	R_F2,lab	RR-335, Base CLT05		30		43			-	
TL of element f2, laboratory	R_f2,lab	RR-335, Base CLT05	32	30	39	43	52	49	42	
Correction Resonant Transmission F2		N/A	0	0	0	0	0	0		
Correction Resonant Transmission f2		N/A	0	0	0	0	0	0		
ΓL of element F2, in-situ	R_F2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
ΓL of element f2, in-situ	R_f2,situ	ISO 15712-1, Eq. 19, T_s,situ = T_s,lab	32	30	39	43	52	49	42	
∆TL change by Lining on F	ΔR_F2	RR-335, ΔTL-CLT05-W03	3	8	5	11	10	11		
ATL change by Lining on f	ΔR f2	RR-335, ΔTL-CLT05-W03	3	8	5	11	10	11		
		555, 5			_					
lunction Coupling										
/ibration Reduction Index for Ff	K Ff,2	RR-335, CLT-FW-Ta-05	12.9	12.9	12.9	12.9	12.9	12.9		
/ibration Reduction Index for Fd	K Fd,2	RR-335, CLT-FW-Ta-05	6.8	6.8	6.8	6.8	6.8	6.8		
/ibration Reduction Index for Df	K_10,2	RR-335, CLT-FW-Ta-05	6.8	6.8	6.8	6.8	6.8	6.8		
	11,2	555, 521 1 14 10 05	0.0	5.0	5.0	0.0	5.0	0.0		
lanking Transmission Loss										
Flanking TL for path Ff 2	R Ff	ISO 15712-1, Eq. 25b	58	66	69	85	90	90	77	
Flanking TL for path Fd_2	R_ Fd	ISO 15712-1, Eq. 25b	64	77	88	90	90	90	87	
		-	53	63	66	89	90	90	74	
lanking TL for path Df_2	R_ Df	ISO 15712-1, Eq. 25b							/4	7
unction 2: Flanking TL for all paths			52	61	64	83	85	85		7
unction 3: Separating Floor/Wall										
All values the same as for Junction 1										
Flanking TL for path Ff_3	R_ Ff	ISO 15712-1, Eq. 25b	62	70	73	89	90	90	81	
lanking TL for path Fd_3	R_Fd	ISO 15712-1, Eq. 25b	66	79	90	90	90	90	88	
Flanking TL for path Df_3	R_ Df	ISO 15712-1, Eq. 25b	55	65	68	90	90	90	76	
unction 3: Flanking TL for all paths		/ · · · · ·	54	64	67	85	85	85		7.
0										
unction 4: Separating Floor/Wall										
	omonts are th	o came as for lunction 2, but Killinghise an	o the se	ma f	or lor	tion 1	0.2/5	000 !	tion)	
		e same as for Junction 2, but Kij values an								
Flanking TL for path Ff_4	R_ Ff	ISO 15712-1, Eq. 25b	63	71	74	90	90	90	82	
Flanking TL for path Fd_4	R_ Fd	ISO 15712-1, Eq. 25b	67	80	90	90	90	90	88	
Flanking TL for path Df_4	R_ Df	ISO 15712-1, Eq. 25b	56	66	69	90	90	90	77	
lunction 4: Flanking TL for all paths			55	65	68	85	85	85		7
,										
Fatal Flanking (fan all 4 innations)			47	57	60	78	79	79		6
lotal Flanking (for all 4 illnctions)										
Fotal Flanking (for all 4 junctions)										_

Summary for Section 3.2: Calculation Examples using the Detailed Method

The worked examples (3.2-H1 to H3 and 3.2-V1 to V2) illustrate the use of the Detailed Method for calculating sound transmission between rooms in a building with CLT floor and wall assemblies, with or without linings added to some or all of the walls and floors.

The examples present the calculations for the same set of scenarios used to illustrate the Simplified Method in Section 3.1.

- For the cases without linings (3.2-H1 and 3.2-V1), the detailed calculations give the same ASTC ratings as the simplified calculations. This agreement (aside from possible rounding errors of ±1) is to be expected since they simply combine the same data in slightly different order.
- For the cases with linings, the differences are larger, because the Simplified Method treats the ΔSTC improvement due to linings using a deliberately conservative approximation. In the Detailed Method, the value of ΔTL for the two linings in each transmission path are simply added to the sound transmission loss values for the base assemblies, which tends to give higher predicted values of the ASTC rating.
- In each of the cases with linings shown in these examples, the Detailed Method gives a result that is higher by 2 to 5 ASTC points than the Simplified Method. For linings with higher values of ΔSTC, the difference between the two methods would increase further.


4. Buildings with Lightweight Framed Wall and Floor Assemblies

The focus of this chapter is to present the method for predicting the apparent sound insulation between adjacent rooms in a building constructed from lightweight framed wall and floor assemblies. The prediction method uses an empirical calculation approach described in ISO 15712-1 [8] that combines laboratory sound transmission data for individual lightweight framed wall or floor separating assemblies with flanking sound transmission data for each path at their junctions with adjoining assemblies.

The transmission of structure-borne vibration in a building with lightweight framed structures (made of wood or steel members) differs markedly from that in heavy homogeneous structures of concrete or masonry. There is both good news and bad news:

- The good news: For lightweight framed assemblies, the high internal loss factors result in minimal dependence on the connection to the adjoining structures, so that laboratory sound transmission values can be used without adjustment to estimate the direct transmission through the separating assembly in the finished building.
- The bad news: The standardized method of calculating flanking sound transmission from laboratory sound transmission data for individual wall and floor assemblies combined with junction attenuation data does not yield reliable results for lightweight framed building elements, and a different approach is required. The calculation process explained below is very simple (more good news), but it requires a new type of laboratory input data.

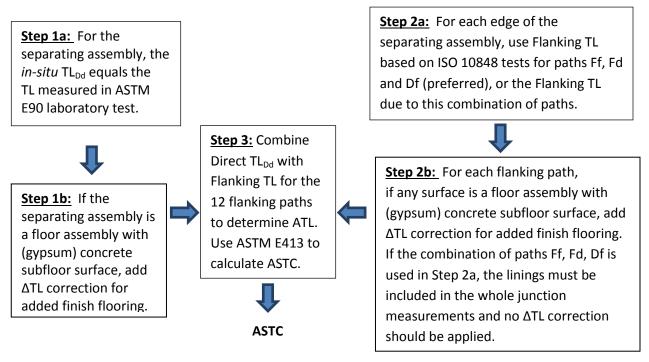
Before presenting the calculation process, some background justification seems appropriate. The characteristic transmission of structure-borne vibration can be illustrated by considering the vibration levels in a framed floor assembly excited by a localized impact source, as presented in Figure 4.1.

Figure 4.1: Variation across the floor surface of the vibration levels (2 kHz band) due to an impact source. The floor construction has a 19 mm plywood subfloor on wood joists that are perpendicular to the separating wall between the two side-by-side rooms.

Clearly, the lightweight framed floor system is both highly damped and anisotropic – the vibration field exhibits a strong gradient away from the source due to the high internal losses, and the gradient is different in the directions parallel and perpendicular to the joists, unlike the uniform flow of energy in all directions that would be expected in a homogeneous concrete assembly. As a result, the direction of transmission relative to the framing members becomes an additional parameter needed for accurate prediction, and the transmission of sound power to or from a flanking surface is not simply proportional to its area. In general, this vibration field is a poor approximation of a diffuse field, which limits applicability of the energy flow model of ISO 15712-1 (which assumes homogeneous and lightly-damped assemblies that can be sensibly represented by an average vibration level).

Because of the attenuation across a flanking assembly, especially at higher frequencies, the assumption that sound power due to flanking is proportional to the flanking area (implicit in Section 4.1 of ISO 15712-1) is not appropriate. The equations in Section 4.1 of this Guide provide more appropriate normalization for highly-damped assemblies such as lightweight wood- or steel-framed walls and floors.

Not only do vibration levels vary strongly across the surface of the structural assembly, but also typical changes to the surfaces (such as changing the gypsum board layers and/or their attachment to the walls and ceiling) *change* the attenuation across the structural assembly, with different changes in the three orthogonal directions pertinent to direct and flanking sound transmission. The change provided by a layer added to a surface depends on the weight and stiffness of the surface to which it is added, and if the added material is also anisotropic (for example, strip hardwood over a plywood subfloor) then its effect depends on its orientation relative to the supporting framing.


Hence, the concept of a simple correction to account for adding a given lining is not generally applicable for lightweight framed assemblies. However, the procedures presented in this Guide do allow using ΔTL and ΔSTC corrections for floor finishes on a concrete or gypsum concrete subfloor, which is more reverberant.

4.1. Calculation Procedure for Lightweight Framed Walls and Floors

The calculation process for lightweight framed walls and floors requires specific laboratory test data, and can be performed using frequency band data or single-number ratings, following the steps illustrated in Figure 4.1.1.

The Detailed Method of ISO 15712-1 combines the set of one-third octave band sound transmission loss data for the direct path and all flanking paths using Eq. 1.4 in this Guide to arrive at values of the apparent sound transmission loss (ATL). From the apparent sound transmission loss, the ASTC rating is calculated using the procedure of ASTM E413 [3].

For lightweight framed assemblies, using the Simplified Method presented below (and using Eq. 1.5 of this Guide rather than Eq. 1.4) should provide essentially the same answer as the Detailed Method (within ±1 ASTC points, with no bias). Hence the Simplified Method is used for the following more complete description of the calculation procedure including equations, and for the examples in Sections 4.2 and 4.3. See Chapter 1 of this Guide for a discussion of the two methods.

Figure 4.1.1: Steps to calculate the ASTC rating for wood- or steel-framed constructions using transmission loss data. For the Simplified Method with STC ratings, substitute "STC" for "TL".

- **Step 1:** (a) For the separating assembly, the in-situ STC_{Dd} is equal to the STC rating determined in the laboratory according to ASTM E90.
 - (b) If the separating assembly is a floor assembly with (gypsum) concrete subfloor surface, add the Δ STC correction for added floor finishes to the STC rating for the bare floor to obtain STC_{Dd}.
- **Step 2:** (a) Determine the Flanking STC values (STC_{Ff}, STC_{Fd}, STC_{Df}) for the 3 flanking paths Ff, Fd and Df at each edge of the separating assembly with the following adjustments:
 - Values measured following the procedures of ISO 10848 must be re-normalized to the scenario dimensions using Equation 4.1.3.
 - o If only the Flanking STC rating for the combined transmission by the set of 3 paths at a junction is available, that data may be used.
 - (b) If one (or both) surface(s) for a flanking path is a floor assembly with (gypsum) concrete subfloor surface, add the Δ STC correction for any added floor finish:
 - \circ If one surface in a flanking path is a floor assembly with (gypsum) concrete subfloor surface, add the Δ STC for the added finish flooring to the value for the bare floor to obtain the Flanking STC rating.
 - o If both surfaces are floor assemblies with (gypsum) concrete subfloor surface, the correction equals the larger of the two lining ΔSTC corrections plus half of the lesser one.
- **Step 3:** Combine the transmission via the direct path and the 12 flanking paths using Equation 4.1.1 (equivalent to Eq. 26 in Section 4.4 of ISO 15712-1), with the following adaptations:
 - o If the Flanking STC rating calculated for any flanking path is over 90, set the value to 90 to allow for the inevitable effect of higher order flanking paths.
 - o Round the final ASTC rating to the nearest integer.

Expressing the Calculation Process using Equations:

The ASTC rating between two rooms (neglecting sound transmitted by paths that bypass the building structure, e.g. through leaks or ducts) is estimated in the Simplified Method from the logarithmic expression of the combination of the Direct STC rating (STC_{Dd}) of the separating wall or floor element and the combined Flanking STC ratings of the three flanking paths for every junction at the four edges of the separating element. This may be expressed as:

$$ASTC = -10 \log_{10} \left[10^{-0.1 \cdot STC_{Dd}} + \sum_{\text{edge}=1}^{4} \left(10^{-0.1 \cdot STC_{Ff}} + 10^{-0.1 \cdot STC_{Fd}} + 10^{-0.1 \cdot STC_{Df}} \right) \right]$$
 Eq. 4.1.1

Eq. 4.1.1 is appropriate for all types of building systems similar to the Standard Scenario. It is applied here using the following notes to calculate the sound transmission for each individual path:

For the Separating Assembly:

If the separating assembly is a framed wall assembly or a framed floor assembly without a (gypsum) concrete subfloor surface, then the direct path STC_{Dd} is equal to the laboratory STC rating for that assembly. Alternatively, if the separating assembly is a floor assembly with (gypsum) concrete subfloor surface, add the ΔSTC correction for any added finish flooring to the STC rating for the bare floor to obtain STC_{Dd} for the direct path, as indicated in Eq. 4.1.2.

$$STC_{Dd} = STC_{bare} + \Delta STC_{flooring}$$
 Eq. 4.1.2

For Each Flanking Path:

The options for the calculation of the Flanking STC_{ii} for each flanking path ij include:

• The procedures described in ISO 10848-3 yield experimental values of the normalized flanking level difference D_{nf}. As per the standard, these D_{nf} values are normalized to an absorption area of 10 m² in the receiving room. In order to convert the D_{nf} values to Flanking TL_{ij} values, the correction term 10 log(S_{lab}/10) is added, yielding values of Flanking TL normalized to the room dimensions (in metres) of the laboratory. When the laboratory values for Flanking TL or Flanking STC are to be applied for a calculation scenario where the room dimensions are different, they must be re-normalized to reflect room dimension differences between the laboratory test rooms and the prediction scenario (indicated in Eq. 4.1.3 by the subscript "situ"). The expression to use in the calculation is:

Flanking
$$STC_{ij,situ} = Flanking STC_{ij,lab} + 10 \log(S_{situ}/S_{lab}) + 10 \log(l_{lab}/l_{situ})$$
 Eq. 4.1.3

Here, S_{situ} is the area (in m²) of the separating assembly and I_{situ} is the junction length (in m) for the prediction scenario, and S_{lab} and I_{lab} are the corresponding values for the specimen in the ISO 10848 laboratory test. The Flanking STC rating may be determined using the procedure of ASTM E413 with the one-third octave band values of Flanking TL as input data.

If one of the flanking elements is a floor assembly with (gypsum) concrete subfloor surface, add
the ΔSTC correction for added floor finishes to the Flanking STC_{ij} for the bare floor to obtain the
Flanking STC_{ij} including the flooring.

Flanking
$$STC_{ij} = Flanking STC_{bare} + \Delta STC_{flooring}$$
 Eq. 4.1.4

• If flanking elements i and j are both floor assemblies with (gypsum) concrete subfloor surfaces, and both have added finish flooring, add the correction to the Flanking STC_{ij} for the bare floor as in Eq. 4.1.5. Note, however, that lining corrections are not appropriate for framed assemblies with surfaces other than (gypsum) concrete (such as OSB for floors or gypsum board for walls).

Flanking
$$STC_{ij} = Flanking STC_{bare} + \left\{ max(\Delta STC_i, \Delta STC_j) + \frac{min(\Delta STC_i, \Delta STC_j)}{2} \right\}$$
 Eq. 4.1.5

This page was intentionally left blank.

4.2. Wood-Framed Wall and Floor Assemblies

For buildings with lightweight wood-framed walls and floors, the calculation procedure outlined in the preceding section can be used. The procedure requires specific laboratory test data (determined according to ASTM E90 and ISO 10848 with some extensions), and can be performed using frequency band data or single-number ratings, following the steps illustrated in Figure 4.1.1.

Previous NRC publications have presented predicted ASTC values and a procedure based on the same prediction approach, e. g. the NRC Research Report RR-219, "Guide for Sound Insulation in Wood Frame Construction", and Construction Technology Update 66 [17.13]. More information on the direct and flanking sound insulation of wood-framed assemblies and building systems can be found in NRC Research Report RR-336, "Apparent Sound Insulation in Wood-Framed Buildings" [16.4]. The report provides the data for direct and flanking sound insulation for a variety of wood-framed building configurations.

With lightweight framed assemblies, it is common practice to add layers of material such as gypsum board within hidden cavities at junctions between units, to block the spread of fire. Fire control is beyond the scope of this Guide, but is discussed in considerable detail in the publication "Best Practice Guide on Fire Stops and Fire Blocks and their Impact on Sound Transmission" [17.12]. The specimens tested to provide the design information in NRC Research Report RR-219 [17.11] and its supporting technical reports included such fire blocking. Additional fire blocking materials installed to protect the rimboard within floor cavities have minimal effect on the structure-borne flanking sound transmission. However, fire blocking within the cavity in a separating wall with a double row of studs can significantly alter the structure-borne flanking sound transmission if they provide a rigid connection between the two rows of studs. Pertinent information on the resulting sound transmission with various fire blocking details is provided in the NRC Research Reports RR-219 and RR-336.

EXAMPLE 4.2-H1

SIMPLIFIED METHOD

- Rooms side-by-side
- Wood-framed floors and walls

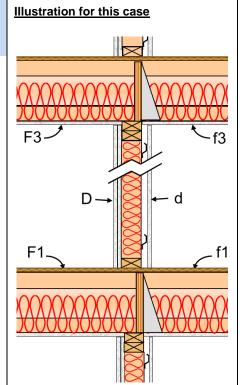
Separating wall assembly with:

- Single row of 38 mm x 89 mm wood studs spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the inter-stud cavities
- Resilient metal channels⁷ on one side, spaced 600 mm o.c.
- 1 layer of 16 mm fire-rated gypsum board⁴ attached to the resilient channels⁴ and 2 layers attached directly to framing on the other side

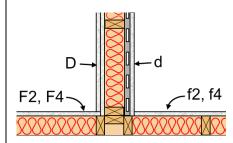
Bottom Junction 1 (separating wall and floor) with:

- Floor with 305 mm wood l-joists spaced 400 mm o.c., with joists oriented perpendicular to separating wall but not continuous across junction, and 150 mm-thick sound-absorbing material³ in cavities
- Rimboard at junction may be covered with additional fire blocking material such as gypsum board without changing the sound transmission rating
- Subfloor of oriented strandboard (OSB) 19 mm thick and continuous across the junction
- No floor topping

Top Junction 3 (separating wall and ceiling) with:


- Ceiling with 305 mm wood I-joists, same as for bottom junction
- Rimboard at junction may be covered with additional fire blocking material such as gypsum board without changing sound transmission rating
- Ceiling of 1 layer of 13 mm fire-rated gypsum board⁴ screwed directly to the bottom of the joists

Side Junctions 2 and 4 (separating wall and abutting side walls) with:


- Side walls with single row of 38 mm x 89 mm wood studs spaced 400 mm o.c. with sound-absorbing material³ filling the stud cavities
- Side wall framing structurally-connected to the separating wall, and continuous across the junction (as illustrated)
- 1 layer of 16 mm fire-rated gypsum board⁴ on side walls attached directly to framing and terminating at the separating wall

Acoustical Parameters:

		<u>In Scenario</u>	In Laboratory
Separa	ating partition area (m²) =	12.5	12.5
Floor/separating w	all junction length (m) =	5.0	5.0
Wall/separating w	vall junction length (m) =	2.5	2.5
Normalization for J	unctions 1 and 3:		
10*log(S_situ/S_la	ib) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for J	unctions 2 and 4:		
10*log(S_situ/S_la	b) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3

Junction 1 and 3 of loadbearing separating wall with floor and ceiling. (Side view)

Junction 2 or 4 of separating wall with abutting side walls with side walls' framing continuous across junction and gypsum board terminating at separating wall. (Plan view)

	ISO Symbol	Reference	STC or Δ STC	STC or AST
Separating Partition				
Laboratory STC for Dd	R s,w	RR-336, WS89-5a	51	
Direct STC in situ	R_Dd,w	RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		51
Junction 1: Separating Wall,	/Floor			
For Flanking Path Ff_1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.4, WS89-WF-LB-14	45	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Ff_1	R_Ff,w	RR-336, Eq. 4.1.3 and Eq. 4.1.5 45 + MA	X(0,0)) + MIN(0,0)/2 + 0 =	45
For Flanking Path Fd_1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.4, WS89-WF-LB-14	53	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
Flanking STC for path Fd_1	R_ Fd,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	53 + 0 + 0 =	53
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.4, WS89-WF-LB-14	51	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Df_1	R_ Df,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	51 + 0 + 0 =	_
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-4	1.5 + 10^- 5.3 + 10^- 5.1) =	4
Junction 2: Separating Wall	/Wall			
For Flanking Path Ff_2:				
Laboratory Flanking STC		RR-336, Table 3.4.2.1, WS89-WW-2-1	70	
Flanking STC for path Ff_2	R_Ff,w	RR-336, Eq. 4.1.3	70 + 0 =	70
For Flanking Path Fd_2:				
Laboratory Flanking STC		RR-336, Table 3.4.2.1, WS89-WW-2-1	69	
Flanking STC for path Fd_2	R_ Fd,w	RR-336, Eq. 4.1.3	69 + 0 =	69
For Flanking Path Df 2:				
Laboratory Flanking STC		RR-336, Table 3.4.2.1, WS89-WW-2-1	68	
Flanking STC for path Df_2	R_ Df,w	RR-336, Eq. 4.1.3	68 + 0 =	68
Junction 2: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^	-7 + 10^- 6.9 + 10^- 6.8) =	6
Junction 3: Separating Wall	/Ceiling			
For Flanking Path Ff_3:				
Laboratory Flanking STC	_	RR-336, Table 3.2.LB.1.4, WS89-WC-LB-14	79	
Flanking STC for path Ff_3	R_Ff,w	RR-336, Eq. 4.1.3	79 + 0 =	79
For Flanking Path Fd_3:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.4, WS89-WC-LB-14	65	
Flanking STC for path Fd_3	R_ Fd,w	RR-336, Eq. 4.1.3	65 + 0 =	65
For Flanking Path Df 3:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.4, WS89-WC-LB-14	65	
Flanking STC for path Df_3	R_Df,w	RR-336, Eq. 4.1.3	65 + 0 =	
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-7	<mark>7.9 + 10^- 6.5 + 10^- 6.5) =</mark>	6
	/\A/-11			
Junction 4: Separating Wall				
All values the same as for Ju		S		
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		70
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		69
Flanking STC for path Df_4	R_Df,w	Same as for Df_2	7 . 404 . 6.0 . 404 . 6.5.	68
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^	-7 + 10^- 6.9 + 10^- 6.8) =	6
			1 42 FL 11 0TO 1	
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combin	ning 12 Flanking STC values	4
ASTC due to Direct plus Tot	al Flanking	Equation 4.1.1 Combining Direct STC v	vith 12 Flanking STC values	43
Jude to Direct plus 10t		Lagrantian Combining Direct Sie v	THE PROPERTY OF THE PROPERTY O	

EXAMPLE 4.2-H2:

SIMPLIFIED METHOD

- Rooms side-by-side
- Wood-framed floors and walls
- Same structure as 4.2-H1 but improved wall and floor surfaces

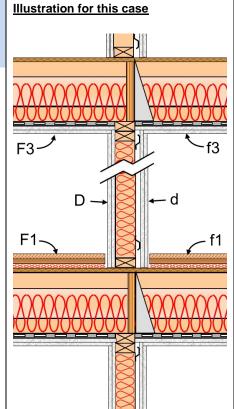
Separating wall assembly with:

- Single row of 38 mm x 89 mm wood studs spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the inter-stud cavities
- Resilient metal channels⁷ on one side, spaced 600 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ attached to the resilient channels and 2 layers attached directly to framing on the other side

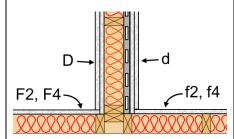
Bottom Junction 1 (separating wall and floor) with:

- Floor with 305 mm wood I-joists spaced 400 mm o.c., with joists oriented perpendicular to separating wall but not continuous across junction, and 150 mm-thick sound-absorbing material³ in cavities
- Rimboard at junction may be covered with additional fire blocking material such as gypsum board without changing the sound transmission rating
- Subfloor of oriented strandboard (OSB) 19 mm thick and continuous across the junction
- Engineered floor topping of 19 mm plywood and 19 mm oriented strandboard (OSB) on 9 mm resilient interlayer on both sides

Top Junction 3 (separating wall and ceiling) with:


- Ceiling with 305 mm wood I-joists, same as for bottom junction
- Rimboard at junction may be covered with additional fire blocking material such as gypsum board without changing sound transmission rating
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴ supported on resilient channels spaced 400 mm o.c.

Side Junctions 2 and 4 (separating wall and abutting side walls) with:


- Side walls with single row of 38 mm x 89 mm wood studs spaced 400 mm o.c. with sound-absorbing material³ filling the stud cavities
- Side wall framing structurally-connected to the separating wall, and continuous across the junction (as illustrated)
- 1 layer of 16 mm fire-rated gypsum board⁴ on side walls attached directly to framing and terminating at the separating wall

Acoustical Parameters:

		In Scenario	In Laboratory
Separ	Separating partition area (m ²) =		12.5
Floor/separating v	wall junction length (m) =	5.0	5.0
Wall/separating v	wall junction length (m) =	2.5	2.5
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3

Junction 1 and 3 of loadbearing separating wall with floor and ceiling. (Side view)

Junction 2 or 4 of separating wall with abutting side walls with side walls' framing continuous across junction and gypsum board terminating at separating wall. (Plan view)

	ISO Symbol	Reference	STC or \Delta STC	STC or AST
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-336, WS89-6b	58	
Direct STC in situ	R_Dd,w	RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		58
Junction 1: Separating Wall,	/Floor			
For Flanking Path Ff 1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.2, WS89-WF-LB-62	61	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Ff_1	R_Ff,w	RR-336, Eq. 4.1.3 and Eq. 4.1.5 61 + MA	AX(0,0)) + MIN(0,0)/2 + 0 =	61
For Flanking Path Fd_1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.2, WS89-WF-LB-62	66	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
Flanking STC for path Fd_1	R_ Fd,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	66 + 0 + 0 =	66
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.2, WS89-WF-LB-62	63	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Df_1	R_Df,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	63 + 0 + 0 =	
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-6	6.1 + 10 [^] - 6.6 + 10 [^] - 6.3) =	5
Junction 2: Separating Wall,	/Wall			
For Flanking Path Ff_2:				
Laboratory Flanking STC		RR-336, Table 3.4.1.1, WS89-WW-1-1	70	
Flanking STC for path Ff_2	R_Ff,w	RR-336, Eq. 4.1.3	70 + 0 =	70
For Flanking Path Fd_2:				
Laboratory Flanking STC		RR-336, Table 3.4.1.1, WS89-WW-1-1	71	
Flanking STC for path Fd_2	R_ Fd,w	RR-336, Eq. 4.1.3	71 + 0 =	71
For Flanking Path Df_2:				
Laboratory Flanking STC		RR-336, Table 3.4.1.1, WS89-WW-1-1	68	
Flanking STC for path Df_2	R_ Df,w	RR-336, Eq. 4.1.3	68 + 0 =	
Junction 2: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10*	^-7 + 10^- 7.1 + 10^- 6.8) =	6
Junction 3: Separating Wall,	/Cailing			
	Ceiling			
For Flanking Path Ff_3: Laboratory Flanking STC		DD 226 Table 2 2 LD 6 2 WC90 WC LD 62	82	
	D Ef w	RR-336, Table 3.2.LB.6.2, WS89-WC-LB-62	-	02
Flanking STC for path Ff_3	R_Ff,w	RR-336, Eq. 4.1.3	82 + 0 =	82
For Flanking Path Fd 3:		DD 22C Table 2 2 LD C 2 WC00 WC LD C2	00	
Laboratory Flanking STC Flanking STC for path Fd_3	R Fd,w	RR-336, Table 3.2.LB.6.2, WS89-WC-LB-62 RR-336, Eq. 4.1.3	90 + 0 =	90
For Flanking Path Df 3:	n_ ru,w	nn-330, Eq. 4.1.3	90+0=	90
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.2, WS89-WC-LB-62	74	
Flanking STC for path Df 3	R_ Df,w	RR-336, Fq. 4.1.3	74 + 0 =	74
Junction 3: Flanking STC for			\(^-8.2 + 10^- 9 + 10^- 7.4 \) =	
rancaon 3. Flanking 31C lor	air pauls	- 10 LOG10(10 ²	0.2 + 10 - 3 + 10 - 7.4) =	/
Junction 4: Separating Wall,	/\/all			
All values the same as for Ju				
Flanking STC for path Ff 4	R Ff,w	Same as for Ff_2		70
Flanking STC for path Ft_4 Flanking STC for path Fd_4	R_FI,W	Same as for Fd_2		70 71
Flanking STC for path Fd_4	R_Fu,w R Df,w	Same as for Df 2		68
Junction 4: Flanking STC for			^-7 + 10^- 7.1 + 10^- 6.8) =	68
Junction 4. Flanking 31C 101	air pauls	- 10 LOG10(10 [*]	/ 10 - /.1 + 10 - 0.8) =	
Total Flanking STC (for all 4	iunctions)	Subset of Eq. 4.1.1 Combin	ning 12 Flanking STC values	5
Total Flatiking STC (101 dll 4	junctions	COIIIDII	IIIIE 17 LIGHWINE STC AGINES	
ASTC due to Direct plus Tota	al Flankina	Equation 4.1.1 Combining Direct STC v	vith 12 Flanking STC values	54

EXAMPLE 4.2-V1

SIMPLIFIED METHOD

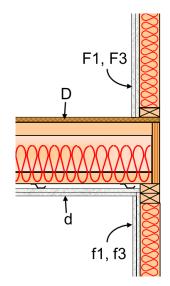
- Rooms one-above-the-other
- Wood-framed floors and walls

Separating floor/ceiling assembly with:

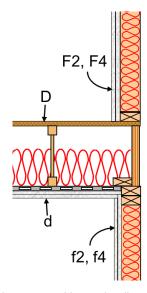
- Floor with 305 mm wood l-joists spaced 400 mm o.c., with joists oriented perpendicular to loadbearing wall but not continuous across junction, and 150 mm-thick sound-absorbing material³ in cavities
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴, attached to resilient metal channels⁷ spaced 400 mm o.c.
- Subfloor of oriented strandboard (OSB) 19 mm thick
- No floor topping
- No floor covering

Junctions 1 and 3 (loadbearing walls above and below floor) with:

- Joists of separating floor assembly perpendicular to these walls
- Walls framed with 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached to wall framing and ending at floor/ceiling assembly


Junctions 2 and 4 (non-loadbearing walls above and below floor) with:

- · Joists of floor assembly parallel to these walls
- Wall framing of 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached to wall framing and ending at floor/ceiling assembly


Acoustical Parameters:

		In Scenario	In Laboratory
Separa	ting partition area (m²) =	20.0	20.0
Floor/LB flanking w	vall junction length (m) =	5.0	5.0
Floor/NLB flanking w	vall junction length (m) =	4.0	5.0
Normalization for J	unctions 1 and 3:		
10*log(S_situ/S_la	b) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for J	unctions 2 and 4:		
10*log(S_situ/S_la	b) + 10*log(l_lab/l_situ) =	0.97	RR-336, Eq. 4.1.3

Illustration for this case

Junction 1 or 3 with loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are perpendicular to loadbearing wall). (Side view)

Junction 2 or 4 with non-loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are parallel to the non-loadbearing wall). (Side view)

	ISO Symbol	Reference	STC or Δ STC	STC or AST
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-336, Table 3.2.LB.1.1, WI305-FW-LB-11	55	
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0	
Direct STC in situ	R Dd,w	RR-336, Eq. 4.1.2	55 + 0 =	55
Junction 1: Separating Floor	/Wall			
For Flanking Path Ff 1:				
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.1, WI305-FW-LB-11	70	
Flanking STC for path Ff 1	R Ff,w	RR-336, Eq. 4.1.3	70 + 0 =	70
For Flanking Path Fd 1:	_ ,			
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.1, WI305-FW-LB-11	90	
Flanking STC for path Fd_1	R_Fd,w	RR-336, Eq. 4.1.3	90 + 0 =	90
For Flanking Path Df 1:	/			
Laboratory Flanking STC		RR-336, Table 3.2.LB.1.1, WI305-FW-LB-11	60	
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0	
Flanking STC for path Df 1	R_Df,w	RR-336, Eg. 4.1.3 and Eg. 4.1.4	60 + 0 + 0 =	60
Junction 1: Flanking STC for			10^-7 + 10^- 9 + 10^- 6) =	
Juneary 11 Hamming 51 C 10.	un putilis	3000000124. 11.11	10 7 10 3 10 07	
Junction 2: Separating Floor	/Wall			
For Flanking Path Ff 2:	, wan			
Laboratory Flanking STC		RR-336, Table 3.2.NLB.1.1, WI305-FW-NLB-11	70	
Flanking STC for path Ff 2	R Ff,w	RR-336, Eq. 4.1.3	70 + 1 =	71
For Flanking Path Fd 2:	K_FI,W	NN-330, Eq. 4.1.3	70+1-	/1
Laboratory Flanking STC		RR-336, Table 3.2.NLB.1.1, WI305-FW-NLB-11	90	
Flanking STC for path Fd_2	R_ Fd,w	RR-336, Eq. 4.1.3	90 + 1 =	90
For Flanking Path Df 2:	N_ Fu,w	nn-550, Eq. 4.1.5	30 + 1 -	90
Laboratory Flanking STC		RR-336, Table 3.2.NLB.1.1, WI305-FW-NLB-11	64	
ΔSTC change by Lining on D	AD D	No finish flooring	0	
	ΔR_D,w	5		65
Flanking STC for path Df_2	R_ Df,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	64+0+1 =	
Junction 2: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-	7.1 + 10^- 9 + 10^- 6.5) =	E
lonatian 2. Cananatina Elaan	/\4/-11			
Junction 3: Separating Floor	•	C		
Flanking STC for path Ff_3	R_Ff,w	Same as for Ff_1		70
Flanking STC for path Fd_3	R_ Fd,w	Same as for Fd_1		90
Flanking STC for path Df_3	R_ Df,w	Same as for Df_1		60
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(1	10^-7 + 10^- 9 + 10^- 6) =	6
Junction 4: Separating Floor				
All values the same as for Jui				
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		71
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		90
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2		65
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-	7.1 + 10^- 9 + 10^- 6.5) =	ϵ
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combini	ng 12 Flanking STC values	5
10T0 D1 T	1 = 1 1 1		11 40 EL L. CTO .	
ASTC due to Direct plus Tota	ai Flanking	Equation 4.1.1 Combining Direct STC w	ith 12 Flanking STC values	52

