
SEISMIC DESIGN GUIDE FOR MASONRY BUILDINGS

Canadian Concrete Masonry Producers Association

Second Edition

2018

Donald AndersonSvetlana Brzev



 
DISCLAIMER 
While the authors have tried to be as accurate as possible, they cannot be held 
responsible for the designs of others that might be based on the material presented in 
this document. The material included in this document is intended for the use of design 
professionals who are competent to evaluate the significance and limitations of its 
contents and recommendations and able to accept responsibility for its application. The 
authors, and the Canadian Concrete Masonry Producers Association, disclaim any and 
all responsibility for the applications of the stated principles and for the accuracy of any 
of the material included in the document. 
 
 
AUTHORS 
Don Anderson, Ph.D., P.Eng. 
Professor Emeritus  
Department of Civil Engineering 
University of British Columbia 
Vancouver, BC, Canada 

 
 
Svetlana Brzev, Ph.D., P.Eng., FEC 
Adjunct Professor  
Department of Civil Engineering 
University of British Columbia 
Vancouver, BC, Canada 

 
TECHNICAL EDITOR 
Bill McEwen, P.Eng., LEED AP, Retired Executive Director, Masonry Institute of BC 
 
GRAPHIC DESIGN  
Natalia Leposavic, M.Arch. 
 
COVER PAGE  
Photo credit: Bill McEwen, P.Eng. 
Graphic design: Prithul Saha, M.Arch. 
 
 
 
COPYRIGHT 
 Canadian Concrete Masonry Producers Association, 2018 
 
Canadian Concrete Masonry Producers Association 
P.O. Box 54503, 1771 Avenue Road 
Toronto, ON M5M 4N5 
Tel:  (416) 495-7497        
Fax:  (416) 495-8939 
Email: information@ccmpa.ca 
Web site: www.ccmpa.ca 
 
The Canadian Concrete Masonry Producers Association (CCMPA) is a non-profit 
association whose mission is to support and advance the common interests of its 
members in the manufacture, marketing, research, and application of concrete masonry 
products and structures.  It represents the interests of Region 6 of the National Concrete 
Masonry Association (NCMA). 



 i 

Contents Summary 
 

Chapter 1   NBC 2015 Seismic Provisions 

Objective: to provide background on seismic response of structures 

and seismic analysis methods and explain key NBC 2015 seismic 

provisions of relevance for masonry design 

DETAILED NBC 

SEISMIC 

PROVISIONS 

  

Chapter 2   Seismic Design of Masonry Walls to CSA S304-14                        

Objective: to provide background and commentary for CSA S304-14 

seismic design provisions related to reinforced concrete masonry walls, 

and discuss the revisions in CSA S304-14 seismic design requirements 

with regard to the 2004 edition 

DETAILED 

MASONRY 

DESIGN 

PROVISIONS 

  

Chapter 3   Design Examples 

Objective: to provide illustrative design examples of seismic load 

calculation and distribution of forces to members according to NBCC 

2015, and the seismic design of loadbearing and nonloadbearing 

masonry elements according to CSA S304-14 

DESIGN 

EXAMPLES 

  

Appendix A Response of Structures to Earthquakes  

Appendix B Research Studies and Code Background Relevant to Masonry Design 

Appendix C Relevant Design Background 

Appendix D Design Aids 

Appendix E Notation 

 



 ii

Table of Contents 
 
 
1 SEISMIC DESIGN PROVISIONS OF THE NATIONAL BUILDING  
            CODE OF CANADA 2015       1-2 
 
1.1 Introduction         1-2 
1.2 Design and Performance Objectives      1-3 
1.3 Seismic Hazard        1-4 
1.4 Effect of Site Soil Conditions       1-6 
1.5 Methods of Analysis        1-12 
1.6 Base Shear Calculations- Equivalent Static Analysis Procedure  1-12 
1.7 Force Reduction Factors        1-15 
1.8 Higher Mode Effects         1-17 
1.9 Vertical Distribution of Seismic Forces     1-19 
1.10 Overturning Moments        1-20 
1.11 Torsion         1-21 
1.11.1 Torsional effects        1-21 
1.11.2 Torsional sensitivity        1-23 
1.11.3 Determination of torsional forces      1-25 
1.11.4 Flexible diaphragms        1-27 
1.12 Configuration Issues: Irregularities and Restrictions    1-30 
1.12.1 Irregularities         1-30 
1.12.2 Restrictions         1-34 
1.13 Deflections and Drift Limits       1-35 
1.14 Dynamic Analysis Method       1-36 
1.15 Soil-Structure Interaction       1-37 
1.16 A Comparison of NBC 2005 and NBC 2015 Seismic Design Provisions 1-38 
 
2 SEISMIC DESIGN OF MASONRY WALLS TO CSA S304-14              2-2 
 
2.1 Introduction          2-2 
 
2.2 Masonry Walls – Basic Concepts       2-2 
 
2.3 Reinforced Masonry Shear Walls Under In-Plane Seismic Loading              2-8 
2.3.1 Behaviour and Failure Mechanisms                                                             2-8 
2.3.2 Shear/Diagonal Tension Resistance                                                             2-10 
2.3.3 Sliding Shear Resistance                                                                         2-18 
2.3.4 In-Plane Flexural Resistance Due to Combined Axial Load and Bending  2-20 
 
2.4 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading              2-20 
2.4.1 Background                                                                                                2-20 
2.4.2 Out-of-Plane Shear Resistance                                                             2-21 
2.4.3 Out-of-Plane Sliding Shear Resistance                                                 2-22 
2.4.4 Out-of-Plane Section Resistance Due to Combined Axial Load  
           and Bending                                                                                                2-22 
 
2.5 General Seismic Design Provisions for Reinforced Masonry Shear Walls  2-23 
2.5.1 Capacity Design Approach                                                                         2-23 



 iii

2.5.2 Ductile Seismic Response                                                                         2-27 
2.5.3 Structural Regularity                                                                                     2-28 
2.5.4 Analysis Assumptions – Effective Section Properties                          2-28 
2.5.5 Redistribution of design moments from elastic analysis                          2-30 
2.5.6 Minor shear walls as a part of the SFRS                                                 2-30 
 
2.6 CSA S304-14 Seismic Design Requirements                                     2-30 
2.6.1 Classes of reinforced masonry shear walls     2-30 
2.6.2 Plastic hinge region        2-32 
2.6.3 Ductility check         2-34 
2.6.4 Wall height-to-thickness ratio restrictions     2-40 
2.6.5 Minimum Required Factored Shear Resistance    2-45 
2.6.6 Shear/diagonal tension resistance – seismic design requirements  2-46 
2.6.7 Sliding shear resistance – seismic design requirements   2-48 
2.6.8 Boundary elements in Moderately Ductile and Ductile shear walls  2-49 
2.6.9 Seismic reinforcement requirements for masonry shear walls  2-59 
2.6.10 Minimum reinforcement requirements for Moderately Ductile  

Squat shear walls        2-68 
2.6.11 Summary of Seismic Design Requirements for Reinforced Masonry Walls 2-71 
2.6.12 Comparison of the Seismic Design and Detailing Requirements for  
            Reinforced Masonry Walls in CSA S304-14 and CSA S304.1-04  2-73 
 
2.7 Special Topics         2-75 
2.7.1 Unreinforced Masonry Shear Walls      2-75 
2.7.2 Masonry Infill Walls        2-80 
2.7.3 Stack Pattern Walls        2-88 
2.7.4 Nonloadbearing Walls        2-93 
2.7.5 Flanged shear walls        2-94 
2.7.6 Wall-to-Diaphragm Anchorage      2-96 
2.7.7 Masonry Veneers and their Connections     2-97 
2.7.8 Constructability Issues       2-100 
 
 
3 DESIGN EXAMPLES 
 
1 Seismic load calculation for a low-rise masonry building to NBC 2015  3-2 
 
2 Seismic load calculation for a medium-rise masonry building to NBC 2015 3-9 
 
3 Seismic load distribution in a masonry building considering both rigid and  
            flexible diaphragm alternatives       3-24 
 
4a Minimum seismic reinforcement for a squat masonry shear wall  3-37 
 
4b Seismic design of a squat shear wall of Conventional Construction  3-41 
 
4c Seismic design of a Moderately Ductile squat shear wall   3-47 
 
5a Seismic design of a Moderately Ductile flexural shear wall   3-57 
 
5b Seismic design of a Ductile shear wall with rectangular cross-section 3-68 



 iv

 
5c Seismic design of a Ductile shear wall with boundary elements  3-79 
 
6a Design of a loadbearing wall for out-of-plane seismic effects  3-92 
 
6b Design of a nonloadbearing wall for out-of-plane seismic effects  3-99 
 
7 Seismic design of masonry veneer ties     3-104 
8 Seismic design of a masonry infill wall     3-106 
 
REFERENCES                                                                                                
 

APPENDICES 
 
 
A. RESPONSE OF STRUCTURES TO EARTHQUAKES   A-2 
 
A.1. Elastic Response        A-2 
 
A.2. Inelastic Response        A-6 
 
A.3. Ductility         A-7 
 
A.4. A Primer on Modal Dynamic Analysis Procedure    A-8 
A.4.1. Multi-degree-of-freedom systems      A-8 
A.4.2. Seismic analysis methods       A-9 
A.4.3. Modal analysis procedure: an example     A-10 
A.4.4. Comparison of static and modal analysis results    A-14 
 
B  RESEARCH STUDIES AND CODE BACKGROUND RELEVANT TO  
     MASONRY DESIGN        B-2 
 
B.1 Shear/Diagonal Tension Resistance      B-2 
 
B.2 Sliding Shear Resistance       B-8 
 
B.3 Ductile Seismic Response of Reinforced Masonry Shear Walls  B-12 
 
B.5 Wall Height-to-Thickness Ratio Restrictions     B-16 
 
 
C RELEVANT DESIGN BACKGROUND     C-2 
 
C.1 Design for Combined Axial Load and Flexure    C-2 
C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading  C-2 
C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading  C-9 
 
C.2 Wall Intersections and Flanged Shear Walls     C-15 
C.2.1 Effective Flange Width       C-15 
C.2.2 Types of Intersections        C-16 
C.2.3 Shear Resistance at the Intersections     C-18 



 v

 
C.3 Wall Stiffness Calculations       C-22 
C.3.1 Lateral Load Distribution       C-22 
C.3.2 Wall Stiffness: Cantilever and Fixed-End Model    C-23 
C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls C-24 
C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls with 
Openings          C-27 
C.3.5 The Effect of Cracking on Wall Stiffness     C-32 
 
 
D DESIGN AIDS                         D-2 
 
Table D-1.  Properties of Concrete Masonry Walls (per metre or foot length)      D-2 
Table D-2.   wlc ratio,   yf = 400 MPa                                                                 D-3 

Figure D-1.   wlc ratio,   yf = 400 MPa                                                                 D-4 

Table D-3. Wall Stiffness Values   tEK m *                                                      D-5 

 
 
E NOTATION                         



 vi

FOREWORD 
 
This is the second edition of the “Seismic Design Guide for Masonry Buildings”.  It 
supercedes the first edition published in 2009.  This Guide is based on the 2015 edition 
of the National Building Code of Canada (NBCC) and the 2014 edition of CSA S304, 
“Design of Masonry Structures”.  The major changes found in this second edition are 
described by its authors in the Guide Preface. 
 
The Guide describes the behaviour of masonry under seismic loading, explains and 
rationalizes the basis of the seismic design requirements within the NBCC and S304, 
and provides guidance and assistance to masonry designers on their interpretation and 
use.  It describes and details the appropriate methods for seismic design and analysis, 
and demonstrates their use by many illustrative design examples.  The Guide 
necessarily recognizes the high standard of quality control present in modern masonry 
structures and the advanced methods used in the structural design of masonry.   
 
As with the first edition, the format and content of the second edition of the Guide have 
been specifically developed to address the needs of the practicing structural engineer 
designing low-, mid-, and high-rise masonry buildings and their elements.  The first 
edition also served as an excellent reference guide for academics and instructors.  
Although it is written for the Canadian environment, the Seismic Design Guide has been 
extremely popular with international designers.   There is no similar or comparable guide 
for the seismic design of masonry in Canada, and no more comprehensive guide for 
masonry internationally. 
 
The Canadian Concrete Masonry Producers Association (CCMPA) is pleased to sponsor 
and publish the second edition of the Seismic Design Guide.  It is co-authored by Drs. 
Anderson and Brzev, two authorities in seismic behaviour and design of masonry, and 
also the co-authors of the first edition of the Guide.  The CCMPA gratefully 
acknowledges the commitment by these authors, and their dedication to masonry 
education and research.  We recognize the past and on-going work by Dr. Anderson, 
Professor Emeritus, University of British Columbia, who has spearheaded and 
coordinated the requirements for masonry seismic design through his research, and by 
his work on the many past editions of the National Building Code and CSA S304.  Until 
very recently, Dr. Anderson served as a member of the Standing Committee on 
Earthquake Design (SCED).  Dr. Anderson’s liaison between the Technical Committee 
for CSA S304 and SCED (and its predecessor CANCEE) has been eminently important 
for developing the seismic requirements in the S304 standard and for harmonizing its 
requirements with those of the NBCC. Dr. Brzev is Adjunct Professor of the University of 
British Columbia, and also Visiting Professor in The Faculty of Civil Engineering, Indian 
Institute of Technology Gandhinagar.  She brings to this Guide, her vast international 
experience and understanding of behaviour and design of concrete and masonry 
elements and structures, and earthquake engineering.  Dr. Brzev undertakes research 
and authors seismic research papers, practices professional engineering in British 
Columbia, and is co-author of “Reinforced Concrete Design, A Practical Approach”.  She 
serves as a member of the Technical Committe on CSA S304.  We are also grateful to 
the editiorial work on this Guide by Mr. Bill McEwen, P.Eng., LEED, retired Executive 
Director of the Masonry Institute of British Columbia. 
 
The development of both editions of the Seismic Design Guide has been sponsored by 
the Canadian Concrete Masonry Producers Association (CCMPA), a non-profit 
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association.  The CCMPA provides a united voice for the producers of concrete masonry 
products Canada-wide.  Our member firms are engaged in the manufacture of concrete 
block and concrete brick masonry units used for loadbearing and nonloadbearing 
applications, and as veneers.  The CCMPA also represents Canadian interests within 
the National Concrete Masonry Association, a U.S.-based international association of 
concrete masonry producers.     
 
The CCMPA supports the educational work of Canadian universities and other 
educational institutions, and the education of the masonry design professional, 
practitioner and student, both formally and informally.  It sponsors masonry research at 
many universities in Canada including British Columbia, Alberta, Calgary, 
Saskatchewan, Manitoba, Waterloo, Windsor, McMaster, Carleton, McGill, Concordia, 
and Dalhousie.  The development and publication of this Guide is part of its continuing 
commitment to education.  The CCMPA is intimately involved in the development and 
maintenance of CSA masonry and masonry-related standards.  These standards serve 
as the basis for manufacturing and specifying concrete masonry materials and products, 
product and assembly testing, and the structural design and construction of masonry 
elements.  The CCMPA provides input to the development of the National Building Code 
of Canada and the National Energy Code for Buildings.  The CCMPA continually 
develops and disseminates information and design tools needed by designers to deliver 
state-of-the-art, safe and serviceable, durable, and cost-effective masonry elements and 
structures.   
 
This Guide was developed on the basis of the Limit States Design method of CSA 
Standard S304-14.  The references to this standard in this Guide neither duplicate nor 
replace this standard.  Therefore, it is recommended that the user of this Guide obtain a 
copy of CSA S304-14, “ Design of Masonry Structures” developed and published by the 
Canadian Standards Association (www.csa.ca). 
 
This Guide has given rise to a new generation of masonry buildings and to their 
proliferation. 
 
 
 
Gary R. Sturgeon, B.Eng., MSc. P.Eng. 
Technical Services Engineer 
The Canadian Concrete Masonry Producers Association (CCMPA) 
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PREFACE  
 
This Guide is intended to assist practicing structural engineers in designing masonry 
buildings for seismic load effects according to the National Building Code of Canada 
2015 (NBC 2015) and the CSA S304-14 masonry design standard. The Guide includes 
commentary comments that explain the underlying theoretical background and rationale 
for these seismic provisions. Changes in the seismic design provisions contained in Part 
4 of the NBC 2015 and CSA S304-14, and their impact on masonry design and 
construction are discussed.  
 
This is a second edition of the Guide. The first edition, published in 2009, has served as 
a useful reference for engineers and academics in Canada. Major changes in the 
second edition are summarized below: 
 Chapter 1 has been revised to address changes in the NBC 2015 (NBC 2005 had 

been referenced in the first edition). Section 1.4 from the first edition has been 
moved to Appendix A.  

 Chapter 2 has been substantially revised to address changes in the CSA S304-14 
(CSA S304.1-04 had been referenced in the first edition). Sections 2.5 to 2.7 have 
undergone major changes. 