EXAMPLE 4.2-V2

SIMPLIFIED METHOD

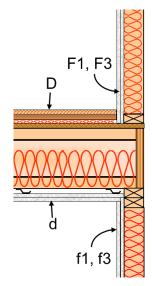
- Rooms one-above-the-other
- Wood-framed floors and walls
 (Same structure as 4.2-V1 plus improved floor surfaces)

Separating floor/ceiling assembly with:

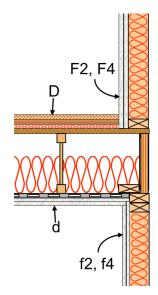
- Floor with 305 mm wood I-joists spaced 400 mm o.c., with joists oriented perpendicular to loadbearing wall but not continuous across junction, and 150 mm-thick sound-absorbing material³ in cavities
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴, attached to resilient metal channels⁷ spaced 400 mm o.c.
- Subfloor of oriented strandboard (OSB) 19 mm thick
- Engineered floor topping of 19 mm plywood and 19 mm oriented strandboard (OSB) on 9 mm resilient interlayer on both sides

Junctions 1 and 3 (loadbearing walls above and below floor) with:

- · Joists of separating floor assembly perpendicular to these walls
- Walls framed with 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached to wall framing and ending at floor/ceiling assembly


Junctions 2 and 4 (non-loadbearing walls above and below floor) with:

- · Joists of floor assembly parallel to these walls
- Walls have 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached to wall framing and ending at floor/ceiling assembly


Acoustical Parameters:

		<u>In Scenario</u>	In Laboratory
Separ	rating partition area (m²) =	20.0	20.0
Floor/LB flanking	wall junction length (m) =	5.0	5.0
Floor/NLB flanking	wall junction length (m) =	4.0	5.0
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.97	RR-336, Eq. 4.1.3

Illustration for this case

Junction 1 or 3 with loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are perpendicular to loadbearing wall). (Side view)

Junction 2 or 4 with non-loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are parallel to the non-loadbearing wall). (Side view)

	ISO Symbol	Reference STG	C or ΔSTC	STC or A	STC
Separating Partition					
Laboratory STC for Dd	R_s,w	RR-336, Table 3.2.LB.6.1, WI305-FW-LB-61	65		
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0		
Direct STC in situ	R_Dd,w	RR-336, Eq. 4.1.2	65 + 0 =	65	
Junction 1: Separating Floor	/Wall				
For Flanking Path Ff 1:					
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.1, WI305-FW-LB-61	70		
Flanking STC for path Ff_1	R_Ff,w	RR-336, Eq. 4.1.3	70 + 0 =	70	
For Flanking Path Fd 1:	_				
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.1, WI305-FW-LB-61	90		
Flanking STC for path Fd_1	R_ Fd,w	RR-336, Eq. 4.1.3	90 + 0 =	90	
For Flanking Path Df 1:					
Laboratory Flanking STC		RR-336, Table 3.2.LB.6.1, WI305-FW-LB-61	72		
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0		
Flanking STC for path Df_1	R Df,w	RR-336, Eq. 4.1.3 and Eq. 4.1.4	72 + 0 + 0 =	72	
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-7 + 10^-	- 9 + 10^- 7.2) =		68
	•				
Junction 2: Separating Floor	/Wall				
For Flanking Paths Ff 2 + Fd	2 + Df 2:				
Laboratory Flanking STC		RR-336, Table 3.2.NLB.6.1, WI305-FW-NLB-61	64		
Flanking STC for Ff+Fd+Df	R Ff,w	RR-336, Eq. 4.1.3	64 + 1 =	65	
Junction 2: Flanking STC for	all paths				6
Junction 3: Separating Floor	/Wall				
Flanking STC for path Ff_3	R_Ff,w	Same as for Ff_1		70	
Flanking STC for path Fd_3	R_Fd,w	Same as for Fd_1		90	
Flanking STC for path Df 3	R Df,w	Same as for Df_1		72	
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-7 + 10^-	- 9 + 10^- 7.2) =		6
Junction 4: Separating Floor	/Wall				
All values the same as for Ju	nction 2				
Flanking STC for Ff+Fd+Df	R Ff,w	Same as for Junction 2		65	
Junction 4: Flanking STC for	all paths				6
	İ				
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combining Flar	nking STC values		6
ASTC due to Direct plus Tota	al Flanking	Equation 4.1.1 Combining Direct STC with Flar	nking STC values	59	
•					

EXAMPLE 4.2-V3

SIMPLIFIED METHOD

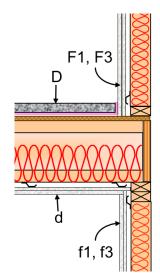
- · Rooms one-above-the-other
- Wood-framed floors and walls
 (Same structure as 4.2-V1 + improved floor and wall surfaces)

Separating floor/ceiling assembly with:

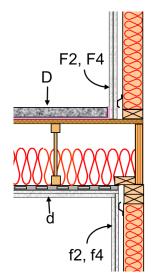
- Floor with 305 mm wood I-joists spaced 400 mm o.c., with joists oriented perpendicular to loadbearing wall but not continuous across junction, and 150 mm-thick sound-absorbing material³ in cavities
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴, attached to resilient metal channels⁷ spaced 400 mm o.c.
- Subfloor of oriented strandboard (OSB) 19 mm thick
- Floor topping of 38 mm-thick gypsum concrete on 9 mm thick resilient foam underlay

Junctions 1 and 3 (loadbearing walls above and below floor) with:

- · Joists of separating floor assembly perpendicular to these walls
- Walls framed with 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board⁴ on resilient metal channels⁷ spaced 600 mm o.c. and ending at floor/ceiling assembly


Junctions 2 and 4 (non-loadbearing walls above and below floor) with:

- Joists of floor assembly parallel to these walls
- Walls have 38 mm x 89 mm wood studs spaced 400 mm o.c.
- Wall framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates) with or without sound-absorbing material³ in wall cavities give equivalent flanking
- 2 layers of 16 mm fire-rated gypsum board^{4'} on resilient metal channels⁷ spaced 600 mm o.c. and ending at floor/ceiling assembly


Acoustical Parameters:

		<u>In Scenario</u>	In Laboratory
Separ	ating partition area (m²) =	20.0	20.0
Floor/LB flanking	wall junction length (m) =	5.0	5.0
Floor/NLB flanking	wall junction length (m) =	4.0	5.0
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.97	RR-336, Eq. 4.1.3

Illustration for this case

Junction 1 or 3 with loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are perpendicular to loadbearing wall). (Side view)

Junction 2 or 4 with non-loadbearing side walls above and below the floor/ceiling assembly (wood I-joists of floor are parallel to the non-loadbearing wall). (Side view)

	ISO Symbol	Reference	STC or ΔSTC	STC or ASTC
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-336, Table 3.2.LB.5.2, WI305-FW-LB-52R	70	
ΔSTC change by Lining on D	$\Delta R_D, w$	No finish flooring	0	
Direct STC in situ	R_Dd,w	RR-336, Eq. 4.1.2	70 + 0 =	70
Junction 1: Separating Floor	/Wall			
For Flanking Paths Ff 1 + Fd	2 + Df 2:			
Laboratory Flanking STC		RR-336, Table 3.2.LB.5.2, WI305-FW-LB-52R	74	
Flanking STC for path Ff_1	R_Ff,w	RR-336, Eq. 4.1.3	74 + 0 =	74
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1		74
Junction 2: Separating Floor	/Wall			
For Flanking Paths Ff 2 + Fd	2 + Df_2:			
Laboratory Flanking STC		RR-336, Table 3.2.NLB.5.2, WI305-FW-NLB-52R	73	
Flanking STC for Ff+Fd+Df	R_Ff,w	RR-336, Eq. 4.1.3	73 + 1 =	74
Junction 2: Flanking STC for	all paths			74
Junction 3: Separating Floor	/Wall			
Flanking STC for Ff+Fd+Df	R_Ff,w	Same as for Junction 1		74
Junction 3: Flanking STC for	all paths			74
Junction 4: Separating Floor	•			
All values the same as for Jui	nction 2			
Flanking STC for Ff+Fd+Df	R_Ff,w	Same as for Junction 2		74
Junction 4: Flanking STC for	all paths			74
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Co	mbining Flanking STC values	68
ASTC due to Direct plus Tota	al Flanking	Equation 4.1.1 Combining Direct S	STC with Flanking STC values	66

EXAMPLE 4.2-H3

SIMPLIFIED METHOD

- Rooms side-by-side
- · Wood-framed floors and walls
- · Double wood stud separating wall

Separating wall assembly with:

- Double row of 38 mm x 89 mm wood studs spaced 400 mm o.c., with 25 mm space between rows and 90 mm-thick soundabsorbing material³ filling the cavities of one row of studs
- 1 layer of 16 mm fire-rated gypsum board on each side

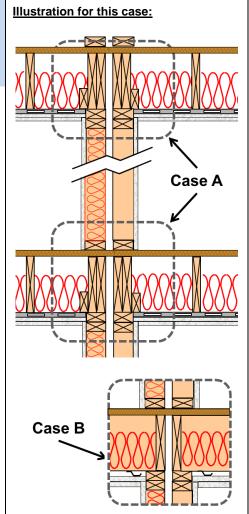
Bottom Junction 1 (separating wall and floor) with:

- Floor with 38 mm x 235 mm wood joists spaced 400 mm o.c., not continuous across the junction, and with 150 mm-thick soundabsorbing material³ in the joist cavities
- Subfloor of oriented strandboard (OSB) 19 mm thick and continuous across the junction
- No floor topping

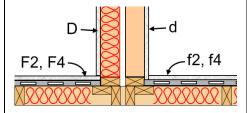
Top Junction 3 (separating wall and ceiling) with:

- Ceiling with 235 mm wood joists, same as for bottom junction
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴ supported on resilient metal channels⁷ spaced 400 mm o.c.

Two options are compared:


- ⇒ Case A with the joists of the floor and ceiling <u>parallel</u> to the separating wall as illustrated in the upper detail,
- ⇒ Case B with floor and ceiling joists <u>perpendicular</u> to the separating wall as illustrated in the lower detail.

Side Junctions 2 and 4 (separating wall and abutting side walls) with:


- Side walls with single row of 38 mm x 89 mm wood studs spaced 400 mm o.c. with sound-absorbing material³ filling the cavities
- Side wall framing structurally-connected to the separating wall, and continuous across the junction (as illustrated)
- 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ and terminating at the separating wall

Acoustical Parameters:

		In Scenario	In Laboratory
Separ	rating partition area (m²) =	12.5	12.5
Floor/separating v	wall junction length (m) =	5.0	5.0
Wall/separating v	wall junction length (m) =	2.5	2.5
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3

Two choices for Junctions 1 and 3 where the framing of the floor and ceiling connects to the separating wall. (Side view)

Junction 2 or 4 of separating wall with abutting side walls with side walls' framing continuous across junction and gypsum board terminating at separating wall. (Plan view)

Note: For these examples, Flanking TL data for individual paths at each junction are not available, so these examples use the available data for junctions.

CASE A: Floor Joists Pa	ISO Symbol		STC or ΔSTC	STC or AST
Separating Partition	- 1			
Laboratory STC for Dd	R_s,w	RR-336, Table 3.3.NLB.1.1.1, DWS89-WF-NLB-1-1-1	54	
Direct STC in situ	R_Dd,w	RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		54
Junction 1: Separating Wa	II/Floor			
Measured Laboratory Flan		RR-336, Table 3.3.NLB.1.1.1, DWS89-WF-NLB-1-1-1	47	
Junction 1: Flanking STC fo		556) Table 51611125121212 5 11665 117 1125 1 1 1	47 + 0 =	47
	J. dii paano		1,7 + 0	
Junction 2: Separating Wa	II/Wall			
Measured Laboratory Flan		RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	
Junction 2: Flanking STC fo			68 + 0 =	68
	•			
Junction 3: Separating Wa	II/Ceiling			
Measured Laboratory Flan		RR-336, Table 3.3.NLB.1.1.1, DWS89-WC-NLB-1-1-1	62	
Junction 3: Flanking STC fo			62 + 0 =	62
Junction 4: Separating Wa	II/Wall			
Measured Laboratory Flan	king STC	RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	
Junction 4: Flanking STC fo	or all paths		68 + 0 =	68
	•			
Total Flanking STC (for all	4 junctions)	RR-336, Subset of Eq. 4.1.1 Combining 4 Juncti	on Flanking STC values	4
ASTC due to Direct plus To	otal Flanking	RR-336, Eq. 4.1.1 Combining Direct STC w	ith Flanking STC values	46
CASE B: Floor Joists Pe				
	erpendicular ISO Symbol		STC or ΔSTC	STC or AST
Separating Partition	ISO Symbol	Reference		STC or AST
Separating Partition Laboratory STC for Dd	R_s,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	STC or ΔSTC	
Separating Partition Laboratory STC for Dd	ISO Symbol	Reference		STC or AST
Separating Partition Laboratory STC for Dd Direct STC in situ	R_s,w R_Dd,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1		
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa	R_s,w R_Dd,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	54	
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan	R_s,w R_Dd,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	54 49	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan	R_s,w R_Dd,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	54	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for	R_s,w R_Dd,w	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	54 49	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC fo	R_s,w R_Dd,w RIII/Floor king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	54 49 49+0 =	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan	R_s,w R_Dd,w RIII/Floor king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	49 49+0=	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan	R_s,w R_Dd,w RIII/Floor king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	54 49 49+0 =	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for	R_s,w R_Dd,w R_Dd,w still/Floor king STC or all paths still/Wall king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	49 49+0=	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Junction 3: Separating Wa	R_s,w R_Dd,w R_Dd,w still/Floor king STC or all paths king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	49 49+0 = 68 68+0 =	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Separating Wa Measured Laboratory Flan	R_s,w R_Dd,w RIJI/Floor king STC or all paths king STC or all paths king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1	49 49+0 = 68 68+0 =	54 49 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Measured Laboratory Flan	R_s,w R_Dd,w RIJI/Floor king STC or all paths king STC or all paths king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	49 49+0 = 68 68+0 =	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Flanking STC for	R_s,w R_Dd,w RIJI/Floor king STC or all paths will/Wall king STC or all paths will/Ceiling king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	49 49+0 = 68 68+0 =	54
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Flanking STC for Junction 3: Flanking STC for	R_s,w R_Dd,w RIJI/Floor king STC or all paths will/Wall king STC or all paths cor all paths will/Ceiling king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.LB.1.1.1, DWS89-WC-LB-1-1-1	49 49+0 = 68 68+0 =	54 49 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wa Measured Laboratory Flan Measured Laboratory Flan	R_s,w R_Dd,w RIJI/Floor king STC or all paths will/Wall king STC or all paths will/Ceiling king STC or all paths will/Ceiling king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	54 49 49+0 = 68 68+0 = 68 68+0 =	54 49 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC for Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC for Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wa Measured Laboratory Flan Measured Laboratory Flan	R_s,w R_Dd,w RIJI/Floor king STC or all paths will/Wall king STC or all paths will/Ceiling king STC or all paths will/Ceiling king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.LB.1.1.1, DWS89-WC-LB-1-1-1	49 49+0 = 68 68+0 =	54 49 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wa Measured Laboratory Flan Junction 1: Flanking STC fo Junction 2: Separating Wa Measured Laboratory Flan Junction 2: Flanking STC fo Junction 3: Separating Wa Measured Laboratory Flan Junction 3: Flanking STC fo Junction 3: Flanking STC fo Junction 4: Separating Wa Measured Laboratory Flan Junction 4: Flanking STC fo	R_s,w R_Dd,w R_Dd,w still/Floor king STC or all paths still/Wall king STC or all paths still/Ceiling king STC or all paths still/Wall king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.LB.1.1.1, DWS89-WC-LB-1-1-1	68 68 + 0 = 68 68 + 0 =	54 49 68 68
CASE B: Floor Joists Personal Control of the Contro	R_s,w R_Dd,w R_Dd,w still/Floor king STC or all paths still/Wall king STC or all paths still/Ceiling king STC or all paths still/Wall king STC or all paths	Reference RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.LB.1.1.1, DWS89-WF-LB-1-1-1 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.LB.1.1.1, DWS89-WC-LB-1-1-1	54 49 49+0 = 68 68+0 = 68 68+0 =	54 49 68

EXAMPLE 4.2-H4

SIMPLIFIED METHOD

- Rooms side-by-side
- · Wood-framed floors and walls
- · Double wood stud separating wall

Separating wall assembly with:

- Double row of 38 mm x 89 mm wood studs spaced 400 mm o.c., with 25 mm space between rows and 90 mm-thick soundabsorbing material³ filling the cavities of both rows of studs
- 1 layer of 16 mm fire-rated gypsum board on each side

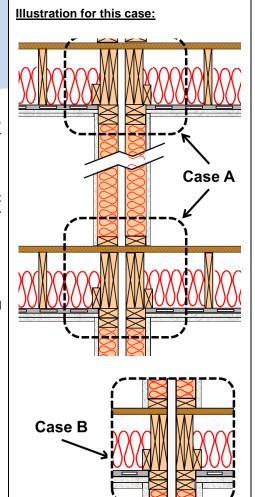
Bottom Junction 1 (separating wall and floor) with:

- Floor with 38 mm x 235 mm wood joists spaced 400 mm o.c., not continuous across the junction, and with 150 mm-thick soundabsorbing material³ in the joist cavities
- Subfloor of oriented strandboard (OSB) 19 mm thick
- · No floor topping

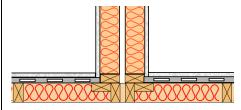
Top Junction 3 (separating wall and ceiling) with:

- Ceiling with 235 mm wood joists, same as for bottom junction
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴ supported on resilient metal channels⁷ spaced 400 mm o.c.

Two options are compared:


- ⇒ Case A with the OSB subfloor continuous across the floor and ceiling junctions, as illustrated in the upper detail,
- ⇒ Case B with the OSB subfloor <u>not</u> continuous across the junctions as illustrated in the lower detail. Because both wall cavities are full of sound-absorbing material, the solid fire block is not required.

Side Junctions 2 and 4 (separating wall and abutting side walls) with:


- Side walls with single row of 38 mm x 89 mm wood studs spaced 400 mm o.c. with sound-absorbing material³ filling the cavities
- Side wall framing structurally-connected to the separating wall, and continuous across the junction (as illustrated)
- 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ and terminating at the separating wall

Acoustical Parameters:

		In Scenario	In Laboratory
Separ	ating partition area (m ²) =	12.5	12.5
Floor/separating v	wall junction length (m) =	5.0	5.0
Wall/separating v	vall junction length (m) =	2.5	2.5
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3

Two choices for Junctions 1 and 3 where the framing of the floor and ceiling connects to the separating wall. (Side view)

Junction 2 or 4 of separating wall with abutting side walls with side walls' framing continuous across junction and gypsum board terminating at separating wall. (Plan view)

Note: For these examples, Flanking TL data for individual paths at each junction are not available, so these examples use the available data for junctions.

CASE A: OSB Subfloor (ISO Symbol	Reference	STC or ASTC	STC or ASTC
Separating Partition	130 39111301	nererence	ото от <u>дого</u>	3.0 31 A310
Laboratory STC for Dd	R s,w	RR-336, Table 3.3.NLB.1.1.2, DWS89-WF-NLB-1-1-2	57	
Direct STC in situ	R Dd,w	RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	<i>3,</i>	57
Junction 1: Separating Wal	l/Floor			
Measured Laboratory Flank	ing STC	RR-336, Table 3.3.NLB.1.1.2, DWS89-WF-NLB-1-1-2	47	
Junction 1: Flanking STC fo	r all paths		47 + 0 =	47
Junction 2: Separating Wal				
Measured Laboratory Flank	ing STC	RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	
Junction 2: Flanking STC fo	r all paths		68 + 0 =	68
Junction 3: Separating Wal				
Measured Laboratory Flank		RR-336, Table 3.3.NLB.1.1.2, DWS89-WC-NLB-1-1-2	62	
Junction 3: Flanking STC fo	r all paths		62 + 0 =	62
Junction 4: Separating Wal				
Measured Laboratory Flank		RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	
Junction 4: Flanking STC fo	r all paths		68 + 0 =	68
Total Flanking STC (for all 4	1 junctions)	RR-336, Subset of Eq. 4.1.1 Combining 4 Juncti	ion Flanking STC values	47
ASTC due to Direct plus To	tal Flanking	DD 22C For 4.1.1 Combining Direct CTC		
			ith Flanking STC values	1 46
	tarranking	RR-336, Eq. 4.1.1 Combining Direct STC w	rith Flanking STC values	46
	turrummg	RR-330, Eq. 4.1.1 Combining Direct STC W	ith Flanking STC values	46
	turituriking	RR-330, Eq. 4.1.1 Combining Direct STC W	ith Flanking STC values	46
·			ith Flanking STC values	46
CASE B: OSB Subfloor I			ith Flanking STC values	46
·		Dus	STC or ASTC	STC or ASTC
·	Not Continuo	Dus		
CASE B: OSB Subfloor I	Not Continuo	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2		
CASE B: OSB Subfloor I	Not Continuo	Dus Reference	STC or Δ STC	
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ	Not Continuo ISO Symbol R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or Δ STC	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal	Not Continuo ISO Symbol R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or Δ STC	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank	Not Continuo ISO Symbol R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or Δ STC	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal	Not Continuo ISO Symbol R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC 57 85	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC 57 85	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC 57 85	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no \(\Delta\)STC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 =	STC or ASTC
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo	Not Continue ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no \(\Delta\)STC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 =	57 57 85
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Junction 3: Separating Wal	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Separating Wal Measured Laboratory Flank	Not Continuc ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no \(\Delta\)STC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Junction 3: Separating Wal	Not Continuc ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo Junction 3: Flanking STC fo	Not Continuc ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.1.2, DWS89-WC-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo Junction 3: Flanking STC fo Junction 4: Separating Wal Measured Laboratory Flank Junction 4: Separating Wal Measured Laboratory Flank	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo Junction 3: Flanking STC fo	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.1.2, DWS89-WC-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo Junction 3: Flanking STC fo Junction 4: Separating Wal Measured Laboratory Flank Junction 4: Separating Wal Measured Laboratory Flank Junction 4: Separating Wal Measured Laboratory Flank Junction 4: Flanking STC fo	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor Iing STC r all paths I/Wall Iing STC r all paths I/Ceiling Iing STC r all paths I/Wall Iing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.1.2, DWS89-WC-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 = 68 68 + 0 =	57 57 85 68
CASE B: OSB Subfloor I Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wal Measured Laboratory Flank Junction 1: Flanking STC fo Junction 2: Separating Wal Measured Laboratory Flank Junction 2: Flanking STC fo Junction 3: Separating Wal Measured Laboratory Flank Junction 3: Flanking STC fo Junction 3: Flanking STC fo Junction 4: Separating Wal Measured Laboratory Flank Junction 4: Separating Wal Measured Laboratory Flank	Not Continuo ISO Symbol R_s,w R_Dd,w I/Floor Iing STC r all paths I/Wall Iing STC r all paths I/Ceiling Iing STC r all paths I/Wall Iing STC r all paths	RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.1.2, DWS89-WF-NLB-2-1-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.1.2, DWS89-WC-NLB-2-1-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 = 68	57 57 85 68

EXAMPLE 4.2-H5

SIMPLIFIED METHOD

- · Rooms side-by-side
- Double wood stud separating wall
- · Wood-framed floors with concrete topping

Separating wall assembly with:

- Double row of 38 mm x 89 mm wood studs spaced 400 mm o.c., with 25 mm space between rows and 90 mm-thick soundabsorbing material³ filling the cavities of both rows of studs
- 1 layer of 16 mm fire-rated gypsum board⁴ on each side

Bottom Junction 1 (separating wall and floor) with:

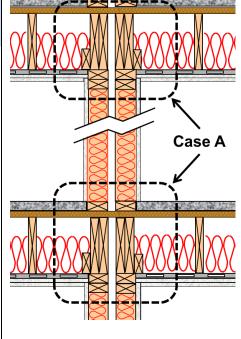
- Floor with 38 mm x 235 mm wood joists spaced 400 mm o.c., not continuous across the junction, and with 150 mm-thick soundabsorbing material³ in the joist cavities
- Subfloor of oriented strandboard (OSB) 19 mm thick
- Floor topping of 38 mm concrete

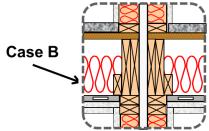
Top Junction 3 (separating wall and ceiling) with:

- Ceiling with 235 mm wood joists, same as for bottom junction
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴ supported on resilient metal channels⁷ spaced 400 mm o.c.

Two options are compared:

- ⇒ Case A with the OSB subfloor continuous across the floor and ceiling junctions, as illustrated in the upper detail,
- ⇒ Case B with the OSB subfloor <u>not</u> continuous across the junctions as illustrated in the lower detail. Because both wall cavities are full of sound-absorbing material, the solid fire block is not required.


Side Junctions 2 and 4 (separating wall and abutting side walls) with:


- Side walls with single row of 38 mm x 89 mm wood studs spaced 400 mm o.c. with sound-absorbing material³ filling the cavities
- Side wall framing structurally-connected to the separating wall, and continuous across the junction (as illustrated)
- 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ and terminating at the separating wall

Acoustical Parameters:

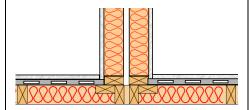

		In Scenario	In Laboratory
Separ	ating partition area (m²) =	12.5	12.5
Floor/separating v	vall junction length (m) =	5.0	5.0
Wall/separating v	vall junction length (m) =	2.5	2.5
Normalization for	Junctions 1 and 3:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3
Normalization for	Junctions 2 and 4:		
10*log(S_situ/S_l	ab) + 10*log(l_lab/l_situ) =	0.00	RR-336, Eq. 4.1.3

Illustration for this case:

Two choices for Junctions 1 and 3 where the framing of the floor and ceiling connects to the separating wall. (Side view)

Junction 2 or 4 of separating wall with abutting side walls with side walls' framing continuous across junction and gypsum board terminating at separating wall. (Plan view)

Note: For these examples, Flanking TL data for individual paths at each junction are not available, so these examples use the available data for junctions.

CASE A: OSB Subfloor (Continuous ISO Symbol	Reference	STC or ASTC	STC or ASTC
Separating Partition	ISO Symbol	Reference	31001 2310	SIC OF ASIC
Laboratory STC for Dd	R_s,w	RR-336, Table 3.3.NLB.1.2.2, DWS89-WF-NLB-1-2-2	57	
Direct STC in situ	R Dd,w	RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	37	57
Direct 510 iii sita	N_Da,w	100 250, Eq. 4.1.2 (not a noor, 30 no 251e correction)		
Junction 1: Separating Wal	l/Floor			
Measured Laboratory Flank	ing STC	RR-336, Table 3.3.NLB.1.2.2, DWS89-WF-NLB-1-2-2	61	
Junction 1: Flanking STC for			61 + 0 =	61
Junction 2: Separating Wall				
Measured Laboratory Flank		RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	
Junction 2: Flanking STC for	r all paths		68 + 0 =	68
Junction 3: Separating Wall				
Measured Laboratory Flank		RR-336, Table 3.3.NLB.1.2.2, DWS89-WC-NLB-1-2-2	68	
Junction 3: Flanking STC for	r all paths		68 + 0 =	68
	1 /14 11			
Junction 4: Separating Wall		DD 226 T-bl- 2 F 4 4 DW(600 W) 4 4 5	60	
Measured Laboratory Flank		RR-336, Table 3.5.1.1, DWS89-WW-1-1R	68	60
Junction 4: Flanking STC for	r all paths		68 + 0 =	68
Total Flanking STC (for all 4	i junctions)	RR-336, Subset of Eq. 4.1.1 Combining 4 June	ction Flanking STC values	59
ASTC due to Direct plus Tot	tal Flanking	RR-336, Eq. 4.1.1 Combining Direct STC	with Flanking STC values	55
CASE B: OSB Subfloor N	Not Continue	DUS		
CASE B: OSB Subfloor N				STC or ASTO
CASE B: OSB Subfloor N	Not Continuo ISO Symbol	Dus Reference	STC or Δ STC	STC or ASTO
Separating Partition	ISO Symbol	Reference		STC or AST
Separating Partition Laboratory STC for Dd		RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or \Delta STC	STC or ASTO
Separating Partition Laboratory STC for Dd	R_s,w	Reference	STC or \Delta STC	
Separating Partition Laboratory STC for Dd Direct STC in situ	R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or \Delta STC	
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank	R_s,w R_Dd,w	RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or \Delta STC	
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank	R_s,w R_Dd,w	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ASTC	57
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for	R_s,w R_Dd,w	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC 57 85	57
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall	R_s,w R_Dd,w I/Floor ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 =	57
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	STC or ΔSTC 57 85 85 + 0 =	57 85
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 =	57 85
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 =	57 85
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wali Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wali Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wali	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	57 85
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wali Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wali Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wali Measured Laboratory Flank Junction 3: Separating Wali Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	85 85 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wali Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wali Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wali Measured Laboratory Flank Junction 3: Separating Wali Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	85 85 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	85 85 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 3: Flanking STC for	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.2.2, DWS89-WC-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	85 85 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wall Measured Laboratory Flank Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 = 68	57 85 68 85
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wall Measured Laboratory Flank Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.2.2, DWS89-WC-NLB-2-2-2	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 =	85 85 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wall Measured Laboratory Flank Junction 4: Flanking STC for	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	Reference RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.2.2, DWS89-WC-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 = 68 68 + 0 =	85 88 68
Separating Partition Laboratory STC for Dd Direct STC in situ Junction 1: Separating Wall Measured Laboratory Flank Junction 1: Flanking STC for Junction 2: Separating Wall Measured Laboratory Flank Junction 2: Flanking STC for Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Separating Wall Measured Laboratory Flank Junction 3: Flanking STC for Junction 3: Flanking STC for Junction 4: Separating Wall Measured Laboratory Flank Measured Laboratory Flank	R_s,w R_Dd,w I/Floor ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths I/Wall ing STC r all paths I/Ceiling ing STC r all paths	RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Eq. 4.1.2 (not a floor, so no ΔSTC correction) RR-336, Table 3.3.NLB.2.2.2, DWS89-WF-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.3.NLB.2.2.2, DWS89-WC-NLB-2-2-2 RR-336, Table 3.5.1.1, DWS89-WW-1-1R RR-336, Table 3.5.1.1, DWS89-WW-1-1R	STC or ΔSTC 57 85 85 + 0 = 68 68 + 0 = 68	57 85 68 85

Summary for Section 4.2: Calculation Examples for Wood-Framed Constructions

The worked examples (4.2-H1 to H4 and 4.2-V1 to V3) illustrate the use of the Simplified Method for calculating the apparent sound transmission class (ASTC) ratings between rooms in a building with wood-framed floor and wall assemblies.

The examples show the performance for cases with bare floor surfaces and for cases with improvements in direct and/or flanking transmission loss via specific paths due to selected changes in the surface layers of the walls and floors.

The first set of examples (4.2-H1 to 4.2-V3) concerns cases where the loadbearing walls are framed with a single row of wood studs. The second group of examples (4.2-H3 and 4.2-H4) have loadbearing walls framed with a double row of wood studs.

Separating Walls with Single Row of Wood Studs

Example 4.2-H2 for a horizontal pair of rooms separated by a single-stud wall shows improvements relative to the base case (4.2-H1) due to improving the weakest paths – the separating wall and the set of paths at the floor/wall junction.

- Improving the wall by adding a layer of gypsum board increases the Direct STC to 57 and also provides an improvement to path Fd at both sidewall junctions.
- The main improvement is adding hardwood flooring on an engineered wood topping, which increases the Flanking STC at the floor/wall junction from 50 to 62. This gives a good balance between flanking transmission at the four junctions, and between direct transmission and flanking transmission. The ASTC of 54 is near the maximum feasible with this wall construction.

Examples 4.2-V2 and 4.2-V3 for a vertical pair of rooms show the improvements relative to the base case (4.2-V1) as the floor and wall surfaces are upgraded.

- As shown in 4.2-V2, the obvious first step to increase ASTC is to improve the floor surface, in this case by adding hardwood flooring supported on an engineered wood topping, which increases the Direct STC from 51 to 66. The change to the floor surface also improves Flanking STC for paths Df at all four wall junctions by more than 10 dB, but flanking transmission still dominates the transmission in case 4.2-V2. For all these wall/floor junctions, the dominant flanking path is path Ff (wall above to wall below), with path Df a weaker secondary concern.
- Changing the surface f (walls in the room below) by mounting the gypsum board in the room below on resilient metal channels, as shown in 4.2-V3, improves the key flanking paths, so the total Flanking STC increases to 74, and the overall ASTC approaches the limit of 66 due to direct transmission through the floor.

Separating Walls with Double Row of Wood Studs

Examples 4.2-H3 to 4.2-H5 illustrate the effect of changing some details for a horizontal pair of rooms separated by a double-stud wall.

- In the base Case A in 4.2-H3, the separating wall has a Direct STC rating of 55, but the ASTC is limited to 46 by flanking transmission at the floor/wall junction due to the rigid connection provided by the continuous OSB subfloor. This junction detail has advantages for shear bracing and provides a fire block, but also causes low Flanking STC values. If the continuous subfloor is essential for structural reasons, the flanking transmission can be moderated by orienting the floor joists perpendicular to the separating wall as shown in Case B of 4.2-H3. This raises the ASTC over 47, with no changes in the details of the wall or floor assemblies.
- In Example 4.2-H4, sound absorbing material is added to the stud cavities on both sides of the separating wall, which raises the Direct STC from 55 to 58. However, adding the sound absorbing material has negligible effect on the structure-borne flanking transmission, so flanking transmission via the wall/floor junction limits the ASTC for Case A to only 46, as in the previous example. In this example, because there is absorptive material filling the stud cavities on both sides of the wall, a solid fire block at the junctions is not required, and eliminating continuity of the OSB subfloor across the junctions (as shown in Case B), if not required for structural reasons, eliminates the flanking transmission there, raising the ASTC to 57.

For larger buildings, the continuity of the subfloor (or some other solid fire block) may be necessary for structural stability. In such cases, two obvious options to improve the ASTC are to increase the Direct STC by adding more gypsum board on the separating walls, or to add a heavy topping (such as a concrete subfloor, or an extra layer of OSB, or even strip hardwood flooring) on the floor surfaces to control the dominant flanking path.

• In Example 4.2-H5, the effect of adding a topping over the OSB subfloor on both sides of the separating wall is illustrated. The Direct STC is 58, as in Example 4.2-H4. However, adding the floor topping has a significant effect on the structure-borne flanking transmission, so the ASTC for Case A improves from 46 to 53 due to reduced flanking transmission via the wall/floor junction. In this example, because there is absorptive material filling the stud cavities on both sides of the wall, a solid fire block at the junctions is not required, and eliminating continuity of the OSB subfloor across the junctions (as shown in Case B) eliminates the flanking transmission there, raising the ASTC to 57, limited only by direct transmission and flanking via the side walls as in the previous example. Although the ASTC is not better than for Option B in 4.2-H4, addition of the floor topping would also benefit the sound insulation between units one-above-the-other.

Overall, these examples show the clear benefit of suitable wall and ceiling surface layers in achieving high ASTC values, and emphasize the cost/benefit of focussing improvements on the weakest path(s).

This page was intentionally left blank.

4.3. Cold-Formed Steel-Framed Wall and Floor Assemblies

For buildings with cold-formed steel-framed⁵ (CFS-framed) walls and floor/ceiling assemblies, the calculation procedure outlined in Section 4.1 can be used in precisely the same manner as presented for wood-framed constructions in Section 4.2.

This section applies to buildings where the floors are framed with cold-formed steel joists⁵ and the walls are framed with cold-formed steel studs⁵. These joists and studs typically have a C-shaped cross-section, but other possibilities such as I-shaped floor joists are also possible. Common surfaces include gypsum board walls and ceilings, and floor decks of plywood or OSB.

As for wood-framed construction, the ASTC between the pair of adjacent rooms can be calculated using one-third octave band sound transmission data or single-number ratings derived from that data, following the steps illustrated in Figure 4.1.1 and the explanatory notes following that figure.

The calculation procedure requires two types of laboratory test data as inputs:

- 1) Sound transmission loss data determined according to ASTM E90 for direct sound transmission through the separating assembly, and
- 2) Flanking sound transmission data determined according to ISO 10848 for the pairs of flanking surfaces at each edge of the separating assembly.

More information on the direct and flanking sound insulation of cold-formed steel-framed assemblies and building systems can be found in NRC Research Report RR-337, "Apparent Sound Insulation in Cold-Formed Steel-Framed Buildings." The report provides the data for direct and flanking sound insulation for a variety of CFS-framed building configurations.

EXAMPLE 4.3-H1:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- Loadbearing junction with continuous joists and subfloor

Loadbearing separating wall assembly with:

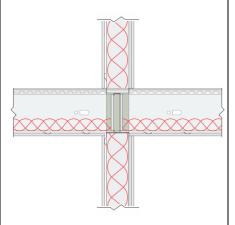
- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 1 layer of 16 mm fire-rated gypsum board⁴ attached to the resilient channels and 2 layers attached directly to studs on the other side

Junction 1: Separating wall / floor with:

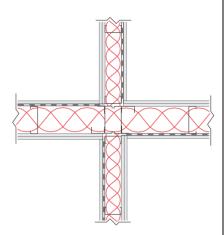
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and continuous across the junction, with fire blocking at the junction
- 32 mm gypsum concrete floor deck continuous across the junction

Junction 2 or 4: Separating wall / abutting side wall with:

- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 1 layer of 16 mm fire-rated gypsum board⁴ attached to the resilient channels and 2 layers attached directly to studs on the other side
- Closest CFS studs⁵ of the non-loadbearing walls are spaced 10 mm from framing of loadbearing wall
- If gypsum board⁴ on loadbearing wall is directly attached to framing, gypsum board on adjacent non-loadbearing wall is supported on resilient channels⁷, and vice versa


Junction 3: Separating wall / ceiling with:

- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and continuous across the junction, with fire blocking at the junction
- 32 mm gypsum concrete floor deck continuous across the junction
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.


Acoustical Parameters:

<u>In Scenario</u>	In Laboratory
12.5	12.5
5.0	5.0
2.5	2.5
0.00	RR-331, Eq. 4.1.3
TL data normalize	ed to Std. Scenario
0.00	RR-331, Eq. 4.1.3
TL data normalize	ed to Std. Scenario
	12.5 5.0 2.5 0.00 TL data normalize

Illustration for this case

Junction of loadbearing CFS-framed separating wall with CFS-framed floor/ceiling assembly (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both CFS-framed (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ∆STC	STC or AST
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-331, Wall CFS-S152-W33	54	
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		54
	/=1			
Junction 1: Separating Wall,	/Floor			
For Flanking Path Ff_1:		22 224 255 117 12 12		
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	50	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Ff_1	R_Ff,w	RR-331, Eq. 4.1.3 and Eq. 4.1.5 50 + MA	X(0,0)) + MIN(0,0)/2 + 0 =	50
For Flanking Path Fd_1:				
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	53	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	53 + 0 + 0 =	53
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	55	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Df_1	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	55 + 0 + 0 =	55
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^	-5 + 10^- 5.3 + 10^- 5.5) =	4
Junction 2: Separating Wall	/Wall			
For Flanking Path Ff 2:				
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82	
Flanking STC for path Ff_2	R_Ff,w	RR-331, Eq. 4.1.3	82 + 0 =	82
For Flanking Path Fd 2:				
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	76	
Flanking STC for path Fd_2	R_Fd,w	RR-331, Eq. 4.1.3	76 + 0 =	76
For Flanking Path Df 2:				
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82	
Flanking STC for path Df_2	R Df,w	RR-331, Eq. 4.1.3	82 + 0 =	82
Junction 2: Flanking STC for	all paths		3.2 + 10^- 7.6 + 10^- 8.2) =	7
Junction 3: Separating Wall,	/Ceiling			
For Flanking Path Ff 3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	65	
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	65 + 0 =	65
For Flanking Path Fd_3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	73	
Flanking STC for path Fd_3	R_ Fd,w	RR-331, Eq. 4.1.3	73 + 0 =	73
For Flanking Path Df 3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	69	
Flanking STC for path Df_3	R_Df,w	RR-331, Eq. 4.1.3	69 + 0 =	69
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-6	5.5 + 10^- 7.3 + 10^- 6.9) =	(
		· I		
Junction 4: Separating Wall,				
All values the same as for Ju				
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		82
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		76
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2		82
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-8	3.2 + 10^- 7.6 + 10^- 8.2) =	7
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combin	ning 12 Flanking STC values	4
ASTC due to Direct plus Flar	iking Paths	Eq. 4.1.1 Combining Direct STC w	ith 12 Flanking STC values	46

EXAMPLE 4.3-H2:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- Loadbearing junction with discontinuous joists and subfloor

Loadbearing separating wall assembly with:

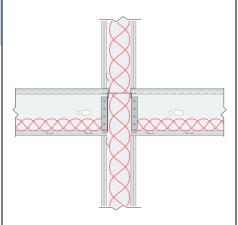
- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ on both sides

Junction 1: Separating wall / floor with:

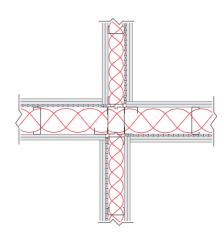
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and not continuous at the junction
- 32 mm gypsum concrete floor deck not continuous at junction

Junction 2 or 4: Separating wall / abutting side wall with:

- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ on each side
- Closest CFS studs⁵ of the non-loadbearing walls are spaced 10 mm from framing of loadbearing wall
- If gypsum board⁴ on loadbearing wall is directly attached to framing, gypsum board on adjacent non-loadbearing wall is supported on resilient channels⁷, and vice versa


Junction 3: Separating wall / ceiling with:

- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and not continuous across the junction
- 32 mm gypsum concrete floor deck not continuous at junction
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.


Acoustical Parameters:

		In Scenario	In Laboratory
Sep	parating partition area (m²) =	12.5	12.5
Floor/separatin	g wall junction length (m) =	5.0	5.0
Wall/separatin	g wall junction length (m) =	2.5	2.5
Normalization for Ju	inctions 1 and 3:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario
Normalization for Ju	inctions 2 and 4:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario

Illustration for this case

Junction of loadbearing CFS-framed separating wall with CFS-framed floor/ceiling assembly (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both CFS-framed (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ∆STC	STC or AS	ΤC
Separating Partition					
Laboratory STC for Dd	R_s,w	RR-331, Wall CFS-S152-W33	58		
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2 (not a floor, so no ΔS	STC correction)	58	
Junction 1: Separating Wall,	/Floor				
For Flanking Path Ff 1:	11001				
Laboratory Flanking STC		RR-331, CFS-WF-LBd-21	65		
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0		
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0		
Flanking STC for path Ff_1	R Ff,w	RR-331, Eq. 4.1.3 and Eq. 4.1.5	65 + MAX(0,0)) + MIN(0,0)/2 + 0 =	65	
For Flanking Path Fd 1:	N_FI,W	NN-331, Eq. 4.1.3 and Eq. 4.1.3	03 + MAX(0,0)) + MIN(0,0)/2 + 0 -	03	
Laboratory Flanking STC		RR-331, CFS-WF-LBd-21	62		
ΔSTC change by Lining on F	ΔR F,w	No flooring	0		
0 , 0		<u> </u>	•	C 2	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	62 + 0 + 0 =	62	
For Flanking Path Df 1:		DD 224 CFC WF LD 1 24	67		
Laboratory Flanking STC	AD	RR-331, CFS-WF-LBd-21	67		
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	6 7	
Flanking STC for path Df_1	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	67 + 0 + 0 =		-
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10)*LOG10(10^-6.5 + 10^- 6.2 + 10^- 6.7) =		59
Junction 2: Separating Wall,	/Wall				
For Flanking Path Ff_2:					
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82		
Flanking STC for path Ff_2	R Ff,w	RR-331, Eq. 4.1.3	82 + 0 =	82	
For Flanking Path Fd 2:	11_11,00	MN-331, Eq. 4.1.3	32 10 -	02	
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	76		
Flanking STC for path Fd_2	R Fd,w	RR-331, Eq. 4.1.3	76 + 0 =	76	
For Flanking Path Df_2:	K_ Fu,w	NN-331, Eq. 4.1.3	70+0 -	70	
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82		
Flanking STC for path Df_2	R Df,w		82 + 0 =	82	
Junction 2: Flanking STC for		RR-331, Eq. 4.1.3 Subset of Eq. 4.1.1 - 10	0*LOG10(10^-8.2 + 10^- 7.6 + 10^- 8.2) =		74
Junction 2. Flanking STC 101	ali pauls	Subset of Eq. 4.1.1	0 LOG10(10*-8.2 + 10*-7.0 + 10*-8.2) -		12
Junction 3: Separating Wall,	/Ceiling				
For Flanking Path Ff_3:					
Laboratory Flanking STC		RR-331, CFS-WC-LBd-21	75		
Flanking STC for path Ff_3	R Ff,w	RR-331, Eq. 4.1.3	75 + 0 =	75	
For Flanking Path Fd 3:		·			
Laboratory Flanking STC		RR-331, CFS-WC-LBd-21	64		
Flanking STC for path Fd_3	R_Fd,w	RR-331, Eq. 4.1.3		64	
For Flanking Path Df_3:		, ,			
Laboratory Flanking STC		RR-331, CFS-WC-LBd-21	70		
Flanking STC for path Df 3	R Df,w	RR-331, Eq. 4.1.3	70 + 0 =	70	
Junction 3: Flanking STC for			10*LOG10(10^-7.5 + 10^-6.4 + 10^-7) =	(63
Junction 4: Separating Wall,					
All values the same as for Ju		5 5 5			
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		82	
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		76	
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2	241.004.0/4.04.0.0.2.4.00.7.7.	82	_
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10)*LOG10(10^-8.2 + 10^- 7.6 + 10^- 8.2) =		74
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1	Combining 12 Flanking STC values	į	58
	king Daths	Eq. 4.1.1 Combinin	ng Direct STC with 12 Flanking STC values	55	
ASTC due to Direct plus Flan	IKING PAUIS				

EXAMPLE 4.3-H3:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- . Non-loadbearing junction with continuous subfloor

Non-loadbearing separating wall assembly with:

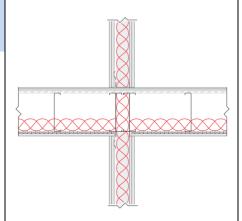
- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels on one side, spaced 400 mm o.c.
- 2 layer of 16 mm fire-rated gypsum board⁴ on each side

Junction 1: Separating wall / floor with:

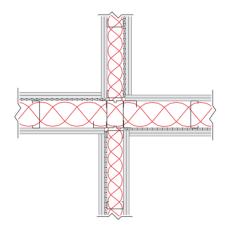
- Junction code CFS-WF-NLBc-31
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists parallel to the non-loadbearing wall
- 32 mm gypsum concrete floor deck continuous across the junction

Junction 2 or 4: Separating wall / abutting side wall with:

- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ on each side
- Closest CFS studs⁵ of the non-loadbearing walls spaced 10 mm from framing of loadbearing wall
- If gypsum board⁴ on loadbearing wall is directly attached to framing, gypsum board on adjacent non-loadbearing wall is supported on resilient channels⁷, and vice versa


Junction 3: Separating wall / ceiling with:

- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists parallel to the non-loadbearing wall
- 32 mm gypsum concrete floor deck continuous at junction
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.


Acoustical Parameters:

		In Scenario	In Laboratory
Sep	parating partition area (m²) =	12.5	12.5
Floor/separatin	g wall junction length (m) =	5.0	5.0
Wall/separatin	g wall junction length (m) =	2.5	2.5
Normalization for Ju	inctions 1 and 3:		
10*log(S_situ/	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario
Normalization for Ju	inctions 2 and 4:		
10*log(S_situ/	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario

Illustration for this case

Junction of non-loadbearing CFS-framed separating wall with CFS-framed floor/ceiling assembly (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both CFS-framed (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ∆STC	STC or AST
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-331, NLB wall 2G16_SS92(406)_GFB92_RC13(406	•	
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		57
	/rl			
<pre>Junction 1: Separating Wall, For Flanking Path Ff 1:</pre>	Floor			
		DD 224 OFC ME NUD- 24	40	
Laboratory Flanking STC	AD 5	RR-331, CFS-WF-NLBc-31	40	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Ff_1	R_Ff,w	RR-331, Eq. 4.1.3 and Eq. 4.1.5 40 + MA	AX(0,0)) + MIN(0,0)/2 + 0 =	40
For Flanking Path Fd 1:				
Laboratory Flanking STC		RR-331, CFS-WF-NLBc-31	49	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	49 + 0 + 0 =	49
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-331, CFS-WF-NLBc-31	50	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Df_1	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	50 + 0 + 0 =	50
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(1	.0^-4 + 10^- 4.9 + 10^- 5) =	3
Junction 2: Separating Wall,	/Wall			
For Flanking Path Ff_2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	84	
Flanking STC for path Ff_2	R_Ff,w	RR-331, Eq. 4.1.3	84 + 0 =	84
For Flanking Path Fd 2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	82	
Flanking STC for path Fd_2	R_ Fd,w	RR-331, Eq. 4.1.3	82 + 0 =	82
For Flanking Path Df 2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	81	
Flanking STC for path Df_2	R_Df,w	RR-331, Eq. 4.1.3	81 + 0 =	81
Junction 2: Flanking STC for	all paths		8.4 + 10^- 8.2 + 10^- 8.1) =	7
Junction 3: Separating Wall,	/Ceiling			
For Flanking Path Ff_3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBc-31	67	
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	67 + 0 =	67
For Flanking Path Fd_3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBc-31	65	
Flanking STC for path Fd_3	R_ Fd,w	RR-331, Eq. 4.1.3	65 + 0 =	65
For Flanking Path Df_3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBc-31	71	
Flanking STC for path Df_3	R Df,w	RR-331, Eq. 4.1.3	71 + 0 =	71
Junction 3: Flanking STC for			6.7 + 10^- 6.5 + 10^- 7.1) =	
		,	,	
Junction 4: Separating Wall,				
All values the same as for Ju	nction 2			
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		84
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		82
Flanking STC for path Df_4	R_Df,w	Same as for Df_2		81
Junction 4: Flanking STC for		_	8.4 + 10^- 8.2 + 10^- 8.1) =	7
Total Flanking STC (for all 4			ning 12 Flanking STC values	3
			12 Harming STC values	
ASTC due to Direct plus Flar	king Paths	Eq. 4.1.1 Combining Direct STC v	vith 12 Flanking STC values	39

EXAMPLE 4.3-H4:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- Non-loadbearing junction with discontinuous subfloor

Non-loadbearing separating wall assembly with:

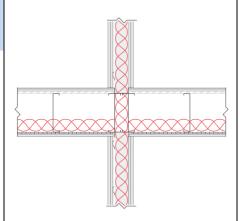
- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layer of 16 mm fire-rated gypsum board⁴ on each side

Junction 1: Separating wall / floor with:

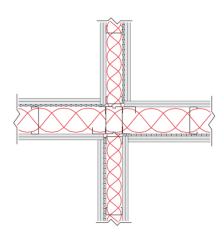
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists parallel to the non-loadbearing wall
- 32 mm gypsum concrete floor deck not continuous at junction

Junction 2 or 4: Separating wall / abutting side wall with:

- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm
 o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board on each side
- Closest CFS studs⁵ of the non-loadbearing walls spaced 10 mm from framing of loadbearing wall
- If gypsum board⁴ on loadbearing wall is directly attached to framing, gypsum board on adjacent non-loadbearing wall is supported on resilient channels⁷, and vice versa


Junction 3: Separating wall / ceiling with:

- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- · CFS joists parallel to the non-loadbearing wall
- 32 mm gypsum concrete floor deck not continuous at junction
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.


Acoustical Parameters:

	<u>In Scenario</u>	In Laboratory
parating partition area (m²) =	12.5	12.5
ng wall junction length (m) =	5.0	5.0
ng wall junction length (m) =	2.5	2.5
nctions 1 and 3:		
S_lab) + 10*log(_lab/ _situ) =	0.00	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario
nctions 2 and 4:		
S_lab) + 10*log(_lab/ _situ) =	0.00	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario
	nctions 2 and 4: S_lab) + 10*log(l_lab/l_situ) =	parating partition area (m²) = 12.5 Ing wall junction length (m) = 5.0 Ing wall junction length (m) = 2.5 Inctions 1 and 3: Inctions 2 and 4:

Illustration for this case

Junction of non-loadbearing CFS-framed separating wall with CFS-framed floor/ceiling assembly (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both CFS-framed (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ∆STC	STC or AS
Separating Partition				
aboratory STC for Dd	R_s,w	RR-331, NLB wall 2G16_SS92(406)_GFB92_RC13(406)	57	
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2 (not a floor, so no ΔSTC correction)		57
	/rl			
Iunction 1: Separating Wall, For Flanking Path Ff 1:	Floor			
U		DD 324 CFC MF MID-L 44	60	
Laboratory Flanking STC	AD 5	RR-331, CFS-WF-NLBd-41	60	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Ff_1	R_Ff,w	RR-331, Eq. 4.1.3 and Eq. 4.1.5 60 + MA	X(0,0)) + MIN(0,0)/2 + 0 =	60
For Flanking Path Fd 1:				
Laboratory Flanking STC		RR-331, CFS-WF-NLBd-41	63	
ΔSTC change by Lining on F	ΔR_F,w	No flooring	0	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	63 + 0 + 0 =	63
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-331, CFS-WF-NLBd-41	67	
ΔSTC change by Lining on f	ΔR_f,w	No flooring	0	
Flanking STC for path Df_1	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	67 + 0 + 0 =	
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^	-6 + 10^- 6.3 + 10^- 6.7) =	!
Junction 2: Separating Wall,	/Wall			
For Flanking Path Ff_2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	84	
Flanking STC for path Ff_2	R_Ff,w	RR-331, Eq. 4.1.3	84 + 0 =	84
For Flanking Path Fd 2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	82	
Flanking STC for path Fd 2	R Fd,w	RR-331, Eq. 4.1.3	82 + 0 =	82
For Flanking Path Df_2:				
Laboratory Flanking STC		RR-331, CFS-WW-NLB92-01	81	
Flanking STC for path Df_2	R Df,w	RR-331, Eq. 4.1.3	81 + 0 =	81
Junction 2: Flanking STC for			.4 + 10^- 8.2 + 10^- 8.1) =	•
Junction 3: Separating Wall,	/Ceiling			
For Flanking Path Ff 3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBd-41	77	
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	77 + 0 =	77
For Flanking Path Fd_3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBd-41	70	
Flanking STC for path Fd_3	R_ Fd,w	RR-331, Eq. 4.1.3	70 + 0 =	70
For Flanking Path Df_3:				
Laboratory Flanking STC		RR-331, CFS-WC-NLBd-41	69	
Flanking STC for path Df_3	R_ Df,w	RR-331, Eq. 4.1.3	69 + 0 =	69
Junction 3: Flanking STC for			-7.7 + 10^- 7 + 10^- 6.9) =	
			,	
Junction 4: Separating Wall,				
All values the same as for Ju	nction 2			
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		84
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		82
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2		81
Junction 4: Flanking STC for		_	.4 + 10^- 8.2 + 10^- 8.1) =	
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combin	ing 12 Flanking STC values	
ASTC due to Direct plus Flan	nking Paths	Eq. 4.1.1 Combining Direct STC w	ith 12 Flanking STC values	54

EXAMPLE 4.3-H5:

(SIMPLIFIED METHOD)

- Rooms side-by-side
- Loadbearing junction with continuous joists and subfloor
- Same as EXAMPLE 4.3-H1 with added finish flooring

Loadbearing separating wall assembly with:

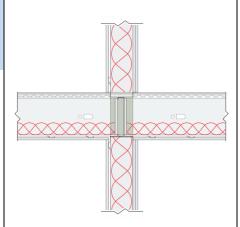
- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 1 layer of 16 mm fire-rated gypsum board⁴ attached to the resilient channels and 2 layers attached directly to studs on the other side

Junction 1: Separating wall / floor with:

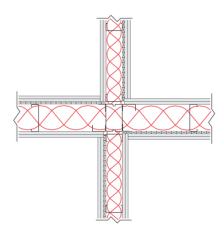
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and continuous across the junction, with fire blocking at the junction
- 32 mm gypsum concrete floor deck continuous across the junction
- 10 mm laminate flooring on 3 mm foam pad installed over subfloor

Junction 2 or 4: Separating wall / abutting side wall with:

- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 1 layer of 16 mm fire-rated gypsum board⁴ attached to the resilient channels and 2 layers attached directly to studs on the other side
- Closest CFS studs⁵ of the non-loadbearing walls are spaced 10 mm from framing of loadbearing wall
- If gypsum board⁴ on loadbearing wall is directly attached to framing, gypsum board on adjacent non-loadbearing wall is supported on resilient channels⁷, and vice versa


Junction 3: Separating wall / ceiling with:

- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- CFS joists perpendicular to the loadbearing wall and continuous across the junction, with fire blocking at the junction
- 32 mm gypsum concrete floor deck continuous across the junction
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.


Acoustical Parameters:

	In Scenario	In Laboratory
Separating partition area (m ²) =	12.5	12.5
Floor/separating wall junction length (m) =	5.0	5.0
Wall/separating wall junction length (m) =	2.5	2.5
Normalization for Junctions 1 and 3:		
10*log(S_situ/S_lab) + 10*log(I_lab/I_situ) =	0.00	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario
Normalization for Junctions 2 and 4:		
$10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =$	0.00	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario

Illustration for this case

Junction of loadbearing CFS-framed separating wall with CFS-framed floor/ceiling assembly (Side view of Junctions 1 and 3)

Junction of separating wall with flanking side wall, both CFS-framed (Plan view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ∆STC	STC or AS
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-331, wall CFS-S152-W33	54	
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2 (not a floor, so no ΔSTC correction)	54
Junction 1: Separating Wall,	/Floor			
For Flanking Path Ff 1:				
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	50	
ΔSTC change by Lining on F	ΔR_F,w	ΔTL-CFS-F02, flooring LAM10 FOAM3 on GCON32	2	
ΔSTC change by Lining on f	ΔR f,w	ΔTL-CFS-F02, flooring LAM10 FOAM3 on GCON32	2	
Flanking STC for path Ff_1	R Ff,w	,	AX(2,2)) + MIN(2,2)/2 + 0 =	53
For Flanking Path Fd 1:	11_11,00	111 331, Eq. 4.1.3 und Eq. 4.1.3	//(2,2)) · Will*(2,2)/2 · 0 =	33
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	53	
ΔSTC change by Lining on F	ΔR F,w	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	53 + 2 + 0 =	55
For Flanking Path Df 1:	N_TG,W	MN-331, Eq. 4.1.3 and Eq. 4.1.4	33 1 2 1 0 =	33
Laboratory Flanking STC		RR-331, CFS-WF-LBc-13	55	
ΔSTC change by Lining on f	ΔR f,w	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Flanking STC for path Df_1	R Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	55 + 2 + 0 =	57
Junction 1: Flanking STC for			-5.3 + 10^- 5.5 + 10^- 5.7) =	-
Junction 1. Flanking STC for	ali pauls	3005et 01 Eq. 4.1.1 - 10 LOG10(10	3.3 + 10 3.3 + 10 3.7) =	•
Junction 2: Separating Wall,	/Wall			
For Flanking Path Ff_2:				
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82	
Flanking STC for path Ff_2	R_Ff,w	RR-331, Eq. 4.1.3	82 + 0 =	82
For Flanking Path Fd 2:		, ,		
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	76	
Flanking STC for path Fd_2	R Fd,w	RR-331, Eq. 4.1.3	76 + 0 =	76
For Flanking Path Df_2:		, ,		
Laboratory Flanking STC		RR-331, CFS-WW-LB152-01	82	
Flanking STC for path Df_2	R Df,w	RR-331, Eq. 4.1.3	82 + 0 =	82
Junction 2: Flanking STC for			·8.2 + 10^- 7.6 + 10^- 8.2) =	-
Junction 3: Separating Wall,	/Ceiling			
For Flanking Path Ff 3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	65	
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	65 + 0 =	65
For Flanking Path Fd_3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	73	
Flanking STC for path Fd_3	R_ Fd,w	RR-331, Eq. 4.1.3	73 + 0 =	73
For Flanking Path Df_3:				
Laboratory Flanking STC		RR-331, CFS-WC-LBc-13	69	
Flanking STC for path Df_3	R_Df,w	RR-331, Eq. 4.1.3	69 + 0 =	
Junction 3: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-	6.5 + 10^- 7.3 + 10^- 6.9) =	(
Junction 4: Separating Wall,	/Wall			
All values the same as for Ju				
Flanking STC for path Ff_4	R Ff,w	Same as for Ff_2		82
Flanking STC for path Fd_4	R Fd,w	Same as for Fd_2		76
Flanking STC for path Df_4	R_Td,W	Same as for Df 2		82
Junction 4: Flanking STC for		_	-8.2 + 10^- 7.6 + 10^- 8.2) =	
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Comb	ining 12 Flanking STC values	Ţ
ASTC due to Direct plus Flan		<u> </u>		
ASTE due to Direct plus Flan	iking Patns	Eq. 4.1.1 Combining Direct STC	with 12 Flanking STC values	48

EXAMPLE 4.3-V1:

(SIMPLIFIED METHOD)

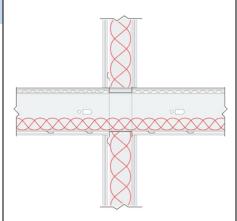
Rooms one above the other

Separating floor assembly with:

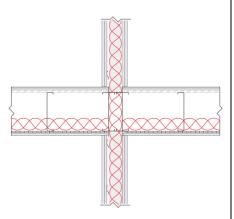
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- 32 mm gypsum concrete floor deck
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.

Junction 1 or 3: Separating floor / loadbearing walls with:

- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ on each side
- Gypsum board² supported on resilient channels⁴ (Junction 1) or attached directly to wall framing (Junction 3).
- CFS floor joists⁵ perpendicular to the loadbearing wall and continuous across the junction and gypsum concrete floor deck continuous across the junction.


Junction 2 or 4: Separating floor / non-loadbearing walls with:

- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached
- CFS floor joists⁵ parallel to the non-loadbearing wall.
- Gypsum concrete floor deck discontinuous across the junction.