 Chapter 3 from the first edition has been removed. 
 New Chapter 3 (previously Chapter 4) contains design examples which have been 

prepared according to NBC 2015 and CSA S304-14. Most examples existed in the 
first edition, but have been updated. New Example 5c was developed to illustrate the 
design of Ductile reinforced masonry shear walls with boundary elements. 

 Appendix A has been changed. Previous content has been removed and it now 
contains Section 1.4 from the first edition of the Guide. 

 Appendices B, C, D, and E have been updated.  
 
This is a comprehensive state-of-the-art guide on the seismic design and construction of 
masonry structural elements for low- to mid-rise structures, such as warehouses, 
industrial buildings, schools, commercial buildings, and residential/hotel structures. It is 
restricted to masonry structures designed and constructed using concrete block units. 
Consideration of the slenderness effects in tall masonry walls is beyond the scope of this 
Guide. 
 
The material is presented in a simple and user-friendly manner. It facilitates the 
application of seismic design provisions and cross-referencing of code clauses for 
designers. The Guide has been developed in a modular form, with the content divided 
into three chapters, each of which can be used in a stand-alone manner. The 
appendices contain useful resources such as design procedures and research 
background for some of the design provisions. For easy reference, relevant code 
clauses are identified by framed boxes wherever appropriate. 
 
Chapter 1 provides a review of the general seismic design provisions contained in Part 4 
of NBC 2015, including seismic hazard levels, and the equivalent static force procedure. 
It discusses key design parameters such as irregularities, torsion, height limitations, and 
the ductility and overstrength factors for masonry structures. Additionally, an introduction 
to the dynamic analysis of structures to assist in understanding pertinent code provisions 
has been included in Appendix A. 
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Chapter 2 provides an overview of seismic design requirements for reinforced masonry 
walls. Relevant CSA S304-14 design requirements are presented, along with related 
commentary that provides detailed explanations of the code provisions. Topics include 
reinforced masonry shear walls subjected to in-plane and out-of-plane seismic loads, 
and a detailed discussion of the CSA S304-14 seismic design requirements. A few 
special topics such as masonry infill walls, stack pattern walls, masonry veneers, and 
construction-related issues are also included. Changes in CSA S304-14 seismic design 
requirements from the previous CSAS304.1-04 (2004) edition are identified and 
discussed, along with their design implications. Appendix B contains resources related to 
the Chapter 2 content, including findings of research studies and foreign code provisions 
related to the seismic design of masonry structures.  
 
Chapter 3 provides illustrative design examples of the seismic load calculations and 
distribution of forces to members according to NBC 2015, and the design of loadbearing 
and nonloadbearing masonry elements according to CSA S304-14. The layout of 
masonry buildings and the mechanical properties of their components in the examples 
are chosen to reflect situations often encountered in design practice, particularly as they 
relate to torsionally unsymmetric buildings. These examples are laid out in a step-by-
step manner, with ample explanations and appropriate illustrations provided to clarify the 
design process. Appendix C provides relevant background information for the design 
examples, including an extensive discussion of in-plane wall stiffness. Appendix D 
contains design aids used in the Chapter 3 examples. Appendix E lists the notations 
used in the document. 
 
A list of key references, useful for supplementary reading for those interested in pursuing 
the subject further, is also included. 
 
 

Svetlana Brzev and Don Anderson 
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1  Seismic Design Provisions of the National Building Code 
of Canada 2015 

1.1 Introduction  
 
This chapter provides a review of the seismic design provisions in the 2015 National Building 
Code of Canada (NBC 2015) as they pertain to masonry. Reference will be made here to NBC 
2005 where appropriate to point out changes. Appendix A contains an introduction to the 
dynamic analysis of structures to assist in understanding the NBC provisions. The original 
edition of this guideline (Anderson and Brzev, 2009) was produced to address the many 
fundamental changes in how seismic risk was evaluated between NBC 2005 and CSA S304.1-
04, and their previous versions. 
 
The seismic response of a building structure depends on several factors, such as the structural 
system and its dynamic characteristics, the building materials and design details, and most 
importantly, the expected earthquake ground motion at the site. The expected ground motion, 
termed the seismic hazard, can be estimated using probabilistic methods, or be based on 
deterministic means if there is an adequate history of large earthquakes on identifiable faults in 
the region of the site.   
 
Canada generally uses a probabilistic method to assess the seismic hazard, and over the years, 
the probability has been decreasing, from roughly a 40% chance (probability) of being exceeded 
in 50 years in the 1970s (corresponding to 1/100 per annum probability, also termed the 100-
year earthquake), to a 10% in 50-year probability in the 1980s (the 475-year earthquake), to 
finally a 2% in 50-year probability (the 2475-year earthquake) used for NBC 2015. The change 
was made so that the risk of building failure in eastern and western Canada would be roughly 
the same (Adams and Atkinson, 2003), as well as to explicitly recognize that an acceptable 
probability of severe building damage in North America from seismic activity is about 2% in 50 
years. Despite the large changes over the years in the probability level for the seismic hazard 
determination, the seismic design forces have not changed appreciably because other multiplier 
factors in the NBC design equations have changed to compensate for these higher hazard 
values. Thus, while the code seismic design hazard has been rising over the years, the average 
seismic risk of failure of buildings designed according to the code has not changed greatly, 
although there can be substantial changes for certain buildings in certain cases.  
 
Seismic design of masonry structures became an issue following the 1933 Long Beach, 
California earthquake in which school buildings suffered damage that would have been fatal to 
students had the earthquake occurred during school hours. At that time, a seismic lateral load 
equal to the product of a seismic coefficient and the structure weight had to be considered in 
those areas of California known to be seismically active. Strong motion instruments that could 
measure the peak ground acceleration or displacement were developed around that time, and in 
fact, the first strong motion accelerogram was recorded during the 1933 Long Beach 
earthquake. However, in this era the most widely used strong ground motion acceleration record 
was measured at El Centro during the 1940 Imperial Valley earthquake in southern California. 
The 1940 El Centro record became famous and is still used by many researchers studying the 
effect of earthquakes on structures. However, today there are thousands of records to use, and 
the choice of how many and which ones to consider, and whether to scale the records or modify 
them somewhat to match the design spectrum is a major consideration in any seismic risk 
analysis. 
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With the availability of ground motion acceleration records (also known as acceleration time 
history records), it was possible to determine the response of simple structures modelled as 
single degree of freedom systems. After computers became available in the 1960s it was 
possible to develop more complex models for analysing the response of larger structures. The 
availability of computers has also had a huge impact on the ability to predict the ground motion 
hazard at a site, and in particular, on probabilistic predictions of hazard on which the NBC 
seismic hazard model is based. They also enhanced the ability of engineers to analyse 
structures both for linear and nonlinear response. 
 

1.2 Design and Performance Objectives 
 
For many years, seismic design philosophy has been founded on the understanding that it 
would be too expensive to design most structures to remain elastic under the forces that the 
earthquake ground motion creates. Accordingly, most modern building codes allow structures to 
be designed for forces lower than the elastic forces, with the result that such structures may 
suffer inelastic strains and be damaged in an earthquake, but they should not collapse, and the 
occupants should be able to safely evacuate the building. The past and present NBC editions 
follow this philosophy, and allow for lateral design forces smaller than the elastic forces, but they 
also impose detailing requirements so that the inelastic response remains ductile and a brittle 
failure is prevented, even for larger than expected events. 
 
Research studies have shown that for most structures the lateral displacements or drifts are 
about the same, irrespective of whether the structure remains elastic or is allowed to yield and 
experience inelastic (plastic) deformations. This is known as the equal displacement rule, and it 
will be discussed later in this chapter as it forms the basis for many of the code provisions.  
 
A comparison of building designs performed according to the NBC 2005 and the NBC 2015 will 
show an increase in design level forces in some areas of Canada, and a decreased level in 
others. However, it is expected that the overall difference between these designs is not 
significant. 
 
The NBC 2015 approach to seismic design follows that of previous editions, but its probability 
seismic hazard has been determined at many more periods, including periods as long as 10 
seconds. Previously the hazard for periods longer than 2 or 4 seconds was based on a 
conservative empirical decay relation. Thus, the probability of severe damage or near collapse 
remains about 1/2475 per annum, or about 2% in the predicted 50-year life span of the 
structure, but hopefully with the NBC 2015 spectral values some designs will be more 
economical.  
 
Work on new model codes around the world is leading to what is described as “Performance 
Based Design”, a concept that is already being applied by some designers working with private 
or public owners who have concerns that building damage will have an adverse effect on their 
ability to maintain their business or operations. NBC 2015 only addresses one performance 
level, that of collapse prevention and life safety, and is essentially mute on serviceability after 
smaller seismic events that are expected to occur more frequently. Performance based design 
attempts to minimize the cost of earthquake losses by weighing the costs of repair and lost 
business against an increased cost of construction. But this usually requires a nonlinear 
analysis utilizing many earthquake records. 
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1.3 Seismic Hazard 
 

4.1.8.4.(1)  
 
The NBC 2015 seismic hazard is based on a 2% in 50 years probability (corresponding to 
1/2475 per annum), and it is represented by the 5% damped spectral response acceleration, 

)(TSa
, as was the NBC 2005, but the values have changed to reflect new information on the 

hazard and on spectral values. The response spectrum for each period has the same probability 
of exceedance, and as such is termed a Uniform Hazard Spectrum, or UHS.   
For a specified location NBC 2015 gives the UHS values at nine periods and approximates with 
straight lines to construct a spectrum, )(TSa , which is termed the hazard spectrum. For many 
locations in the country, these values are specified in Table C-3, Appendix C to the NBC 2015, 
along with the peak ground acceleration (PGA) and peak ground velocity (PGV). For other 
Canadian locations, it is possible to find the values online at:  
 
http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index-en.php    
 
by entering the coordinates (latitude and longitude) of the location. The program does not 
directly calculate the )(TSa  values, but instead, interpolates them from the known values at 
several surrounding locations. For detailed information on the models used as the basis for the 
NBC 2015 seismic hazard provisions, the reader is referred to Adams et al. (2015), Halchuk et 
al. (2014), and Atkinson and Adams (2013).  
 

As an example, Table 1-1 provides nine spectral acceleration values Sa(T), plus values for PGA 
and PGV for a Vancouver site. The Sa values and PGA, plotted as the Sa value at T= 0, are 
shown in Figure 1-1. 

 

Table 1-1. Sa spectral values for Vancouver for the reference ground condition  

  

Sa values for Vancouver (Coordinates 49.2463, -123.1162) Site Class C 

T 0.05 0.10 0.20 0.30 0.50 1.00 2.00 5.00 10.00 PGA PGV 

Sa 0.453 0.688 0.851 0.855 0.758 0.427 0.258 0.081 0.029 0.369 0.555 

 
 
Sa(T) is defined for Site Class C which consists of very dense soil or soft rock. For other site 
conditions a Design Spectrum S(T) = F(T) Sa(T) is defined. F(T) is discussed more fully in the 
next section. 
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Figure 1-1. Uniform Hazard Spectrum Sa(T) for Vancouver (2% in 50 years probability, 5% 
damping, Site Class C) 

 

There are limits imposed on the design base shear as discussed in Section 1.6 (NBC 2015 Cl. 
4.1.8.11.(2)), which can be demonstrated by plotting S(T) and Sa(T) for Site Class C, as shown 
in Figure 1-2. These limits affect both the short and long period response and also depend on 
the type of structure. 
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Figure 1-2. Log plot of the UHS Sa(T) and the Design Spectrum S(T) spectrum for Vancouver 
with limits in the short and long period regions.  

The cut off at low periods may appear to be very conservative, but there are other reasons 
related to the inelastic response of such short-period structures for the design loads to be 
conservative in this region. Note that many low-rise masonry buildings may have a fundamental 
period in the order of 0.2 to 0.3 sec. 

1.4 Effect of Site Soil Conditions 
 

4.1.8.4  
 
In NBC 2015, the seismic hazard given by the )(TSa  spectrum has been developed for a site 
that consists of very dense soil or soft rock, referred to as Site class C by NBC 2015. If the 
structure is to be located on soil that is softer than this, the ground motion may be amplified, or 
in the case of rock or hard rock sites, the motion may be de-amplified. NBC 2015 introduces a 
new site coefficient F(t) which is applied to the Site Class C )(TSa spectrum to account for the 
local ground conditions. The coefficient depends on the building period and level of seismic 
hazard, as well as on the site properties, which are described in terms of site classes.  
 
The NBC 2015 site coefficient is more detailed than the foundation factors, Fa and Fv, provided 
in previous code editions, but should better represent the effect of the local soil conditions on 
the seismic response. 
 
Table 1-2 excerpted from NBC 2015, describes five site classes, labelled from A to E, which 
correspond to different soil profiles (note that a sixth class, F, is one that fits none of the first five 
and would require a special investigation). The site classes are based on the properties of the 
soil or rock in the top 30 m. Site Class C is the base class for which the site coefficients are 
unity, i.e. it is the type of soil on which the seismic data used to generate the  TSa  spectrum is 
based. The table identifies three soil properties that can be used to identify the site class; the 
best one being the average shear wave velocity, sV , which is a parameter that directly affects 
the dynamic response. The other classes are Average Standard Penetration Resistance N60, 
and the Soil Undrained Shear Strength su.  
 
NBC 2015 and Commentary J (NRC, 2006) do not discuss the level from which the 30 m should 
be measured. For buildings on shallow foundations, the 30 m should be measured from the 
bottom of the foundation. However, if the building has a very deep foundation where the ground 
motion forces transferred to the building may come from both friction at the base and soil 
pressures on the sides, the answer is not so clear and may require a site-specific investigation. 
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Table 1-2. NBC 2015 Site Classification for Seismic Response (NBC 2015 Table 4.1.8.4.-A)  

Site 
Class 

Ground Profile 
Name 

Average Properties in Top 30 m, as per NBC Note A-4.1.8.4(3) and 
Table 4.1.8.4.-A 

Average Shear Wave 
Velocity, V s (m/s) 

Average Standard 
Penetration 

Resistance, N 60 

Soil Undrained 
Shear Strength, su 

A Hard rock(1)(2) V s > 1500 Not applicable Not applicable 

B Rock(1) 760 < V s  1500 Not applicable Not applicable 

C 
Very dense soil 
and soft rock 360 < V s < 760 N 60 > 50 su > 100kPa 

D Stiff soil 180 < V s < 360 15 < N 60 < 50 50 < su  100kPa 

E Soft soil 

V s <180 N 60 < 15 su < 50kPa 

Any profile with more than 3 m of soil with the following characteristics: 
  plasticity index: PI > 20 
  moisture content: w  40%; and 
  undrained shear strength: su < 25 kPa 

F Other soils(3) Site-specific evaluation required 

  Reproduced with the permission of the National Research Council of Canada, copyright holder  

Notes: 
         (1)  Site Classes A and B, hard rock and rock, are not to be used if there is more than 3 m of softer 
materials between the rock and the underside of footing or mat foundations. The appropriate Site Class 
for such cases is determined on the basis of the average properties of the total thickness of the softer 
materials (see Note A-4.1.8.4.(3) and Table 4.1.8.4.-A) 

      (2)  Where V s30 has been measured in-situ, the F(T) values for Site Class A derived from Tables 

4.1.8.4.-B to 4.1.8.4.-G are permitted to be multiplied by the factor 0.04+(1500/ V s30)1/2. 
      (3)  Other soils include: 

a)  liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils, 
and other soils susceptible to failure or collapse under seismic loading, 

b)   peat and/or highly organic clays greater than 3 m in thickness, 
c)   highly plastic clays (PI>75) more than 8 m thick, and 
d)   soft to medium stiff clays more than 30 m thick. 

 
NBC 2015 Tables 4.1.8.4.-B to -G define a function F(T) for each soil class and earthquake 
strength in terms of PGA. Because of different shapes of the Sa(T) spectrum, mainly between 
eastern and western sites, the code uses PGAref rather than PGA in determining the F(T) values 
(NBC Cl.4.1.8.4.4): 
  
PGAref = 0.8*PGA when the ratio Sa(0.2)/PGA < 2.0, otherwise PGAref =PGA. 
 
Note that the foundation factors, Fa and Fv, which were used in NBC 2005 and are still needed 
for some seismic design parameters, are related to the F(T) as follows (NBC Cl.4.1.8.4.7): 

Fa = F(0.2)  and Fv = F(1.0) 

Values of F(T) factor as a function of the site class and PGAref are given in the following tables 
for T values of: 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 sec. 
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Table 1-3. Values of F(0.2) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-B) 

 
Site class 

F(0.2) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.69 0.69 0.69 0.69 0.69 
B 0.77 0.77 0.77 0.77 0.77 
C 1.00 1.00 1.00 1.00 1.00 
D 1.24 1.09 1.00 0.94 0.90 
E 1.64 1.24 1.05 0.93 0.85 
F (1) (1) (1) (1) (1) 

 

Table 1-4. Values of F(0.5) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-C) 

 
Site class 

F(0.5) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.57 0.57 0.57 0.57 0.57 
B 0.65 0.65 0.65 0.65 0.65 
C 1.0 1.0 1.0 1.0 1.0 
D 1.47 1.30 1.20 1.14 1.10 
E 2.47 1.80 1.48 1.30 1.17 
F (1) (1) (1) (1) (1) 

 

Table 1-5. Values of F(1.0) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-D) 

 
Site class 

F(1.0) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.57 0.57 0.57 0.57 0.57 
B 0.63 0.63 0.63 0.63 0.63 
C 1.0 1.0 1.0 1.0 1.0 
D 1.55 1.39 1.31 1.25 1.21 
E 2.81 2.08 1.74 1.53 1.39 
F (1) (1) (1) (1) (1) 

 

Table 1-6. Values of F(2.0) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-E) 

 
Site class 

F(2.0) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.58 0.58 0.58 0.58 0.58 
B 0.63 0.63 0.63 0.63 0.63 
C 1.0 1.0 1.0 1.0 1.0 
D 1.57 1.44 1.36 1.31 1.27 
E 2.90 2.24 1.92 1.72 1.58 
F (1) (1) (1) (1) (1) 
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Table 1-7. Values of F(5.0) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-F) 

 
Site class 

F(5.0) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.61 0.61 0.61 0.61 0.61 
B 0.64 0.64 0.64 0.64 0.64 
C 1.00 1.00 1.00 1.00 1.00 
D 1.58 1.48 1.41 1.37 1.34 
E 2.93 2.40 2.14 1.96 1.84 
F (1) (1) (1) (1) (1) 

 

Table 1-8. Values of F(10.0) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-
G) 

 
Site class 

F(10.0) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.67 0.67 0.67 0.67 0.67 
B 0.69 0.69 0.69 0.69 0.69 
C 1.00 1.00 1.00 1.00 1.00 
D 1.49 1.41 1.37 1.34 1.31 
E 2.52 2.18 2.00 1.88 1.79 
F (1) (1) (1) (1) (1) 

 
Table 1-9 and 1-10 present values of F(PGA) and F(PGV) as a function of the site class and 
PGAref. 
 

Table 1-9. Values of F(PGA) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-
H) 

 
Site class 

F(PGA) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.90 0.90 0.90 0.90 0.90 
B 0.87 0.87 0.87 0.87 0.87 
C 1.00 1.00 1.00 1.00 1.00 
D 1.29 1.10 0.99 0.93 0.88 
E 1.81 1.23 0.98 0.83 0.74 
F (1) (1) (1) (1) (1) 

   Notes: (1) See Sentence 4.1.8.4.(6). 
 
  



9/1/2018                     1-10 
 
 
 

Table 1-10. Values of F(PGV) as a Function of Site Class and PGAref (NBC 2015 Table 4.1.8.4.-
I) 

 
Site class 

F(PGV) 
PGAref ≤ 0.1 PGAref = 0.2 PGAref = 0.3 PGAref = 0.4 PGAref  ≥0.5 

A 0.62 0.62 0.62 0.62 0.62 
B 0.67 0.67 0.67 0.67 0.67 
C 1.00 1.00 1.00 1.00 1.00 
D 1.47 1.30 1.20 1.14 1.10 
E 2.47 1.80 1.48 1.30 1.17 
F (1) (1) (1) (1) (1) 

   Notes: (1) See Sentence 4.1.8.4.(6). 
   Reproduced with the permission of the National Research Council of Canada, copyright holder 
 
Note that the F(T), F(PGA), and F(PGV) values depend on the level of seismic hazard as well 
as the site soil class. For soft soil sites (site classes D and E), motion from a high hazard event 
would lead to higher shear strains in the soil, which gives rise to higher soil damping and results 
in reduced site coefficients. The softer the soil, as given by a higher site classification, the larger 
the site coefficients. For rock and hard rock, the site coefficients will generally be less than unity 
and are not much affected by the seismic hazard level. 
 
The calculation of S(T) values will be illustrated with an example and the resulting spectra for 
site Classes C and E are given in Table 1-11.  
 
Figure 1-3 shows the design seismic hazard spectrum, Sa(T), for Vancouver for a firm ground 
site, Class C, and a soft soil site, Class E. Since soil Class C is the reference soil class the F(T) 
values are all unity and the S(T) values are the same as the Sa(T) values. The F(T) values of 
site Class E must be interpolated from Tables 4.1.8.4-B to -G. 
 
The calculations to determine Sa(T) for the Class E site in Vancouver are shown below (see 
NBC Clause 4.1.8.4.9)): 
 
For T≤0.2 sec:    S(0.2) = F(0.2)*Sa(0.2)  or F(0.5)Sa(0.5), whichever is larger 
For T= 0.5 sec:   S(0.5) = F(0.5)*Sa(0.5)  
For T= 1.0 sec:   S(1.0) = F(1.0)*Sa (1.0) 
For T= 2.0 sec:   S(2.0) = F(2.0)*Sa(2.0) 
For T= 5.0 sec:   S(5.0) = F(5.0)*Sa(5.0) 
For T≥10.0 sec:  S(10.0) = F(10.0)*Sa(10.0)  
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Table 1-11. Design Spectral Values and F(T) Values for Site Class C and E in Vancouver 

S=Sa values for Vancouver (Coordinates 49.2463, -123.1162), Site Class C 

T 0.05 0.10 0.20 0.30 0.50 1.00 2.00 5.00 10.00 PGA PGV 

S=Sa 0.453 0.688 0.851 0.855 0.758 0.427 0.258 0.081 0.029 0.369 0.555 

F(T) values for Site Class E 

T 0.05 0.10 0.20 0.30 0.50 1.00 2.00 5.00 10.00 PGA PGV 

F(T)   0.967  1.356 1.591 1.782 2.016 1.917   

S(T) values for Vancouver, Site Class E 

S   0.823  1.028 0.681 0.460 0.163 0.056   

 

The resulting S(T) design spectra for soil Classes C and E for Vancouver are plotted in Figure 
1-3. Note that since F(0.2)*S(0.2) is less than F(0.5)*S(0.5), for Site Class E the S(T) spectra for 
T≤0.2 is the F(0.5)*S(0.5) value. 

 

Figure 1-3. NBC 2015 design spectra for Vancouver for site Classes C and E.  
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1.5 Methods of Analysis 
 

4.1.8.7  
 
NBC 2015 prescribes two methods of calculating the design base shear for a structure. The 
dynamic method is the default method, but the equivalent static method can be used if the 
structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where   35.02.0 aaE SFI  ( EI  is the earthquake 
importance factor of the structure as defined in Clause 4.1.8.5.(1)), or 
(b) is a regular structure less than 60 m in height with period, aT , less than 2 seconds in either 
direction ( aT  is defined as the fundamental lateral period of vibration of the structure in the 
direction under consideration, as defined in Clause 4.1.8.11.(3)), or 
(c) is an irregular structure, but does not have Type 7 or Type 9 irregularity, and is less than 20 
m in height with period, aT , less than 0.5 seconds in either direction.  
 
The equivalent static method will be described in this section because it likely can be used on 
the majority of masonry buildings given the above criteria, and notwithstanding, if the dynamic 
method is used, it must be calibrated back to the base shear determined from the equivalent 
static analysis procedure. Basic concepts of the modal dynamic analysis method are presented 
in Appendix A, and further discussion is offered in Section 1.14. 

1.6 Base Shear Calculations- Equivalent Static Analysis Procedure  
 

4.1.8.11  
 
The lateral earthquake forces used for design are specified in the NBC 2015, and are based on 
the maximum (design) base shear

eV   of the structure as given by Clause 4.1.8.11, and is the 
base shear if the structure were to remain elastic. Design base shear,V , is equal to 

eV  reduced 
by the force reduction factors, dR  and oR ,  (related to ductility and overstrength, respectively; 
discussed in Section 1.7), and increased by the importance factor EI  (see Table 1-12 for a 
description of parameters used in these relations), thus; 

od

Ee

RR

IV
V   

where   WMTSV vae  , represents the elastic base shear, vM  is a multiplier that accounts for 

higher mode shears, and W  is the dead load attached to the SFRS, as defined in Table 1-12. 
 
The relationship between 

eV  and V  is shown in Figure 1-4. Note that the actual strength of the 

structure is greater than the design strength because of the overstrength factor Ro. 
 

aT  denotes the fundamental period of vibration of the building or structure in seconds in the 

direction under consideration. The fundamental period of wall structures is given in the NBC 
2015 by: 
 

a)     4305.0 na hT  , where nh  is the height of the building in metres (Cl.4.1.8.11.3.(c)), or 
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b)  other established methods of mechanics, except that aT  should not be greater than 2.0 

times that determined in (a) above (Sub Cl.4.1.8.11.3.(d)(iii). Note the 4 second floor in Fig 
1-3.  

 

 

Figure 1-4. Relation between design base shear,V , and elastic base shear,
eV . 

The period given by the NBC 2015 in (a) is a conservative (short) estimate based on measured 
values for existing buildings. Using method (b) will generally result in a longer period, with 
resulting lower forces, and should be based on stiffness values reflecting possible cracked 
sections and shear deformations. For the purpose of calculating deflections, there is no limit on 
the calculated period as a longer period results in larger displacements (a conservative 
estimate), but it should never be less than that period used to calculate the forces. 
 
NBC 2015 Clause 4.1.8.11.(2) prescribes the following lower and upper bounds for the design 
base shear, V ; 
 
a) Lower bound: 
Because of uncertainties in the hazard spectrum,  TSa , for periods greater than 2 seconds, the 
minimum design base shear for walls, coupled walls and wall frame systems 
should not be taken less than: 

 
od

Ev

RR

WIMS
V

0.4
min      

For moment resisting frames, braced frames, and other systems, the minimum base shear 
should not be taken less than: 

 
od

Ev

RR

WIMS
V

0.2
min   

 
b) Upper bound: 
Short period structures have small displacements, and there is not a huge body of evidence of 
failures for very low period structures, provided the structure has some ductile capacity. Thus an 
upper bound on the design base shear, provided 5.1dR , need not be greater than the larger 

of: 
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 
















od

E

RR

WIS
V

3

2.02
max         and  

  









od

E

RR

WI
SV )5.0(max          

vM  is not included in the above equations as 1vM  for short periods. 

 
Table 1-12. NBC 2015 Seismic Design Parameters 
 

Design parameter 
NBC 
reference 

  TS  the design spectral acceleration that includes the site soil 
coefficient F(T)  
For T≤0.2 sec:    S(0.2) = F(0.2)*Sa(0.2)  or F(0.5)Sa(0.5), 
whichever is larger 
For T= 0.5 sec:   S(0.5) = F(0.5)*Sa(0.5)  
For T= 1.0 sec:   S(1.0) = F(1.0)*Sa (1.0) 
For T= 2.0 sec:   S(2.0) = F(2.0)*Sa(2.0) 
For T= 5.0 sec:   S(5.0) = F(5.0)*Sa(5.0) 
For T≥10.0 sec:  S(10.0) = F(10.0)*Sa(10.0) 
 

Cl.4.1.8.4(9) 

vM  higher mode factor (see Section 1.8) Cl.4.1.8.11.(6) 
Cl.4.1.8.11.(8) 
Table 4.1.8.11 

EI  importance factor for the design of the structure:  
1.5 for post-disaster buildings,  
1.3 for high importance structures, including schools and places of 

assembly that could be used as refuge in the event of an 
earthquake,   

1.0 for normal buildings, and  
0.8 for low importance structures such as farm buildings where 

people do not spend much time.  
See Table 4.1.2.1 in NBC 2015 Part 4 for more complete definitions 
of the importance categories. There are also requirements for the 
serviceability limit states for the different categories. 

Cl.4.1.8.5(1) 
Table 4.1.8.5 

W  
 

dead load plus some portion of live load that would move laterally 
with the structure (also known as seismic weight). Live loads 
considered are 25% of the design snow load, 60% of storage loads 
for areas used for storage, and the full contents of any tanks. 

Cl.4.1.8.2 

dR  = ductility related force modification factor that represents the 
capability of a structure to dissipate energy through inelastic 
behaviour (see Table 1-13 and Section 1.7); ranges from 1.0 for 
unreinforced masonry to 3.0 for ductile masonry shear walls. 

Table 4.1.8.9 

oR  = overstrength related force modification factor that accounts for the 
dependable portion of reserve strength in the structure (see Table 
1-13 and Section 1.7); equal to 1.5 for all reinforced masonry walls. 

Table 4.1.8.9 
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Note that the design base shear force,V , corresponds to the design force at the ultimate limit 
state, where the structure is assumed to be at the point of collapse. Consequently, seismic 
loads are designed with a load factor value of 1.0 when used in combination with other loads 
(e.g. dead and live loads; see Table 4.1.3.2.-A, NBC 2015). It is also useful to recall that while 
V  represents the design base shear, individual members are designed using factored 
resistances, R , and since the nominal resistance, R , is greater than the factored resistance, 
the actual base shear capacity will be approximately equal to 

oVR , as shown in Figure 1-4. 
 

1.7 Force Reduction Factors dR  and oR  
 

4.1.8.9  
 
Table 1-13 (NBC 2015 Table 4.1.8.9) gives the dR  and oR  values for the different types of 

lateral load-resisting systems, which are termed the Seismic Force Resisting Systems, 
SFRS(s), by NBC 2015 Cl.4.1.8.2. The SFRS is that part of the structural system that has been 
considered in the design to provide the lateral resistance to the earthquake forces and effects.  
In addition to providing the dR  and oR  values, the table lists height limits for the different 

systems, depending on the level of seismic hazard and importance factor, IE. 
 
Table 1-13. Masonry dR  and oR  Factors and General Restrictions(1) - Forming Part of Sentence 

4.1.8.9(1)  
 

Type of SFRS Rd Ro 

Height Restrictions (m) (2) 

Cases where IEFaSa(0.2) Cases 
where 
IEFvSa(1.0) 
>0.3 

<0.2 
≥0.2 
to 

<0.35 

≥0.35 
to 

≤0.75 
>0.75 

Masonry Structures Designed and Detailed According to CSA S304-14 
Ductile shear walls 3.0 1.5 NL NL 60 40 40 
Moderately Ductile shear 
walls 

2.0 1.5 NL NL 60 40 40 

Conventional construction -
shear walls 

1.5 1.5 
 

NL 
 

60 
 

30 
 

15 15 

Conventional construction -
moment resisting frames 

1.5 1.5 NL 30 NP NP NP 

Unreinforced masonry 1.0 1.0 30 15 NP NP NP 
Other masonry SFRS(s) not 
listed above 

1.0 1.0 15 NP NP NP NP 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
Notes:  (1)   See Article 4.1.8.10. 
            (2)   NP = system is not permitted. 

NL = system is permitted and not limited in height as an SFRS; height may be limited in other 
parts of the NBC. 

      Numbers in this Table are maximum height limits above grade in m. 
      The most stringent requirement governs. 
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Commentary 

 
NBC 2015 Table 4.1.8.9 identifies the following five SFRS(s) related to masonry construction: 

1. Ductile shear walls (new SFRS introduced in NBC 2015) 
2. Moderately Ductile shear walls 
3. Conventional construction: shear walls and moment resisting frames 
4. Unreinforced masonry 
5. Other undefined masonry SFRS(s) 

 
Note that Ductile shear walls are assigned the highest dR  value of 3.0, leading to the lowest 
design forces for masonry structures. The detailing requirements, given in CSA S304 -14, are 
the most restrictive of all the masonry shear wall types.  However, the height limitations imposed 
by the NBC 2015 are the most liberal, allowing structures up to 60 m in height (approximately 20 
storeys) in moderately high seismic regions, and up to 40 m in higher seismic regions. 
 
Moderately Ductile shear walls, dR = 2.0, have the same height restrictions as Ductile shear 
walls. They have less restrictive detailing requirements, but have to be designed for larger 
forces, generally resulting in a stiffer structure with less ductility demand. Moderately ductile 
shear walls are required for masonry SFRS(s) used in post-disaster buildings, due to the NBC 
requirement for an dR = 2.0 for these structures.  
 
Moderately Ductile squat shear walls, those with a height-to-length ratio less than 1, are a 
separate class of Moderately ductile shear wall. They are allowed higher shear resistance, and 
less restrictive requirements on the height-to-thickness ratio, when compared to regular 
Moderately Ductile shear walls.  
  
Conventional construction shear walls and moment-resisting frames both have Rd=1.5, with 
more onerous height restrictions, but less stringent detailing requirements than Moderately 
Ductile walls. Masonry moment-resisting frames are limited to low seismic regions and are not 
discussed in CSA S304-14. Conventional construction is the most common type of shear wall 
used in typical masonry structures.  
 