Acoustical Parameters:

	In Scenario	In Laboratory
Separating partition area (m ²) =	20.0	20.0
Floor/LB flanking wall junction length (m) =	5.0	5.0
Floor/NLB flanking wall junction length (m) =	4.0	5.0
Normalization for Junctions 1 and 3:		
$10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =$	0.00	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario
Normalization for Junctions 2 and 4:		
10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =	0.97	RR-331, Eq. 4.1.3
RR-331 Flanking	TL data normalize	ed to Std. Scenario

Illustration for this case

Junction of loadbearing CFS-framed separating floor with CFS-framed walls (Side view of Junctions 1 and 3)

Junction of loadbearing CFS-framed separating floor with CFS-framed walls (Side view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or Δ STC	STC or AS	STC
Separating Partition					
Laboratory STC for Dd	R_s,w	RR-331, floor CFS-J254-F01	57		
ΔSTC change by Lining on D	ΔR_D,w	No finish flooring	0		
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2	57 + 0 =	57	
Junction 1: Separating Floor	/Wall				
For Flanking Path Ff_1:					
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	67		
Flanking STC for path Ff_1	R_Ff,w	RR-331, Eq. 4.1.3	67 + 0 =	67	
For Flanking Path Fd_1:					
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	71		
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3	71 + 0 =	71	
For Flanking Path Df 1:					
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	72		
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0		
Flanking STC for path Df_1	R Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	72 + 0 + 0 =	72	
Junction 1: Flanking STC for			. <mark>7 + 10^- 7.1 + 10^- 7.2) =</mark>		65
-			·		
Junction 2: Separating Floor	/Wall				
For Flanking Path Ff 2:					
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	72		
Flanking STC for path Ff_2	R_Ff,w	RR-331, Eq. 4.1.3	72 + 1 =	73	
For Flanking Path Fd 2:					
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	76		
Flanking STC for path Fd 2	R_ Fd,w	RR-331, Eq. 4.1.3	76 + 1 =	77	
For Flanking Path Df 2:	,	351, 1q			
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	74		
ΔSTC change by Lining on D	ΔR D,w	No finish flooring	0		
Flanking STC for path Df_2	R Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	74+0+1 =	75	
Junction 2: Flanking STC for			.3 + 10^- 7.7 + 10^- 7.5) =		70
		20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 / 10 / / / / 10 / / /		
Junction 3: Separating Floor	/Wall				
For Flanking Path Ff_3:	,				
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	67		
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	67 + 0 =	67	
For Flanking Path Fd 3:	11_11,00	IN 331, Ly. 7.1.3	07 10 -	0,	
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	69		
Flanking STC for path Fd_3	D [4		69 + 0 =	69	
	R_ Fd,w	RR-331, Eq. 4.1.3	09+0=	69	
For Flanking Path Df_3:		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	G C		
Laboratory Flanking STC	AD D		65		
ΔSTC change by Lining on D	ΔR_D,w	No finish flooring	0	6 =	
Flanking STC for path Df_3	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	65 + 0 + 0 =		· C
Junction 3: Flanking STC for	an patns	Subset of Eq. 4.1.1 - 10*LOG10(10^-6.	. 7 + 10^- 6.9 + 10^- 6.5) =		6
Junction 4: Separating Floor	/Mall				
Junction 4: Separating Floor All values the same as for Jui	•				
		Same as for Ef. 2		72	
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		73	
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		77	
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2	2 . 104 77 . 104 75	75	7
Junction 4: Flanking STC for	aii patns	Subset of Eq. 4.1.1 - 10*LOG10(10^-7)	.3 + 10^- 7.7 + 10^- 7.5) =		7
Total Floridae CTC /f II 4		Subset of Eq. 4.1.1	ing 12 Flankin - CTC		_
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combin	ing 12 Flanking STC values		5

EXAMPLE 4.3-V2:

(SIMPLIFIED METHOD)

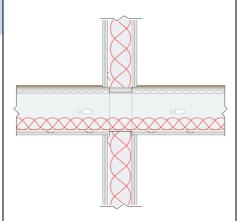
- Rooms one above the other
- Same as EXAMPLE 4.3-V1 with added finish flooring

Separating floor assembly with:

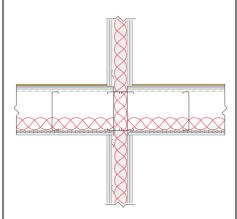
- Floor with 254 mm CFS joists⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- 32 mm gypsum concrete floor deck
- Ceiling of 1 layer of 16 mm fire-rated gypsum board⁴ on resilient channels⁷ spaced 300 mm o.c.
- 10 mm laminate flooring on 3 mm foam pad installed over subfloor

Junction 1 or 3: Junction of separating floor / loadbearing walls:

- Single row of 152 mm loadbearing CFS studs⁵ spaced 400 mm o.c., with 150 mm-thick sound-absorbing material³ filling the cavities
- Resilient metal channels⁷ on one side, spaced 400 mm o.c.
- 2 layers of 16 mm fire-rated gypsum board⁴ on each side
- Gypsum board² supported on resilient channels⁷ (Junction 1) or attached directly to wall framing (Junction 3).
- CFS floor joists⁵ perpendicular to the loadbearing wall and continuous across the junction and gypsum concrete floor deck continuous across the junction.


Junction 2 or 4: Junction of separating floor / non-loadbearing walls:

- Single row of 92 mm non-loadbearing CFS studs⁵ spaced 400 mm o.c., with 90 mm-thick sound-absorbing material³ filling the cavities
- 2 layers of 16 mm fire-rated gypsum board⁴ directly attached
- CFS floor joists⁵ parallel to the non-loadbearing wall.
- Gypsum concrete floor deck discontinuous across the junction.


Acoustical Parameters:

		In Scenario	In Laboratory
Sep	parating partition area (m²) =	20.0	20.0
Floor/LB flankir	ng wall junction length (m) =	5.0	5.0
Floor/NLB flankir	ng wall junction length (m) =	4.0	5.0
Normalization for Ju	nctions 1 and 3:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario
Normalization for Ju	nctions 2 and 4:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.97	RR-331, Eq. 4.1.3
	RR-331 Flanking	TL data normalize	ed to Std. Scenario

Illustration for this case

Junction of loadbearing CFS-framed separating floor with CFS-framed walls (Side view of Junctions 1 and 3)

Junction of loadbearing CFS-framed separating floor with CFS-framed walls (Side view of Junctions 2 and 4)

	ISO Symbol	Reference	STC or ΔSTC	STC or AS
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-331, floor CFS-J254-F01	57	
ΔSTC change by Lining on D	$\Delta R_D, w$	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Direct STC in situ	R_Dd,w	RR-331, Eq. 4.1.2	57 + 2 =	59
Junction 1: Separating Floor	/Wall			
For Flanking Path Ff 1:				
Laboratory Flanking STC	5 = 5	RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	67	
Flanking STC for path Ff_1	R_Ff,w	RR-331, Eq. 4.1.3	67 + 0 =	67
For Flanking Path Fd_1:				
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	71	
Flanking STC for path Fd_1	R_ Fd,w	RR-331, Eq. 4.1.3	71 + 0 =	71
For Flanking Path Df_1:				
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11r, wall gypsum board on RC	72	
ΔSTC change by Lining on D	ΔR_D,w	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Flanking STC for path Df_1	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	72 + 2 + 0 =	
Junction 1: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-6	.7 + 10^- 7.1 + 10^- 7.4) =	: (
Junction 2: Separating Floor	/\Mall			
For Flanking Path Ff 2:	, vvaii			
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	72	
Flanking STC for path Ff_2	R Ff,w	RR-331, Eq. 4.1.3	72 + 1 =	73
For Flanking Path Fd 2:	,	M 331, Eq. 1113	72 : 2	
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	76	
Flanking STC for path Fd 2	R_ Fd,w	RR-331, Eq. 4.1.3	76 + 1 =	77
For Flanking Path Df 2:	K_TG,W	MN-331, Eq. 4.1.3	7011 -	, ,,
Laboratory Flanking STC		RR-331, CFS-FW-NLBd-41d, wall gypsum board direct	74	
ΔSTC change by Lining on D	ΔR D,w	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Flanking STC for path Df_2	R Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	74 + 2 + 1 =	77
Junction 2: Flanking STC for			$\frac{74+2+1}{3+10^{-7.7}+10^{-7.7}} =$	
Junetion 2. Hunking 51c for	un putiis	300300 01 Eq. 4.1.1	.5 10 7.7 10 7.7 1	
Junction 3: Separating Floor	/Wall			
For Flanking Path Ff_3:				
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	67	
Flanking STC for path Ff_3	R_Ff,w	RR-331, Eq. 4.1.3	67 + 0 =	67
For Flanking Path Fd 3:	,	7.11. 35 1, 1q. 11.15		
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	69	
Flanking STC for path Fd_3	R Fd,w	RR-331, Eq. 4.1.3	69 + 0 =	69
For Flanking Path Df_3:	11_10,00	332, Eq. 1123	03 / 0 =	0.5
Laboratory Flanking STC		RR-331, CFS-FW-LBc-11d, wall gypsum board direct	65	
ΔSTC change by Lining on D	ΔR D,w	ΔTL-CFS-F02, flooring LAM10_FOAM3 on GCON32	2	
Flanking STC for path Df_3	R_ Df,w	RR-331, Eq. 4.1.3 and Eq. 4.1.4	65 + 2 + 0 =	67
Junction 3: Flanking STC for		Subset of Eq. 4.1.1 - 10*LOG10(10^-6		
		,	,	
Junction 4: Separating Floor				
All values the same as for Ju				
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		73
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		77
Flanking STC for path Df_4	R_ Df,w	Same as for Df_2		77
Junction 4: Flanking STC for	all paths	Subset of Eq. 4.1.1 - 10*LOG10(10^-7	.3 + 10^- 7.7 + 10^- 7.7) =	:
Total Flanking STC (for all 4	junctions)	Subset of Eq. 4.1.1 Combin	ing 12 Flanking STC values	i (
ASTC due to Direct plus Flan	king Dathe	Eq. 4.1.1 Combining Direct STC w	ith 12 Flooking CTC value	
ASTE due to Direct plus Flan	iking rauis	Lq. 4.1.1 Combining Direct STC w	ith 12 Flanking STC values	56

Summary for Section 4.3: Calculation Examples for CFS-Framed Constructions

The worked examples (4.3-H1 to H5 and 4.3-V1 to V2) illustrate the use of the Simplified Method for calculating the apparent sound transmission class (ASTC) ratings between rooms in a building with CFS-framed floor and wall assemblies.

The examples show the performance for five cases with "bare" gypsum concrete floor surfaces (Examples 4.3-H1 to H4 and 4.3-V1) and for two cases with improvements in direct and/or flanking transmission loss via specific paths due to the addition of typical finish flooring.

For a horizontal room pair, comparing pairs of examples shows the effect of changing key details of the wall/floor junctions:

- Comparing Example H1 vs. Example H2 shows the change from ASTC 46 to ASTC 55 when a break
 is introduced in the gypsum concrete floor surface, for the case with joists perpendicular to a
 loadbearing separating wall.
- Comparing Example H3 vs. Example H4 shows the even larger change from ASTC 39 to ASTC 54
 when a break is introduced in the gypsum concrete floor surface, for the case with floor joists
 parallel to a non-loadbearing separating wall.

From these examples, it is clear that a break in the continuous gypsum concrete surface significantly reduces flanking transmission, which raises the ASTC rating from the unacceptable range to a level which should satisfy a majority of occupants.

Adding laminate flooring to the bare floor surface (Example H5 vs. H1) only slightly increases the Flanking STC ratings for the floor paths, but as the floor paths limit the ASTC rating for the are configuration this small improvement is enough to raise the ASTC rating from 46 to 48, above the minimum requirement of ASTC 47 in the 2015 edition of the National Building Code of Canada.

For a vertical room pair, Example 4.3-V1 shows that the sound transmitted through all 12 flanking paths combined is slightly less than the sound transmitted via the separating floor assembly (Total Flanking STC rating of 59 vs. Direct STC rating of 57). Hence, the ASTC rating of 55 is dominated by the STC rating of the separating floor. Adding finished flooring in Example V2 increases the Direct STC by 2 points to STC 59, and the ASTC increases to 56.

5. Buildings with Hybrid Construction

This chapter presents extended procedures to deal with cases that combine two types of construction.

In each case, the calculation procedures of ISO 15712-1 can be applied to one or more of the constructions, and those values can be combined with test results of flanking sound transmission (measured according to ISO 10848) or direct sound transmission through a separating wall or floor assembly (measured according to ASTM E90) to predict the apparent sound transmission loss and ASTC rating between a pair of adjacent rooms.

5.1. Concrete Floors with Lightweight Framed Walls and Heavy Façades

Building constructions of concrete floors combined with lightweight framed interior wall assemblies are identified in ISO 15712-1 as a special concern for which the standard approach may not give accurate results. To ensure a reasonably conservative approach, this Guide recommends the approach of Annex C of ISO 15712-1 to the calculation procedure for these systems.

As noted in Annex C and Section 4.2.4 of ISO 15712-1, if a surface of one room is part of a larger heavy structural element, and some of the bounding junctions are formed by lightweight steel-framed or wood-framed wall or floor assemblies, the response of the heavy element is influenced not only by the elements in the room but by the response of the extended structure. This affects both concrete floors (cast-in-place or precast) and other adjoining heavy elements such as concrete or masonry supporting walls which are "divided" by lightweight partitions. In this situation, the excitation of the floor by airborne sound in one room can create nearly uniform vibration levels over the entire extended floor surface. Similarly, for a heavy concrete or masonry wall intersecting lightweight wall assemblies, the vibration attenuation at the intersection is small, so the heavy wall responds over an extended surface bounded by junctions with other heavy elements.

To obtain a conservative estimate of the in-situ losses, Annex C of ISO 15712-1 recommends a modified approach to calculating the in-situ loss of heavy extended floor or wall assemblies when evaluating the transmission at junctions with lightweight walls. The Standard recommends calculating the in-situ loss both for the section of floor in one room, and for the extended floor area bounded by rigid junctions with heavy elements. The larger of these two losses should then be used in the loss calculations which otherwise follow the same procedures shown in Chapter 2 of this Guide.

In addition, there are a number of changes for dealing with in-situ estimates of direct transmission through a lightweight wall assembly and flanking transmission at the intersection of lightweight wall assemblies. These affect the calculations at several stages.

To illustrate the resulting changes in the calculation process, this Guide uses an **Extended Scenario**, which is presented in Figure 5.1, and has the following features:

- The Extended Scenario comprises a floor area considerably larger than that of the Standard Scenario, with lightweight partitions dividing the area into two pairs of adjacent rooms with a corridor between. In Figure 5.1, the floor area would be the entire floor with an area of approximately 96 m².
- Each pair of adjacent rooms has the same dimensions as the Standard Scenario used elsewhere in the Guide.
- At the perimeter are T-junctions of the floor with the façade walls above and below. In the case
 of heavy concrete or masonry façade walls, the junctions will be rigid junctions which means
 firmly fastened so that vibration can readily be transmitted between assemblies.

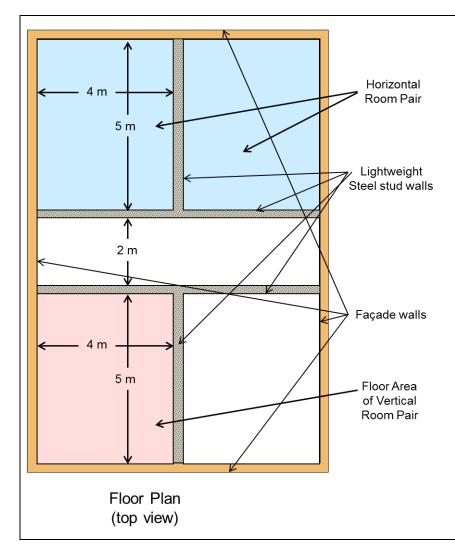


Figure 5.1: Extended Scenario for the case with concrete structural floors and rigid junctions with a façade wall at the perimeter of the floor. Lightweight framed interior walls divide the interior space into two pairs of adjacent rooms with a corridor between. The room pairs have the same dimensions as in the Standard Scenario used elsewhere in the Guide. The rooms above and below have the same floor plan. The floor area for the horizontal pair is shaded blue. The floor area for the vertical pair is shaded pink.

For Examples 5.1.1 to 5.1.3, the façade wall is of heavy concrete or masonry. For Examples 5.2.1 and 5.2.2, the façade wall is a much lighter glass curtain wall.

<u>Calculation Steps for Horizontal Pair of Rooms with a Heavy Façade Wall of Concrete or Concrete Masonry:</u>

- 1. For the direct sound transmission through the separating assembly of non-loadbearing wood or steel studs⁵, the calculation process is simple, because the high internal losses of the wall mask any effect due to edge losses. The in-situ direct transmission loss is equal to the laboratory transmission loss, and the equivalent absorption length for subsequent junction calculations is taken as equal to the partition area (see Section 4.2.2 of ISO 15712-1).
- 2. The lightweight framed walls in these examples could use either loadbearing or non-loadbearing studs. Normally, the walls would use non-loadbearing studs, but the same calculation can be used in either case. The top and bottom tracks of the wall framing are mechanically attached to the concrete floor/ceiling assemblies above and below. For non-loadbearing steel studs, it is common practice to use a nested pair of tracks at the top of the wall assembly, with the studs attached to the lower member of the pair. The attachment may also include a fire stop. These variations could reduce the floor/wall and ceiling/wall flanking sound transmission slightly (i.e. give a higher Flanking

STC values), but the calculations here ignore this effect because the rather weak coupling from the concrete floor/ceiling to the lightweight framed walls results in Flanking STC values of 80 or higher for these paths even for loadbearing studs, so they have negligible effect on the overall ASTC rating. However, the wall/wall flanking sound transmission paths may be affected by differences between loadbearing or non-loadbearing studs.

- 3. For flanking sound transmission at the cross-junctions of the concrete floor assembly with lightweight wood-framed or steel-framed separating walls (Junctions 1 and 3 in the examples in this chapter) the calculation steps are unchanged from those in Chapter 2, except that the vibration reduction index values are calculated according to Eq. E.7 of ISO 15712-1, and the losses for the concrete slab are calculated differently. In-situ edge losses for the concrete floor or wall assemblies are calculated for the junctions at the perimeter of the extended surface where it connects with the heavyweight façade, using Equations C.1 and C.2 of Annex C of ISO 15712-1 and the K_{ij} values from Annex E of ISO 15712-1. This controls the calculated total loss factors for the concrete floor surfaces in each room, and hence the in-situ sound transmission loss and junction attenuation values. (The calculated loss values are given in "Acoustical Parameters" below the specimen description in each of the worked examples.)
- 4. For flanking sound transmission at the T-junction with the concrete block perimeter wall (Junction 2 in the examples in this chapter), the calculation steps are unchanged from the discussion in Chapter 2 except that the in-situ edge loss is calculated for the junctions at the perimeter of the extended surface area for the concrete block surfaces. This change affects the calculated loss factors for the concrete block flanking surfaces in each room, and hence the in-situ transmission loss and junction attenuation values.
- 5. For flanking sound transmission at the T-junction of the steel stud separating wall with the non-loadbearing steel stud corridor wall, the calculation uses values of the flanking transmission loss determined by measurements according to ISO 10848, as explained in Chapter 4.
- 6. The Direct TL and Flanking TL values are combined as described in Section 1.4 of this Guide.

<u>Calculation Steps for Vertical Pair of Rooms with a Heavy Façade Wall of Concrete or Concrete Masonry:</u>

- 1. For the separating concrete floor assembly, the calculation steps are unchanged from the discussion in Chapter 2 except that the in-situ edge loss is calculated for the junctions at the perimeter of the extended surface area where it connects with the heavyweight façade using Equations C.1 and C.2 of Annex C of ISO 15712-1 and the K_{ij} values from Annex E of ISO 15712-1. This change affects the calculated total loss, and hence the in-situ transmission loss and the in-situ attenuation at junctions with flanking walls at the four edges of the room.
- 2. For flanking sound transmission at the cross-junctions with the lightweight framed wall assemblies (Junctions 1 and 4 in the examples in this chapter), the calculation process is simpler. The in-situ transmission loss of the wall is equal to the laboratory transmission loss, and the equivalent

absorption length for subsequent junction calculations is taken as numerically equal to the partition area as required in Section 4.2.2 of ISO 15712-1. The K_{ij} values are calculated using the appropriate mass ratios in equation E.7 in Annex E of ISO 15712-1. The final stages of determining the flanking transmission loss follow the process presented in Chapter 2.

- 3. For flanking sound transmission at the T-junction with the concrete block perimeter wall (Junctions 2 and 3 in the examples in this chapter), the calculation steps are unchanged from those in Chapter 2 except that the in-situ edge loss of the concrete block perimeter wall is calculated for the junctions at the perimeter of the extended surface area (see Annex C of ISO 15712-1). This change affects the calculated total loss for the concrete block surfaces in each room, and hence the in-situ transmission loss for the masonry surfaces and the resulting junction attenuation. (The calculated loss values are given in "Acoustical Parameters" below the specimen description in each of the worked example.)
- 4. The Direct TL and Flanking TL values are combined as described in Section 1.4 of this Guide.

EXAMPLE 5.1.1:

DETAILED METHOD

- Rooms side-by-side, EXTENDED SCENARIO
- Concrete floors and heavy concrete or masonry façade with lightweight steel stud internal walls

Separating framed wall assembly with:

- One row of loadbearing 152 mm steel studs⁵ of 1.37 mm thick steel, spaced 600 mm o.c., with absorptive material³ filling the cavities between studs
- 2 layers of 16 mm fire-rated gypsum board⁴ attached directly to one side and supported on resilient metal channels⁷ on the other side

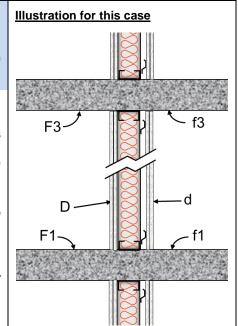
Junction 1: Bottom Junction (separating wall / floor) with:

- Concrete floor with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no topping or flooring
- Rigid cross-junction with steel-framed separating wall assembly

Junction 2: Separating wall / abutting perimeter side wall with:

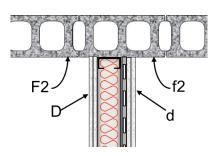
 Abutting side wall of 190 mm hollow concrete block masonry constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

Junction 3: Top Junction (separating wall / ceiling) with:

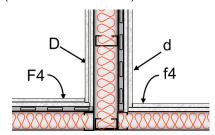

- Concrete ceiling slab with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no ceiling lining
- Cross-junction with steel stud⁵ separating wall assembly

Junction 4: Separating wall / abutting corridor wall with:

- Abutting corridor wall with non-loadbearing 90 mm steel studs⁵ of 0.46 mm thick steel, with two layers of fire-rated gypsum board on each side, mounted on resilient metal channels⁷ in one room
- T-junction with steel stud⁵ separating wall


Acoustical Parameters:

For Separating Asse	mbly:				
internal loss, η_i =	dominant (same loss for lab	oratory	and in-s	itu, See 4	1.2.2)
mass (kg/m²) =	56.8	f_c =	2500		
For Flanking Corrido	<u>r Wall:</u> Parameters a	re the sa	ame exc	ept mass	$s = 46 \text{ kg/m}^2$
For Flanking Elemen	ts F and f at Junction 1 & 3	Extende	ed concre	ete floor	/ ceiling)
internal loss, η_i =	0.006	c_L =	3500		
mass (kg/m²) =	345	f_c = 124			
	Reference	K_Ff	K_Fd	K_dF	Σ l_k . α_k
X-Junction 1 or 3	ISO 15712-1, Eq. 23 & E.7	-3.0	17.8	17.8	(ignore)
T-Junction 2	ISO 15712-1, Eq. 23 & E.4	-3.0	16.2	16.2	6.57
Total loss, η_tot	ISO 15712-1, Eq. C.1-C.3		0.052	(at 500	Hz)
Similarly, for Flankin	g Elements F and f at Junctio	on 2 (Ext	tended r	masonry	façade)
internal loss, η_i =	0.015	c_L =	3500		
mass (kg/m²) =	238	f_c =	98		
	Reference	K_Ff	K_Fd	K_dF	Σ l_k . α_k
T- (above,below)	ISO 15712-1, Eq. 23 & E.4	8.1	5.8		4.7
corner edges	ISO 15712-1, Eq. 23 & E.9		-2.0		4.7
Total loss, η_tot,2	ISO 15712-1, Eq. C.1-C.3		0.090	(at 500	Hz)



Junction of steel stud separating wall with 150 mm thick concrete floor and ceiling.

(Side view of Junctions 1 and 3)

Junction of separating wall with flanking façade wall, of 190 mm concrete block. (Plan view of Junction 2)

Junction of separating wall with flanking corridor wall framed with steel studs. (Plan view of Junction 4)

	ISO Symbol	Reference	125	250	630	1250	2500	5000	STC or AST
Separating Partition	.22 27111201		123					2300	2.23.73T
Sound Transmission Loss (TL)	R D,lab	RR-337, CFS-S152-W33	37	51	56	63	57	64	58
Leakage or Airborne Flanking	N_D,iab	Sealed & Blocked	0	0	0	0	0	0	30
Direct TL in-situ	R D,situ	4.2.2: Equal to lab. TL	37	51	56	63	57	64	58
Direct 12 iii-3itu	n_D,situ	4.2.2. Equal to lab. TE		<u> </u>	30	- 03			30
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150					0.146		- 33
Change by Lining on source side	ΔR_F1	No lining	0.155	0.505	0.230	0.203	0.110	0.077	
Change by Lining on receive side	ΔR f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3					0.038		
TL in-situ for F1		ISO 15712-1, Eq. 19	44.0	46.8	54.7	63.6	71.8	79.9	58
TL in-situ for f1		ISO 15712-1, Eq. 19	44.0	46.8	54.7	63.6	71.8	79.9	58
Junction J1 - Coupling	K_II,SILU	130 13712-1, Eq. 19	44.0	40.6	34.7	03.0	71.0	79.9	36
Velocity Level Difference for Ff	D v Ef 1 situ	ISO 15712-1, Eq. 21, 22	3.1	3.2	3.3	3.5	3.8	4.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3	
•									
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3	
Flanking Transmission Loss - Path data		ISO 15712 1 Fa 25-	45	40	F.	C -	74	03	F^
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	45	48	56	65	74	82	59
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Junction 1: Flanking STC for all paths			- 10*L0	JG10(1	10^-5.9	+ 10^-	8 + 10	^-8)=	5
Junction 2: Separating Wall/Wall									
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)					0.056		
Change by Lining on source side	ΔR_F2	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.105	0.072	0.049	0.032	0.021	0.013	
TL in-situ for F2		ISO 15712-1, Eq. 19	40.7	43.5	49.4	54.9	62.2	66.9	54
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	40.7	43.5	49.4	54.9	62.2	66.9	54
Junction J2 - Coupling									
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	5.4	5.5	5.7	6.0	6.3	6.8	
Velocity Level Difference for Fd	D_v,Fd_2,situ	ISO 15712-1, Eq. 21, 22	21.9	22.9	24.0	25.2	26.3	27.6	
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	21.9	22.9	24.0	25.2	26.3	27.6	
Flanking Transmission Loss - Path data									
Flanking TL for Path Ff_2	R_Ff	ISO 15712-1, Eq. 25a	47	50	56	62	70	75	61
Flanking TL for Path Fd 2	R Fd	ISO 15712-1, Eq. 25a	61	71	77	85	86	90	81
Flanking TL for Path Df 2	R Df	ISO 15712-1, Eq. 25a	61	71	77	85	86	90	81
Junction 2: Flanking STC for all paths	_		10*LOG1	0(10^-	6.1 + 1	0^- 8.1	+ 10^-	8.1)=	6
<u> </u>				- 1				,	
Junction 3: Separating Wall/Ceiling									
All input values the same as for Junction	n 1								
Flanking TL for Path Ff 3	R Ff	ISO 15712-1, Eq. 25a	45	48	56	65	74	82	59
Flanking TL for Path Fd 3	R Fd	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Flanking TL for Path Df 3	R_Df	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Junction 3: Flanking STC for all paths	101	13, 12 1, Eq. 230	00	. 0	.,	30	33	50	5
Tames of the form of patris									
Junction 4: Separating Wall/Wall									
Flanking Transmission Loss - Measured	1								
Flanking TL for Path Ff 4	R_Ff	RR-337, CFS-WW-LB152-01	63	79	85	90	78	90	82
Flanking TL for Path Fd 4	R Fd	RR-337, CFS-WW-LB152-01	67	75	85	90	78	90	82
Flanking TL for Path Pd_4	R Df	RR-337, CFS-WW-LB152-01	65	68	65 77	81	70 72	83	76
Junction 4: Flanking STC for all paths	ר_טו	•	· 10*LOG1						76
Junearing STC for all paths			10 1001	0(10.,-	0.2 + 1	0.2	L TO.,-	7.0] =	/-
Total Flanking (for all 4 innetions)									F
Total Flanking (for all 4 junctions)									5
ACTO due to Direct I di li di li		DD 224 Fr. 4.4		42					F-0
ASTC due to Direct plus Flanking Path	S	RR-331, Eq. 1.4	35	43	50	57	56	63	53

EXAMPLE 5.1.2:

DETAILED METHOD

- Rooms side-by-side, EXTENDED SCENARIO
- Concrete floors and heavy concrete or masonry façade with lightweight steel stud internal walls (Same structure as 5.1.1 with linings improved)

Separating framed wall assembly with:

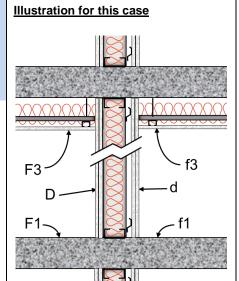
- One row of loadbearing 152 mm steel studs⁵ of 1.37 mm thick steel, spaced 600 mm o.c., with absorptive material³ in the cavities
- 2 layers of 16 mm fire-rated gypsum board⁴ attached directly to one side and supported on resilient metal channels⁷ on the other side

Junction 1: Bottom Junction (separating wall / floor) with:

- Concrete floor with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no topping or flooring
- Cross-junction with steel-framed⁵ separating wall assembly

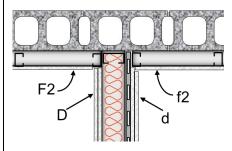
Junction 2: Separating wall / abutting perimeter side wall with:

- Abutting side wall of 190 mm hollow concrete block masonry constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Lining of 16 mm fire-rated gypsum board⁴ on 65 mm steel studs spaced 600 mm o.c., with no absorptive material³ in cavities

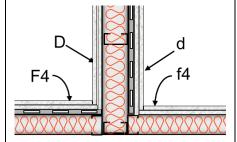

Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling slab with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm)
- Ceiling lining below of 13 mm gypsum board⁴ fastened to hat-channels supported on cross-channels hung on wires, cavity of 150 mm between concrete and ceiling, with 150 mm absorptive material³
- Cross-junction with steel-framed⁵ separating wall assembly

Junction 4: Separating wall / abutting corridor wall with:


- Abutting corridor wall with non-loadbearing 90 mm steel studs⁵ of 0.46 mm thick steel, with two layers of fire-rated gypsum board on each side, mounted on resilient metal channels⁷ in one room
- Rigid T-junction with steel stud⁵ separating wall

Acoustical Parame	<u>eters:</u>				
For separating assen	<u>nbly:</u>				
internal loss, η_i =	dominant (same loss for lab	oratory a	and in-sit	u, See 4.2	2.2)
mass (kg/m²) =	56.8	f_c =	2500		
For Flanking Corridor	<u> Wall:</u> Parameters	are the s	ame exc	ept mass	= 46 kg/m ²
For flanking element	s F and f at Junction 1 & 3 (E	xtended	Concrete	floor an	d ceiling)
internal loss, η_i =	0.006	c_L =	3500		
mass (kg/m²) =	345	f_c =	124		
	Reference	K_Ff	K_Fd	K_dF	$\Sigma \: I_k \: . \: \alpha_k$
X-Junction 1 or 3	ISO 15712-1, Eq. 23 & E.7	-3.0	17.8	17.8	(ignore)
T-Junction 2	ISO 15712-1, Eq. 23 & E.4	-3.0	16.2	16.2	6.57
Total loss, η_tot	ISO 15712-1, Eq. C.1-C.3		0.052	(at 500 I	Hz)
Similarly, for flanking	g elements F and f at Junctio	n 2 (Exte	ended ma	sonry fac	<u>cade)</u>
internal loss, η_i =	0.015	c_L =	3500		
mass (kg/m²) =	238	f_c =	98		
	Reference	K_Ff	K_Fd	K_dF	$\Sigma \: I_k \: . \: \alpha_k$
T- (above,below)	ISO 15712-1, Eq. 23 & E.4	8.1	5.8		4.73
corner edges	ISO 15712-1, Eq. 23 & E.9		-2.0		4.73
Total loss, η_tot,2	ISO 15712-1, Eq. C.1-C.3		0.090	(at 500 I	Hz)
/Fautha natas ::	this table places see	41		. d:	



Cross-junctions of steel stud separating wall with 150 mm thick concrete floor and ceiling.