Unreinforced masonry construction is only allowed where   35.02.0 aaE SFI . It is limited to a 
height of 15 or 30 m depending on the level of seismic hazard. Unreinforced masonry does not 
have a good record in past earthquakes, and is assigned 0.1 od RR  values, as there is 
usually no ductility and brittle failures are a possibility. 
 
The oR  factor in NBC 2015 is an overstrength factor to account for the real resistance capacity 
of the structure when compared to the factored design resistance. It is made up of 3 
components: i) 2.118.1/1  , ii) a factor that accounts for the expected yield strength of the 
reinforcement being above the specified yield strength, and iii) a factor of about 1.1 that 
recognizes that because of restrictions on possible core locations for the reinforcement in 
modular masonry walls, the amount of reinforcement is in most cases larger than required. This 
results in an 5.1oR  after some rounding of the factors (Mitchell et al., 2003).  
 
A comparison of masonry wall classes contained in NBC 2015 and NBC 2005 is presented in 
Table 1-14. The class Limited ductility shear walls no longer exists in NBC 2015, and a new 
class (Ductile shear walls) has been introduced. 
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Table 1-14. A comparison of NBC 2015 and NBC 2005 Classes of Masonry Walls Based on 
Seismic Performance Requirements 

NBC 2005 Table 4.1.8.9 
and 

CSA S304.1-04 

NBC 2015 Table 4.1.8.9 
and 

CSA S304-14 

Comments 

Unreinforced masonry  

dR =1.0 oR =1.0  
Unreinforced masonry  

dR =1.0 oR =1.0  
Slight difference in where 
unreinforced masonry 
could be used 

Shear walls with 
conventional construction 

dR =1.5 oR =1.5 

Shear walls with 
conventional 
construction 

dR =1.5 oR =1.5 

Changes in seismic 
reinforcement 
requirements depending 
on seismic hazard in 
S304-14 

Limited ductility shear 
walls 

dR =1.5 oR =1.5 

 
Does not exist 

This class was removed 
from S304-14 

Moderately Ductile shear 
walls 

dR =2.0 oR =1.5 

Moderately Ductile shear 
walls 

dR =2.0 oR =1.5 

Seismic design 
requirements relaxed for 
low-rise walls in S304-14 

Moderately Ductile squat 
shear walls 

dR =2.0 oR =1.5 

Moderately Ductile squat 
shear walls 

dR =2.0 oR =1.5 

No major changes in 
seismic reinforcement 
requirements in S304-14 

Not included Ductile shear walls 

dR =3.0 oR =1.5 

New class introduced in 
NBC 2015 and S304-14 

 

1.8 Higher Mode Effects ( vM  factor) 
 

4.1.8.11.(6)  
 
In the determination of elastic base shear,

eV , only the first mode spectral value  TS  is used. In 
longer period structures, higher modes will also contribute to the base shear, and to account for 
this the vM  factor is introduced. vM is dependent on the type of SFRS, the fundamental period 

aT , and the ratio )0.5()2.0( SS , and its values are given in Table 1-15. Part of the base shear is 
assigned to the top modes to ensure that the shear forces in the top of the structure are 
adequate. Applying larger loads to the top of the structure results in the moments along the 
height being too large, and so a second factor, J , is introduced to reduce the calculated 
moments in the lower portion of the structure.  
 
A discussion about the base overturning reduction factor, J , (also shown in Table 1-15) is 
provided in Section 1.10. 
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Table 1-15. Higher Mode Factor, Mv, and Base Overturning Reduction Factor, J(1)(2)(3)(4), for 
Walls and Wall Frame Systems (an excerpt from NBC 2015 Table 4.1.8.11) 

S(0.2)/S(5.0) Mv for 
Ta≤0.5 

Mv for 
Ta=1.0 

Mv for 
Ta=2.0 

Mv for 
Ta≥5.0 

J for 
Ta≤0.5 

J for 
Ta=1.0 

J for 
Ta=2.0 

J for 
Ta≥5.0 

5 1 1 1 1.25(7) 1 0.97 0.85 0.55(8) 
20 1 1 1.18 2.30(7) 1 0.80 0.60 0.35(8) 
40 1 1.19 1.75 3.70(7) 1 0.63 0.46 0.28(8) 
65 1 1.55 2.25 4.65(7) 1 0.51 0.39 0.23(8) 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
 
Notes:   
(1)   For intermediate values of the spectral ratio S(0.2)/S(5.0), Mv and J shall be obtained by linear interpolation. 
(2)   For intermediate values of the fundamental lateral period Ta, S(Ta)*Mv shall be obtained by linear interpolation 
using the values of Mv obtained in accordance with Note (1). 
(3)   For intermediate values of the fundamental lateral period Ta, J shall be obtained by linear interpolation using the 
values of J obtained in accordance with Note (1). 
(4)   For a combination of different seismic force resisting systems (SFRS) not given in Table 4.1.8.11 that are in the 
same direction under consideration, use the highest Mv factor of all the SFRS and the corresponding value of J. 
(7)   For fundamental lateral periods, Ta, greater than 4.0 s, use the 4.0s values of S(Ta)*Mv obtained by interpolation 
between 2.0s and 5.0s using the value of Mv obtained in accordance with Note (1). See   4.1.8.11.(2)(a). 
(8)   For fundamental lateral periods, Ta, greater than 4.0 s, use the 4.0s values of J obtained by interpolation 
between 2.0s and 5.0s using the value of J obtained in accordance with Note (1). See Clause 4.1.8.11.(2)(a). 
 
 
Commentary 

 
For structures with periods aT  greater than 1.0 s (typically, buildings of 10 storeys or higher), 
the contribution of higher modes to the base shear becomes increasingly important. In the 
eastern part of Canada, where )0.5()2.0( aa SS  tends to be larger than in the west, and where 
the  TSa  spectrum decreases sharply with periods beyond 0.2 seconds, the spectral 
acceleration for the second and third modes can be high compared to the first mode, hence 
these modes make a substantial contribution to the base shear. In western Canada, the 
spectrum does not decrease as sharply with increasing period, and the higher mode shears are 
less important. The vM  factor is largest for wall structures, ranging in value up to 4.65. This is 
relevant for high-rise masonry wall structures when compared to frames, because their modal 
mass for the higher modes is larger and because the difference in periods between the modes 
is larger. 
 
For periods that fall between the published Ta values it is important to note that interpolation 
between the two periods should be done on the product   vMTS  , and not on the individual 
terms.  
 
Beyond periods of 5 seconds, vM  is assumed constant, although it theoretically could be larger. 
However, since 

eV  is conservatively based on the  0.4S  spectral value, it is appropriate to use 
the 5 second value of vM . 
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1.9 Vertical Distribution of Seismic Forces 
 

4.1.8.11.(7)  
 
The total lateral seismic force,V , is to be distributed such that a portion, tF , is assumed to be 
concentrated at the top of the building; the remainder  tFV   is to be distributed along the 
height of the building, including the top level, in accordance with the following formula (see 
Figure 1-5): 

where 
xF  – seismic force acting at level x   
tF  – a portion of the base shear to be applied, in addition to force nF , at the top of the building  
xh  – height from the base of the structure up to the level x  (base of the structure denotes level 

at which horizontal earthquake motions are considered to be imparted to the structure - 
usually the top of the foundations) 

xW  - a portion of seismic weight, W , that is assigned to level x ; that is, the weight at level x  
which includes the floor weight plus a portion of the wall weight above and below that level. 

 
The seismic weight W  is the sum of the weights at each floor; normally this would be the weight 
of the floors, walls and other rigidly attached masses that would move with the SFRS, hence 
(Clause 4.1.8.11.(5)) 


n

iWW
1

                     

 
Commentary 
 
The above formula for the force distribution is based on a linear first mode approximation for the 
acceleration at each level. The purpose of applying force tF  at the top of the structure is to 
increase the storey shear forces in the upper part of longer period structures where the first 
mode approximation is not correct. For periods less than 0.7 sec, shear is dominated by the first 
mode and so 0tF . The tF  force is determined as follows, see Clause 4.1.8.11.(7): 

0tF   for  7.0aT  sec 

VTF at 07.0  for  0.7 < 6.3aT  sec 

VFt 25.0  for  aT  > 3.6 sec 

 
The remaining force, tFV  , is distributed assuming the floor accelerations vary linearly with 
height from the base.  
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Figure 1-5. Vertical force distribution. 

1.10   Overturning Moments ( J  factor) 
 

4.1.8.11.(6) 
4.1.8.11.(8) 

 

 
While higher mode forces can make a significant contribution to the base shear, they make a 
much smaller contribution to the storey moments. Thus, moments at each storey level 
determined from the seismic floor forces, which include the higher mode shears in the form of 
the tF  factor, result in overturning moments that are too large. Previous editions of the NBC 
have traditionally used a factor, termed the J  factor, to reduce the moments. The value of the 
J  factor and how it is applied over the height of the structure is substantially the same in NBC 
2015, but the values are now dependent on Ta. 
 
The J factor values are given in Table 1-15 and illustrated in Figure 1-6. The overturning 
moment at any level shall be multiplied by the factor xJ  where 
 

0.1xJ   for nx hh 6.0   and ,   nxx hhJJJ 6.01  for nx hh 6.0    
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. 

Figure 1-6. Distribution of the xJ  factor over the building height. 

 
Commentary 

 
How the J  factor and reduced overturning moments are incorporated into a structural analysis 
is not always straightforward, and it depends on the structural system.  
 
For shear wall structures, the overturning moments can be calculated using the floor forces from 
the lateral force distribution, and then reduced by the xJ  factor at each level to give the design 
overturning moments. Without applying the J  factor, the wall moment capacity would be too 
high, leading to higher shears when the structure yields, and could result in a shear failure.  
 
For frames, the beam shears and moments and axial loads, resulting from applying the code 
lateral seismic forces at each floor level, will be too large; but the column shears would not 
increase. This would essentially result in higher axial loads in the columns, but not increase the 
shear demand on the structure, and so would be conservative in that the columns would be 
stronger than necessary, especially in the lower levels. The J  factor for frames is usually small, 
and it is believed that many designers ignore it as it is conservative to do so. 
 

1.11   Torsion 
 

1.11.1  Torsional effects 
 

4.1.8.11.(9)  
 
Torsional effects, that are concurrent with the effects of the lateral forces, xF , and that are 
caused by the following torsional moments need to be considered in the design of the structure: 

a) torsional moments introduced by eccentricity between the centre of mass and the centre 
of resistance, and their dynamic amplification, or 
b) torsional moments due to accidental eccentricities. 
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In determining the torsional forces on members, the stiffness of the diaphragms is important. 
The discussion in Sections 1.11.1 to 1.11.3 considers rigid diaphragms only, while flexible 
diaphragms are discussed in Section 1.11.4. 
 
Commentary 

Torsional effects have been associated with many building failures during earthquakes. 
Torsional moments, or torques, arise when the lateral inertial forces acting through the centre of 
mass at each floor level do not coincide with the resisting structural forces acting through the 
centres of resistance. The centre of mass, MC , is a point through which the lateral seismic 
inertia force can be assumed to act. The seismic shear is resisted by the vertical elements, and 
if the resultant of the shear forces does not lie along the same line of action as the inertia force 
acting through the centre of mass, then a torsional moment about a vertical axis will be created. 
The centre of resistance, RC , also known as the centre of stiffness, is a point through which the 
resultant of all resisting forces act provided there is no torsional rotation of the structure. If the 
centre of mass at a certain floor level does not coincide with its centre of resistance, the building 
will twist in the horizontal plane about RC . Torsion generates significant additional forces and 

displacements for the vertical elements (e.g. walls) furthest away from RC . Ideally, RC  should 

coincide with, or be close to MC , and sufficient torsional resistance should be available to keep 
the rotations small. Figure 1-7 shows two different plan configurations, one of which has a non-
symmetric wall layout (a), and the other a symmetric layout (b). Both plans have approximately 
the same amount of walls in each direction, but the symmetric building will perform better. The 
location of the shear walls determines the torsional stiffness of the structure; widely spaced 
walls provide high torsional stiffness and consequently small torsional rotations. Walls placed 
around the perimeter of the building, such as shown in Figure 1-7b), have very high torsional 
stiffness and are representative of low-rise or single-storey buildings. Taller buildings, which 
often have several shear walls distributed across the footprint of the structure, can also give 
satisfactory torsional resistance (see Section 1.11.2 for a discussion on torsional sensitivity). 

 

Figure 1-7. Building plan: a) non-symmetric wall layout (significant torsional effects), and  

b) symmetric wall layout (minor torsional effects). 

Figure 1-8a) shows a building plan (of a single storey building, or one floor of a multi-storey 
building), for which the centre of mass, MC , and the centre of resistance, RC , do not coincide. 
The distance between RC  (at each floor) and the line of action of the lateral force (at each 
floor), which passes through MC  is termed the natural floor eccentricity, xe  (note that the 
eccentricity is measured perpendicular to the direction of lateral load). The effect of the lateral 
seismic force, xF , which acts at point MC , can be treated as the superposition of the following 
two load cases: a force xF  acting at point RC  (no torsion, only translational displacements, see 
Figure 1-8b), and pure torsion in the form of torsional moment, xT , about the point RC , as 
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shown in Figure 1-8c). The torsional moment, xT , is calculated as the product of the floor force, 
xF , and the eccentricity xe . 

 
In addition to the natural eccentricity, the NBC requires consideration of an additional 
eccentricity, termed the accidental eccentricity, ae . Accidental eccentricity is considered 
because of possible errors in determining the natural eccentricity, including errors in locating the 
centres of mass as well as the centres of resistance, additional eccentricities that might come 
from yielding of some elements, and perhaps from some torsional ground motion. 
 

 
Figure 1-8. Torsional effects a), can be modelled as a combination of a seismic force, xF , at 

point  RC  (causing translational displacements only) b), and a torsional moment, x x xT F e   

(causing rotation of building plan) about point RC c). 
 
Finding the centre of resistance, RC , may be a complex task in some cases. For single-storey 
structures it is possible to determine a centre of stiffness, which is the same as the RC . 
However, in multi-storey structures, RC  is not well defined. For a given set of lateral loads, it is 
possible to find the location on each floor through which the lateral load must pass, so as to 
produce zero rotation of the structure about a vertical axis. These points are often called the 
centres of rigidity, rather than centres of stiffness or resistance, but they are a function of the 
loading as well as the structure, and so centres of rigidity are not a unique structural property. A 
different set of lateral loads will give different centres of rigidity. Earlier versions of the NBC 
(before 2005) required the determination of the RC  location so as to explicitly determine xe , as 
it was necessary to amplify xe  (by factors of 1.5 or 0.5) to determine the design torque at each 
floor level. NBC 2015 does not require this amplification, so the effect of the torque from the 
natural eccentricities can come directly from a 3-D lateral load analysis, without the additional 
work of explicitly determining xe . However, NBC 2015 requires a comparison of the torsional 
stiffness to the lateral stiffness of the structure to evaluate the torsional sensitivity, and so 
requires increased computational effort in this regard.  
 

1.11.2  Torsional sensitivity 
 

4.1.8.11.(10)  
 
NBC 2015 requires the determination of a torsional sensitivity parameter, B , which is used to 
determine allowable analysis methods. To determine B , a set of lateral forces, xF , is applied at 
a distance of nxD1.0  from the centre of mass MC , where nxD  is the plan dimension of the 
building perpendicular to the direction of the seismic loading being considered. The set of lateral 
loads, xF , to be applied can either be the static lateral loads or those determined from a 
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dynamic analysis. A parameter, xB , evaluated at each level, x , should be determined from the 
following equation) (Figure 1-9): 

ave
xB 

max  

where 
max - the maximum storey displacement at level x  at one of the extreme corners, in the 

direction of earthquake, and 
ave  - the average storey displacement, determined by averaging the maximum and minimum 

displacements of the storey at level x . 

 

Figure 1-9. Torsional displacements used in the determination of xB . 

The torsional sensitivity, B , is the maximum value of xB  for all storeys for both orthogonal 
directions. Note that xB  need not be considered for one-storey penthouses with a weight less 
than 10% of the level below.  
 
Commentary 

 
A structure is considered to be torsionally sensitive when the torsional flexibility compared to the 
lateral flexibility is above a certain level, that is, when 7.1B . Torsionally sensitive buildings 
are considered to be torsionally vulnerable, and NBC 2015 in some cases requires that the 
effect of natural eccentricity be evaluated using a dynamic analysis, while the effect of 
accidental eccentricity be evaluated statically.  
 
Structures that are not torsionally sensitive, or located in a low seismic region where 

  35.02.0 aaE SFI , can have the effects of torsion evaluated using only the equivalent static 
analysis. If the structure is torsionally sensitive and located in a high seismic region, a dynamic 
analysis must be used to determine the effect of the natural eccentricity, but the accidental 
eccentricity effects must be evaluated statically, and the results then combined as discussed in 
the next section. A static torsional analysis of the accidental eccentricity, on a torsionally flexible 
building, will lead to large torsional displacements, and generally to large torsional forces in the 
elements, and thus may require a change in the structural layout so that the structure is not so 
torsionally sensitive. 
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1.11.3 Determination of torsional forces 
 

4.1.8.11.(11)  
 
Torsional effects should be accounted for as follows: 
 
a) if 7.1B  (or 7.1B  and   35.02.0 aaE SFI ), the equivalent static analysis procedure can 

be used, and the torsional moments, xT , about a vertical axis at each level throughout the 
building, should be considered separately for each of the following load cases: 

i)   nxxxx DeFT 1.0 , and   

ii)   nxxxx DeFT 1.0 .  

 
The analysis required to determine the element forces, for both the lateral load and the above 
torques, is identical to that required to determine the B  factor, where the lateral forces are 
applied at a distance nxD1.0  from the centre of mass, MC , as shown by the dashed arrows in 
Figure 1-10.  
 
b)  if 7.1B , and   35.02.0 aaE SFI , the dynamic analysis procedure must be used to 

determine the effects of the natural eccentricities, xe . The results from the dynamic analysis 
must be combined with those from a static torsional analysis that considers only the 
accidental torques given by 

 nxxx DFT 1.0 , or 

 nxxx DFT 1.0  

 
In this analysis, xF  can come from either the equivalent static analysis or from a dynamic 
analysis. 
 

c) If 1.7B  it is permitted to use a 3-D dynamic analysis with the centres of mass shifted 
by a distance of 0.05 nxD  (see Clause 4.1.8.12.(4)(b). 

 

Figure 1-10. Torsional eccentricity according to NBC 2015. 
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Commentary 
 
When results from a dynamic analysis are combined with accidental torques that use the lateral 
forces xF  from the equivalent static procedure, the designer should ensure that the analysis is 
done in a consistent manner, that is, by using either the elastic forces or the reduced design 
forces (elastic forces modified by odE RRI ). The final force results should be given in terms of 
the reduced design forces, while the displacements should correspond to the elastic 
displacements. 
 
If the structure is torsionally sensitive, 7.1B , and if   35.02.0 aaE SFI , then the member 
forces and displacements from the accidental eccentricity must be evaluated statically by 
applying a set of torques to each floor of  nxx DF 1.0 . The set of lateral forces, xF , can come 
from either a static or a dynamic analysis. NBC 2015 is mute on whether the set of lateral static 
forces should be scaled to match the dynamic base shear (if the dynamic base shear is larger 
than the static value), and whether the dynamic set should correspond to the set determined 
with the floor rotations restrained or not restrained (see Section 1.14). It is suggested here that if 
a set of static forces is used, they should (if necessary) be scaled up to match the base shear 
from the rotationally restrained dynamic analysis.  
 
The static approach to determine member forces and displacements from the accidental 
eccentricity is illustrated in Figure 1-11. 
 
 If the static forces are to be used, then the following steps need to be followed: 

1. The forces xF  are determined using the equivalent static method. 

2. Torsional moments at each level are found using the following equations    
  nxxx DFT 1.0 , or  nxxx DFT 1.0 . 

3. Displacements and forces due to torsional effects are determined, and combined with 
the results from the dynamic analysis. Note that, in buildings with larger periods, tF  will 
cause large rotations and displacements, and the results will probably be conservative. 

 

Figure 1-11. Static approach to determine the accidental eccentricity effects (Anderson, 2006). 

If a dynamic set of floor forces, xF , are to be used, they should be scaled, if necessary (as 
discussed in Section 1.14), to be equal to the design base shear. For the determination of the 
storey torques, the force Fx at each floor can be determined from the dynamic analysis by taking 
the difference in the total shear in the storeys above and below the floor in question. These floor 
forces are not necessarily the correct floor forces (as discussed in Section A.4.3), however the 
sum of these forces equals the design base shear and they provide a reasonable set of lateral 
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forces to use for the accidental eccentricity calculations. The second and third steps discussed 
in the previous paragraph are then the same. 
 
If the structure is not torsionally sensitive ( 7.1B ), and a dynamic analysis is being used, it is 
permissible to account for both the lateral forces and the torsional eccentricity, including the 
natural and accidental eccentricity, by using a 3-D dynamic analysis and moving the centre of 
mass by the distance nxD05.0 . This would require four separate analyses, two in each 
direction. In these dynamic analyses the accidental eccentricity is taken as nxD05.0 , while in 
the static application it is taken as nxD10.0 . It is thought that the real accidental eccentricity is 
about nxD05.0 , but it would likely be amplified during an earthquake; this is reflected in the 
results of a dynamic analysis. Thus, nxD10.0  is used in the static case to account for both 
accidental eccentricity and possible dynamic amplification.  
 
When using a 3-D dynamic analysis for torsional response, it is important to correctly model the 
mass moment of inertia about a vertical axis. If the floor mass is entered as a point mass at the 
mass centroid, it will not have the correct mass moment of inertia and the torsional period will be 
too small. This will have the effect of making the structure appear to be torsionally stiffer than it 
really is, and could lead to smaller torsional deflections.  
 
When applying the lateral loads in one direction, torsional response gives rise to forces in the 
elements in the orthogonal direction. For structures with lateral force resisting elements oriented 
along the principal orthogonal axes, NBC 2015 Cl. 4.1.8.8.(1)(a) requires independent analyses 
along each axis. For structures with elements oriented in non-orthogonal directions (as shown in 
Section 1.12.1 for Type 8 Irregularity), an independent analysis about any two orthogonal axes 
is sufficient in low seismic zones, but in higher zones, it is required that element forces from 
loading in both directions be combined. The suggested method for combining forces from both 
directions is the “100+30%” rule that requires the forces in any element that arise from 100% of 
the loads in one direction be combined with 30% of the loads in the orthogonal direction, see 
NBC 4.1.8.8.(1)c). Another method is to apply the ‘root-sum-square’ procedure to the forces in 
each element from 100% of the loads applied in both directions. The two methods usually give 
close agreement and are based on the knowledge that the probability of the maximum forces 
from the two directions occurring at the same time is low. For some orthogonal systems, it is 
possible that the orthogonal forces from the effects of torsion are substantial, and a prudent 
design may consider combined forces from both directions as described above, especially in 
high seismic regions. 
 
Note that the NBC requirements are based on an estimate of the elastic properties of the 
structure. When the structure yields, the eccentricity between the inertia forces acting through 
the centres of mass and the resultant of the resisting forces based on the capacity of the 
members, termed the plastic eccentricity, will be different than the elastic eccentricity. In most 
cases, the plastic eccentricity will be less than the elastic eccentricity. However, there may be 
cases where some elements are stronger than necessary and do not yield; this could increase 
the eccentricity when other elements yield, and it should be avoided if possible. 
 

1.11.4 Flexible diaphragms 
 
Diaphragms are horizontal elements of the SFRS whose primary role is to transfer inertial forces 
throughout the building to the vertical elements (shear walls in case of masonry buildings) that 
resist these forces. A diaphragm can be treated in a manner analogous to a beam lying in a 
horizontal plane where the floor or roof deck functions as the web to resist the shear forces, and 
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the boundary elements (bond beams in case of masonry buildings) serve as the flanges in 
resisting the bending moment. How the total shear force is distributed to the vertical elements of 
the SFRS will depend on their rigidity compared to the rigidity of the diaphragm. For design 
purposes, diaphragms are usually classified as rigid or flexible, but that very much depends on 
the type of structure. Structures with many walls and small individual diaphragms between the 
walls can be considered as having flexible diaphragms. In large plan structures, such as 
warehouses or industrial buildings with the SFRS members located around the perimeter, it is 
more common to assume the diaphragm as being rigid. However the flexibility of the diaphragm 
may lead to a considerable increase in the period of the structure, and lead to deformations 
considerably larger than the deformations of the SFRS, in which case a more complex analysis 
would be required. 
 
In rigid diaphragms, shear forces are distributed to vertical elements in proportion to their 
stiffness. Torsional effects are considered following the approach outlined in Sections 1.11.1 to 
1.11.3. Concrete diaphragms, or steel diaphragms with concrete infill, are usually considered 
rigid.    
 
In flexible diaphragms, distribution of shear forces to vertical elements is independent of their 
relative rigidity; these diaphragms act like a series of simple beams spanning between vertical 
elements. A flexible diaphragm must have adequate strength to transfer the shear forces to the 
SFRS members, but cannot distribute torsional forces to the SFRS members acting at right 
angles to the direction of earthquake motion without undergoing unacceptable displacements.  
Corrugated steel diaphragms without concrete fill, and wood diaphragms, are generally 
considered flexible; however, steel and wood diaphragms with horizontal bracing could be 
considered rigid.  
 
Figure 1-12a) shows the plan view of a simple one storey structure with walls on three sides and 
non-structural glazing on the fourth side. For an earthquake producing an inertia force, V , the 
walls provide resisting forces to the diaphragm as shown. The displacement of the diaphragm 
would be as shown in Figure 1-12b), and it is the size of the displacements that determines 
whether the diaphragm is considered flexible or rigid. If the displacements are too large to be 
acceptable, the diaphragm would be classed as flexible, and cannot be used with such a layout 
of the SFRS. In general, flexible diaphragms require that the SFRS has at least two walls in 
each direction. 

 

Figure 1-12. Building plan: a) loads on diaphragm; b) displaced shape of a flexible diaphragm. 

In determining how the inertia forces are distributed to the SFRS, the flexible diaphragm should 
be divided into sections, with each section bounded by two walls in the direction of the inertia 
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forces; preferably these two walls will be located on the sides of the section. The inertia forces 
from each section are then distributed to the SFRS on the basis of tributary areas.  Equilibrium 
must be satisfied, and the diaphragm must have sufficient strength in shear and bending to act 
as a horizontal beam carrying the loads to the supports. Figure 1-13 shows a flexible roof 
system supported by three walls in the N-S direction. The roof should be divided into two 
sections as shown, with the inertia force from section 1 distributed to walls A and B. Section 2 
must be considered as a beam with a cantilever end extending beyond wall C. Equilibrium of 
section 2 then gives rise to a high force in Wall C, with the overhanging portion contributing to a 
reduction in the force in wall B. 

 

Figure 1-13. Plan view for analysis of flexible diaphragm. 

 
NBC 2015 requires that accidental eccentricity be considered. With rigid diaphragms it is clear 
how this can be accomplished, as described in the above sections, but trying to account for 
accidental eccentricity in flexible diaphragms raises several questions about how it is to be 
applied. NBC 2005 Commentary J, paragraph 179 (NRC, 2006) states that it is sufficient to 
consider an eccentricity of ±0.05Dnx, where Dnx is defined as the width of the building in the 
direction perpendicular to the direction of the earthquake motion. If the structure consists of a 
single roof section with supporting walls at each end separated by the distance Dnx, moving the 
centre of mass by 0.05Dnx would increase the wall reactions by 10%, and the accidental 
eccentricity requirement would be satisfied. For a structure with several walls in the direction of 
the earthquake motion, shifting the centre of mass by ±0.05Dnx, which would require moving the 
centre of mass of each section by this amount, could lead to unrealistic situations, as well as 
requiring a considerable increase in computational effort. Even flexible diaphragms will have 
some stiffness, and in many cases will transfer some of the torsional load to the walls 
perpendicular to the direction of motion. This transfer is ignored when designing for flexible 
diaphragms, but does provide extra torsional resistance. It is suggested that the wall forces 
determined without any accidental eccentricity all be increased by 10% to account for the 
accidental eccentricity. This minimizes the number of calculations required, and it is suggested 
that it satisfies the intent of NBC 2015.  
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1.12    Configuration Issues: Irregularities and Restrictions 
 

1.12.1 Irregularities 
 

4.1.8.6  
 
Table 1-16 (same as NBC 2015 Table 4.1.8.6) lists the nine types of irregularity, and the notes 
to the table refer to the relevant code clauses that consider the irregularity. If a structure has 
none of the listed irregularities it is considered to be a regular structure. A trigger for the NBC 
2015 irregularity provisions (Cl.4.1.8.6) is the presence of one of nine types of irregularity in 
combination with the higher seismic hazard index, that is,   35.02.0 aaE SFI . 
 
In NBC 2015 there is a new structural irregularity, Type 9, on ‘gravity-induced lateral demand’ 
which covers cases where gravity loads could cause the building to yield in one direction only 
and creates larger displacements than a regular building would undergo.  Irregularities are used 
to trigger restrictions and special requirements, some of which are more restrictive than those in 
previous codes. See NBC Section 4.1.8.10 for additional restrictive clauses covering structural 
irregularities. 
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Table 1-16. Structural Irregularities(1) Forming Part of Sentence 4.1.8.6.(1) (NBC Table 4.1.8.6.) 
 

 
Type 

 
Irregularity Type and Definition Notes 

1 Vertical stiffness irregularity shall be considered to exist when the 
lateral stiffness of the SFRS in a storey is less than 70% of the 
stiffness of any adjacent storey, or less than 80% of the average 
stiffness of the three storeys above or below. 

(2)  
(3)  
(4) 

Vertical stiffness 
irregularity 

2 Weight irregularity shall be considered to exist where the weight, W i, 

of any storey is more than 150% of the weight of an adjacent 
storey. A roof that is lighter than the floor below need not be 
considered. 

(2) Weight (mass) 
irregularity 

3 Vertical geometric irregularity shall be considered to exist where the 
horizontal dimension of the SFRS in any storey is more than 130 
percent of that in an adjacent storey.  

(2)  
(3)  
(4)  
(5) 

Vertical geometric 
irregularity 

4 An in-plane offset of a lateral-force-resisting element of the SFRS or 
a reduction in lateral stiffness of the resisting element in the storey 
below. 

(2)  
(3)  
(4)  
(5) 

In-plane 
discontinuity in 

vertical lateral force-
resisting element 

5 Discontinuities in a lateral force path, such as out-of-plane offsets of 
the vertical elements of the SFRS. 

(2)  
(3)  
(4)  
(5) 

Out-of-plane offsets 

6 A weak storey is one in which the storey shear strength is less than 
that in the storey above. The storey shear strength is the total 
strength of all seismic-resisting elements of the SFRS sharing the 
storey shear for the direction under consideration. 

(2) 
(3) 

Discontinuity in 
capacity - weak 

storey 
7 

Torsional sensitivity 
Torsional sensitivity shall be considered when diaphragms are not 
flexible, and when the ratio B>1.7 (see Sentence 4.1.8.11(10)). 

(2)  
(3)  
(4)  
(6) 

8 
 Non-orthogonal 

systems 

A non-orthogonal system irregularity shall be considered to exist 
when the SFRS is not oriented along a set of orthogonal axes. 

(2) 
(4)  
(7) 

9 
Gravity-Induced 

Lateral Irregularity 

Gravity-induced lateral demand irregularity on the SFRS shall be 
considered to exist where the ratio, α, calculated in accordance with 
Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering 
characteristics and 0.03 for other systems. 
 

(2) 
(3) 
(4) 
(7) 

Reproduced with the permission of the National Research Council of Canada, copyright holder 
 
Notes: (1) One-storey penthouses with a weight less than 10% of the level below need not be 

considered in the application of this table. 
            (2) See Article 4.1.8.7. 
            (3) See Article 4.1.8.10. 
            (4) See Note A-Table 4.1.8.6. 
            (5) See Article 4.1.8.15. 
            (6) See Sentences 4.1.8.11.(10), (11), and 4.1.8.12.(4) 
            (7) See Article 4.1.8.8. 
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Commentary 

 
The equivalent static analysis procedure is based on a regular distribution of stiffness and mass 
in a structure. It becomes less accurate as the structure varies from this assumption. 
Historically, regular buildings have performed better in earthquakes than have irregular 
buildings. Layouts prone to damage are: torsionally eccentric ones, “in” and “out” of plane 
offsets of the lateral system, and buildings with a weak storey (Tremblay and DeVall, 2006). For 
more details on building configuration issues refer to Chapter 6 of Naeim (2001). 
 
Figure 1-14 illustrates the NBC 2015 irregularity types. Note that Types 1 to 6 are vertical 
(elevation) irregularities, while Types 7, 8 and 9 are horizontal (plan) irregularities. 
 
According to NBC 2015 Clause 4.1.8.7, the structure is considered to be “regular” if it has none 
of the nine types of irregularity, otherwise it is deemed to be “irregular”. The default method of 
analysis is the dynamic method, but the equivalent static method may be used if any of the 
following conditions are satisfied: 

a) the seismic hazard index   35.02.0 aaE SFI , or 
b) the structure is regular, less than 60 m in height, and has a period T < 0.5 seconds in 

either direction, or 
c) the structure is irregular, but does not have Type 7 or 9 irregularity, and is less than 20 

m in height with period T < 0.5 seconds in either direction. 
 
For single-storey structures such as warehouses and other low-rise masonry buildings, only 
irregularity Types 7 and 8 might apply, and these would not likely prevent the use of the 
equivalent static method.  
 