(Side view of Junctions 1 and 3)

Junction of separating wall with flanking façade wall, of 190 mm concrete block. (Plan view of Junction 2)

Junction of separating wall with flanking corridor wall framed with steel studs. (Plan view of Junction 4)

	ISO Symbol	Reference	125	250	630	1250	2500	5000	STC or AST
Separating Partition	, , , , , , , , , , , , , , , , , , , ,								
Sound Transmission Loss (TL)	R D,lab	RR-337, CFS-S152-W33	37	51	56	63	57	64	58
Leakage or Airborne Flanking	2,	Sealed & Blocked	0	0	0	0	0	0	50
Direct TL in-situ	R D,situ	4.2.2: Equal to lab. TL	37	51	56	63	57	64	58
2	11_2/0164	TIZIZI Zquar to last 12						<u> </u>	
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1	R F1,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150					0.146		33
Change by Lining on source side	ΔR F1	No lining	0.433	0.303	0.230	0.203	0.140	0.077	
Change by Lining on receive side	ΔR_f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3					0.038		
TL in-situ for F1		ISO 15712-1, Eq. C.1-C.3	44.0	46.8	54.7	63.6	71.8	79.9	58
TL in-situ for f1		ISO 15712-1, Eq. 19	44.0	46.8	54.7	63.6	71.8	79.9	58
Junction J1 - Coupling	K_II,SILU	13O 13712-1, Eq. 19	44.0	40.6	54.7	05.0	/1.0	79.9	36
	D v Ff 1 city	ISO 15712 1 Fa 21 22	2.1	2.2	2.2	2.5	2.0	4.1	
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	3.1	3.2	3.3	3.5	3.8	4.1	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3	
Flanking Transmission Loss - Path data		150 45742 4 5 25						0.5	
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	45	48	56	65	74	82	59
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	60	70	77	86	89	90	80
Junction 1: Flanking STC for all paths			- 10*L	OG10(:	10^-5.9	+ 10^-	8 + 10	^-8)=	5
Junction 2: Separating Wall/Wall									
Flanking Element F2 and f2: Input Data	a_								
Sound Transmission Loss, F2 or f2	R_F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)	0.394	0.255	0.168	0.101	0.056	0.041	
Change by Lining on source side	ΔR_F2	RR-334, ΔTL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Change by Lining on receive side	ΔR_f2	RR-334, ATL-BLK190(NW)-61, SS65_G13	-4	8	14	15	13	16	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.105	0.072	0.049	0.032	0.021	0.013	
TL in-situ for F2	R_F2,situ	ISO 15712-1, Eq. 19	40.7	43.5	49.4	54.9	62.2	66.9	54
TL in-situ for f2		ISO 15712-1, Eq. 19	40.7	43.5	49.4	54.9	62.2	66.9	54
Junction J2 - Coupling		, 1							
Velocity Level Difference for Ff	D v.Ff 2.situ	ISO 15712-1, Eq. 21, 22	5.4	5.5	5.7	6.0	6.3	6.8	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	21.9	22.9	24.0	25.2	26.3	27.6	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	21.9	22.9	24.0	25.2	26.3	27.6	
Flanking Transmission Loss - Path data		100 107 12 1, 14. 11, 12					20.5	27.10	
Flanking TL for Path Ff 2	R Ff	ISO 15712-1, Eq. 25a	39	66	84	90	90	90	63
Flanking TL for Path Fd 2	R_Fd	ISO 15712-1, Eq. 25a	57	79	90	90	90	90	81
Flanking TL for Path Df 2	R Df	ISO 15712-1, Eq. 25a	57	79	90	90	90	90	81
Junction 2: Flanking STC for all paths	IN_DI		0*LOG1						61
Junetion 2. Hanking STC for all patris		- 1	U LOGI	0(10	0.5 1 1	0 - 0.1	110 -	0.1 / -	
Junction 3: Separating Wall/Ceiling									
All values the same as for Junction 1, e	voont lining-								
•		DD 224 ATL CON1FO CO1	0	21	24	24	22	10	
Change by Lining on source side	ΔR_F3	RR-334, ΔTL-CON150-C01	8	21	24	24	22	19	
Change by Lining on receive side	ΔR_f3	RR-334, ΔTL-CON150-C01	8	21	24	24	22	19	
Flanking Transmission Loss - Path data		150 45742 4 5 35							
Flanking TL for Path Ff_3	R_Ff	ISO 15712-1, Eq. 25a	61	90	90	90	90	90	85
Flanking TL for Path Fd_3	R_Fd	ISO 15712-1, Eq. 25a	68	90	90	90	90	90	89
Flanking TL for Path Df_3	R_Df	ISO 15712-1, Eq. 25a	68	90	90	90	90	90	89
Junction 3: Flanking STC for all paths									8
Junction 4: Separating Wall/Wall									
Flanking Transmission Loss - Measured									
Flanking TL for Path Ff_4	R_Ff	RR-337, CFS-WW-LB152-01	63	79	85	90	78	90	82
Flanking TL for Path Fd_4	R_Fd	RR-337, CFS-WW-LB152-01	67	75	85	90	78	90	82
Flanking TL for Path Df_4	R_Df	RR-337, CFS-WW-LB152-01	65	68	77	81	72	83	76
Junction 4: Flanking STC for all paths		- 1	0*LOG1	0(10^-	8.2 + 1	0^- 8.2	+ 10^-	7.6)=	7
Total Flanking (for all 4 junctions)									5
<u> </u>									

EXAMPLE 5.1.3:

DETAILED METHOD

- Rooms one-above-the-other, EXTENDED SCENARIO
- Concrete separating floor and heavy concrete or masonry façade with lightweight steel stud internal flanking walls

Separating floor/ceiling assembly with:

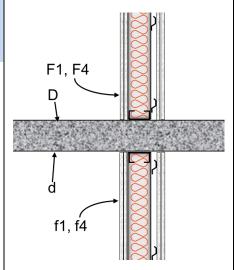
 Concrete floor with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no topping / flooring on top, or ceiling lining below

Junction 1: Cross-junction of separating floor / flanking walls with:

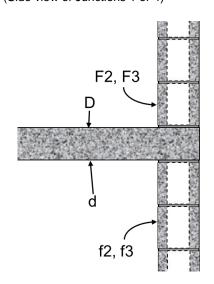
- Walls above and below the floor have one row of loadbearing 152 mm steel studs⁵ of 1.37 mm thick steel, spaced 600 mm o.c., with absorptive material³ filling the cavities between studs
- 2 layers of 16 mm fire-rated gypsum board⁴ attached directly to one side and supported on resilient metal channels⁷ on the other side (total weight per unit area of 56.8 kg/m²)

<u>Junction 2 and 3: T-Junction of separating floor / flanking wall with:</u>

- Rigid mortared T-junctions with perimeter concrete block façade wall assemblies
- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining


Junction 4: Junction of separating floor / corridor wall with:

 Non-loadbearing 90 mm steel studs⁵ of 0.46 mm thick steel, with two layers of fire-rated gypsum board attached directly to one side and supported on resilient metal channels⁷ on the other side (total weight per unit area of 46 kg/m²)


Acoustical Parameters:

For separating assem	nbly (Extended concrete floo	or surface	e) :		
internal loss, η_i =	0.006	c_L =	3500		
mass (kg/m²) =	345	f_c =	124		
	Reference	K_Ff	K_Fd	K_Df	Σ l_k . α_k
X-Junction 1 or 4	ISO 15712-1, Eq. E.7	25.7	17.8	17.8	(ignore)
T-Junctions 2&3	ISO 15712-1, Eq. E.4	8.1	5.8	5.8	6.57
Total loss, η_tot	ISO 15712-1, Eq. C.1-C.3		0.052	(at 500 I	Hz)
Similarly, for masonr	y flanking walls F and f at Ju	unction 2	& 3 (Ext	ended fa	açade)_
internal loss, η_i =	0.015	c_L =	3500		
mass (kg/m²) =	238	f_c =	98		
	Reference	K_Ff	K_Fd	K_Df	Σ l_k . α_k
T- (above,below)	Reference ISO 15712-1, Eq. 23 & E.4	K_Ff 8.1	K_Fd 5.8	K_Df	
				K_Df	ΣI_k . α_k 5.85
corner edges	ISO 15712-1, Eq. 23 & E.4		5.8	K_Df (at 500 l	5.85
corner edges Total loss, η_tot,2	ISO 15712-1, Eq. 23 & E.4 ISO 15712-1, Eq. 23 & E.9		5.8 -2.0	_	5.85 Hz)
corner edges Total loss, η_tot,2 Total loss, η_tot,3	ISO 15712-1, Eq. 23 & E.4 ISO 15712-1, Eq. 23 & E.9 ISO 15712-1, Eq. C.1-C.3	8.1	5.8 -2.0 0.090 0.089	(at 500 I	5.85 Hz)
corner edges Total loss, η_tot,2 Total loss, η_tot,3 For lightweight flank	ISO 15712-1, Eq. 23 & E.4 ISO 15712-1, Eq. 23 & E.9 ISO 15712-1, Eq. C.1-C.3 ISO 15712-1, Eq. C.1-C.3	8.1 ction 1 &	5.8 -2.0 0.090 0.089	(at 500 I	5.85 Hz) Hz)
corner edges Total loss, η_tot,2 Total loss, η_tot,3 For lightweight flank	ISO 15712-1, Eq. 23 & E.4 ISO 15712-1, Eq. 23 & E.9 ISO 15712-1, Eq. C.1-C.3 ISO 15712-1, Eq. C.1-C.3 ting elements F and f at Junassume loss in-situ = labora	8.1 ction 1 &	5.8 -2.0 0.090 0.089	(at 500 I (at 500 I	5.85 Hz) Hz)

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with steel stud wall with 152 mm LB or 90 mm NLB studs. (Side view of Junctions 1 or 4)

T-Junction of separating floor of 150 mm thick concrete floor with 190 mm concrete block wall.

(Side view of Junction 2 and 3)

	ISO Symbol	Reference	125	250	630	1250	2500	5000	STC or A	STO
Separating Partition	ice cymice.								0.00.70	
Sound Transmission Loss (TL)	R D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53	
Structural Reverberation Time	T s,lab	RR-334, Measured T s for CON150					0.146		33	
Change by Lining on source side	ΔR D	No lining	0.433	0.505	0.230	0.203	0.140	0.077		
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0		
Structural Reverb. Time in-situ										
	T_s,situ	ISO 15712-1, Eq. C.1-C.3					0.038			
Leakage or Airborne Flanking		Sealed & Blocked	0	0	0	0	0	0		
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	44	47	55	64	72	80	58	
Junction 1: Separating Floor/Wall										
Sound Transmission Loss, F1 or f1	R F1.lab	RR-337, CFS-WW-LB152-01, Dd(LB)	38	50	58	61	55	63	58	
TL in-situ for F1		4.2.2: Equal to lab. TL	38	50	58	61	55	63	58	
		•	38							
TL in-situ for f1	R_f1,situ	4.2.2: Equal to lab. TL	38	50	58	61	55	63	58	
Junction J1 - Coupling										
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	31.7	30.7	29.7	28.7	27.7	26.7		
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3		
Velocity Level Difference for Df	D_v,Df_1,sit	ISO 15712-1, Eq. 21, 22	20.9	21.9	23.0	24.0	25.2	26.3		
Flanking Transmission Loss - Path data										
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	72	83	90	90	85	90	88	
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a	63	71	80	88	90	90	82	
Flanking TL for Path Df 1	R Df	ISO 15712-1, Eq. 25a	63	71	80	88	90	90	82	
Junction 1: Flanking STC for all paths	5.	, ,	10*LOG1							7
<u> </u>				,						_
Junction 2: Separating Floor/Wall										
Flanking Element F2 and f2: Input Dat	<u>a</u>									
Sound Transmission Loss, F2 or f2	R F2,lab	RR-334, Mean-BLK190(NW)	35	38	44	50	58	62	49	
Structural Reverberation Time	T_s,lab	RR-334, RT-Mean-BLK190(NW)		0.255	0.168		0.056	0.041		
Change by Lining on source side	ΔR F2	No lining	0	0	0	0	0	0		
Change by Lining on receive side	ΔR_f2	No lining	0	0	0	0	0	0		
Structural Reverb. Time in-situ		ISO 15712-1, Eq. C.1-C.3					0.021			
	T_s,situ			43.5	49.4		62.2		54	
TL in-situ for F2		ISO 15712-1, Eq. 19	40.7			54.9		66.9		
TL in-situ for f2	R_f2,situ	ISO 15712-1, Eq. 19	40.7	43.5	49.4	54.9	62.2	66.9	54	
Junction J2 - Coupling										
Velocity Level Difference for Ff		ISO 15712-1, Eq. 21, 22	14.4	14.5	14.7	15.0	15.4	15.9		
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	12.5	12.6	12.8	13.0	13.3	13.7		
Velocity Level Difference for Df	D_v,Df_2,situ	ISO 15712-1, Eq. 21, 22	12.5	12.6	12.8	13.0	13.3	13.7		
Flanking Transmission Loss - Path data	<u> </u>									
Flanking TL for Path Ff 2	R_Ff	ISO 15712-1, Eq. 25a	58	61	67	73	81	86	72	
Flanking TL for Path Fd 2	R_Fd	ISO 15712-1, Eq. 25a	56	59	66	74	82	89	70	
Flanking TL for Path Df 2	R Df	ISO 15712-1, Eq. 25a	56	59	66	74	82	89	70	
Junction 2: Flanking STC for all paths		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					7 + 10	^-7)=		6
<u> </u>										
Junction 3: Separating Floor/Wall										
All input data the same as for Junction	2, but differe	nt junction length changes Flanking TL								
Flanking Transmission Loss - Path data										
Flanking TL for Path Ff_3	R_Ff	ISO 15712-1, Eq. 25a	57	60	66	72	80	85	71	
Flanking TL for Path Fd_3	R_Fd	ISO 15712-1, Eq. 25a	55	58	65	73	81	88	69	
Flanking TL for Path Df 3	R_Df	ISO 15712-1, Eq. 25a	55	58	65	73	81	88	69	
Junction 3: Flanking STC for all paths	_	-	10*LOG1	0(10^-	7.1 + 1	0^- 6.9	+ 10^-	6.9)=		6
-										
Junction 4: Separating Floor/Wall										
Like Junction 1, but different studs and	l junction leng	th change Flanking TL								
Sound Transmission Loss, F4 or f4		RR-337, CFS-WW-NLB90-01, Dd(NLB)	35	50	62	69	60	62	58	
TL in-situ for F4	R F4,situ	4.2.2: Equal to lab. TL	35.0	50.0	62.0	69.0	60.0	62.0	58	
TL in-situ for f4		4.2.2: Equal to lab. TL	35.0	50.0	62.0	69.0	60.0	62.0	58	
Flanking Transmission Loss - Path data		Equal to lab. 12	33.0	50.0	52.0	55.0	50.0	02.0	30	
	-	ISO 15712 1 Fo 250	74	or	00	00	00	00	00	
	R_Ff	ISO 15712-1, Eq. 25a	71	85	90	90	90	90	89	
Flanking TL for Path Ff_4		ISO 15712-1, Eq. 25a	63	73	84	90	90	90	84	
Flanking TL for Path Ff_4 Flanking TL for Path Fd_4	R_Fd			73	84	90	90	90	84	
Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	R_Fd R_Df	ISO 15712-1, Eq. 25a	63							
Flanking TL for Path Ff_4			10*LOG1				+ 10^-	8.4)=		8
Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4 Flanking TL for Path Df_4 Flanking STC for all paths							+ 10^-	8.4)=		
Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	R_Df						+ 10^-	8.4) = 76	56	6

<u>Summary for Section 5.1: Calculation Examples for Concrete Floors with Lightweight</u> <u>Framed Walls and Heavy Facades</u>

Examples 5.1.1 to 5.1.3 show calculation examples for the Extended Scenario in a building with heavy concrete or concrete masonry façade walls, steel-framed wall assemblies dividing the interior area, and heavy concrete structural floor assemblies above and below.

Example 5.1.1 shows the calculation for a horizontal pair of rooms separated by a steel-framed wall with laboratory STC rating of 58. The ASTC rating of this configuration is 53. If the separating wall is replaced by a wall with laboratory STC rating of 50, the ASTC rating drops to 47. The overall Flanking STC of 55 is dominated by the flanking sound transmission paths Ff at Junctions 1, 2 and 3 (floor-floor, wall-wall and ceiling-ceiling paths via the extended heavy concrete and masonry assemblies). Even if a separating wall with a higher STC rating was used, the dominance of these flanking paths would limit the ASTC rating to a maximum value of 55.

Example 5.1.2 shows that it is not possible to substantially increase the ASTC rating by applying linings on the ceiling and the masonry façade wall. Despite the use of linings or a separating wall with a higher STC rating, the ASTC rating will not exceed a value of 55 unless the floor is improved with an effective lining and/or a thicker concrete floor is used.

Example 5.1.3 shows the calculation for a vertical pair of rooms separated by a bare concrete floor of 150 mm thickness. Due to the extended response of the floor, the in-situ STC rating for the separating floor is 58, which is significantly higher than the corresponding laboratory STC rating of 53 or the in-situ STC rating of 55 in Example 2.1.2. The combined flanking sound transmission for the four junctions has a Flanking STC rating of 62, even with bare concrete block for two wall surfaces in each room. This means that the contribution from flanking sound transmission only marginally reduces the ASTC to 56. Adding a ceiling and linings to the concrete block walls could increase the ASTC to well over 60.

Overall, these examples emphasize the need to focus improvements on the weakest path(s). A high ASTC rating between rooms requires both a separating partitions with a high STC rating and suitable linings over the heavy concrete or masonry surfaces.

5.2. Concrete Floors with Lightweight Framed Walls and Lightweight Façades

<u>Calculation Steps for Horizontal or Vertical Pair of Rooms with Lightweight Glass</u> <u>Curtain Wall Façade:</u>

The following set of examples show the change in performance when a lightweight façade is substituted for the heavy concrete or masonry façade of Examples 5.1.1 to 5.1.3.

- 1. Most steps of the calculation (and the comments about details of the steel framing) are unchanged from those presented at the beginning of Section 5.1 using the Extended Scenario.
- 2. For the concrete floor assembly, the calculation of the loss factor differs from what is presented in Section 5.1 because the substitution of the lighter curtain wall façade for the heavy masonry façade of Examples 5.1.1 to 5.1.3 significantly reduces the losses to the coupled façade assemblies. In addition, losses due to the lightweight interior stud partitions become significant. These losses due to the lightweight framed walls were ignored in Examples 5.1.1 to 5.1.3 when performing the loss calculations for the floor coupled to the heavyweight façade since they were insignificant compared with the losses due to the rigid connection between the floor/ceiling assembly and the heavyweight façade. The inclusion of the lightweight interior stud partitions appears to be consistent with Annex C of ISO 15712-1 for the calculation of the loss factors. The total losses for the concrete floor/ceiling calculated for this section therefore differ from those calculated in Section 5.1 for the examples with heavyweight façades.
- 3. The calculation of the losses to connected assemblies depends on the critical frequency of the attached assemblies. For the gypsum board interior partitions used in the examples, the critical frequency is taken as 2500 Hz, as evident from the measured transmission loss curves. For the curtain walls used in the examples, the mean of the critical frequencies for the two types of glass in the tested curtain wall is used (1425 Hz).
- 4. For flanking sound transmission via the curtain wall façade surfaces, the calculation is greatly simplified relative to that for a heavy concrete or masonry façade. The flanking transmission loss can be taken directly from the values of $D_{n,f}$ measured according to ISO 10848, with conversion to flanking transmission loss and re-normalization according to Equation 4.1.3 of this Guide.

The data used in the examples for glass curtain wall assemblies are from the *ACOUBAT* software developed at the Centre Scientifique et Technique du Bâtiment (CSTB) in France. The glass curtain wall has aluminum frame elements and double glazing with 8 mm glass on one face and laminated glass (two layers of 5 mm glass with elastomeric interlayer) on the other face. The air cavity depth between the panes is 18 ± 2 mm.

The data are presented in Table 5.2.1. The data were measured using the procedures of ISO 10140 and ISO 10848-3 and are used here, with permission, to illustrate the effect of such a lightweight façade on the calculations of ISO 15712-1.

Table 5.2.1: Experimental data for flanking sound transmission by a curtain wall assembly.

	R _w etc.	125 Hz	250 Hz	500 Hz	1kHz	2kHz	4 kHz
Sound Reduction Index, R	44	30.9	33.5	41.0	43.9	49.8	54.6
Horizontal Normalized Flanking Level Difference, D _{n,f} for junction length of 2.5 m	52	42.3	46.8	51.8	46.9	59.1	59.4
Vertical Normalized Flanking Level Difference, D _{n,f} for junction length of 4.8 m	47	36.1	35.5	42.4	50.0	50.4	53.4

—THESE DATA SHOULD NOT BE TREATED AS GENERIC—

Significant variation is to be expected between proprietary products from different manufacturers, and data for the intended curtain wall system should always be used.

For proprietary constructions such as a curtain walls, the manufacturer's installation instructions normally include specification of an appropriate fire stop assembly to prevent the spread of smoke and fire via the junction where the lightweight façade assembly meets the walls and floor/ceiling of the building structure. For acoustical testing of flanking sound transmission by a curtain wall or other lightweight façade assembly, the installation should include the specified fire stop, to ensure that any sound transmission through this connecting element is included in the measured result.

This page was intentionally left blank.

EXAMPLE 5.2.1:

DETAILED METHOD

- Rooms side-by-side, EXTENDED SCENARIO
- Concrete floors and lightweight glass curtain wall façade with steel stud internal walls
- Same construction as 5.1.2 except changed façade

Separating framed wall assembly with:

- One row of loadbearing 152 mm steel studs⁵ of 1.37 mm thick steel, spaced 600 mm o.c., with absorptive material³ filling the cavities between studs
- 2 layers of 16 mm fire-rated gypsum board⁴ attached directly to one side and supported on resilient metal channels⁷ on the other side (total weight per unit area of 56.8 kg/m²)

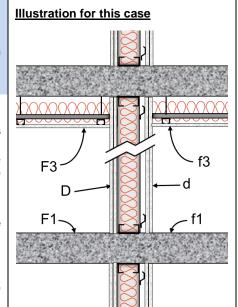
Junction 1: Bottom Junction (separating wall / floor) with:

- Concrete floor with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no topping or flooring
- Cross-junction with steel-framed separating wall assembly

Junction 2: Separating wall / abutting perimeter side wall) with:

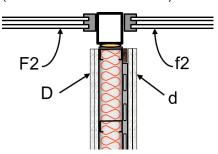
- Perimeter glass curtain wall façade assemblies connected to the floor structure and sealed to the separating partition
- Glass curtain wall has aluminum frame elements and double glazing
 with 8mm glass on one face and laminated glass (two layers of 5mm
 glass with elastomeric interlayer) on the other face. The data of the
 proprietary glass curtain wall comes from the ACOUBAT software
 and is used with permission of CSTB. Its acoustical properties are
 presented earlier in this section

Junction 3: Top Junction (separating wall / ceiling) with:

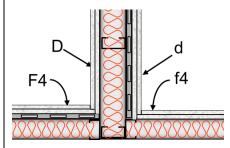

- Concrete ceiling slab with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm)
- Ceiling lining below of 16 mm fire-rated gypsum board⁴ fastened to hat-channels supported on cross-channels hung on wires, 150 mm between concrete and ceiling, with 150 mm absorptive material³
- Cross-junction with steel-framed separating wall assembly

Junction 4: Separating wall / abutting corridor wall with:

 Abutting corridor wall with non-loadbearing 90 mm steel studs⁵ of 0.46 mm thick steel, with two layers of fire-rated gypsum board on each side, mounted on resilient metal channels⁷ in one room


Acoustical Parameters:

For separating assembly	<u>v:</u>				
internal loss, $\eta_i > .03$	dominant (same l	oss for lab	oratory a	nd in-sit	u, See 4.2.2)
mass (kg/m²) =	56.8	f_c =	2500		
For Flanking Corridor W	all: Parame	ters the sa	me excep	t mass =	= 46 kg/m ²
For flanking elements F	and f at Junction 1 & 3 (E	xtended Co	oncrete fl	oor and	ceiling)
internal loss, η_i =	0.006	c_L =	3500		
mass (kg/m²) =	345	f_c =	124		
	Reference	K_Ff	K_Fd	K_Df	Σ l_k . α_k
X-Junction (stud walls)	ISO 15712-1, Eq. 23 & E.7	-3.0	17.8	17.8	1.364
Façade	ISO 15712-1, Eq. 23 & E.6		18.4	18.4	1.380
	ISO 15712-1, Eq. C.1-C.3	Total loss	, η_tot =	0.026	(at 500 Hz)
For flanking elements F	and f at Junction 2 (Lightw	eight Curta	ain Wall F	acade)	
internal loss, $\eta_i > .03$	same loss for laboratory	and in-situ	ı, See ISC	15712-	1, 4.2.2
mass (kg/m²) =	50	f_c =	1425		



Cross-junctions of steel stud separating wall with 150 mm thick concrete floor and ceiling.

(Side view of Junctions 1 and 3)

Junction of separating wall with flanking glass curtain wall façade. (Plan view of Junction 2)

Junction of separating wall with flanking corridor wall framed with steel studs. (Plan view of Junction 4)

	ISO Symbol	Reference	125	250	630	1250	2500	5000	STC or AST
Separating Partition									
Sound Transmission Loss (TL)	R_D,lab	RR-337, CFS-S152-W33	37	51	56	63	57	64	58
Leakage or Airborne Flanking		Sealed & Blocked	0	0	0	0	0	0	
Direct TL in-situ	R_D,situ	4.2.2: Equal to lab. TL	37	51	56	63	57	64	58
Junction 1: Separating Wall/Floor									
Sound Transmission Loss, F1 or f1		RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T_s for CON150					0.146		
Change by Lining on source side	_	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_f1	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.374	0.256	0.171	0.111	0.070	0.043	
TL in-situ for F1	R_F1,situ	ISO 15712-1, Eq. 19	41	44	52	61	69	78	55
TL in-situ for f1	R_f1,situ	ISO 15712-1, Eq. 19	41	44	52	61	69	78	55
Junction J1 - Coupling									
Velocity Level Difference for Ff	D v,Ff 1,situ	ISO 15712-1, Eq. 21, 22	0.00	0.01	0.26	0.62	1.11	1.74	
Velocity Level Difference for Fd	D v.Fd 1.situ	ISO 15712-1, Eq. 21, 22	19.2	20.3	21.4	22.6	23.8	25.1	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	19.2	20.3	21.4	22.6	23.8	25.1	
Flanking Transmission Loss - Path data			13.2	_5.5		5		_5.1	
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	39	42	50	59	68	77	52
Flanking TL for Path Fd_1		ISO 15712-1, Eq. 25a	57	67	74	83	86	90	77
	R_Fd	· ·							
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	57	67	74	83	86	90	77
Junction 1: Flanking STC for all paths		-	10*LOG1	0(10^-	5.2 + 1	U^- /./	+ 10^-	/./)=	5
Junction 2: Separating Wall/Wall									
Flanking Element F2 and f2: Input Date	2								
Horizontal flanking (measured)		CCTD. A service to susceed a	42.2	46.0	F4 0	46.0	FO 1	FO 4	F2
Horizontal flanking (measured)	D_n, f	CSTB, Acoubat example	42.3	46.8	51.8	46.9	59.1	59.4	52
		(1.4							
		(Measured, ISO-10848-3)	П.						
	Note: These	data were furnished by CSTB in France			th pern	nission			
		data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED	AS GENE	RIC.	_				
	Wide variati	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta	O AS GENE ry produc	RIC. ts fron	n differ			urers,	
	Wide variati	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED	O AS GENE ry produc	RIC. ts fron	n differ			urers,	
	Wide variati	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta	O AS GENE ry produc	RIC. ts fron	n differ			urers,	
Correction D_n to Flanking TL in Scena	Wide variati and data fo	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta	O AS GENE ry produc	RIC. ts fron	n differ	rent mo		o.97	0.97
Correction D_n to Flanking TL in Scenal Flanking Transmission Loss - Path data	Wide variati and data fo	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta r the intended curtain wall system sho	O AS GENE ry produc uld alway	RIC. ts fron s be us	n differ ed.	rent mo	anufact		0.97
	Wide variati and data fo	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta r the intended curtain wall system sho	O AS GENE ry produc uld alway	RIC. ts fron s be us	n differ ed.	rent mo	anufact		0.97
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths	Wide variati and data fo	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta r the intended curtain wall system sho Guide, Eq. 4.1.3	O AS GENE ary product uld alway 0.97	RIC. ts fron s be us 0.97	n differ sed. 0.97	0.97	onufact 0.97	0.97	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling	Wide variati and data fo	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta r the intended curtain wall system sho Guide, Eq. 4.1.3	O AS GENE ary product uld alway 0.97	RIC. ts fron s be us 0.97	n differ sed. 0.97	0.97	onufact 0.97	0.97	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e	Wide variati and data for	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4	O AS GENE ary productuld alway 0.97	eric. ets from s be us 0.97	n differed. 0.97	0.97	0.97	0.97	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side	Wide variati and data for rio except linings ΔR_F3	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-CO1	O AS GENE ary productuld alway 0.97	eric. ets from s be us 0.97 48	0.97 53	0.97 48	0.97 60	0.97 60 19	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side	Wide variati and data for tio except linings ΔR_F3 ΔR_f3	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4	O AS GENE ary productuld alway 0.97	eric. ets from s be us 0.97	n differed. 0.97	0.97	0.97	0.97	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side	Wide variati and data for tio except linings ΔR_F3 ΔR_f3	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-CO1	O AS GENE ary productuld alway 0.97	eric. ets from s be us 0.97 48	0.97 53	0.97 48	0.97 60	0.97 60 19	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side	Wide variati and data for tio except linings ΔR_F3 ΔR_f3	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-CO1	O AS GENE ary productuld alway 0.97	eric. ets from s be us 0.97 48	0.97 53	0.97 48	0.97 60	0.97 60 19	
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data	Wide variati and data for tio except linings ΔR_F3 ΔR_f3	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-C01 RR-334, ATL-CON150-C01	O AS GENI ory produculd alway 0.97 43	0.97 48	0.97 53	0.97 48	0.97 60 22 22	0.97 60 19	5.
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3	Wide variati and data for rio Except linings ΔR_F3 ΔR_f3 R_Ff R_Ff	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, \(\Delta \text{TL-CON150-C01} \) RR-334, \(\Delta \text{TL-CON150-C01} \) ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try productuld always 0.97 43	0.97 48	0.97 53 24 24	0.97 48 24 24	0.97 60 22 22	0.97 60 19 19	79
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔTL-CON150-C01 RR-334, ΔTL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try produc uld alway 0.97 43 8 8 8 8	0.97 48 21 21 84 88 88	0.97 53 24 24 90 90	0.97 48 24 24 90 90	0.97 60 22 22 90 90	0.97 60 19 19 90 90	79 88
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3	Wide variati and data for rio Except linings ΔR_F3 ΔR_f3 R_Ff R_Ff	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔTL-CON150-C01 RR-334, ΔTL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try produc uld alway 0.97 43 8 8 8 8 65 65	0.97 48 21 21 84 88 88	0.97 53 24 24 90 90	0.97 48 24 24 90 90	0.97 60 22 22 90 90	0.97 60 19 19 90 90	79 88 88
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔTL-CON150-C01 RR-334, ΔTL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try produc uld alway 0.97 43 8 8 8 8 65 65	0.97 48 21 21 84 88 88	0.97 53 24 24 90 90	0.97 48 24 24 90 90	0.97 60 22 22 90 90	0.97 60 19 19 90 90	79 88 88
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking Transmission Loss - measured	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔTL-CON150-C01 RR-334, ΔTL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try produc uld alway 0.97 43 8 8 8 8 65 65	0.97 48 21 21 84 88 88	0.97 53 24 24 90 90	0.97 48 24 24 90 90	0.97 60 22 22 90 90	0.97 60 19 19 90 90	79 88 88
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking Transmission Loss - measured	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATEI on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔTL-CON150-C01 RR-334, ΔTL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	O AS GENI Try produc uld alway 0.97 43 8 8 8 8 65 65	0.97 48 21 21 84 88 88	0.97 53 24 24 90 90	0.97 48 24 24 90 90	0.97 60 22 22 90 90	0.97 60 19 19 90 90	79 88 88
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking Transmission Loss - measured Flanking Transmission Loss - measured Flanking TL for Path Ff_4	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-C01 RR-334, ATL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	0 AS GENI bry product uld alway 0.97 43 8 8 8 8 8 10*LOG1	21 21 84 88 88 80(10^-	0.97 53 24 24 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 29 90 90 +10^-	0.97 60 19 19 90 90 90 8.8) =	79 88 88 7
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking Transmission Loss - measurec Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Fd_4	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ATL-CON150-C01 RR-334, ATL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 37712-1, Eq. 25a ISO 37712-1, Eq. 25a ISO 37712-1, Eq. 25a RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01	0 AS GENI bry product uld alway 0.97 43 8 8 8 8 55 65 65 10*LOG1	21 21 84 88 88 80 (10^-	0.97 53 24 24 24 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 29 90 90 + 10^-	0.97 60 19 19 90 90 8.8)=	79 88 88 7
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔΤL-CON150-C01 RR-334, ΔΤL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 37, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01	0 AS GENI bry production of the second of th	21 21 84 88 88 0(10^-2	0.97 53 24 24 90 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 90 90 +10^-	0.97 60 19 19 90 90 90 8.8) =	79 88 88 88 7
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔΤL-CON150-C01 RR-334, ΔΤL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 37, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01	0 AS GENI rry productuld always 0.97 43 8 8 8 8 55 65 10*LOG1	21 21 84 88 88 0(10^-2	0.97 53 24 24 90 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 90 90 +10^-	0.97 60 19 19 90 90 90 8.8) =	79 88 88 7 82 82 76
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, ec Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Fd_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall Flanking Transmission Loss - measured Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4 Junction 4: Flanking STC for all paths	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔΤL-CON150-C01 RR-334, ΔΤL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 37, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01	0 AS GENI rry productuld always 0.97 43 8 8 8 8 55 65 10*LOG1	21 21 84 88 88 0(10^-2	0.97 53 24 24 90 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 90 90 +10^-	0.97 60 19 19 90 90 90 8.8) =	79 88 88 88 7 82 82 76
Flanking Transmission Loss - Path data Junction 2: Flanking STC for all paths Junction 3: Separating Wall/Ceiling All values the same as for Junction 1, e Change by Lining on source side Change by Lining on receive side Flanking Transmission Loss - Path data Flanking TL for Path Ff_3 Flanking TL for Path Df_3 Junction 3: Flanking STC for all paths Junction 4: Separating Wall/Wall	Wide variati and data for rio except linings ΔR_F3 ΔR_f3 R_Ff R_Fd R_Df	data were furnished by CSTB in France THESE DATA SHOULD NOT BE TREATED on is to be expected between proprieta or the intended curtain wall system sho Guide, Eq. 4.1.3 Guide, Section 1.4 RR-334, ΔΤL-CON150-C01 RR-334, ΔΤL-CON150-C01 ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 37, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01 RR-337, CFS-WW-LB152-01	0 AS GENI rry productuld always 0.97 43 8 8 8 8 55 65 10*LOG1	21 21 84 88 88 0(10^-2	0.97 53 24 24 90 90 90 7.9 + 1	0.97 48 24 24 90 90 90 0^- 8.8	0.97 60 22 22 90 90 +10^-	0.97 60 19 19 90 90 90 8.8) =	79 88 88 7

EXAMPLE 5.2.2:

DETAILED METHOD

- Rooms one-above-the-other, EXTENDED SCENARIO
- Concrete separating floor and glass curtain wall façade with steel stud internal flanking walls
- Same construction as 5.1.3 except changed façade

Separating floor/ceiling assembly with:

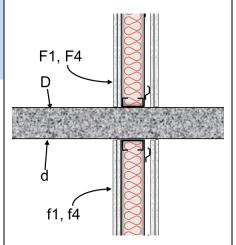
 Concrete floor with mass 345 kg/m² (e.g. normal weight concrete with thickness of 150 mm) with no topping / flooring on top, or ceiling lining below

Junction 1: Cross-junction of separating floor / flanking walls with:

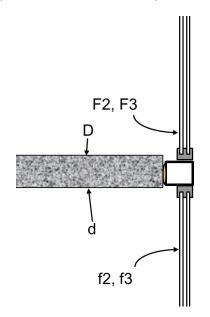
- One row of loadbearing 152 mm steel studs⁵ of 1.37 mm thick steel, spaced 600 mm o.c., with absorptive material³ filling the cavities between studs
- 2 layers of 16 mm fire-rated gypsum board⁴ attached directly to one side and supported on resilient metal channels⁷ on the other side (total weight per unit area of 56.8 kg/m²)

Junction 2 and 3: T-Junction of separating floor / flanking wall with:

- Perimeter glass curtain wall façade assemblies connected to the floor structure as specified by manufacturer
- Wall above and below floor is glass curtain wall with aluminum frame elements and double glazing with 8mm glass on one face and laminated glass (two layers of 5mm glass with elastomeric interlayer) on the other face. The data of the proprietary glass curtain wall comes from the ACOUBAT software and is used with permission of CSTB. Its acoustical properties are presented earlier in this section


Junction 4: Junction of separating floor / corridor wall with:

 One row of non-loadbearing 90 mm steel studs⁵ of 0.46 mm thick steel, with two layers of fire-rated gypsum board attached directly to one side and supported on resilient metal channels⁷ on the other side (total weight per unit area of 46 kg/m²)


Acoustical Parameters:

	embly (Extended Concrete floo					
internal loss, η_i =	0.006	c_L =	3500			
mass (kg/m²) =	345	f_c =	124			
	Reference	K_Ff	K_Fd	K_Df	Σ l_k . α_k	
X-Junction 1 or 4	ISO 15712-1, Eq. 23 & E.7	25.7	17.8	17.8	1.364	
Façade	ISO 15712-1, Eq. 23 & E.6		18.4	18.4	1.380	
Total loss, η_tot	ISO 15712-1, Eq. C.1 to C.3		0.026	0.026 (at 500 Hz)		
For facade element	ts F and f at Junction 2 & 3,					
For glass curtain w	alls, assume loss in-situ = labo	ratory los	ss (mainl	y interna	I)	
mass (kg/m²) =	50	f_c =	1425			
For lightweight fla	nking elements F and f at Junc	tion 1 &	4,			
For steel stud walls	s, assume loss in-situ = laborat	ory loss (mainly i	nternal)		
Mass for LB wall =	Mass for LB wall = 56.8 kg/m ² Mass for NLB wall					

Illustration for this case

Cross-junction of separating floor of 150 mm thick concrete with steel stud wall with 152 mm LB or 90 mm NLB studs. (Side view of Junctions 1 or 4)

T-Junction of separating floor of 150 mm thick concrete with glass curtain wall façade.

(Side view of Junction 2 and 3)

	ISO Symbol	Reference	125	250	630	1250	2500	5000	STC or AST
Separating Partition									
Sound Transmission Loss (TL)	R D,lab	RR-334, CON150, TLF-15-045	40	42	50	58	66	75	53
Structural Reverberation Time	T_s,lab	RR-334, Measured T s for CON150				0.205			
Change by Lining on source side	ΔR D	No lining	0	0	0	0	0	0	
Change by Lining on receive side	ΔR_d	No lining	0	0	0	0	0	0	
Structural Reverb. Time in-situ	T_s,situ	ISO 15712-1, Eq. C.1-C.3	0.374	0.256	0.171	0.111	0.070	0.043	
Leakage or Airborne Flanking		Sealed & Blocked	0	0	0	0	0	0	
Direct TL in-situ	R_D,situ	ISO 15712-1, Eq. 24	41	44	52	61	69	78	55
Junction 1: Separating Floor/Wall									
Flanking Element F1 and f1: Input									
Sound Transmission Loss	R F1,lab	RR-337, SS(LB)150-WW-01, Dd(LB)	38	50	58	61	55	63	58
TL in-situ for F1		4.2.2: Equal to lab. TL	38	50	58	61	55	63	58
TL in-situ for f1		4.2.2: Equal to lab. TL	38	50	58	61	55	63	58
Junction J1 - Coupling	N_11,31tu	4.2.2. Equal to lab. 12	36	30	36	01	33	03	30
Velocity Level Difference for Ff	D v Ef 1 citu	ISO 15712-1, Eq. 21, 22	31.7	30.7	29.7	28.7	27.7	26.7	
Velocity Level Difference for Fd		ISO 15712-1, Eq. 21, 22	19.2	20.3	21.4	22.6	23.8	25.1	
Velocity Level Difference for Df		ISO 15712-1, Eq. 21, 22	19.2	20.3	21.4	22.6	23.8	25.1	
•		13O 13/12-1, Eq. 21, 22	19.2	20.5	21.4	22.0	25.0	25.1	
Flanking Transmission Loss - Path data	-	ISO 15712 1 Eq. 252	72	83	90	00	OF.	90	88
Flanking TL for Path Ff_1	R_Ff	ISO 15712-1, Eq. 25a	72 60		77	90 85	85	90	88 79
Flanking TL for Path Fd_1	R_Fd	ISO 15712-1, Eq. 25a		68			87		
Flanking TL for Path Df_1	R_Df	ISO 15712-1, Eq. 25a	60	68	77	85	87	90	79
Junction 1: Flanking STC for all paths			10*LOG1	0(10^-	8.8 + 1	U^- 7.9	+ 10^-	7.9)=	7
Junction 2: Separating Floor/Wall									
Flanking Element F2 and f2: Input Dat	<u>a</u>								
Vertical flanking	D_n, f	CSTB, Acoubat example	36.1	35.5	42.4	50.0	50.4	53.4	47
		(Measured, ISO-10848-3)							
	Note: These	data were furnished by CSTB in France of	and are u	sed wi	th pern	nission			
		THESE DATA SHOULD NOT BE TREATED	AS GENE	RIC.					
	Wide variati	ion is to be expected between proprieta			n differ	ent mo	nufact	urers.	
	-	or the intended curtain wall system shou							
C (D 51 1: TI)		DD 224 F 44 2	2.0	2.0	2.0	2.0	2.0	2.0	
Correction (D_n,f to Flanking TL)		RR-331, Eq. 4.1.3	3.8	3.8	3.8	3.8	3.8	3.8	
Flanking Transmission Loss - Path data									
Junction 2: Flanking STC for Path Ff		RR-331, Section 1.4	40	39	46	54	54	57	
Junction 3: Separating Floor/Wall	2 hut differe	ent junction length changes Flanking TL							
		and junious of tength chariges Hallkillg IL				2.0	2.8	2.8	
	2, 200 0	RR-331, Eq. 4.1.3	2.8	2.8	2.8	2.8			
Correction (D_n,f to Flanking TL)		RR-331, Eq. 4.1.3	2.8	2.8	2.8	2.8			
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data		RR-331, Eq. 4.1.3 RR-331, Section 1.4	2.8	2.8 38	2.8 45	53	53	56	į
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths								56	Ę
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall	R_Ff	RR-331, Section 1.4						56	Ţ.
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and	R_Ff	RR-331, Section 1.4 gth change Flanking TL	39	38	45	53	53		
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4:	R_Ff	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB)	39	38 50	45 62	53 69	53	62	58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4	R_Ff J junction leng R_F4,situ	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL	39 35 35	38 50 50	62 62	53 69 69	53 60 60	62 62	58 58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4	R_Ff I junction leng R_F4,situ R_f4,situ	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB)	39	38 50	45 62	53 69	53	62	58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4 Flanking Transmission Loss - Path data	R_Ff I junction leng R_F4,situ R_f4,situ	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL	35 35 35 35	50 50 50	62 62 62 62	69 69 69	60 60 60	62 62 62	58 58 58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4 Flanking Transmission Loss - Path data Flanking TL for Path Ff_4	R_Ff I junction leng R_F4,situ R_f4,situ R_Ff	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL	35 35 35 35	50 50 50 50	62 62 62 62	69 69 69 90	60 60 60 90	62 62 62 90	58 58 58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Flanking Transmission Loss - Path data Flanking STC for all paths Flanking STC for all paths Flanking Element FL and f4: Flanking Element F4 FL in-situ for F4 Flanking Transmission Loss - Path data Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Fd_4	R_Ff I junction leng R_F4,situ R_f4,situ	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL	35 35 35 35	50 50 50	62 62 62 62	69 69 69	60 60 60	62 62 62	58 58 58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4 Flanking Transmission Loss - Path data Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Df_4	R_Ff I junction leng R_F4,situ R_f4,situ R_Ff	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	35 35 35 35 71 60 60	50 50 50 50 70	62 62 62 62 90 81 81	69 69 69 90 90	60 60 60 90 90	62 62 62 90 90	58 58 58
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4 Flanking Transmission Loss - Path data Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Df_4	R_Ff I junction leng R_F4,situ R_f4,situ R_Ff R_Ff	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	35 35 35 35 71 60	50 50 50 50 70	62 62 62 62 90 81 81	69 69 69 90 90	60 60 60 90 90	62 62 62 90 90	58 58 58 89 81 81
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Flanking STC for all paths Flanking STC for all paths Flanking Flanking STC for all paths Flanking Element F4 and f4: FL in-situ for F4 Flanking Transmission Loss - Path data Flanking TL for Path Ff_4 Flanking TL for Path Ff_4 Flanking TL for Path Fd_4 Flanking TL for Path Df_4 Flanking TL for Path Df_4 Flanking TL for Path Df_4 Flanking TL for Path STC for all paths	R_Ff I junction leng R_F4,situ R_f4,situ R_Ff R_Ff	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	35 35 35 35 71 60 60	50 50 50 50 70	62 62 62 62 90 81 81	69 69 69 90 90	60 60 60 90 90	62 62 62 90 90	58 58 58 89 81 81
Correction (D_n,f to Flanking TL) Flanking Transmission Loss - Path data Junction 3: Flanking STC for all paths Junction 4: Separating Floor/Wall Like Junction 1, but different studs and Flanking Element F4 and f4: TL in-situ for F4 TL in-situ for f4 Flanking Transmission Loss - Path data	R_Ff I junction leng R_F4,situ R_f4,situ R_Ff R_Fd R_Df	RR-331, Section 1.4 gth change Flanking TL RR-337, CFS-WW-NLB90-01, Dd(NLB) 4.2.2: Equal to lab. TL 4.2.2: Equal to lab. TL ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a ISO 15712-1, Eq. 25a	35 35 35 35 71 60 60	50 50 50 50 70	62 62 62 62 90 81 81	69 69 69 90 90	60 60 60 90 90	62 62 62 90 90	58 58 58 89

<u>Summary for Section 5.2: Calculation Examples for Concrete Floors with Lightweight</u> <u>Framed Walls and Lightweight Facade</u>

Examples 5.1.4 and 5.1.5 show the calculation procedures for the Extended Scenario in a building whose façade is a glass curtain wall assembly. Compared with the same buildings with concrete masonry façades presented in Section 5.1, the ASTC ratings of the lightweight façade that extends across junctions are significantly reduced.

Example 5.2.1 shows a horizontal case identical to Example 5.1.2 except that glass curtain walls are substituted for the heavy masonry façade. The ASTC rating is reduced by the combination of the rather low Flanking STC value for the curtain wall façade and the lower Flanking STC values via the floor paths, primarily due to low edge losses from the concrete floor to the façade.

Example 5.2.2 shows the corresponding vertical case which is identical to Example 5.1.3 except that glass curtain walls are substituted for the heavy masonry façade. The ASTC rating is reduced by both a lower Direct STC value via the separating floor (due to lower edge losses from the concrete floor to the façade) and the rather low Flanking STC value for the curtain wall façade.

Overall, these examples emphasize the need to focus improvements on the weakest paths. Even with a heavy façade, achieving high ASTC ratings between spaces requires both separating partitions with high STC ratings and suitable linings over the heavy concrete or masonry surfaces. Replacing a heavy façade with a lightweight façade can both provide more significant flanking sound transmission via the façade surfaces and can reduce the in-situ STC rating of the floor due to the lower losses of the extended concrete floor/ceiling.

The calculations for this Section have used an extension that goes beyond the explicit guidance in Annex C of ISO 15712-1 but is still quite conservative. For this situation, extended response of the concrete floor/ceiling occurs because the lightweight interior partitions provide almost no resistance to transmission of the vibration from the excited surface in the source room to the entire floor surface of the Extended Scenario. For the case in Section 5.1 where most of the energy is transferred to the heavy façade assemblies, the process in Annex C that considers only the transfer at the perimeter is appropriate. But with a lightweight façade, it is more appropriate to include the transfers from the concrete to all of the connected walls including the lightweight façade and the internal partitions. In a typical building, however, there would be other connections such as stairwells, elevators, interior concrete or masonry walls to provide fire separations or shear bracing, and columns or other framing to support the structural load. All of these elements would transfer vibration energy away from the concrete floor and thereby increase the in-situ STC rating of the floor. Ignoring the contribution of all of these other elements, especially the framing that supports the structural load, makes the estimated ASTC ratings in Section 5.2 conservative.

5.3. Concrete Masonry Walls with Lightweight Framed Floors and Walls

This section presents the calculation approach for buildings that combine lightweight framed assemblies (walls and floors) with walls of normal weight or lightweight concrete block masonry. The transmission of structure-borne vibration in a building with lightweight framed assemblies differs markedly from that in heavy homogeneous structures of masonry and concrete.

- For direct transmission through the separating lightweight framed assembly, the high internal loss factors of the wood- or steel-framed assembly result in minimal dependence on the connections to the adjoining structures, so laboratory measured sound transmission values are used without adjustment.
- For flanking paths where one or both of the assemblies is a lightweight framed assembly, the calculation process is very simple, but it requires use of flanking sound transmission loss data measured according to ISO 10848 (like the calculations for framed assemblies in Chapter 4).
- Linings on the concrete block surfaces (either for direct or flanking transmission) may be treated using a simple additive correction (\Delta STC) as in Chapter 2.

An experimental study of such systems with concrete block walls and wood-framed floors was performed at the NRC, as described in the NRC Research Report RR-334, and results from that study were used for the examples in this section.

The calculation process requires specific laboratory test data, but can be performed using single-number ratings, following the steps illustrated in Figure 5.3.1, and explained in detail below.

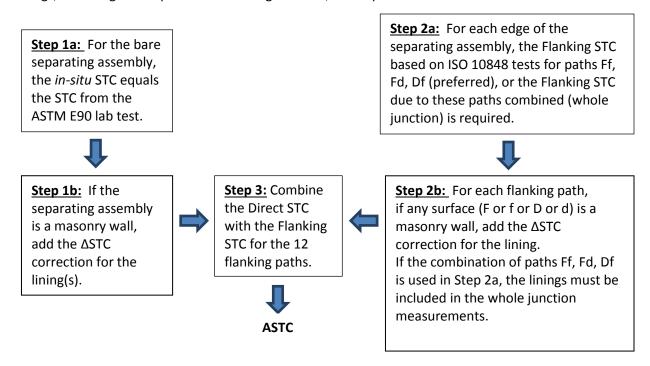


Figure 5.3.1: Steps to calculate the ASTC for masonry walls with lightweight framed assemblies.

- Step 1: (a) For the bare separating assembly, the in-situ STC is equal to the STC measured in the laboratory according to ASTM E90.
 - (b) If the separating assembly is a masonry wall, add the Δ STC correction for lining(s) on the source room and/or receiving room surfaces (D and d) to obtain the Direct STC. This correction procedure matches that of Section 2.4. If there are two linings, the correction equals the larger of the two lining Δ STC corrections plus half of the lesser one (see Eq. 5.3.2).
- Step 2: (a) Determine the Flanking STC rating for the 3 flanking paths Ff, Fd and Df at each edge of the separating assembly with the following adaptations:
 - Values measured according to ISO 10848 should be normalized using Equation 4.1.3 as explained in Section 4.1.
 - o If only the Flanking STC for combined transmission by the set of 3 paths at a junction is available, that data may be used.
 - If both flanking surfaces F and f are concrete masonry walls, the Flanking STC for path Ff may either be taken from measurement according to ISO 10848, or calculated using the assembly STC rating and vibration reduction index (measured or calculated) as in Section 2.4.
 - (b) If one surface for a flanking path (source room or receiving room) is a masonry wall, add the Δ STC correction for any lining added to the masonry surface to obtain the Flanking STC for that path. If both flanking surfaces are concrete block walls with linings, the correction equals the larger of the two lining Δ STC corrections plus half of the lesser one (see Eq. 5.3.3.)
- Step 3: Combine the transmission via the direct path and the 12 flanking paths using Equation 5.3.1 (equivalent to Eq. 26 in Section 4.4 of ISO 15712-1 or Eq. 1.4 of this Guide), with the following adaptations:
 - If the Flanking STC rating calculated for any flanking path is over 90, set the value to 90 to allow for the inevitable effect of higher order flanking paths.
 - Round the final ASTC result to the nearest integer.

Expressing the Calculation Process using Equations:

As in Sections 2.4 and 4.1 of this Guide and Section 4.4.1 of ISO 15712-1, the ASTC value between two rooms (neglecting sound that is by-passing the building structure, e.g. leaks, ducts,...) is estimated in the Simplified Method from the logarithmic expression of the combination of Direct STC rating (STC_{Dd}) of the separating wall or floor element and the combined Flanking STC ratings of the three flanking paths for every junction at the four edges of the separating element which may be expressed as:

$$ASTC = -10\log_{10}\left[10^{-0.1 \cdot STC_{Dd}} + \sum_{edge=1}^{4} \left(10^{-0.1 \cdot STC_{Ff}} + 10^{-0.1 \cdot STC_{Fd}} + 10^{-0.1 \cdot STC_{Df}}\right)\right] \qquad \text{Eq. 5.3.1}$$

Eq. 5.3.1 is appropriate for all types of building systems similar to the Standard Scenario. It is applied here using the following expressions to calculate the sound transmission for individual paths.

Eq. 5.3.1 is a special case of Eq. 1.4 in this Guide:

- (a) The single-number ASTC rating is substituted for the ATL in Eq. 1.4.
- (b) If the separating assembly is a framed wall or floor assembly, then the direct path STC_{Dd} is equal to the laboratory STC rating for that assembly. Alternatively, if the separating assembly is a concrete masonry wall, the direct path STC_{Dd} is obtained from the laboratory measured STC rating of the unlined element and the ΔSTC changes due to linings on source "D" and/or receiving side "d" of the separating assembly using the equivalent of Eq. 24 and 30 in ISO 15712-1:

$$STC_{Dd} = STC_{lab} + max(\Delta STC_D, \Delta STC_d) + \frac{min(\Delta STC_D, \Delta STC_d)}{2}$$
 Eq. 5.3.2

(c) The calculation of Flanking STC_{ij} for each flanking path depends on the constructions involved. Here, indices i and j refer to the coupled flanking elements, where "i" can either be "D" or "F" and "j" can be "f" or "d".

The options for the calculation of the Flanking STC_{ij} for each flanking path include:

• In all cases, values of D_{n,f} or Flanking STC_{ij} measured according to ISO 10848 may be used to determine the Flanking STC (after re-normalization as explained in Section 4.1).

NOTE: In previous versions of this Guide and in NRC Research Report RR-334, experimental Flanking STC data for each path were normalized to the actual dimensions of the flanking facilities at NRC. Starting in 2017, data measured at NRC according to ISO 10848 have been normalized to a set of nominal dimensions that correspond more closely to the Standard Scenario used in this Guide. The pertinent dimensions for laboratory data are identified clearly in the worked examples, and this change had no effect on the resulting Flanking STC values for each path in the worked examples.

- Note that lining corrections are not appropriate for framed assemblies.
- If one of the flanking elements is a concrete masonry wall, then the appropriate ΔSTC should be added to the Flanking STC_{ij} measured for this path without a lining, as the correction due to any lining added on that surface.
- If both flanking elements i and j are concrete masonry wall assemblies, and there are added linings then add $\left\{ max\left(\Delta STC_i, \Delta STC_j\right) + \frac{min\left(\Delta STC_i, \Delta STC_j\right)}{2} \right\}$ to the Flanking STC_{ij} measured for this path without the lining(s).
- Alternatively, if both flanking elements i and j are concrete masonry wall assemblies, then the following equation (Eq. 5.3.3, the equivalent of Eq. 28 and 31 in ISO 15712-1 and the same as Eq. 2.4.3 of Section 2.4) could be used to determine the Flanking STC_{ii}.

Flanking
$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + \max(\Delta STC_i, \Delta STC_j) + \frac{\min(\Delta STC_i, \Delta STC_j)}{2} + 10\log_{10}\left(\frac{S_s}{l_o l_{ij}}\right)$$
 Eq. 5.3.3

EXAMPLE 5.3.1:

SIMPLIFIED METHOD

- Rooms side-by-side
- Separating loadbearing wall of normal weight concrete block with wood-framed flanking floors and walls

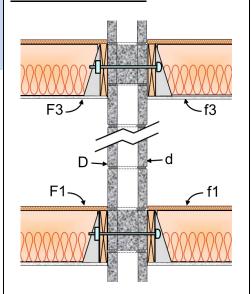
Separating wall assembly with:

One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m², with no lining

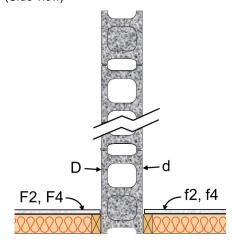
Bottom Junction 1 (separating wall and floor) with:

- 38 mm x 235 mm wood ledger plate on each side, fastened through with 16 mm diameter bolts spaced 400 mm o.c.
- Cells in concrete block¹ assembly between the ledger plates are filled with grout, and floor joists are supported on joist hangers attached to these plates
- Floor framed with 38 mm x 235 mm wood joists spaced 400 mm o.c., with joists oriented perpendicular to separating wall and supported on joist hangers, with 150 mm thick absorptive material³ in the inter-joist cavities
- Floor deck of 16 mm oriented strandboard (OSB)
- No floor finish or floor topping

Top Junction 3 (separating wall and ceiling) with:


- Ceiling framed with wood joists (same details as Junction 1)
- Ceiling with 1 layer of 13 mm gypsum board⁴ fastened directly to bottom of floor framing on each side

Side Junction 2 or 4 (separating wall and abutting side walls) with:


- Side wall framing with single row of wood studs
- Side wall framing structurally-connected to the separating concrete block¹ wall, but not continuous across the junction
- 13 mm gypsum board⁴ on the side walls ends at separating wall assembly and is attached directly to wall framing of 38 mm x 89 mm wood studs spaced 400 mm o.c., with absorptive material³ in the stud cavities

	In Scenario	In Laboratory
Separating partition area (m ²) =	12.5	12.5
Floor/separating wall junction length (m) =	5.0	5.0
Wall/separating wall junction length (m) =	2.5	2.5
Normalization for Junctions 1 and 3:		
10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-334, Eq. 4.2.1
Normalization for Junctions 2 and 4:		
$10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =$	0.00	RR-334, Eq. 4.2.1

Illustration for this case

Junctions 1 and 3 of loadbearing separating concrete block wall with woodframed flanking floor and ceiling. (Side view)

Junction 2 or 4 of separating concrete block wall with abutting side walls, with side walls' framing and gypsum board terminating at separating wall. (Plan view)

	ISO Symbol	Reference		STC or Δ STC	STC or A	STC
Separating Partition						
Laboratory STC for Dd	R_s,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining on D		No lining		0		
ΔSTC change by Lining on d	ΔR d,w	No lining		0		
Leakage or Airborne Flanking	- '	Sealed & Blocked		0		
Direct STC in-situ	R Dd,w	ISO 15712-1, Eq. 24 and 30	49 + MAX(0.0)	+ MIN(0,0) /2 + 0 =	49	
Direct STC III Situ	K_Bu,w	130 137 12 1, Eq. 24 and 30	45 : 14174(0,0)	1 141114(0,0) / 2 1 0 =	7.7	
Junction 1: Separating Wall/	Floor					
For Flanking Path Ff 1:	11001					
Laboratory Flanking STC		RR-334, BLK190-WF-LB-01		59		
	D Ef			59+0 =		
Flanking STC for path Ff_1	R_Ff,w	ISO 15712-1, Eq. 28 - 31		59+0=	59	
For Flanking Path Fd_1:						
Laboratory Flanking STC	R_Fd,w	RR-334, BLK190-WF-LB-01		59		
ΔSTC change by Lining on d	ΔR_d,w	No lining		0		
Flanking STC for path Fd_1	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		59+0+0 =	59	
For Flanking Path Df_1:						
Laboratory Flanking STC	R_Df,w	RR-334, BLK190-WF-LB-01		59		
ΔSTC change by Lining on D		No lining		0		
Flanking STC for path Fd_1	R_Df,w	ISO 15712-1, Eq. 28 - 31		59+0+0 =	59	
Junction 1: Flanking STC for		Subset of Eq. 5.3.1	- 10*LOG10(10^-5.9 + 10			54
G						
Junction 2: Separating Wall/	Wall					
For Flanking Path Ff 2:						
Laboratory Flanking STC		RR-334, BLK190-WW-LB-01		81		
Flanking STC for path Ff 2	R_Ff,w	ISO 15712-1, Eq. 28 - 31		81+0 =	81	
For Flanking Path Fd_2:	11,11,00	130 13712-1, Eq. 28 - 31		01+0-	01	
	R Fd,w	DD 224 DLK100 M/M LD 01		71		
Laboratory Flanking STC	- '	RR-334, BLK190-WW-LB-01		71		
ΔSTC change by Lining on d	ΔR_d,w	No lining		0		
Flanking STC for path Fd_2	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		71 + 0 + 0 =	71	
For Flanking Path Df_2:						
Laboratory Flanking STC	R_Df,w	RR-334, BLK190-WW-LB-01		71		
ΔSTC change by Lining on D	$\Delta R_D, w$	No lining		0		
Flanking STC for path Fd_2	R_ Df,w	ISO 15712-1, Eq. 28 - 31		71 + 0 + 0 =	71	
Junction 2: Flanking STC for	all paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-8.1 + 10	^- 7.1 + 10^- 7.1) =		68
Junction 3: Separating Wall/	Ceiling					
For Flanking Path Ff_3:						
Laboratory Flanking STC		RR-334, BLK190-WC-LB-01		65		
Flanking STC for path Ff_3	R Ff,w	ISO 15712-1, Eq. 28 - 31		65 + 0 =	65	
For Flanking Path Fd 3:	_ ,					
Laboratory Flanking STC	R Fd,w	RR-334, BLK190-WC-LB-01		65		
ΔSTC change by Lining on d	ΔR_d,w	No lining		0		
Flanking STC for path Fd_3					C F	
	K_ Fa,W	ISO 15712-1, Eq. 28 - 31		65 + 0 + 0 =	65	
For Flanking Path Df 3:				25		
Laboratory Flanking STC	R_Df,w	RR-334, BLK190-WC-LB-01		65		
ΔSTC change by Lining on D	ΔR_D,w	No lining		0		
Flanking STC for path Fd_3	R_ Df,w	ISO 15712-1, Eq. 28 - 31		65 + 0 + 0 =		
Junction 3: Flanking STC for	all paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.5 + 10	^- 6.5 + 10^- 6.5) =		60
Junction 4: Separating Wall/	Wall					
All values the same as for Jur						
Flanking STC for path Ff_4	R Ff,w	Same as for Ff_2		81+0 =	81	
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd 2		71+0+0 =		
Flanking STC for path Fd_4	R_Td,W	Same as for Df_2		71+0+0 =		
unction 4: Flanking STC for		Subset of Eq. 5.3.1	- 10*LOG10(10^-8.1 + 10			6
and the following of th	patil3	5425Ct 01 Eq. 5.5.1	10 20010(10 0.1 1 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		00
Total Flanking STC (4 Junctio	ns)	Subset of Eq. 5.3.1	Combining 12	Flanking STC values		53

EXAMPLE 5.3.2

SIMPLIFIED METHOD

- Rooms side-by-side
- Separating loadbearing wall of normal weight concrete block with wood-framed flanking floors and walls (Same structure as Example 5.3.1, plus linings)

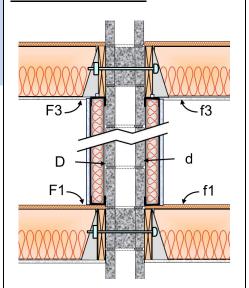
Separating wall assembly with:

- One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Concrete block assembly lined on each side by 1 layer of 13 mm gypsum board⁴ supported on 41 mm steel studs⁵ that are not in contact with the concrete blocks and are spaced 600 mm o.c., with absorptive material³ filling the stud cavities

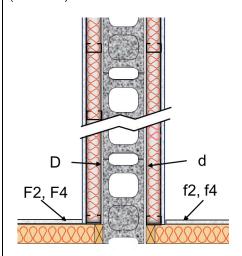
Bottom Junction 1 (separating wall and floor) with:

- 38 mm x 235 mm wood ledger plate on each side, fastened through with 16 mm diameter bolts spaced 400 mm o.c.
- Cells in concrete block¹ assembly between the ledger plates are filled with grout
- Floor framed with 38 mm x 235 mm wood joists spaced 400 mm o.c., with joists oriented perpendicular to separating wall and supported on joist hangers, with 150 mm thick absorptive material³ in the inter-joist cavities
- Floor deck of 16 mm thick oriented strandboard (OSB)
- No floor finish or floor topping

Top Junction 3 (separating wall and ceiling) with:


- Ceiling framed with wood joists (same details as Junction 1)
- Ceiling with one layer of 13 mm gypsum board⁴ fastened directly to bottom of floor framing on each side

Side Junction 2 or 4 (separating wall and abutting side walls) with:


- Side wall framing with single row of wood studs
- Side wall framing structurally-connected to the separating concrete block wall, but not continuous across the junction
- 13 mm gypsum board⁴ on the side wall ends at separating wall assembly and is attached directly to wall framing of 38 mm x 89 mm wood studs spaced 400 mm o.c., with absorptive material³ filling the stud cavities

		In Scenario	In Laboratory
Sep	parating partition area (m²) =	12.5	12.5
Floor/separatin	g wall junction length (m) =	5.0	5.0
Wall/separatin	g wall junction length (m) =	2.5	2.5
Normalization for Ju	inctions 1 and 3:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-334, Eq. 4.2.1
Normalization for Ju	inctions 2 and 4:		
10*log(S_situ/S	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-334, Eq. 4.2.1

Illustration for this case

Junctions 1 and 3 of loadbearing separating concrete block wall with woodframed flanking floor and ceiling. (Side view)

Junction 2 or 4 of separating concrete block wall with abutting side walls, with side walls' framing and gypsum board terminating at separating wall. (Plan view)