Type 8 irregularity concerns SFRS(s) which are not oriented along a set of orthogonal axes. The 
structures with this type of irregularity may require more complex seismic analysis in which 
seismic loads in two orthogonal directions would need to be considered concurrently. According 
to Clause 4.1.8.8.(1)(b), where the components of the SFRS are not oriented along a set of 
orthogonal axes, and the structure is in a low seismic zone (   35.02.0 aaE SFI ), then 
independent analysis about any two orthogonal axes is permitted. However, where the 
components of the SFRS are not oriented along a set of orthogonal axes, and the structure is in 
a medium or high seismic zone (   35.02.0 aaE SFI ), then the analysis of the structure can be 
done independently about any two orthogonal axes for 100% of the prescribed earthquake 
loads in one direction concurrently with 30% of the prescribed earthquake loads acting in the 
perpendicular direction (see Clause 4.1.8.8.(1)(c). This is so-called “100+30%” rule discussed in 
Section 1.11.3. 
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Figure 1-14. Types of irregularity according to NBC 2015 (based on Tremblay and DeVall, 
2006). 
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1.12.2 Restrictions 
 

4.1.8.10.  
 
Restrictions in NBC 2015 are based on (i) the natural period or height of the building, (ii) 
whether the building is in a “high” or “low” seismic zone, (iii) irregularities, and (iv) the 
importance category of the building. These restrictions are outlined below: 
 

1. Except as required by Clause 4.1.8.10.(2)(b), structures with Type 6 irregularity, 
Discontinuity in Capacity – Weak Storey, are not permitted unless   20.02.0 aaE SFI  
and the forces used for design of the SFRS are multiplied by odRR . 

2. Post-disaster buildings shall  
a) not have any irregularities conforming to Types 1, 3, 4, 5, 7 and 9 as described in 

Table 4.1.8.6, in cases where   35.02.0 aaE SFI , 
b) not have a Type 6 irregularity as described in Table 4.1.8.6, and 
c) have an SFRS with an 0.2dR . 
d) have no storey with a lateral stiffness that is less than that of the storey above it. 

3. For buildings having fundamental lateral periods 1.0aT s , and where      
 1.0 0.25E v aI F S  , shear walls that are other than wood-based forming part of the 

SFRS shall be continuous from their top to the foundation and shall not have 
irregularities of Type 4 or 5 as described in Table 4.1.8.6. 

4. Wood construction, see 4.1.8.9 and Note A-4.1.8.10.(4). 
5., 6., and 7.  Only apply to Irregularity Type 9. 
 

Refer to Section 1.12.1 and Table 1-16 for the list of irregularities identified by NBC 2015. 
 
Commentary 

 
An important restriction for masonry construction concerns post-disaster structures. In other 
than low seismic regions the structure cannot have irregularity Types 1, 3, 4, 5, or 7; and must 
have an 0.2dR . Thus masonry post-disaster structures must be designed with Moderately 
Ductile or Ductile shear walls, and except in low seismic regions (where   35.02.0 aaE SFI ) 
the above noted irregularity types should be avoided.  
 
Irregularity Type 6, Discontinuity in Capacity-Weak Storey, is an important restriction for multi-
storey structures, and cannot be present at all in post-disaster structures. For structures with 
this type of irregularity, the forces used in the design of the SFRS, except in very low seismic 
areas, must be multiplied by odRR , which implies that the members must remain elastic. This 
type of irregularity is considered very dangerous, as in past earthquakes many structures with 
weak storeys have had a total collapse of that storey which has resulted in many deaths. This 
type of seismic response has often been reported in reinforced concrete frame structures with 
masonry infill walls which contain more infills in the storeys above the ground floor, leaving the 
first storey as a weak storey. 
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1.13   Deflections and Drift Limits 
 

4.1.8.13  
Lateral displacement (deflection) limits are prescribed in terms of maximum drift. Drift means the 
lateral deflection of one floor (or roof) relative to the floor below. Drift ratio is the drift divided by 
the storey height between the two floors, and is thus a measure of the distortion of the structure.  
 
The NBC 2015 drift limits are based on the storey height sh , as follows:  

 0.01 sh  for post-disaster buildings 
 0.02 sh  for High Importance Category buildings (e.g. schools), and 
 0.025 sh  for all other buildings. 

 
Commentary 

 
Since large deflections and drifts due to earthquakes contribute to (i) damage to the non-
structural components, (ii) damage to the elements which are not a part of the SFRS, and (iii) P-
Delta effects, NBC 2015 provisions have moved in the direction of tightening up the drift limits 
from the previous versions. Specifically, tighter drift limits for post-disaster or school buildings 
reflect the importance of these structures.  
 
Drift and drift ratio can be explained on an example of a three-storey building shown in Figure 
1-15. The drift in say the second storey is equal to 12  , where 1  and 2  denote lateral 
deflections at the first and second floor level respectively. The corresponding drift ratio for that 
storey is equal to   h12   , where 12 hhh   (storey height). The average drift ratio for the 
entire structure is   h3 . 
 
Drifts are the elastic deflections and need not be increased by the importance factor EI  as that 
has already been accounted for in the drift limits. If the equivalent static forces, which are the 
elastic forces multiplied by odE RRI , are applied to the elastic structure to calculate 
deflections, then these deflections must be multiplied by Eod IRR  to get realistic values of the 
deflections. 

 

Figure 1-15. Lateral deflections and drift. 

In checking drift limits the drift should be taken at the location on the floor which has the 
maximum deflection. Torsional effects can result in corner deflections being much larger than 
the deflection at the centre of the floor plan.  
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Since deflections increase with an increase in the period T , the stiffness used in calculating the 
deflections should reflect a softening of the structure (before yielding occurs) that might come 
from cracking of the masonry. The stiffness for squat shear walls should be determined taking 
into account shear deformation. If the period T  determined per NBC provisions (see Section 
1.6) is used to determine the seismic forces, the stiffness of the structure used in calculating the 
deflections should be such that the calculated period would not be less than the NBC period. 
Many masonry structures are very stiff and the deflections will be well below the code limits, and 
so displacement calculations will not be critical in many cases.   
 
Drift limits are imposed so that members of the SFRS will not be subjected to large lateral 
displacements that might degrade their ability to resist the seismic loads, but also to ensure that 
members that are not part of the SFRS, such as columns that support gravity load only, should 
not fail during the earthquake. The seismic portion of the code is mute on drift limits for 
serviceability, however the designer can estimate the structural deflections at different hazard 
levels, since displacements are roughly proportional to the level of hazard. For example, the drift 
at an exceedance probability of 1/475 per annum would be about half of that for the 1/2475 per 
annum design drift because the 1/475 per annum hazard is roughly half the 1/2475 per annum 
hazard.  
 

1.14   Dynamic Analysis Method 
 

4.1.8.12  
 
In NBC 2015 the default analysis method is the dynamic method. For many structures, even 
though the equivalent static analysis method could be used according to NBC seismic 
provisions, dynamic analysis may be used for other reasons. The purpose of this section is not 
to explain how to use dynamic analysis software, but to give some guidance on scaling or 
comparing the dynamic results with the results from the static method. 
 
The base shear from a dynamic analysis, determined using the site design spectrum S(T), will 
give the dynamic elastic base shear, eV . Since the static analysis method is allowed to reduce 
the design base shear for short periods, see 4.1.8.11(2)(d), while the dynamic analysis method 
uses the design spectrum S(T), it is permitted to reduce the dynamic analysis results by the 
factors 2S(0.2)/3S(Ta) or S(0.5)/S(Ta) whichever is larger but ≤1.0, to give Ved for Site Classes A 
to D (NBC 2015 Sec 4.1.8.12(6)).  
 
NBC 2015 requires that for regular buildings if the base shear from the dynamic method is less 
than 0.8 times the base shear from the static method, then the dynamic results should be scaled 
to give 0.8 of the static base shear. If the structure is deemed to be irregular, then the dynamic 
results should be scaled to 100% of the static results. In essence this means that the dynamic 
results cannot be less than the static results (or 80% of the static results for regular structures), 
but if they are larger they should not be reduced to the static values.  
 
If the building is very eccentric, a 3-D dynamic analysis will produce a low total base shear. In 
that case, it would be very conservative to require that these low base shears be scaled to the 
static base shear, since the static method of determining the base shear V does not consider 
torsional motion. To make a fair comparison between the static and dynamic results the 
suggestion is to perform a dynamic analysis with the rotation of the structure restrained about a 
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vertical axis, and then compare the resulting base shear to the static value to determine the 
amount of scaling required, if any.  
 
Scaling, if necessary, should be applied to the member forces determined from the full 3-D 
dynamic analysis multiplied by odE RRI  to give the design member forces. The design 
displacements are the elastic displacements given by the dynamic analysis, and scaled if 
necessary. To these design forces and displacements must be added the forces and 
displacements from accidental torsion. 
 

1.15    Soil-Structure Interaction 
 
For large structures located on soft soil sites the deformation of the soil may have an 
appreciable influence on the response of the structure. The most common type of soil-structure 
interaction is based on the flexibility of the soil, which is usually represented by a lateral spring 
between the foundation and the point where the seismic motion is input, and with a rotational 
spring at the base of flexural walls. There is a second type of soil-structure interaction, termed 
the kinematic interaction, which only applies to structures with a very large plan area or a deep 
foundation, and which will not be discussed further here. 
 
The effect of introducing springs between the point of input motion and the foundation is to 
increase the period of the structure, which usually reduces the seismic forces but increases the 
deflections. In the case of a wall structure, the increased deflections may not increase the 
deformation of the wall since they would arise from displacements and rotations of the 
foundation, but the rotations would increase the interstorey drifts which would have an influence 
on other parts of the structure. 
 
For masonry structures, soil-structure interaction will likely only have an influence for slender 
wall structures with individual footings, where rotation of the footing would have a large effect on 
the wall displacement. The determination of the soil stiffness should be left to an experienced 
geotechnical engineer, but it should be recognized that the precision at which the soil stiffness 
can be estimated is quite low. It is common to consider quite wide upper and lower bounds on 
the estimated stiffness of the soil springs. 
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1.16   A Comparison of NBC 2005 and NBC 2015 Seismic Design 
Provisions 

A comparison is presented in Table 1-17 as a reference for the readers who have previously 
used NBC 2005. 

Table 1-17. Comparison of NBC 2005 and NBC 2015 Seismic Design Provisions: Equivalent 
Static Force Procedure 

 
Provision 

 
NBC 2005 

 
NBC 2015 

Analysis method 

Cl.4.1.8.7 Cl.4.1.8.7 
Dynamic method is the default 
method; static method is 
restricted to certain structures 
and seismic hazard. 

No changes 

Seismic force 
Cl.4.1.8.11 Cl.4.1.8.11 

 
V =S(T)MvIeW / (RdRo) 

 
V =S(Ta)MvIeW / (RdRo) 

Base response 
spectrum 

Cl.4.1.8.4 Cl.4.1.8.4(9) 
S(T)=FaSa(T) or FvSa(T) 

 
Sa(T) based on UHS 

 

S(T)=FSa(T)  
 

Sa(T) based on UHS for T=0.2 sec, 0.5 
sec, 1.0 sec, 2 sec, 5 sec, and 10 sec 

 

Site conditions 
Cl.4.1.8.4 Cl.4.1.8.4(9) 

Fa or Fv 

Depends on T and Sa 

F(0.2), F(0.5), F(1.0), F(2.0) 
Depends on site class and PGAref 

Importance of 
structure 

Cl.4.1.8.5   Cl.4.1.8.5   
IE 

 
No changes 

Inelastic 
response 

Cl.4.1.8.9 Cl.4.1.8.9 
RdRo 

Explicit overstrength 
No changes 

MDOF  
Forces from 
higher modes 

Cl.4.1.8.11 Cl.4.1.8.11(6)   
Mv multiplier on base shear 
Depends on period, type of 
structure and shape of Sa(T) 

 

No changes 

MDOF 
Distribution of 
forces 

Cl.4.1.8.11(6) Cl.4.1.8.11(7) 
Ft 

Same as NBC 1995 
No changes 

MDOF 
Overturning 
forces 

Cl.4.1.8.9(7) Cl.4.1.8.9(6) 
J 

Revised for consistency with Mv 
No changes 

Eccentricity 

Cl.4.1.8.11(8), (9), and (10) Cl.4.1.8.11(9), (10), and (11) 
Tx=Fx(ex±0.1Dnx) 
Must determine torsional 
sensitivity 

No changes 

Irregularities 
Cl.4.1.8.6 Cl.4.1.8.6 
 There is a new irregularity (Type 9) 
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2 SEISMIC DESIGN OF MASONRY WALLS TO CSA S304-14 

2.1 Introduction 
 
Chapter 1 provides background on the seismic response of structures and seismic analysis 
methods and explains key NBC 2015 seismic provisions relevant to masonry design. This 
chapter provides an overview of seismic design requirements for reinforced masonry (RM) 
walls. Relevant CSA S304-14 design requirements are presented, along with related 
commentary, to provide detailed explanations of the NBC provisions. Topics range from RM 
shear walls subjected to in-plane and out-of-plane seismic loads, to a number of special topics 
such as masonry infill walls, stack pattern walls, veneers, and construction-related issues. 
Differences between CSA S304-14 seismic design requirements and those of the previous 
(2004) edition are identified and discussed, along with their design implications. For easy 
reference, relevant CSA S304-14 clauses are shown in a framed textbox where appropriate. 
Appendix B contains research findings and international code provisions related to seismic 
design of masonry structures. Appendix C contains relevant design background used in the 
design examples included in Chapter 3. 
 

2.2 Masonry Walls – Basic Concepts 
 
Structural walls are the key structural components in a masonry building, and are used to resist 
some or all of the following load effects: 
 axial compression due to vertical gravity loads, 
 out-of-plane bending (flexure) and shear due to transverse wind, earthquake or blast loads 

and/or eccentric vertical loads, and 
 in-plane bending and shear due to lateral wind and earthquake loads applied to a building 

system in a direction parallel to the plane of the wall. 
 
In a masonry building subjected to earthquake loads, horizontal seismic inertia forces develop in 
the walls, and the floor and roof slabs. The floor and roof slabs are called diaphragms where 
they transfer lateral loads to the lateral load resisting system. These inertia forces are 
proportional to the mass of these structural components and the acceleration at their level. An 
isometric view of a simple single-storey masonry building is shown in Figure 2-1a) (note that the 
roof diaphragm has been omitted for clarity). For earthquake ground motion acting in the 
direction shown in the figure, the roof diaphragm acts like a horizontal beam spanning between 
walls A and B. The end reactions of this beam are transferred to the walls A and B. These walls, 
subjected to lateral load along their longitudinal axis (also called in-plane loads), are called 
shear walls. Along with the floor and roof diaphragms, shear walls are the components of the 
building’s lateral load path that transfers the lateral load to the foundations. A well-designed and 
well-built masonry building has a reliable load path, which transfers the forces over the full 
height of the building from the roof to the foundation. 
 

Note also that the earthquake ground motion causes vibration of the transverse walls C and D. 
These walls are subjected to inertia forces proportional to their self-weight and are loaded out-
of-plane (or transverse to their longitudinal axis). A vertical section through wall D that is loaded 



9/1/2018                        2-3 

in the out-of-plane direction is shown in Figure 2-1b), while an elevation of shear wall A and its 
in-plane loading is shown in Figure 2-1c).  
 
It is important to note that walls are subjected to shear forces in both the in-plane and out-of-
plane directions during an earthquake event. However, the main difference between shear walls 
and other types of walls is that shear walls are key vertical components of a lateral load 
resisting system for a building, referred to as the Seismic Force Resisting System or SFRS by 
NBC 2015. Usually not all walls in the building are shear walls; some walls (loadbearing and/or 
nonloadbearing) are not intended to resist in-plane loads and are not designed and detailed as 
shear walls. In that case, they cannot be considered to form a part of the SFRS. 
 

 
 

Figure 2-1 Simple masonry building: a) isometric view showing lateral loads; b) out-of-plane 
loads; c) in-plane loads (resisted by shear walls). 

A typical reinforced concrete block masonry wall is shown in Figure 2-2. Vertical reinforcing bars 
are placed in the open cells of the masonry units (note that the term cores is also used in 
masonry construction practice), and are usually provided at a uniform spacing along the wall 
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length. The role of vertical reinforcement is to enhance the ability of the wall to resist forces due 
to vertical loads, forces resulting from induced moments due to vertical eccentricities, and forces 
due to out-of-plane loads. Horizontal wall reinforcement is usually provided in two forms: i) 
ladder- or truss-type wire reinforcement placed in mortar bed joints (see Figure 2-2b)), and ii) 
steel bars (similar to vertical reinforcement) placed in grouted bond beams at specified locations 
over the wall height (see Figure 2-2c)). Horizontal wire and bar reinforcement restrict in-plane 
movements due to temperature and moisture changes, resist in-plane shear forces and/or 
forces due to moments caused by out-of-plane loads. Grout, similar to concrete but with higher 
slump, is used to fill the cells of the masonry units that contain vertical and horizontal 
reinforcement bars. Grout increases the loadbearing capacity of the masonry by increasing its 
area, and serves to bond the reinforcement to the masonry unit so that the reinforcement and 
unit act compositely. 
 
Grade 400 steel (yield strength 400 MPa) is nearly always used for horizontal and vertical 
reinforcing bars, while cold-drawn galvanized wire is used for joint reinforcement (also known as 
American Standard Wire Gauge – ASWG). The yield strength for joint reinforcement varies, but 
usually exceeds 480 MPa for G30.3 steel wire. In design practice, a 400 MPa yield strength is 
used both for the reinforcement bars and the joint wire reinforcement. The properties of 
concrete masonry units are summarized in Appendix D, while the mechanical properties of 
masonry and steel materials are discussed by Drysdale and Hamid (2005) and Hatzinikolas, 
Korany, and Brzev (2015). The material resistance factors for masonry and steel prescribed by 
CSA S304-14 are as follows: 

m
 = 0.6 resistance factor for masonry (Cl.4.3.2.1) 

s
 = 0.85 resistance factor for steel reinforcement (Cl.4.3.2.2)  

The following notation will be used to refer to wall dimensions (see Figure 2-2a)): 

wl - wall length 

wh - total wall height 

t  - overall wall thickness 

 
 

Figure 2-2. Typical reinforced concrete masonry block wall: a) vertical reinforcement; b) joint 
reinforcement; c) bond beam reinforcement. 
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Typical reinforced concrete masonry wall construction is shown in Figure 2-3. The lower section 
of the wall has been grouted to the height of a bond beam course. Vertical bars extend above 
the bond beam to serve as bar splices for the continuous vertical reinforcement placed in the 
next wall section. 
 

 

Figure 2-3 Masonry wall under construction (Credit: Masonry Institute of BC). 

Walls in which only the reinforced cells are grouted are called partially grouted walls, while walls 
in which all the cells are grouted are called fully grouted walls. Irrespective of the extent of 
grouting (partial/full grouting), the cross-sectional area of the entire wall section (considering the 
overall thickness t ) is termed gross cross-sectional area, gA . In partially grouted or hollow 
(ungrouted) walls, the term effective cross-sectional area, eA , denotes that area which includes 
the mortar-bedded area and the area of grouted cells (S304-14 Cl.10.3). Both the gross and 
effective wall areas are shown in Figure 2-4 for a wall strip of unit length (usually equal to 1 
metre). See Table D-1 for eA  values for various wall thicknesses and grout spacings. In 
ungrouted and partially grouted masonry construction, the webs are generally not mortared, 
except for the starting course. Typically, coarse grout will flow from the grouted cell to fill the gap 
between the webs adjacent to the cell. 
 
In exterior walls, the effective area can be significantly reduced if raked joints are specified 
(where some of the mortar is removed from the front face of the joint for aesthetic reasons). The 
designer should consider this effect in the calculation of the depth of the compression stress 
block. This is not a concern with a standard concave tooled joint. 
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Figure 2-4. Wall cross-sectional area: a) gross area; b) effective area. 

Shear walls without openings (doors and/or windows) are referred to as solid walls (see Figure 
2-5a)), while walls with door and/or window openings are referred to as perforated walls (see 
Figure 2-5b)). The regions between the openings in a perforated wall are called piers (see piers 
A, B, and C in Figure 2-5b)). Perforated shear walls in medium-rise masonry buildings with a 
uniform distribution of vertically aligned openings over the wall height are called coupled walls. 

 

Figure 2-5. Masonry shear walls: a) solid, and b) perforated. 

Depending on the wall geometry, in particular the height/length ( ww lh ) aspect ratio, shear walls 
are classified into one of the following two categories: 
 Flexural shear walls, with height/length aspect ratio of 1.0 or higher (see Figure 2-6a)), and 
 Squat shear walls, with a height/length aspect ratio less than 1.0 shown in Figure 2-6b) (see 

S304-14 Cl. 7.10.2.2; 10.2.8; 10.10.2.2 and 16.7). 
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Figure 2-6. Shear wall classification based on the aspect ratio: a) flexural walls; b) squat walls. 

Depending on whether the walls resist the effects of gravity loads in addition to other loads, 
masonry walls can be classified as loadbearing or nonloadbearing walls. Loadbearing walls 
resist the effects of superimposed gravity loads (in addition to their selfweight) plus the effects of 
lateral loads. Nonloadbearing walls resist only the effects of their selfweight, and possibly out-of-
plane wind and earthquake loads. Shear walls are loadbearing walls, irrespective of whether 
they carry gravity loads or not. 
 
In masonry design, the selection of locations where movement joints (also known as control 
joints) should be provided is an important detailing decision. Some movement joints are 
provided to facilitate design and construction, while others control cracking at undesirable 
locations.  In any case, wall length is determined by the location of movement joints, so this 
detailing decision carries an implication for seismic design. For more details on movement joints 
refer to MIBC (2017). 
 
In general, shear walls are subjected to lateral loads at the floor and roof levels, as shown in 
Figure 2-7. (Note the inverse triangular distribution of lateral loads simulating earthquake 
effects.) The distribution of forces in a shear wall is similar to that of a vertical cantilevered beam 
fixed at the base. Figure 2-7 also shows the internal reactive forces acting at the base of the 
wall. Note that the wall section at the base is subjected to the shear force, V , equal to the sum 
of the horizontal forces acting on the wall and the bending moment,M , due to all horizontal 
forces acting at the effective height eh , as well as the axial force, P , equal to the sum of the 
axial loads acting on the wall.  



9/1/2018                        2-8 

 

Figure 2-7. Load distribution in shear walls. 

2.3 Reinforced Masonry Shear Walls Under In-Plane Seismic Loading 

2.3.1 Behaviour and Failure Mechanisms 
The behaviour of a reinforced masonry (RM) shear wall subjected to the combined effect of 
horizontal shear force, axial load and bending moment depends on several factors. These 
include the level of axial compression stress, the amount of horizontal and vertical 
reinforcement, the wall aspect ratio, and the mechanical properties of the masonry and steel. 
The two main failure mechanisms for RM shear walls are: 
 Flexural failure (including ductile flexural failure, lap splice slip, and flexure/out-of-plane 

instability), and 
 Shear failure (includes diagonal tension failure and sliding shear failure). 
 
Each of these failure mechanisms is briefly described in this section. The focus is on the 
behaviour of walls subjected to a cyclic lateral load simulating earthquake effects. Failure 
mechanisms for RM walls are discussed in detail in FEMA 306 (1999). 
 
2.3.1.1 Flexural failure mechanisms 
Ductile flexural failure is found in reinforced walls and piers characterized by a height/length 
aspect ratio ( wlwh ) of 1.0 or higher and a moderate level of axial stress (less than mf 1.0 ). 
This failure mode is characterized by tensile yielding of vertical reinforcement at the ends of the 
wall, and simultaneous cracking and possible spalling of masonry units and grout in the toe 
areas (compression zone). In some cases, buckling of compression reinforcement accompanies 
the cracking and spalling of the masonry units. Experimental studies have shown that the 
vertical reinforcement is effective in resisting tensile stresses, and that it yields shortly after 
cracking in the masonry takes place (Tomazevic, 1999). Damage is likely to include both 
horizontal flexural cracks and small diagonal shear cracks concentrated in the plastic hinge 
zone, as shown in Figure 2-8a). (The plastic hinge zone is the region of the member where 
inelastic deformations occur and will be discussed in Section 2.6.2.) In general, this is the 
preferred failure mode for RM shear walls, since the failure mechanism is ductile and effective in 
dissipating earthquake-induced energy once the yielding of vertical reinforcement takes place. 
 

 iPP  

 iVV  

ehVM   
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Flexure/lap splice slip failure may take place when starter reinforcing bars projecting from the 
foundations have insufficient lap splice length, or when the rebar size is large relative to wall 
thickness (e.g. 25M bars used in 200 mm walls), resulting in bond degradation and eventual 
rocking of the wall at the foundation level. Initially, vertical cracks appear at the location of lap 
splices followed by cracking and spalling at the toes of the wall (see Figure 2-8b)). This mode of 
failure may be fairly ductile, but it results in severe strength degradation and does not provide 
much energy dissipation. 
 
Flexure/out-of-plane instability may take place at high ductility levels (see Figure 2-8c)). Ductility 
is a measure of the capacity of a structure to undergo deformation beyond yield level while 
maintaining most of its load-carrying capacity (ductile seismic response will be discussed in 
Section 2.5.2). When large tensile strains develop in the tensile zone of the wall, that zone can 
become unstable when the load direction reverses in the next cycle and compression takes 
place. This type of failure has been observed in laboratory tests of well detailed, highly ductile 
flexural walls (Paulay and Priestley, 1993), but it has not been observed in any post-earthquake 
field surveys so far (FEMA 306, 1999). This failure mechanism can be prevented by ensuring 
stability of the wall compression zone through seismic design (see Section 2.6.4 for more 
details). 

 

Figure 2-8. Flexural failure mechanisms: a) ductile flexural failure; b) lap splice slip, and c) out-
of-plane instability (FEMA 306, 1999, reproduced by permission of the Federal Emergency 
Management Agency). 

 
2.3.1.2 Shear failure mechanisms 
Shear failure is common in masonry walls subjected to seismic loads and has been observed in 
many post-earthquake field surveys. Due to the dominant presence of diagonal cracks, this 
mode is also known as diagonal tension failure (see Figure 2-9a)). It usually takes place in walls 
and piers characterized by low aspect ratio ( wlwh  less than 0.8). These walls are usually 
lightly reinforced with horizontal shear reinforcement, so the shear failure takes place before the 
wall reaches its full flexural capacity. 
 
This mode of failure is initiated when the principal tensile stresses due to combined horizontal 
seismic loads and vertical gravity loads exceed the masonry tensile strength. When the amount 
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and anchorage of horizontal reinforcement are not adequate to transfer the tensile forces across 
the first set of diagonal cracks, the cracks continue to widen and result in a major X-shaped 
diagonal crack pair, thus leading to a relatively sudden and brittle failure.  Note that these 
“diagonal cracks” may develop either through the blocks, or along the mortar joints.  
 
In modern masonry construction designed according to code requirements, it is expected that 
adequate horizontal reinforcement is provided, and that it is properly anchored within wall end 
zones. Horizontal reinforcement can be effective in resisting tensile forces in the cracked wall 
and in enhancing its load-carrying capacity. After the initial diagonal cracks have been formed, 
several uniformly distributed cracks develop and gradually spread in the wall. Failure occurs 
gradually as the strength of the masonry wall deteriorates under the cyclic loading. Voon (2007) 
refers to this mechanism as “ductile shear failure”. It should be noted that ductile behaviour is 
usually associated with the flexural failure mechanism, while shear failure mechanisms are 
usually characterized as brittle. However, in very squat shear walls a ductile shear mechanism 
may be the only ductile alternative. 
 
Sliding shear failure may take place in masonry walls subjected to low gravity loads and rather 
high seismic shear forces. This condition can be found at the base level in low-rise buildings or 
at upper storeys in medium-rise buildings, where accelerations induced by the earthquake 
ground motion are high, but it can also take place at other locations. Sliding shear failure takes 
place when the shear force across a horizontal plane (usually the base in RM walls) exceeds 
the frictional resistance of the masonry, and a horizontal crack is formed at the base of the wall, 
as shown in Figure 2-9b). There may be very limited cracking or damage in the wall outside the 
sliding joint. The frictional mechanism at the sliding interface is activated after the clamping 
force developed by the vertical reinforcement decreases as it yields in tension. Even though this 
mode of failure is often referred to as a shear failure mode, it may also take place in the walls 
characterized by flexural behaviour. Pre-emptive sliding at the base limits the development of 
the full flexural capacity in the wall. 

 

Figure 2-9. Shear failure mechanisms: a) diagonal tension1, and b) sliding shear. 

2.3.2 Shear/Diagonal Tension Resistance 
The shear resistance of RM shear walls depends on several parameters, including the masonry 
compressive strength, grouting pattern, amount and distribution of horizontal reinforcement, 
magnitude of axial stress, and height/length aspect ratio. Over the last two decades, significant 
experimental research studies have been conducted in several countries, including the US, 
Japan, and New Zealand. Although the findings of these studies have confirmed the influence of 
the above parameters on the shear resistance of masonry walls, it appears to be difficult to 
quantify the influence of each individual parameter. This is because of the complexity of shear 
                                                
1 Source: FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency 
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resistance mechanisms and a lack of effective theoretical models. As a result, the shear 
resistance equations included in the Canadian masonry design standard, S304-14, and those of 
other countries, are based on statistical analyses of test data obtained from a variety of 
experimental studies. The diagonal tension shear resistance equation for RM walls in CSA 
S304-14 is based on research by Anderson and Priestley (1992), and other research based on 
wall tests in the US and Japan. Refer to Section B.1 for a detailed research background on the 
subject. 
 
This section discusses the in-plane shear resistance provisions of CSA S304-14 for non-seismic 
conditions, while the seismic requirements related to shear design are discussed in Section 
2.6.6. The design of walls built using running bond is discussed in this section, while walls built 
using a stack pattern are discussed in Section 2.7.3. 
 
2.3.2.1 Flexural shear walls 
 

10.10.2.1  
 
Flexural shear walls are characterized by a height/length aspect ratio of 1.0 or higher (see 
Figure 2-6a)). Consider a RM shear wall built in running bond which is subjected to the effect of 
a factored shear force, fV , and a factored bending moment, fM . 
 
Factored in-plane shear resistance, rV , is determined as the sum of contributions from masonry,

mV , and steel, sV , that is, 

smr VVV                                        ( 1)                                      

Masonry shear resistance, mV , is equal to:  

gdvwmmm PdbvV  )25.0(       ( 2) 

Wall dimensions ( wb and vd ): 
tbw   overall wall thickness (mm) (referred to as “web width” in CSA S304-14); note that wb

does not include flanges in the intersection walls 
vd  = effective wall depth (mm) 

wv ld 8.0  for walls with flexural reinforcement distributed along the length  
Wall cross-sectional dimensions ( wb and vd ) used for shear design calculations are illustrated in 
Figure 2-10. 

 

Figure 2-10. Wall cross-sectional dimensions used for in-plane shear design. 
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Effect of axial load ( dP ): 

dP  = axial compression load on the section under consideration, based on 0.9 times dead load, 
DLP , plus any axial load, N , arising from bending in coupling beams or piers (see Figure 2-11) 

DLd PP 9.0  for solid walls 

NPP DLd  9.0   for perforated/coupled walls 

Note that the net effect of tension and compression forces N  on the total shear in the wall is 
equal to 0. 

 

Figure 2-11. Axial load in masonry walls: a) solid; b) perforated. 

 
Effect of grouting ( g ): 
 g = factor to account for partially grouted walls that are constructed of hollow or semi-solid 
units 
  0.1g  for fully grouted masonry, solid concrete block masonry, or solid brick masonry 

g

e
g A

A
  for partially grouted walls, but 5.0g  

where (see Figure 2-4) 
eA = effective cross-sectional area of the wall (mm2) 
gA = gross cross-sectional area of the wall (mm2) 

Masonry shear strength ( mv ): 
mv represents shear strength attributed to the masonry in running bond, which is determined 

according to the following equation: 
 

10.10.2.3  

m
vf

f
m f

dV

M
v  )2(16.0  MPa units    ( 3) 

Shear span ratio (
vf

f

dV

M
):  
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The following limits apply to the shear span ratio: 

0.125.0 
vf

f

dV

M
 

 
10.10.2.1  

 
Reinforcement shear resistance, sV , is equal to:  

s

d
fAV v
yvss 6.0          (4) 

where 
vA = area of horizontal wall reinforcement (mm2) 

s  = vertical spacing of horizontal reinforcement (mm) 
 
As discussed in this section, the factored in-plane shear resistance, rV , is determined as the 
sum of contributions from masonry, mV , and reinforcement, sV , that is, 

smr VVV                                           ( 5)                                      

where  

gdvwmmm PdbvV  )25.0(         ( 6) 

and 

s

d
fAV v
yvss 6.0                                 (7) 

CSA S304-14 prescribes the following upper limit for the factored in-plane shear resistance rV  
for flexural walls: 

gvwmmrr dbfVV   4.0max                  (8) 

 

Commentary 
 
Axial compression: 
The equation for the factored shear resistance of masonry, mV , in accordance with CSA S304-
14 [equation (2)], takes into account the positive influence of axial compression. The term 

dP25.0  was established based on the statistical analyses of experimental test data carried out 
by Anderson and Priestley (1992). The 0.25 factor is consistent with that used for concrete in 
estimating the shear strength of columns. 
 