	ISO Symbol	Referen	ce	STC or Δ STC	STC or A	STC
Separating Partition	1000,111101					
Laboratory STC for Dd	R_s,w	RR-334, Mean-BLK190(NW)		49		
ΔSTC change by Lining on D	ΔR_D,w	RR-334, ΔTL-BLK(NW)-42		9		
ΔSTC change by Lining on d	$\Delta R_d, w$	RR-334, ΔTL-BLK(NW)-42		9		
Leakage or Airborne Flanking		Sealed & Blocked		0		
Direct STC in situ	R Dd,w	ISO 15712-1, Eq. 24 and 30	$AQ + M\Delta Y/Q$,9) + MIN(9,9) /2 + 0 =	63	
Direct STC III Situ	K_Du,w	130 13712-1, Eq. 24 and 30	45 + IVIAA(5	,5) + 101110(5,5) /2 + 0 -	03	
Junction 1: Separating Wall/	Floor					
For Flanking Path Ff 1:						
Laboratory Flanking STC		RR-334, BLK190-WF-LB-01		59		
Flanking STC for path Ff_1	R_Ff,w	ISO 15712-1, Eq. 28 - 31		59 + 0 =	59	
For Flanking Path Fd 1:	1_11,\v	130 13712-1, Eq. 26 - 31		33+0 -	33	
	D [d	DD 224 DLK100 WE LD 01		Ε0.		
Laboratory Flanking STC	R_Fd,w	RR-334, BLK190-WF-LB-01		59		
∆STC change by Lining on d	ΔR_d,w	RR-334, ΔTL-BLK(NW)-42		9		
Flanking STC for path Fd_1	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		59 + 9 + 0 =	68	
For Flanking Path Df_1:						
Laboratory Flanking STC	R_Df,w	RR-334, BLK190-WF-LB-01		59		
ΔSTC change by Lining on D	ΔR_D,w	RR-334, ΔTL-BLK(NW)-42		9		
Flanking STC for path Fd_1	R_ Df,w	ISO 15712-1, Eq. 28 - 31		59 + 9 + 0 =		
lunction 1: Flanking STC for a	all paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-5.9 +	10^-6.8 + 10^-6.8) =		5
Junction 2: Separating Wall/	Wall					
or Flanking Path Ff 2:						
Laboratory Flanking STC		RR-334, BLK190-WW-LB-01		81		
Flanking STC for path Ff_2	R_Ff,w	ISO 15712-1, Eq. 28 - 31		81+0 =	81	
For Flanking Path Fd_2:						
Laboratory Flanking STC	R Fd,w	RR-334, BLK190-WW-LB-01		71		
ΔSTC change by Lining on d	ΔR_d,w	RR-334, ΔTL-BLK(NW)-42		9		
Flanking STC for path Fd_2	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		71 + 9 + 0 =	80	
For Flanking Path Df 2:	N_TG,W	130 137 12-1, Eq. 28 - 31		711310 -	00	
Laboratory Flanking STC	R Df,w	RR-334, BLK190-WW-LB-01		71		
, ,		•		9		
ASTC change by Lining on D	ΔR_D,w	RR-334, ΔTL-BLK(NW)-42		71 + 9 + 0 =	80	
Flanking STC for path Fd_2	R_Df,w	ISO 15712-1, Eq. 28 - 31	10*10010/104			7
Junction 2: Flanking STC for a	ali patris	Subset of Eq. 5.3.1	- 10 · LOG10(10/1-8	.1 + 10^- 8 + 10^- 8) =	ĺ	7
Junction 3: Separating Wall/	Coiling					
Laboratory Flanking STC	Cennig	RR-334, BLK190-WC-LB-01		65		
	D Ef	•			C.	
Flanking STC for path Ff_3	R_Ff,w	ISO 15712-1, Eq. 28 - 31		65 + 0 =	65	
For Flanking Path Fd_3:						
Laboratory Flanking STC	R_Fd,w	RR-334, BLK190-WC-LB-01		65		
ΔSTC change by Lining on d	ΔR_d,w	RR-334, ΔTL-BLK(NW)-42		9		
Flanking STC for path Fd_3	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		65 + 9 + 0 =	74	
For Flanking Path Df 3:						
Laboratory Flanking STC	R_Df,w	RR-334, BLK190-WC-LB-01		65		
ΔSTC change by Lining on D	$\Delta R_D, w$	RR-334, ΔTL-BLK(NW)-42		9		
Flanking STC for path Fd_3	R_ Df,w	ISO 15712-1, Eq. 28 - 31		65 + 9 + 0 =	74	
Junction 3: Flanking STC for a	all paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.5 +	10^- 7.4 + 10^- 7.4) =		6
Junction 4: Separating Wall/	Wall					
All values the same as for Jur	nction 2					
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		81 + 0 =	81	
lanking STC for path Fd_4	R_Fd,w	Same as for Fd_2		71 + 9 + 0 =	80	
Flanking STC for path Fd_4	R_ Df,w	Same as for Df_2		71 + 9 + 0 =		
Junction 4: Flanking STC for a		Subset of Eq. 5.3.1	- 10*LOG10(10^-8	.1 + 10^- 8 + 10^- 8) =		
-				·		
Total Flanking STC (4 Junctio	ns)	Subset of Eq. 5.3.1	Combining	12 Flanking STC values		5

EXAMPLE 5.3.3

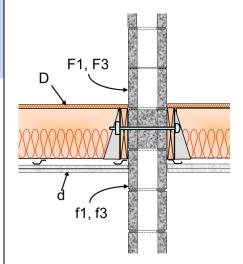
SIMPLIFIED METHOD

- Rooms one-above-the-other
- Separating wood-framed floor assembly with joists perpendicular to flanking walls of normal weight concrete block and parallel to wood-framed flanking walls

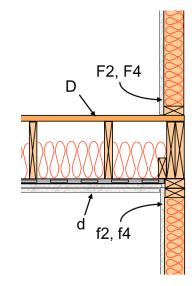
Separating floor/ceiling assembly with:

- Floor framed with 38 mm x 235 mm wood joists spaced 400 mm o.c., with joists oriented perpendicular to concrete block wall, with 150 mm thick absorptive material³ in the inter-joist cavities
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴, attached to resilient metal channels⁷ spaced 400 mm o.c.
- Subfloor of oriented strandboard (OSB) 16 mm thick
- No floor topping and no floor finish

Junction 1 or 3 (with loadbearing walls above and below floor) with:


- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Cells in concrete block assembly between the ledger plates are filled with grout
- 38 mm x 235 mm wood ledger plate on each side of the concrete blocks¹, fastened through with 16 mm diameter bolts spaced 400 mm o.c., and floor joists are supported on joist hangers attached to these plates
- No lining on concrete block walls

Junction 2 or 4 (with non-loadbearing walls above and below floor) with:


- Joists of floor assembly parallel to these walls
- Walls have 38 mm x 89 mm wood studs spaced 400 mm o.c with several framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates)
- Walls with or without absorptive material³ in the stud cavities give equivalent flanking
- Single layer of 13 mm gypsum board⁴ that ends at floor/ceiling assembly and is attached directly to wall framing

	<u>In Scenario</u>	In Laboratory
Separating partition area (m ²) =	20.0	20.0
Floor/LB flanking wall junction length (m) =	5.0	5.0
Floor/NLB flanking wall junction length (m) =	4.0	5.0
Normalization for Junctions 1 and 3:		
$10*log(S_situ/S_lab) + 10*log(l_lab/l_situ) =$	0.00	RR-334, Eq. 4.2.1
Normalization for Junctions 2 and 4:		
$10*log(S_situ/S_lab) + 10*log(I_lab/I_situ) =$	0.97	RR-334, Eq. 4.2.1

Illustration for this case

Junction 1 or 3 of separating wood-framed floor/ceiling assembly with loadbearing flanking concrete block wall. (Side view)

Junction 2 or 4 of separating wood-framed floor/ceiling assembly with abutting side walls, with side walls' framing and gypsum board terminating at framing of floor. (Plan view)

	ISO Symbol	Reference	STC or Δ STC	STC or AS
Separating Partition				
Laboratory STC for Dd	R_s,w	RR-336, WJ235-02	53	
Leakage or Airborne Flanking		Sealed & Blocked	0	
Direct STC in-situ	R_Dd,w	No adjustment, ISO 15712-1, 4.2.2		53
Junction 1: Separating Floor	/Wall			
For Flanking Path Ff 1:				
Laboratory Flanking STC	R_s,w	RR-334, WJ235-FW-LB-02	59	
ΔSTC change by Lining on F	ΔR F,w	No lining	0	
ΔSTC change by Lining on f	ΔR_f,w	No lining	0	
Normalization correction		ISO 15712-1, Eq. 28a	0	
Flanking STC for path Ff_1	R_Ff,w		AX(0,0) + MIN(0,0)/2 + 0 =	59
For Flanking Path Fd 1:	/	, , , , , , , , , , , , , , , , , , , ,		
Laboratory Flanking STC	R Fd,w	RR-334, WJ235-FW-LB-02	73	
ΔSTC change by Lining on F	ΔR_d,w	No lining	0	
Flanking STC for path Fd_1	R_ Fd,w	ISO 15712-1, Eq. 28 - 31	73 + 0 + 0 =	73
For Flanking Path Df 1:	/ 0,00	13.12.1, Eq. 20 31	,3.0.0=	,,,
Laboratory Flanking STC	R Df,w	RR-334, WJ235-FW-LB-02	67	
ΔSTC change by Lining on f	ΔR_D,w	No lining	0	
Flanking STC for path Fd_1	R Df,w	ISO 15712-1, Eq. 28 - 31	67 + 0 + 0 =	67
Junction 1: Flanking STC for			5.9 + 10^- 7.3 + 10^- 6.7) =	
Junction 1. Flanking STC 101	ali patris	Subset 01 Eq. 5.5.1 - 10 LOG10(10**-	0.7 j = 10° - 7.3 + 10° - 0.7 j =	
Junction 2: Separating Floor	·/\\/all			
For Flanking Path Ff 2:	/ vvaii			
Laboratory Flanking STC		RR-336, WJ235-VF NLB-02	63	
Flanking STC for path Ff_2	R_Ff,w	_	63 + 0.97 =	64
For Flanking Path Fd 2:	K_FI,W	ISO 15712-1, Eq. 28 - 31	03 + 0.97 =	04
Laboratory Flanking STC	R_Fd,w	RR-336, WJ235-VF NLB-02	80	
		_	80 + 0.97 =	81
Flanking STC for path Fd_2	R_ Fd,w	ISO 15712-1, Eq. 28 - 31	80 + 0.97 =	91
For Flanking Path Df 2:	D Df	DD 22C MI22E VE NID 02	60	
Laboratory Flanking STC	R_Df,w	RR-336, WJ235-VF_NLB-02		C4
Flanking STC for path Fd_2	R_ Df,w	ISO 15712-1, Eq. 28 - 31	60 + 0.97 =	
Junction 2: Flanking STC for	all paths	Subset of Eq. 5.3.1 - 10*LOG10(10^-6	5 <mark>.4 + 10^- 8.1 + 10^- 6.1) =</mark>	
Junction 3: Separating Floor	/Mall			
Flanking STC for path Ff_3		Samo as for Ef 1 EQ + M	AX(0,0) + MIN(0,0)/2 + 0 =	59
Flanking STC for path Fd_3	R_Ff,w R_ Fd,w	Same as for Ff_1 59 + M Same as for Fd_1	AX(0,0) + WIIIN(0,0)/2 + 0 = 73 + 0 + 0 = 73 + 0 + 0 = 73 + 0 + 0 = 73 + 0 + 0 = 73 + 0 + 0 = 74 + 0	
	R_Fa,w R_Df,w	Same as for Fd_1 Same as for Df_1		
Flanking STC for path Fd_3			67+0+0=	
Junction 3: Flanking STC for	all paths	Subset of Eq. 5.3.1 - 10*LOG10(10^-5	5.9 + 10^- 7.3 + 10^- 6.7) =	į
Junction 4: Separating Floor	·/\/\all			
All values the same as for Ju				
Flanking STC for path Ff_4		Samo as for Ef. 2	63 + 0.97 =	64
			80 + 0.97 =	
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2	80 + 0.97 = 60 + 0.97 =	
Flanking STC for path Fd_4 Sunction 4: Flanking STC for	R_ Df,w	Same as for Df_2 Subset of Eq. 5.3.1 - 10*LOG10(10^-6	5.4 + 10^- 8.1 + 10^- 6.1) =	
function 4: Flanking STC for	an paths	Subset 01 Eq. 5.3.1 - 10 LOG10(10 - 6	5.4 + 10 ² - 8.1 + 10 ² - 6.1) =	
Total Flanking STC (4 Junctic	ons)	Subset of Eq. 5.3.1 Combin	ning 12 Flanking STC values	į
ASTC due to Direct plus Tota	al Flanking	RR-331, Equation 5.3.1 Combining Direct STC v	with 12 Flanking STC values	50
ASTE due to Direct plus Tota	ai FidilKilig	Combining Direct STC	WITH 12 FIGHKING STC VALUES	30

EXAMPLE 5.3.4

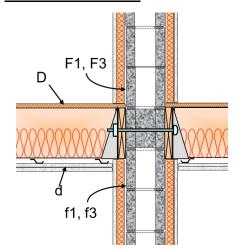
SIMPLIFIED METHOD

- Rooms one-above-the-other
- Separating wood-framed floor assembly with joists perpendicular to flanking walls of normal weight concrete block and parallel to wood-framed flanking walls
- Same structure as Example 5.3.3, plus linings

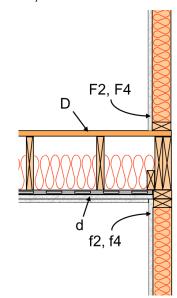
Separating floor/ceiling assembly with:

- Floor framed with 38 mm x 235 mm wood joists spaced 400 mm o.c., with joists oriented perpendicular to concrete block wall, with 150 mm thick absorptive material³ in the inter-joist cavities
- Ceiling of 2 layers of 16 mm fire-rated gypsum board⁴, attached to resilient metal channels⁷ spaced 400 mm o.c.
- Subfloor of oriented strandboard (OSB) 16 mm thick
- No floor topping and no floor finish

Junction 1 or 3 (with loadbearing walls above and below floor) with:


- Wall above and below floor of one wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units not less than 53% solid, and with mass per area of 238 kg/m²
- Cells in concrete block assembly between the ledger plates are filled with grout
- 38 mm x 235 mm wood ledger plate on each side of concrete blocks, fastened through with 16 mm diameter bolts spaced 400 mm o.c. and floor joists are supported on joist hangers attached to these plates
- Lining on each side of the concrete block walls¹ of 1 layer of 13 mm gypsum board⁴ supported on 38 mm x 38 mm wood furring spaced 600 mm o.c. and fastened to the concrete blocks, with absorptive material³ filling the cavities

<u>Junction 2 or 4 (with non-loadbearing walls above and below floor)</u> with:


- Joists of floor assembly parallel to these walls
- Walls have 38 mm x 89 mm wood studs spaced 400 mm o.c with several framing options (single row of wood studs, or staggered studs on a single 38 mm x 140 mm plate, or 2 rows of 38 mm x 89 mm wood studs on separate 38 mm x 89 mm plates)
- Walls with or without absorptive material³ in the stud cavities give equivalent flanking
- Single layer of 13 mm gypsum board⁴ that ends at floor/ceiling assembly and is attached directly to wall framing

		In Scenario	In Laboratory
Sep	parating partition area (m²) =	20.0	20.0
Floor/LB flankir	ng wall junction length (m) =	5.0	5.0
Floor/NLB flanking	ng wall junction length (m) =	4.0	5.0
Normalization for Ju	inctions 1 and 3:		
10*log(S_situ/	S_lab) + 10*log(l_lab/l_situ) =	0.00	RR-334, Eq. 4.2.1
Normalization for Ju	inctions 2 and 4:		
10*log(S_situ/	S_lab) + 10*log(l_lab/l_situ) =	0.97	RR-334, Eq. 4.2.1

Illustration for this case

Junction 1 or 3 of separating wood-framed floor/ceiling assembly with loadbearing flanking concrete block wall. (Side view)

Junction 2 or 4 of separating wood-framed floor/ceiling assembly with abutting side walls, with side walls' framing and gypsum board terminating at framing of floor. (Plan view)

(For the notes in this table please see the corresponding endnotes on page 194.)

	ISO Symbol	Reference		STC or ASTC	STC or AS
Separating Partition					
Laboratory STC for Dd	R_s,w	RR-336, WJ235-02		53	
eakage or Airborne Flanking		Sealed & Blocked		0	
Direct STC in-situ	R_Dd,w	No adjustment, ISO 15712-1, 4.2	2.2		53
lunction 1: Separating Floor	'Wall				
For Flanking Path Ff 1:					
Laboratory Flanking STC	R_s,w	RR-334, WJ235-FW-LB-02		59	
∆STC change by Lining on F	$\Delta R_F, w$	RR-334, ΔTL-BLK(NW)-33		4	
∆STC change by Lining on f	ΔR_f ,w	RR-334, ΔTL-BLK(NW)-33		4	
Normalization correction		ISO 15712-1, Eq. 28a		0	
Flanking STC for path Ff_1	R_Ff,w	ISO 15712-1, Eq. 28 - 31	59 + MAX	(4,4) + MIN(4,4)/2 + 0 =	65
For Flanking Path Fd 1:		i			
Laboratory Flanking STC	R_Fd,w	RR-334, WJ235-FW-LB-02		73	
ΔSTC change by Lining on F	ΔR_d,w	RR-334, ΔTL-BLK(NW)-33		4	
Flanking STC for path Fd_1	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		73 + 4 + 0 =	77
For Flanking Path Df_1:					
Laboratory Flanking STC	R_Df,w	RR-334, WJ235-FW-LB-02		67	
ΔSTC change by Lining on f	$\Delta R_D, w$	RR-334, ΔTL-BLK(NW)-33		4	
Flanking STC for path Fd_1	R_Df,w	ISO 15712-1, Eq. 28 - 31		67 + 4 + 0 =	71
Junction 1: Flanking STC for a	II paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.5	+ 10^- 7.7 + 10^- 7.1) =	
lunction 2: Separating Floor	'Wall				
For Flanking Path Ff 2:					
Laboratory Flanking STC		RR-336, WJ235-VF_NLB-02		63	
Flanking STC for path Ff_2	R_Ff,w	ISO 15712-1, Eq. 28 - 31		63 + 0.97 =	64
For Flanking Path Fd 2:					
Laboratory Flanking STC	R_Fd,w	RR-336, WJ235-VF_NLB-02		80	
Flanking STC for path Fd_2	R_ Fd,w	ISO 15712-1, Eq. 28 - 31		80 + 0.97 =	81
For Flanking Path Df 2:					
Laboratory Flanking STC	R_Df,w	RR-336, WJ235-VF_NLB-02		60	
Flanking STC for path Fd_2	R_ Df,w	ISO 15712-1, Eq. 28 - 31		60 + 0.97 =	61
lunction 2: Flanking STC for a	II paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.4	+ 10^- 8.1 + 10^- 6.1) =	,
lunction 3: Separating Floor	'Wall				
Flanking STC for path Ff_3	R_Ff,w	Same as for Ff_1	59 + MAX	(4,4) + MIN(4,4)/2 + 0 =	65
Flanking STC for path Fd_3	R_ Fd,w	Same as for Fd_1		73 + 4 + 0 =	77
Flanking STC for path Fd_3	R_ Df,w	Same as for Df_1		67 + 4 + 0 =	71
Junction 3: Flanking STC for a	III paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.5	+ 10^- 7.7 + 10^- 7.1) =	
lunction 4: Separating Floor	'Wall				
All values the same as for Jun					
Flanking STC for path Ff_4	R_Ff,w	Same as for Ff_2		63 + 0.97 =	64
Flanking STC for path Fd_4	R_ Fd,w	Same as for Fd_2		80 + 0.97 =	81
Flanking STC for path Fd_4	R_ Df,w	Same as for Df_2		60 + 0.97 =	61
lunction 4: Flanking STC for a	III paths	Subset of Eq. 5.3.1	- 10*LOG10(10^-6.4	+ 10^- 8.1 + 10^- 6.1) =	
Total Flanking STC (4 Junction	ns)	Subset of Eq. 5.3.1	Combining	g 12 Flanking STC values	
ASTC due to Direct plus Tota	Flanking	RR-331, Equation 5.3.1 Co	ombining Direct STC with	n 12 Flanking STC values	51

<u>Summary for Section 5.3: Calculation for Concrete Masonry Walls with Lightweight</u> Framed Wall and Floor Assemblies

The Examples 5.3.1 to 5.3.4 use a combination of the simplified procedures from Chapter 4 for lightweight framed assemblies, and the Simplified Methods from Section 2.4 for calculating transmission between rooms in a building with concrete floors and concrete or masonry wall assemblies.

The examples show that flanking does play a significant role in determining the performance of these systems. For Example 5.3.1 with a concrete block wall between the side-by-side rooms, the ASTC rating is 48, which is 1 point lower than the STC of the separating assembly. For Example 5.3.3 with one room above the other, the ASTC rating is 50 which is 3 points lower than the STC of the separating floor. In neither case do the flanking paths via the bare concrete block surfaces dominate the flanking.

For the side-by-side pair of rooms

The effect of added linings is shown in Example 5.3.2. The following trends are observed:

- Adding a lining with ΔSTC = 9 to the concrete block surfaces (both sides of separating wall) raises the ASTC rating from 48 to 56. Even this moderate improvement of the STC rating of the separating wall makes flanking transmission the dominant transmission, especially for the floor-floor and ceiling-ceiling paths.
- If the ceiling in Example 5.3.3 is also improved by mounting the gypsum board ceiling on resilient channels, the Flanking STC value for the ceiling paths (Junction 3) would improve to 75. However, this would increase the ASTC rating by only 1 point because the benefit is limited by flanking at the floor junction combined with the appreciable direct transmission.
- Significant further improvement in the ASTC rating requires the treatment of <u>both</u> the floor and the ceiling surfaces as well as the use of better linings on the separating wall. With these changes, the ASTC rating could be raised to 65 or higher.

With one room above the other

The effect of added linings on the concrete block flanking walls is shown in Example 5.3.4.

Example 5.3.4 shows the effect of adding a minimal wall lining with $\Delta STC = 4$ to all of the concrete block surfaces. Even this small improvement makes the flanking transmission via the concrete block walls nearly insignificant. The use of better wall linings could raise the Flanking STC for Junctions 1 and 3 (paths involving the concrete block walls) to the point where they are clearly insignificant, but would not improve the ASTC rating appreciably.

Achieving significantly higher ASTC ratings requires the improvement of the floor surface and the wood-framed flanking walls, as well as the use of better linings on the concrete block flanking walls. With such changes, the ASTC rating could be raised to 65 or higher.

6. Appendices

6.1. Appendix A1: Calculation of ΔTL and ΔSTC Values

To characterize the change in sound transmission loss due to adding a specific lining to a heavy base wall or floor a single-number rating called Δ STC is introduced.

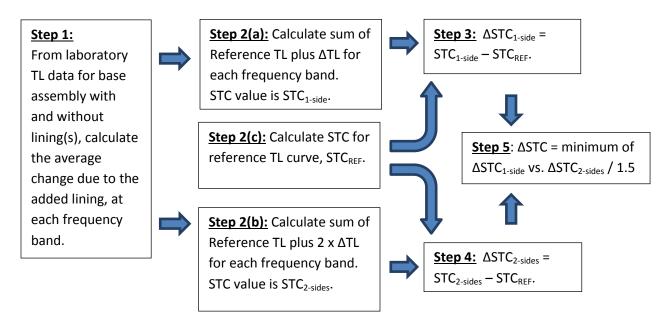
Key issues concerning the Δ STC value include:

- The ΔSTC value is a required input for the calculation of ASTC using the Simplified Method of ISO 15712-1, as discussed in Sections 2.4, 3.1, 4.1, and 5.3 of this Guide.
- Values of ΔSTC calculated from the experimental data in this Guide were calculated from
 experimental data using the procedure here, and are presented in tables in the companion
 reports for specific types of base construction; see NRC Research Reports RR-333 to RR-337.
 Readers of this Guide can simply use the tabulated ΔSTC values from those reports without the
 need to perform the calculations explained here.
- The general procedure for calculating the ΔSTC value is presented in this Appendix, but its application for specific constructions is explained in more detail for each material in the appendices of the NRC Research Reports RR-333 to RR-337.

ASTM does not define a Δ STC rating, but it has a counterpart (Δ R_w) in the ISO standards. The procedure used here is modified from its ISO counterpart in two ways:

- 1. The STC calculation according to ASTM E413 is substituted for the ISO calculation of R_W , plus additional Steps 4 and 5 are included, as explained in Figure A1.1 and the adjacent text.
- 2. A reference curve to represent the base assembly is required for the calculation. The ISO standards provide a set of three reference curves, one for heavy concrete floors and two for base wall assemblies. For calculations of the ΔSTC value for CLT assemblies, a fourth reference curve has been added for wall assemblies that fall between the two ISO wall cases. The new reference curve is denoted as Reference Wall 2, and is described as "wall with medium-low coincidence frequency." The four reference curves are presented at the end of this Appendix.

The reference curves for the ISO procedure to calculate ΔR_W are smoothed average sound transmission loss curves for some constructions common in Europe – a homogeneous concrete floor (140 mm thick with mass per area of 300 kg/m²), a heavy hollow concrete block masonry wall with low coincidence frequency (mass per area of 350 kg/m²) and a lighter hollow concrete block masonry wall of gypsum blocks (mass per area of 70 kg/m²) described as a "wall with medium-high coincidence frequency."


In selecting the appropriate reference curve for the calculation of the Δ STC value, the mass or thickness of the unlined base wall or floor assembly is irrelevant. What matters is the frequency dependence of its sound transmission loss curve, especially around the frequency where the curve transitions from a comparatively flat plateau at low frequencies to rising at about 2 dB per one-third octave band.

To establish the best reference curve for a given base wall or floor assembly, the reference curve should be shifted up or down to match the STC rating of the tested assembly. This permits clear identification of the fit below and above the frequency where the curve bends up. The reference curve can be shifted up or down (changing the sound transmission loss at all frequency bands by the same amount) without altering the calculation of Δ STC because, as detailed in the calculation procedure below, Δ STC is the difference between the STC rating for the reference curve and the STC rating calculated for the curve obtained by adding the Δ TL values at each frequency to the reference curve.

Procedure for Calculating ASTC Ratings

The procedure to establish the change in sound transmission loss ΔTL due to adding linings is presented in the reports on sound transmission for specific base assemblies such as hollow concrete block masonry walls or CLT assemblies (NRC Research Reports RR-333 to RR-337). The following procedure uses those values for ΔTL (in one-third octave bands) for each lining to calculate the corresponding single-number ΔSTC ratings.

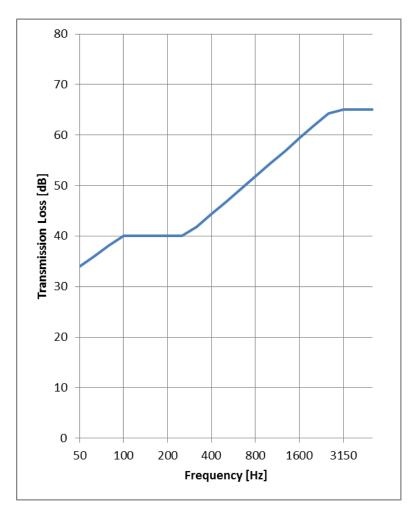
Steps in the procedure are shown schematically in Figure A1.1 and explained in detail below:

Figure A1.1: Steps to calculate the single-number rating ΔSTC for added linings (as detailed above).

- Step 1. The change in sound transmission loss (ΔTL) due to adding the lining is calculated from the laboratory test results according to ASTM E90 (for the base assembly without any added lining and for that assembly with lining(s) added) for each frequency band, including at least 125 Hz to 4 kHz. This may involve averaging results from several pairs of assemblies as explained in the NRC Research Reports RR-333 to RR-337.
- Step 2. (a) Calculate the sum of the sound transmission loss for the chosen reference curve plus ΔTL for each frequency band. The STC rating for this case is STC_{1-Side} .
 - (b) Calculate the sum of the sound transmission loss for the chosen reference curve plus 2 x Δ TL for each frequency band. The STC rating for this case is STC_{2-Sides}.
 - (c) Calculate the STC rating for the chosen reference curve (STC_{REF}).
- **Step 3.** Subtract the STC rating of the reference curve (STC_{REF}) from STC_{1-side} to obtain Δ STC_{1-Side}.
- **Step 4.** Subtract the STC rating of the reference curve (STC_{REF}) from STC_{2-sides} to obtain Δ STC_{2-Sides}.
- Step 5. Calculate the ΔSTC value: ΔSTC is the smaller of ΔSTC_{1-Side} and ΔSTC_{2-Sides}/1.5, rounded to integers (e.g. 20/1.5 \Rightarrow 13).

The change in the STC rating when there is a lining on both sides of the wall (Step 4) and then dividing $\Delta STC_{2\text{-sides}}$ by 1.5 in Step 5 can be understood by considering the use of ΔSTC values in Equations 2.4.2 and 2.4.3, in Equations 3.1.2 and 3.1.3, and in the worked examples in Sections 2.4 and 3.1.

Selection of the more conservative value (at Step 5) is required to avoid a misleading (over-optimistic) ΔSTC rating in the calculation procedure of the Simplified Method.

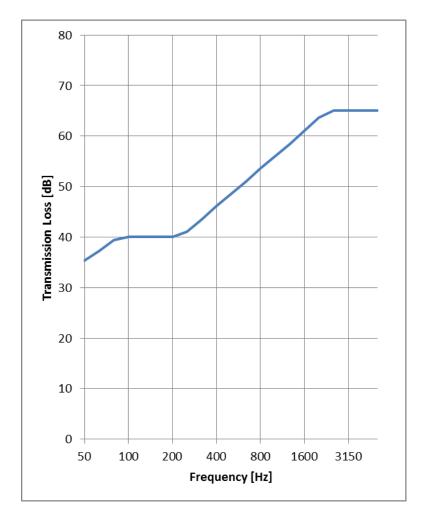

Reference Curves for Calculation of ΔSTC Ratings

A set of four reference curves are presented here:

- One curve for concrete floors with low coincidence frequency
- Three curves for wall assemblies (or CLT floor assemblies) with different coincidence frequencies

Three of these curves match ISO Reference curves.

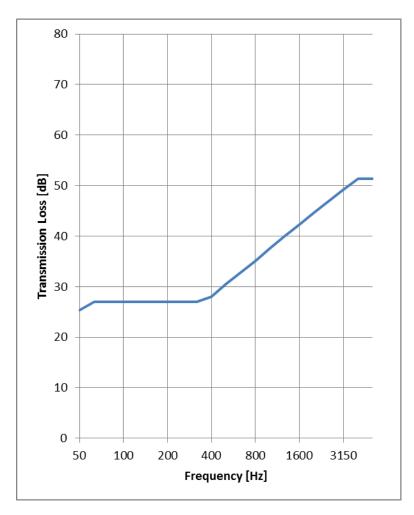
Figure A1.2: Reference curve for the calculation of Δ STC values for concrete floor assemblies with low coincidence frequency.



Reference Curve Floor 1 (aka Reference Curve B.2 from Annex B of ISO 140-16).

Frequency, Hz	TL, dB
50 Hz	34.0
63 Hz	36.0
80 Hz	38.1
100 Hz	40.0
125 Hz	40.0
160 Hz	40.0
200 Hz	40.0
250 Hz	40.0
315 Hz	41.8
400 Hz	44.4
500 Hz	46.8
630 Hz	49.3
800 Hz	51.9
1000 Hz	54.4
1250 Hz	56.8
1600 Hz	59.5
2000 Hz	61.9
2500 Hz	64.3
3150 Hz	65.0
4000 Hz	65.0
5000 Hz	65.0
STC	52

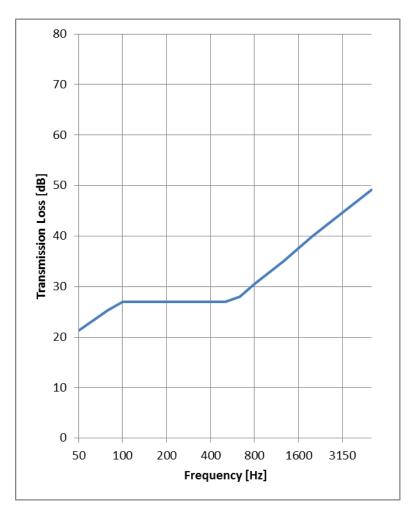
Figure A1.3: Reference curve for the calculation of Δ STC values for wall assemblies with low coincidence frequency. This reference curve


may also be used for CLT floor assemblies with low coincidence frequency (see NRC Research Report RR-335).

Reference Curve Wall 1 (aka Reference Curve B.1 from Annex B of ISO 140-16).

Frequency, Hz	TL, dB
50 Hz	35.3
63 Hz	37.3
80 Hz	39.4
100 Hz	40.0
125 Hz	40.0
160 Hz	40.0
200 Hz	40.0
250 Hz	41.0
315 Hz	43.5
400 Hz	46.1
500 Hz	48.5
630 Hz	51.0
800 Hz	53.6
1000 Hz	56.0
1250 Hz	58.4
1600 Hz	61.1
2000 Hz	63.6
2500 Hz	65.0
3150 Hz	65.0
4000 Hz	65.0
5000 Hz	65.0
STC	53

Figure A1.4: Reference curve for the calculation of Δ STC values for wall assemblies with medium low coincidence frequency.



Reference Curve Wall 2

New curve produced by shifting Reference Curve B.3 from Annex B of ISO 140-16 to lower frequencies by two one-third octave bands.

Frequency, Hz	TL, dB
50 Hz	25.3
63 Hz	27.0
80 Hz	27.0
100 Hz	27.0
125 Hz	27.0
160 Hz	27.0
200 Hz	27.0
250 Hz	27.0
315 Hz	27.0
400 Hz	28.0
500 Hz	30.5
630 Hz	32.8
800 Hz	35.1
1000 Hz	37.6
1250 Hz	40.0
1600 Hz	42.3
2000 Hz	44.6
2500 Hz	46.9
3150 Hz	49.2
4000 Hz	51.3
5000 Hz	51.3
STC	36

Figure A1.5: Reference curve for the calculation of Δ STC values for wall assemblies with medium high coincidence frequency.

Reference Curve Wall 3 (aka Reference Curve B.3 from Annex B of ISO 140-16).

Frequency, Hz	TL, dB
50 Hz	21.3
63 Hz	23.3
80 Hz	25.3
100 Hz	27.0
125 Hz	27.0
160 Hz	27.0
200 Hz	27.0
250 Hz	27.0
315 Hz	27.0
400 Hz	27.0
500 Hz	27.0
630 Hz	28.0
800 Hz	30.5
1000 Hz	32.8
1250 Hz	35.1
1600 Hz	37.6
2000 Hz	40.0
2500 Hz	42.3
3150 Hz	44.6
4000 Hz	46.9
5000 Hz	49.2
STC	33

6.2. Appendix A2: Sound Transmission for Multi-Element Assemblies

Dealing with wall assemblies with multiple elements such as doors and windows is a common concern in assessing the sound transmission between rooms in a building, especially for the separation of a residential space from an adjacent corridor. This appendix provides guidance on how multi-element assemblies can be incorporated into the ASTC calculations described in this Guide. The calculations are demonstrated for the case of a separating wall which includes a door and a window. The issue of multi-element partitions is less likely to be significant for floor assemblies, but the same approach applies.

There are two aspects of sound transmission to consider when dealing with multi-element assemblies:

- For the direct sound transmission through a multi-element wall assembly separating two rooms, an approach to calculate the composite sound transmission is described in this Appendix. It is further demonstrated in a worked example how the composite sound transmission can be incorporated in the ASTC calculation.
- For the structure-borne flanking sound transmission, this Guide recommends ignoring the effect of elements such as doors or windows within a flanking wall. It is not clear how much the flanking sound transmission would be affected by inserting such elements into a wall. Inserting such an element would reduce both the effective junction length and the surface area of the wall assembly, and hence the change would be expected to increase the Flanking STC value. However, there is no simple method for quantitative calculation of these changes in flanking sound transmission. Also, sound radiated from these elements might offset these trends. The balance would strongly depend on the mounting details and characteristics of the specific elements. For this reason this aspect is treated as beyond the scope of ISO 15712-1 and of this Guide. The effects of elements like doors and windows on flanking sound transmission should generally be relatively small when compared to other transmission paths, especially when it affects only a few of the flanking paths between a pair of rooms.

Calculating the direct sound transmission through a wall assembly with several elements is very similar to combining the transmission via multiple flanking paths, as presented in Chapter 1 of this Guide. In Section 1.4, the concept of transmission coefficients was introduced. The total transmission through a multi-element assembly can be calculated as the area-weighted sum of the individual transmission coefficients.

The use of the transmission coefficients can be avoided by introducing the terms "Surface-Normalized Sound Transmission Loss" (SNTL) and the corresponding single-number rating "Surface-Normalized Sound Transmission Class" (SNSTC).

Equations and examples in this Appendix are presented in terms of STC and SNSTC. The equivalent process with one-third octave band transmission loss values for use in the Detailed Method would be essentially the same.

For a wall assembly including several elements, the Surface-Normalized STC for each element (denoted by its subscript j) is related to its laboratory STC value by the expression:

$$SNSTC_j = STC_j - 10 \cdot \log_{10} \left[\frac{S_j}{S_{\text{total}}} \right]$$
 Eq. A2.1

Here, S_{total} is the surface area of the complete wall assembly including all the elements, and S_j is the surface area of the element of concern. With the introduction of $SNSTC_j$ the combined direct sound transmission class through the multi-element wall assembly can be calculated as follows:

$$STC = -10 \cdot \log_{10} \left[\sum_{element=1}^{n} (10^{-0.1 \cdot SNSTC_1} + 10^{-0.1 \cdot SNSTC_2} + \cdots) \right]$$
 Eq. A2.2

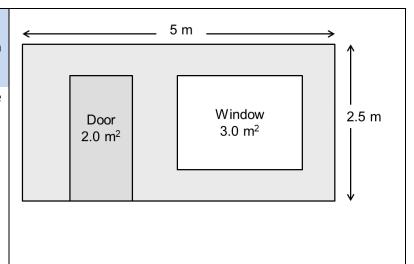
Equations A2.1 and A2 2 are readily incorporated in a spreadsheet or computer program, but are not trivial for evaluations using a calculator or mental math. To clarify the presentation of the examples, typical values for the expressions $-10 \cdot \log_{10} \left[\frac{S_j}{S_{\text{total}}} \right]$ from Eq. A2.1, and for pairwise combination of SNSTC values to deal with simple cases of Eq. A2.2 are listed in Tables A2.1 and A2.2 respectively.

Table A2.1: Values of the surface normalization term in Eq. A2.1 to add to an element's STC rating to calculate the corresponding SNSTC value

$\frac{S_j}{S_{ ext{total}}}$	$-10 \cdot \log_{10} \left[\frac{S_j}{S_{total}} \right]$
0.89 to 1.00	+0
0.71 to 0.88	+1
0.56 to 0.70	+2
0.45 to 0.55	+3
0.35 to 0.44	+4
0.28 to 0.34	+5
0.22 to 0.27	+6
0.18 to 0.21	+7
0.14 to 0.17	+8
0.11 to 0.13	+9

Table A2.2: Rule-of-Thumb adjustments to use for pairwise combination of integer SNSTC values as discussed in Example A2.1

Difference between the SNSTC values for two Elements	Combined SNSTC for these two Elements	
10 or more	= lower SNSTC	
4, 5, 6, 7, 8, 9	= lower SNSTC -1	
2, 3	= lower SNSTC -2	
0, 1	= lower SNSTC -3	


Example A2.1 gives an example of a case where there are three elements – a door and a window plus the wall assembly in which they are installed.

Example A2.1:

Combined STC for Direct Transmission through a Multi-Element Wall

This wall assembly includes three elements:

- Door is 1x2 m exterior steel door with weather stripping, whose laboratory STC = 36.
- Window is 2 x 1.5m fixed double-glazed window whose STC = 37.
- Wall assembly has exposed area of 7.5 m² and STC = 50

Element	Surface Area (m²)	Surface Fraction	Surface Normalization Correction	Laboratory STC	SNSTC
Door	2	0.160	+8	36	44
Window	3	0.240	+6	37	43
Wall	7.5	0.600	+2	50	52
Total Surface =	12.5		(From Table A2.1)		
Combined STC =	: 10 x LOG10(1	L0^-4.4 + 1	0^-4.3 + 10^-5.2) =	40	

Note that the calculation of the Combined STC value in Example A2.1 has the same form as the equations used to combine the Flanking STC values in the worked examples when calculating the ASTC rating.

The pairwise combination of SNSTC values using the corrections listed in Table A2.2 is also feasible. For this example, combining the SNSTC values of 52 and 44 (for the wall and door respectively) would give a combined value of 44-1 = 43 and combining this with the value of 43 for the window gives an overall result of 43-3 = 40.

The worked examples round the values for SNSTC to the nearest integer. This is convenient for presenting the examples here, but using higher precision for the surface normalization correction term and for combining SNSTC values (rather than the integer values listed in Tables A2.1 and A2.2) provides improved accuracy when combining the sound energy for more than 2 elements.

Other types of transmission paths could be included in the calculation in the same way, if their individual sound transmission has been evaluated:

- Sound transmission via outlets from a ventilation system could either be measured for a unit installed in a supporting wall or calculated using standard procedures in the ASHRAE handbook.
- Leakage through a separating wall assembly can be an issue for some types of wall
 constructions, including bare lightweight hollow concrete block masonry and mass timber
 constructions without lining. If those assemblies are tested both bare and with the addition of
 an effective sealant, the easiest way to deal with this is to treat the resulting change in
 transmission loss as an additive correction like a lining (as shown in examples in NRC Research
 Reports RR-334 and RR-335).
- Another related issue is indirect airborne flanking sound transmission. In a residential building such sound transmission paths between units should ordinarily be controlled by fire blocking used to prevent spread of smoke and fire through concealed cavities. However, in commercial buildings indirect airborne sound transmission between rooms is common, for example via an open plenum above the suspended ceiling in an open plan office building. Suitable procedures to deal with such cases are given in Annex F of ISO 15712-1.

Example A2.2 takes the process further by showing how the calculations for a multi-element separating partition can be incorporated into the spreadsheet for calculating the ASTC rating. This example evaluates the sound transmission between side-by-side rooms when there is a passage door assembly included in the partition between the rooms — a common situation for hotel bedrooms.

EXAMPLE A2.2:

SIMPLIFIED METHOD

- Rooms side-by-side
- Concrete floors and normal weight concrete block walls with rigid junctions
- Same as Example 2.4.3, but with added door

Separating wall assembly (loadbearing) with:

- One wythe of 190 mm hollow concrete block masonry¹ constructed using normal weight units with mass per area of 238 kg/m²
- Separating wall lined both sides with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling inter-stud cavities
- Door (2 exterior steel door panels with 200 mm airspace between) installed in the separating wall as described in Example A2.1

Junction 1: Bottom Junction (separating wall / floor) with:

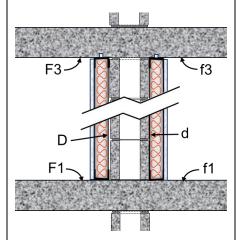
- Concrete floor with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no topping or flooring
- Rigid mortared cross-junction with concrete block wall assembly

Junction 2 or 4: Each Side (separating wall /abutting side wall) with:

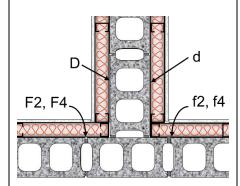
- Rigid mortared T-junctions of abutting side wall and separating wall of hollow concrete block masonry¹ with mass per area of 238 kg/m²
- Flanking walls lined with 13 mm gypsum board⁴ on 65 mm non-loadbearing steel studs⁵ spaced 600 mm o.c., with absorptive material³ filling inter-stud cavities

Junction 3: Top Junction (separating wall / ceiling) with:

- Concrete ceiling with mass per area of 345 kg/m² (e.g. normal weight concrete 150 mm thick) with no added ceiling lining
- Rigid mortared cross-junction with concrete block wall assembly


Acoustical Parameters:

For 190 mm concrete block walls:		
Mass/unit area (kg/m²) =	238	(Separating wall)
	238	(Flanking wall)
For 150 mm concrete floor:		
Mass/unit area (kg/m²) =	345	
Separating partition area (m ²) =	12.5	
Floor/wall junction length (m) =	5.0	
Separating partition height (m) =	2.5	
10*log(S_Partition/I_junction 1&3) =	4.0	
10*log(S_Partition/I_junction 2&4) =	7.0	
	Door	Wall
Surface Area (m ²) =	2.00	10.50
Laboratory STC:	48	49
Surface-Normalized STC (Eq. A2.1):	56.0	49.8


Illustration for this case

Door inserted in separating partition

Side view of Junctions 1 and 3

Plan view of Junction 2 or 4

			Kij [dB]			
Junction		Mass ratio for Ff	Path Ff	Path Fd	Path Df	Reference
1	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
2	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4
3	Rigid cross-junction	0.69	6.1	8.8	8.8	ISO 15712-1, Eq. E.3
4	Rigid T-junction	1.00	5.7	5.7	5.7	ISO 15712-1, Eq. E.4

	ISO Symbol	Reference	STC or Δ STC	STC or ASTC
Separating Partition				
Laboratory STC for Wall Dd	R_s,w	RR-334, NRC-Mean BLK190(NW)	49	
ΔSTC change by Lining on D	$\Delta R_D, w$	RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	19	
ΔSTC change by Lining on d	ΔR_d,w	RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	19	
Surface-Normalized STC for	Door		56.0	
Surface Normalized STC for V	Wall	49.8 + MAX(19,19) + MIN(19,19)/2 =	78.3	
Combined Direct STC		RR-331, Eq. A2.2 - 10*LOG10(10^- 5	5.6 + 10^- 7.8) =	56
Junction 1: Separating Wall	/Floor			
Flanking Element F1:				
Laboratory STC for F1	R_F1,w	RR-334, CON150, TLF-15-045	53	
ΔSTC change by Lining	ΔR_F1,w	No lining	0	
Flanking Element f1:				
Laboratory STC for f1	R f1,w	RR-334, CON150, TLF-15-045	53	
ΔSTC change by Lining	ΔR_f1,w	No lining	0	
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0	-	63
Flanking STC for path Fd	R Fd,w	RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,19)		83
Flanking STC for path Df	R_Df,w	RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19		83
Junction 1: Flanking STC for		RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8		63
Junction 1. Hanking STC for	an patris	MN-331, 300360 01 Eq. 2.4.10 E0010(10 -0.5 + 10 - 8	5.5 + 10 - 6.5 / -	0.
Junction 2: Congreting Wall	/\A/all			
Junction 2: Separating Wall	, waii			
Flanking Element F2:	р гэ	DR 224 Moon BLK100/NUM	40	
Laboratory STC for F2	R_F2,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_F2,w	RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	19	
Flanking Element f2:				
Laboratory STC for f2	R_f2,w	RR-334, Mean-BLK190(NW)	49	
ΔSTC change by Lining	ΔR_f2,w	RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	19	
Flanking STC for path Ff	R_ Ff,w	RR-331, Eq. 2.4. 3 9/2 + 49/2 + MAX(19,19) + MIN(19,		90
Flanking STC for path Fd	R_ Fd,w	RR-331, Eq. 2.4. 3 9/2 + 49/2 + MAX(19,19) + MIN(19,		90
Flanking STC for path Df	R_ Df,w	RR-331, Eq. 2.4. 3 9/2 + 49/2 + MAX(19,19) + MIN(19,3		90
Junction 2: Flanking STC for	all paths	RR-331, subset of Eq. 2.4.1 - 10*LOG10(10^-9 + 10)^- 9 + 10^- 9) =	85
Junction 3: Separating Wall	/Ceiling			
Flanking Element F3:		DD 224 COMEO TIE 45 045		
Flanking Element F3: Laboratory STC for F3	R_F3,w	RR-334, CON150, TLF-15-045	53	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining		RR-334, CON150, TLF-15-045 No lining	53 0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3:	R_F3,w ΔR_F3,w	No lining	0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3	R_F3,w ΔR_F3,w R_f3,w	No lining RR-334, CON150, TLF-15-045	53	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w	No lining RR-334, CON150, TLF-15-045 No lining	53 0	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0	0 53 0 ,0)/2 + 6.1 + 4 =	63
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 =	63 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	R_F3,w $\Delta R_F3,w$ R_f3,w $\Delta R_f3,w$ R_Ff,w R_Ff,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w $\Delta R_F3,w$ R_f3,w $\Delta R_f3,w$ R_Ff,w R_Ff,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4:	R_F3,w $\Delta R_F3,w$ R_f3,w $\Delta R_f3,w$ R_Ff,w R_Ff,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4:	R_F3,w $\Delta R_F3,w$ R_f3,w $\Delta R_f3,w$ R_Ff,w R_Ff,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4	R_F3,w $\Delta R_F3,w$ R_f3,w $\Delta R_f3,w$ R_Ff,w R_Fd,w R_Df,w all paths	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 3 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for	R_F3,w \[\Delta_F3,w \] R_f3,w \[\Delta_F3,w \] \[\Delta_F13,w \] R_Ff,w R_Fd,w R_Df,w all paths \[\begin{array}{cccccccccccccccccccccccccccccccccccc	No lining RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 3 =	83 83
Flanking Element F3: Laboratory STC for F3 ASTC change by Lining Flanking Element f3: Laboratory STC for f3 ASTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ASTC change by Lining Flanking Element f4:	R_F3,w \[\Delta_F3,w \] R_f3,w \[\Delta_F3,w \] \[\Delta_F13,w \] R_Ff,w R_Fd,w R_Df,w all paths \[\begin{array}{cccccccccccccccccccccccccccccccccccc	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 3 =	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w R_f4,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, Mean-BLK190(NW)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 3.3 + 10^- 8.3) = 49 19	83 83
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 = 3.3 + 10^- 8.3) = 49 19 49 19	83 83 63
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΛR_F6,w R_F6,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(19,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 1,0)/2 + 8.8 + 4 = 8.3 + 10^- 8.3) = 49 19 49 19 19)/2 + 5.7 + 7 =	83 83 63
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff	R_F3,w ΔR_F3,w AR_F3,w AR_f3,w AR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w R_F6,w R_F6,w R_F6,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 3.3 + 10^- 8.3) = 49 19 49 19 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 =	90 90
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΛR_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(19,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 1 = 10,0)/2 + 8.7 + 7 =	90 90 90
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff	R_F3,w ΔR_F3,w R_f3,w ΔR_f3,w R_Ff,w R_Fd,w R_Df,w all paths /Wall R_F4,w ΔR_F4,w ΔR_F4,w ΛR_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(0,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 4 = 10,0)/2 + 8.8 + 1 = 10,0)/2 + 8.7 + 7 =	90 90 90
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Df Junction 4: Flanking STC for	R_F3,w ΔR_F3,w AR_F3,w AR_f3,w AR_f3,w AR_f3,w R_Ff,w R_Fd,w AR_Fd,w ΔR_F4,w ΔR_F4,w AR_F4,w AR_F4,w AR_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F0,w R_F0,w AR_F0,w AR_F0,w R_F0,w R	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(19,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Subset of Eq. 2.4.1 - 10*LOG10(10^-9 + 10)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 3.3 + 10^- 8.3) = 49 19 49 19 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 =	90 90 90 90
Flanking Element F3: Laboratory STC for F3 ΔSTC change by Lining Flanking Element f3: Laboratory STC for f3 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df Junction 3: Flanking STC for Junction 4: Separating Wall Flanking Element F4: Laboratory STC for F4 ΔSTC change by Lining Flanking Element f4: Laboratory STC for f4 ΔSTC change by Lining Flanking STC for path Ff Flanking STC for path Ff Flanking STC for path Fd Flanking STC for path Df	R_F3,w ΔR_F3,w AR_F3,w AR_f3,w AR_f3,w AR_f3,w R_Ff,w R_Fd,w AR_Fd,w ΔR_F4,w ΔR_F4,w AR_F4,w AR_F4,w AR_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F6,w R_F0,w R_F0,w AR_F0,w AR_F0,w R_F0,w R	RR-334, CON150, TLF-15-045 No lining RR-331, Eq. 2.4.3 53/2 + 53/2 + MAX(0,0) + MIN(0,0) RR-331, Eq. 2.4.3 53/2 + 49/2 + MAX(0,19) + MIN(19,0) RR-331, Eq. 2.4.3 49/2 + 53/2 + MAX(19,0) + MIN(19,0) RR-331, subset of Eq. 2.4.10*LOG10(10^-6.3 + 10^-8) RR-334, Mean-BLK190(NW) RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-334, ΔTL-BLK(NW)-62, SS65_GFB65_G13 RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0) RR-331, Eq. 2.4.39/2 + 49/2 + MAX(19,19) + MIN(19,0)	0 53 0 0,0)/2 + 6.1 + 4 = 19)/2 + 8.8 + 4 = 0,0)/2 + 8.8 + 4 = 3.3 + 10^- 8.3) = 49 19 49 19 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 = 19)/2 + 5.7 + 7 =	90 90 90

This page was intentionally left blank.

7. References and Endnotes

Technical Standards

- 1. ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements", ASTM International, West Conshohocken, PA, USA.
- 2. ASTM E336-16, "Standard Test Method for Measurement of Airborne Sound Insulation in Buildings", ASTM International, West Conshohocken, PA, USA.
- 3. ASTM E413-16, "Classification for Rating Sound Insulation", ASTM International, West Conshohocken, PA, USA.
- 4. ISO 717:2013, "Acoustics—Rating of sound insulation in buildings and of building elements", International Organization for Standardization, Geneva.
 - 4.1. Part 1: Airborne Sound Insulation
 - 4.2. Part 2: Impact Sound Insulation
- 5. ISO 10140:2011, Parts 1 to 5, "Laboratory measurement of sound insulation of building elements", International Organization for Standardization, Geneva.
- 6. ISO 16283:2014, Part 1, "Field measurement of sound insulation in buildings and of building elements", International Organization for Standardization, Geneva.
- 7. ISO 10848:2006, Parts 1 to 4, "Laboratory measurement of flanking transmission of airborne and impact sound between adjoining rooms", International Organization for Standardization, Geneva.
- 8. ISO 15712:2005, Part 1, "Estimation of acoustic performance of buildings from the performance of elements", International Organization for Standardization, Geneva.
 - 8.1. Note: In 2017, the ISO 12354 series replaced ISO 15712 Parts 1, 2, 3, and 4.
- 9. ISO 12354:2017, Part 1, "Estimation of acoustic performance of buildings from the performance of elements", International Organization for Standardization, Geneva.

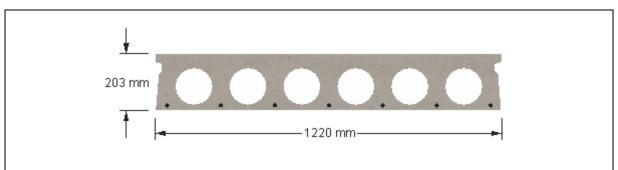
Other Technical References

- 10. L. Cremer and M. Heckl, "Structure-borne sound", edited by E. E. Ungar, Springer-Verlag, New York (original edition 1973, 2nd edition 1996).
- 11. E. Gerretsen, "Calculation of the sound transmission between dwellings by partitions and flanking structures", Applied Acoustics, Vol. 12, pp. 413-433 (1979), and "Calculation of airborne and impact sound insulation between dwellings", Applied Acoustics, Vol. 19, pp. 245-264 (1986).
- 12. R. J. M. Craik, "Sound transmission through buildings: Using Statistical Energy Analysis", Gower Publishing (1996).
- 13. D. B. Pedersen, "Evaluation of EN 12354 Part 1 and 2 for Nordic Dwelling Houses", Building Acoustics, Vol. 6, No. 3, pp. 259-268 (1999), (Validation studies for the ISO 15712 procedures).

NRC Publications

Source references for sound transmission data (both collections of conventional laboratory test results for wall and floor assemblies according to ASTM E90, and flanking sound transmission tests according to ISO 10848) including many NRC Construction reports in the RR- and IR- series are available from the Publications Archive of the National Research Council Canada at http://nparc.nrc-cnrc.gc.ca/.

- 14. RR-331, "Guide to Calculating Airborne Sound Transmission in Buildings", 4th Edition, 2018, C. Hoeller, D. Quirt, J. Mahn. RR-331 presents both the "Detailed Method" of ISO 15712-1 and the "Simplified Method" for calculating the apparent sound transmission in buildings for a variety of constructions types.
- 15. The software application *soundPATHS* is accessible online at the website of the National Research Council Canada. The calculations are based on experimental studies in the laboratories of the NRC: http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/soundpaths/index.html
- 16. Direct and flanking sound transmission loss data that is used in RR-331 and in *soundPATHS* is provided in a series of accompanying NRC Research Reports:
 - 16.1. RR-333, "Apparent Sound Insulation in Precast Concrete Buildings", (expected 2019).
 - 16.2. RR-334, "Apparent Sound Insulation in Concrete Block Buildings", B. Zeitler, D. Quirt, S. Schoenwald, J. Mahn, (1st edition 2015, 2nd edition expected 2019).
 - 16.3. RR-335, "Apparent Sound Insulation in Cross-Laminated Timber Buildings", C. Hoeller, J. Mahn, D. Quirt, S. Schoenwald, B. Zeitler, (2017).
 - 16.4. RR-336, "Apparent Sound Insulation in Wood-Framed Buildings", C. Hoeller, D. Quirt, M. Mueller-Trapet, (2017).
 - 16.5. RR-337, "Apparent Sound Insulation in Cold-Formed Steel-Framed Buildings", C. Hoeller, D. Quirt, B. Zeitler, I. Sabourin, (2017).
- 17. Technical details concerning the measurement protocol (consistent with ASTM E90 and ISO 10848) and discussion of the findings of the experimental studies are presented in a series of NRC reports:
 - 17.1. IR-754, "Flanking Transmission at Joints in Multi-Family Dwellings. Phase 1: Effects of Fire Stops at Floor/Wall Intersections", T. R. T. Nightingale and R. E. Halliwell, (1997).
 - 17.2. IR-761, "Gypsum Board Walls: Transmission Loss Data", R. E. Halliwell, T. R. T. Nightingale, A. C. C. Warnock and J. A. Birta, (1998).
 - 17.3. IR-766, "Summary Report for Consortium on Fire Resistance and Sound Insulation of Floors: Sound Transmission Class and Impact Insulation Class Results", A. C. C. Warnock and J. A. Birta, (1998).
 - 17.4. IR-811, "Detailed Report for Consortium on Fire Resistance and Sound Insulation of Floors: Sound Transmission and Impact Insulation Data", A. C. C. Warnock and J. A. Birta, (2000).


- 17.5. RR-103, "Flanking Transmission in Multi-Family Dwellings Phase II: Effects of Continuous Structural Elements at Wall/Floor Junctions", T. R. T. Nightingale, R. E. Halliwell, J. D. Quirt, (2002).
- 17.6. RR-168, "Transmission at the Wall/Floor Junction in Multifamily Dwellings Quantification and Methods of Suppression", T. R. T. Nightingale, R. E. Halliwell, J. D. Quirt, F. King, (2005).
- 17.7. RR-169, "Summary Report for Consortium on Fire Resistance and Sound Insulation of Floors: Sound Transmission and Impact Insulation Data", A. C. C. Warnock, (2005).
- 17.8. RR-193, "Guide for Sound Insulation in Wood Frame Construction Part 1: Controlling Flanking at the Wall-Floor Junction", J. D. Quirt, T. R. T. Nightingale, R. E. Halliwell, (2005).
- 17.9. A. C. C. Warnock, SOCRATES (SOund Classification RATing EStimator) software, (2005).
- 17.10. RR-218, "Flanking Transmission in Multi-Family Dwellings Phase IV", T. R. T. Nightingale, J. D. Quirt, F. King and R. E. Halliwell, (2006).
- 17.11. RR-219, "Guide for Sound Insulation in Wood Frame Construction", J. D. Quirt, T. R. T. Nightingale, and F. King, (2006).
- 17.12. NRC Report #49677, "Best Practice Guide on Fire Stops and Fire Blocks and their Impact on Sound Transmission", J. K. Richardson, J. D. Quirt, R. Hlady, (2007).
- 17.13. NRC Construction Technology Update 66, "Airborne Sound Insulation in Multi-Family Buildings", J. D. Quirt, T. R. T. Nightingale, (2008).
- 17.14. NRC Report A1-100035-02.1, "Acoustics: Sound insulation in mid-rise wood buildings" (Report to Research Consortium for wood and wood-hybrid mid-rise buildings), S. Schoenwald, B. Zeitler, F. King, I. Sabourin, (2014).

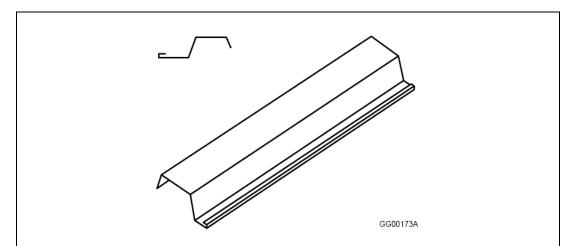
18. Other relevant NRC publications:

- 18.1. F. King, S. Schoenwald, I. Sabourin: "Characterizing flanking transmission paths in the NRC-IRC flanking facility", Proceedings of Acoustics Week in Canada, Niagara-on-the-Lake, (2009).
- 18.2. T. Estabrooks, F. King, T. R. T. Nightingale, I. Sabourin: "NRC-IRC flanking sound transmission facility", Proceedings of Acoustics Week in Canada, Niagara-on-the-Lake, (2009).

Endnotes

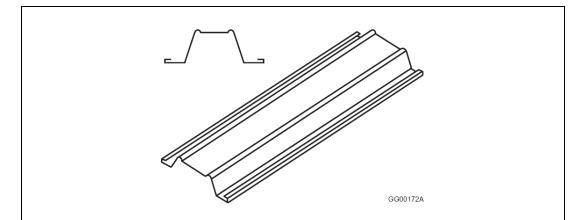
- For the concrete block walls in these examples, the value of 238 kg/m² is the measured mass per area for the tested wall specimen including mortar. Normal weight concrete block masonry units conform to CSA A165.1 and have a concrete mass density of not less than 2000 kg/m³. 190 mm hollow block units are not less than 53% solid, and 140 mm hollow block units are not less than 73% solid, each giving a minimum wall mass per area over 200 kg/m². Higher mass concrete block masonry construction can be achieved by using semi-solid or fully solid units, or more commonly, by grouting the cells of the hollow units. Additional information on material properties and sound transmission for other concrete block wall assemblies are given in NRC Research Report RR-334.
- Precast concrete wall and floor panels are structural panels formed from normal weight concrete aggregate. The walls are typically formed as solid panels and the floors as hollowcore planks. The hollowcore floors considered in the worked examples in this Guide, as shown in Figure 7.1, were 203 mm thick with a mass per area of 344 kg/m² including grout. The hollowcore floors used in junction mock-up tests to confirm the validity of the vibration reduction index values from Annex E of ISO 15712-1 were 203 mm thick with a mass per area of 323 kg/m² without grout. This means that the methods described in Chapter 2 of this Guide are appropriate for hollowcore floors with a mass per area down to at least 323 kg/m² without grout. Additional information on material properties and sound transmission for other precast concrete wall and floor assemblies are given in NRC Research Report RR-333.

Figure 7.1: Profile of hollowcore precast concrete floor panels. Approximate dimensions in cross-section 203 mm x 1220 mm (not to scale).


- 3 Sound absorbing material is porous (closed-cell foam is not included) and readily-compressible, and includes fiber processed from rock, slag, glass or cellulose fiber. Such material provides acoustical benefit for direct transmission through lightweight framed wall or floor assemblies, and for flanking transmission when installed in the cavities between lining surfaces and heavy homogeneous structural elements of concrete, concrete block or CLT. Note that overfilling the cavity could diminish the benefit.
- 4 Gypsum board panels commonly form the exposed surface on lightweight framed wall or floor assemblies and on linings for heavy homogeneous structural wall or floor assemblies of concrete,

concrete block or CLT. The gypsum board panels are installed with framing, fasteners, and fastener spacing conforming to installation details required by CSA A82.31-M or ASTM C754. Sound transmission results should only be used where the actual construction details correspond to the details of the test specimens on which ratings are based. "Fire-rated gypsum board" is typically heavier than non-fire-rated gypsum board, which gives improved resistance to sound transmission through the assembly. The term "fire-rated" is used in this Guide to denote gypsum board with mass per area of at least 8.7 kg/m² for 12.7 mm thickness, or 10.7 kg/m² for 15.9 mm thickness.

- Steel studs and joists are made from sheet steel into standard profiles by roll-forming the steel sheets through a series of dies. The process does not require heat to form the profiles, hence their description as cold-formed steel framing. The studs and joists are formed from sheet steel with a "C-shaped" cross-section profile in accordance with AISI S201, and are joined top and bottom by a rectangular U-shaped runner. "Non-loadbearing steel studs" are formed from sheet steel with a maximum thickness of 0.46 mm (25 gauge). Their profile permits some flexing of the faces to which gypsum board is attached, which limits vibration transmission between the gypsum board layers comprising the two faces of a wall assembly. Loadbearing cold-formed steel (CFS) framing includes floor joists and wall studs that are made from thicker sheet steel. Appropriate fastening details are specified in Section 9.29 of the National Building Code of Canada or in CSA A82.31-M or ASTM C754.
- Cross-Laminated Timber (CLT) assemblies are structural panels fabricated by bonding wood elements together in layers with alternating perpendicular orientation of the timber elements. The CLT panels evaluated in this study had adhesive bonding between the faces of timber elements in adjacent layers, but no adhesive bonding the adjacent timber elements within a given layer. There were noticeable gaps between the timber elements comprising each layer of the CLT assembly. These CLT panels could be called "Face-laminated CLT Panels" but are simply referred to as CLT panels in the body of this Guide. For the 3-ply panels considered in this Guide, each layer or ply has a thickness of 26 mm and is comprised of parallel wood boards whose cross-section is 26 x 89 mm. For the 5-ply and 7-ply panels, the ply thickness increases from 26 mm to 35 mm. The physical properties of the tested bare laminated panels are:


3-ply panels: 78 mm thick, 42.4 kg/m²
5-ply panels: 175mm thick, 91.4 kg/m²
7-ply panels: 245 mm thick, 130 kg/m²

Resilient metal channels are formed from sheet steel with maximum thickness 0.46 mm (25 gauge), with profile essentially as shown in Figure 7.2, with slits or holes in the single "leg" between the faces fastened to the framing and to the gypsum board. Installation must conform to ASTM C754. Steel furring channels are also formed from sheet steel but are shaped with a "hat" profile as illustrated in Figure 7.3. Gypsum board is fastened to the channels as required by CSA A82.31 M or ASTM C754.

Figure 7.2: Drawing to illustrate the typical profile of resilient metal channels. The approximate dimensions in cross-section are 13 mm x 60 mm.

(Copied from Figure A-9.10.3.1.-D of National Building Code of Canada, with permission)

Figure 7.3: Drawing to illustrate the typical profile of steel furring channels. (Copied from Figure A-9.10.3.1.-C of National Building Code of Canada, with permission)