Consider a masonry shear wall subjected to the combined effect of axial and shear forces 
shown in Figure 2-12a). A two-dimensional state of stress develops in the wall: axial load, P , 
causes the axial compression stress, , while the shear force,V , causes the shear stress, v . 
The presence of axial compression stress delays the onset of cracking in the wall since it 
reduces the principal tensile stress due to the combined shear and compression. Shear cracks 
develop in the wall once the principal tensile stress reaches the masonry tensile strength (which 
is rather low). It should be noted, however, that the masonry shear resistance decreases in a 
wall section subjected to high axial compression stresses (see the diagram shown in Figure 
2-12b)). This is based on experimental studies – for more details refer to Drysdale and Hamid 
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(2005). Note that shear walls in low-rise masonry buildings are subjected to low axial 
compression stresses, as shown in Figure 2-12b). 
 
Grouting pattern: 
CSA S304-14 takes into account the effect of grouting on the masonry shear resistance through 
the g factor, which assumes the value of 1.0 for fully grouted walls and 0.5 or less for partially 
grouted walls. Research evidence indicates that fully grouted RM walls demonstrate higher 
ductility and strength under cyclic lateral loads than otherwise similar partially grouted 
specimens, as discussed in Section B.5. 
 

 

Figure 2-12. Effect of axial stress: a) a shear wall subjected to the combined shear and axial 
load; b) relationship between the shear stress at failure and the compression stress. 

Masonry shear strength ( mv ): 
Masonry shear strength defined by equation (3) depends on masonry tensile strength 
represented by the mf   term, as well as on the shear span ratio, vff dVM . Walls with shear 
span ratios of less than 1.0 behave like squat walls, and are characterized by the highest 
masonry shear resistance, as illustrated in Figure 2-13.    

 

Figure 2-13. Effect of shear span ratio on the masonry shear strength. 
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For shear walls, the ratio ff VM  is equal to the effective height, eh , at which the resultant 
shear force fV acts, thereby causing the overturning moment eff hVM   (see Figure 2-14). 
The term vd denotes the effective wall depth, which is equal to a fraction of the wall length, wl . 
Hence, vff dVM  is equal to shear span ratio, ve dh , which is related to the height-to-length 
aspect ratio. 

 

Figure 2-14. Shear span ratio 
v

e

d

h
. 

Reinforcement shear resistance ( sV ): 
Reinforcement shear resistance in RM shear walls in running bond is mainly provided by 
horizontal steel bars and/or joint reinforcement. This model assumes that a hypothetical failure 
plane is at a 45° angle to the horizontal axis, as shown in Figure 2-15a). When diagonal 
cracking occurs, tension develops in the reinforcing steel crossing the crack. (Before the 
cracking takes place, the entire shear resistance is provided by the masonry.) 
 
The resistance provided by shear reinforcement is taken as the sum of tension forces 
developed in steel reinforcement (area vA ) which crosses the crack, as shown in Figure 2-15b). 
The number of reinforcing bars crossing the crack can be approximately taken equal to sdv . 
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Figure 2-15. Steel shear resistance in flexural walls: a) wall elevation; b) free-body diagram 
showing reinforcement crossing a diagonal crack. 

It appears that the steel reinforcement is less effective in resisting shear in masonry walls than 
in reinforced concrete walls. This may be due to the rather low masonry bond strength, so that 
not all bars crossing the assumed failure plane are fully stressed, plus the failure plane may be 
at an angle of less than 45° in this high moment region. Even in lightly reinforced masonry walls, 
horizontal reinforcement is less effective than in otherwise similar reinforced concrete walls. It is 
difficult to exactly estimate the contribution of the steel reinforcement to the shear resistance of 
masonry walls. Anderson and Priestley (1992) came to the conclusion that the contribution of 
steel shear reinforcement in a masonry wall is equal to 50% of the value expected in reinforced 
concrete walls. As a result, they proposed the following equation for the nominal steel shear 
resistance, sV , (note that 

s
 is equal to 1): 

s

d
fAV v
yvs 5.0  

CSA S304-14 uses the same sV  equation (4), except that the coefficient 0.6 is used instead of 
0.5. Note also that, when 0.6 is multiplied by the 

s
 value of 0.85, the resulting value is equal to 

5.051.085.06.0  . 
 
The contribution of vertical reinforcement to shear resistance in masonry walls is not considered 
to be significant and it is not accounted for by the CSA S304-14 shear design equation. The 
analysis of experimental test data by Anderson and Priestley (1992) showed an absence of any 
correlation between the wall shear resistance and the amount of vertical steel reinforcement.  
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2.3.2.2 Squat shear walls 
 

10.10.2.2  
 
Squat shear walls are characterized by a low height/length aspect ratio, ww lh , less than unity. 
The factored shear resistance of squat shear walls, rV , should be determined from the same 
equation as prescribed for flexural walls. To recognize the fact that the shear resistance of 
masonry walls increases with a decrease in the height/length aspect ratio, CSA S304-14 
prescribes an increased upper limit for the factored shear resistance as follows: 
 

)2(4.0max
w

w
gvwmmrr l

h
dbfVV           0.1

w

w

l

h
        (9) 

Cl.10.10.2.2 also prescribes that this maximum shear resistance can be used only when it is 
ensured that the shear input to the wall is distributed along the entire length, and that a failure of 
a portion of the wall is prevented. This is discussed further in the following Commentary. 
 
Commentary 

 
The first term in equation (9) is equal to the maximum rV  limit for flexural shear walls (equation 
8). Equations (8) and (9) have the same value for a wall with the aspect ratio 0.1ww lh . The 
term  ww lh2 that accounts for the effect of wall aspect ratio has the minimum value of 1.0 for 
the aspect ratio of 1.0, and its value increases for squat walls – it is equal to 1.5 for the aspect 
ratio of 0.5.   
 
Cl.10.10.2.2 prescribes that an increased maximum rV  limit for squat shear walls applies only 
when the designer can ensure that the shear input to the wall can be distributed along the entire 
wall length. Earthquake-induced lateral load in a masonry building is transferred from the floor 
or roof diaphragm into the shear walls. Floor and roof diaphragms in masonry buildings range 
from flexible timber diaphragms to rigid reinforced concrete slab systems. The type of load 
transfer at the wall-to-diaphragm connection depends on the diaphragm rigidity (see Section 
1.5.9.4 for more details).  
 
CSA S304-14 Cl.10.15.1.4 requires that a bond beam be placed at the top of the wall, where the 
wall is connected to roof and floor assemblies. The bond beam therefore acts as a “transfer 
beam” that ensures a uniform shear transfer along the top of the wall, as shown in Figure 2-16a) 
(this can be effectively achieved when the vertical reinforcement extends into the beam).  
 
Shear forces are transferred from the top to the base of the wall by means of a compression 
strut. It should be noted that a majority of experimental studies used specimens with a rigid 
transfer beam cast on top of the wall, as discussed by Anderson and Priestley (1992). Provision 
of the top transfer beam (or an alternative means to apply shear force uniformly along the wall 
length) is required for the seismic design of Moderately Ductile Squat shear walls (Cl.16.7.3.1). 
 
Where there is no transfer beam or bond beam at the top of the wall as shown in Figure 2-16b), 
a partial shear failure of the wall is anticipated. In such cases, the designer cannot take 
advantage of the increased maximum rV limit for squat shear walls; the limit pertaining to 
flexural shear walls should be used instead. 
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Figure 2-16. Shear failure mechanisms in squat shear walls: a) wall with the top transfer beam – 
a desirable failure mechanism; b) partial failure of a squat wall without the top beam. 

2.3.3 Sliding Shear Resistance 
Sliding shear failure may occur before walls fail in the flexural mode. Experimental studies 
(Shing et al., 1990) have shown that for squat walls, a sliding shear mechanism can control the 
failure and prevent the development of their full flexural capacity. This section discusses the 
sliding shear resistance provisions of CSA S304-14 for non-seismic conditions; seismic 
requirements related to sliding shear resistance will be discussed in Section 2.6.7. 
 

10.10.5  
 
Sliding shear failure can occur in both squat and flexural walls; however, it is much more 
common in squat walls having high shear resistance, rV . Sliding shear resistance is usually 
checked at the foundation-to-wall interface (construction joint), but may need to be checked at 
other sections as well (especially upper portions of multi-storey flexural walls). 
 

10.10.5.1  
 
Sliding shear resistance is generally taken as a frictional coefficient times the maximum 
compressive force at the sliding plane. In accordance with CSA S304-14, the factored in-plane 
sliding shear resistance, rV , shall be taken as: 

CV mr        ( 10) 

where 
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   is the coefficient of friction 
      = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 
      = 0.7 for a masonry-to-smooth concrete or bare steel sliding plane 
      = other (where flashings reduce friction that resists sliding shear, a reduced coefficient of 
friction accounting for the flashing material properties should be used) 
C  is the compressive force in the masonry acting normal to the sliding plane, normally taken as  

yd TPC   

yssy fAT   the factored tensile force at yield of the vertical reinforcement of area sA  (yield 

stress yf ) 

dP  = axial compressive load on the section under consideration, based on 0.9 times dead load, 
DLP , plus any axial load acting from bending in coupling beams 

 
Note that the compressive force C was referred to as P2 in CSA S304.1-04. Also, sA denotes the 

total area of vertical reinforcement crossing the sliding plane for seismic design of Conventional 
Construction shear walls and Moderately Ductile shear walls. However, sA denotes the area of 

reinforcement in the tension zone only for Ductile shear walls and shear walls with boundary 
elements. For more details refer to Section 2.6.7. 
 
Commentary 

 
When sliding begins, the sand grains in the mortar tend to ride up and over neighbouring 
particles causing the mortar to expand in the vertical direction. This creates tension (and 
ultimately yielding) in the vertical reinforcing bars at the interface (note that adequate anchorage 
of reinforcement on both sides of the sliding plane is necessary to develop the yield stress). As 
a result, a clamping force is formed between the support and the wall, normally taken equal to 

yss fA , as shown in Figure 2-17. The shear is then transferred through friction at the interface 
along the compression zone of the wall.  

 

Figure 2-17. In-plane sliding shear resistance in masonry shear walls: a) Conventional 
Construction and Moderately Ductile shear walls, and b) Ductile shear walls. 
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In accordance with CSA S304-14, the maximum compression force, C , is usually considered to 
be equal to the axial load plus the yield strength of the reinforcement/dowels crossing the sliding 
plane. Since the reinforcement yields in tension, shear resistance of the dowels cannot be 
included. This assumption is appropriate for walls that are not expected to demonstrate 
significant ductility. 
 
However, if a wall is subjected to its ultimate moment capacity, which causes yielding of the 
compression reinforcement, there is a tendency for this reinforcement to remain in compression 
to maintain the moment resistance, especially after the wall has been cycled into the yield range 
once or twice. Thus, when the compression steel remains in compression, the normal force 
resisting sliding will be limited to the resultant force in the tension steel, yT , as shown in Figure 
2-17b). This assumption is included in seismic design requirements for moderately ductile walls 
(to be discussed in Section 2.6.7). 
  
The presence of flashing at the base of the wall usually reduces the sliding shear resistance 
when the frictional coefficient for the flashing-to-wall interface is low (Anderson and Priestley, 
1992). 
 

2.3.4 In-Plane Flexural Resistance Due to Combined Axial Load and 
Bending 

Seismic shear forces acting at floor and roof levels cause overturning bending moments in a 
shear wall, which reach the maximum at the base level. The theory behind the design of 
masonry wall sections subjected to the effects of flexure and axial load is well established, and 
the design methodology is essentially the same as that related to reinforced concrete walls.  
Note that CSA S304-14 Cl.10.2.8 prescribes the use of reduced effective depth, d , for flexural 
design of squat shear walls, that is: 
 

hld w 7.067.0   

 
This provision was introduced for the first time in the 2004 edition of CSA S304.1 to account for 
the deep beam-like flexural response of squat shear walls. This provision can be rationalized for 
non-seismic design, but it should not be used in seismic conditions, as all the tension steel is 
expected to yield, as shown in Figure 2-17b). A wall design using this provision could result in a 
flexural capacity that is larger than permitted according to the Capacity Design approach.   
 
For a detailed flexural design procedure the reader is referred to Appendix C (Section C.1.1). 

2.4 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading 

2.4.1 Background 
Seismic shaking in a direction normal to the wall causes out-of-plane wall forces that result in 
bending and shear stresses and may, ultimately, cause out-of-plane collapse of the walls. Note 
that the out-of-plane seismic response of masonry walls is more pronounced at higher floor 
levels (due to larger accelerations) than in the lower portions of the buildings, as shown in 
Figure 2-18. When walls are inadequately connected to the top and bottom supports provided 
by floor and/or roof diaphragms, out-of-plane failure is very likely, and may also lead to a 
diaphragm failure. For more details on wall-to-diaphragm connections, the reader is referred to 
Section 2.7.6. The design of masonry walls for shear and flexure due to the effects of out-of- 
plane seismic loads is discussed in this section.  
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Figure 2-18. Out-of-plane vibration of walls (Tomazevic, 1999, reproduced by permission of the 
Imperial College Press). 

2.4.2 Out-of-Plane Shear Resistance 
 

10.10.3  
 
The factored out-of-plane shear resistance, rV , shall be taken as:  

)25.0( dmmr PdbvV               ( 11) 

where 

mm fv  16.0  MPa units  (Cl.10.10.1.4)   

with the following upper limit, 

 dbfVV mmrr  4.0max                   ( 12)       

where  
d  is the distance from extreme compression fibre to the centroid of tension reinforcement, 
b is the cumulative width of the cells and webs within a length not greater than four times the 
actual wall thickness )4( t around each vertical bar (for running bond), as shown in Figure 
2-19a). Note that the webs are the cross-walls connecting the face shells of a hollow or semi-
solid concrete masonry unit or a hollow clay block (S304-14 Cl.10.10.3). 
 
Commentary 

 
Note that the equation for masonry shear resistance, mV , is the same for shear walls subjected 
to in-plane and out-of-plane seismic loading. There is no sV  contribution because the horizontal 
reinforcement is provided only in the longitudinal direction and it does not contribute to the out-
of-plane shear resistance.  
 
In partially grouted walls, the out-of-plane shear design should be performed using a T-shaped 
wall section, where b  denotes the web width (see Figure 2-19a)). 
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Figure 2-19. Effective width, b , for out-of-plane seismic effects: a) shear, and b) flexure. 

2.4.3 Out-of-Plane Sliding Shear Resistance 
 

10.10.5.2  
 
The factored out-of-plane sliding shear resistance, rV , is calculated from the following equation 
using the shear friction concept: 

CV mr        ( 13) 

where 
   = the coefficient of friction (same as for the in-plane sliding shear resistance) 

C   = compressive force in the masonry acting normal to the sliding plane, taken as  

yd TPC   

yT = the factored tensile force at yield of the vertical reinforcement detailed to develop yield 
strength. In determining the out-of-plane sliding shear resistance, the entire vertical 
reinforcement should be taken into account in determining the factored tensile yield force, yT , 
irrespective of the wall class and the associated ductility level.  
 
For more details refer to the discussion on the sliding shear resistance of shear walls under in-
plane seismic loading (Section 2.3.3).  

2.4.4 Out-of-Plane Section Resistance Due to Combined Axial Load and 
Bending 

Masonry walls subjected to out-of-plane seismic loading need to be designed for the combined 
effects of bending and axial gravity loads.  For flexural design purposes, wall strips of 
predefined width b  (S304-14 Cl.10.6.1) are treated as beams spanning between the lateral 
supports. When the walls span in the vertical direction, floor and/or roof diaphragms provide 
lateral supports. Walls can also span horizontally, in which case lateral supports need be 
provided by cross walls or pilasters. For detailed design procedures, the reader is referred to 
Section C.1.2 in Appendix C. It should be noted that, for the purpose of out-of-plane seismic 
design, the maximum permitted compressive strain in the masonry is equal to 0.003 (note that 
this is an arbitrary value set for the purpose of the analysis). CSA S304-14 does not require a 
ductility check, because the mechanism of failure is different for the in-plane and out-of-plane 
seismic resistance, and the wall is not expected to undergo significant rotations at the locations 
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of maximum bending moments. Very large curvatures would be required to cause compression 
failure of the masonry, corresponding to a high strain gradient over a very small length (equal to 
the wall thickness). Consequently, there is no need to use the reduced compressive strain limit 
of 0.0025 for this load condition.  
 

10.6.1  
 
For the case of out-of-plane bending, the effective compression zone width,b , used with each 
vertical bar in the design of walls with vertical reinforcement shall be taken as the lesser of (see 
Figure 2-19b)) 

a) spacing between vertical bars s , or 
b) four times the actual wall thickness )4( t  

Note that the discussion on out-of-plane stability issues is outside the scope of this document 
and it is covered elsewhere (see Drysdale and Hamid, 2005). 
 

2.5 General Seismic Design Provisions for Reinforced Masonry Shear 
Walls 

2.5.1 Capacity Design Approach 
 

16.3.1  
 
CSA S304-14 Cl.16.3.1, references capacity design principles where inelastic deformations are 
expected to occur in chosen energy-dissipating components of the SFRS, which are designed 
and detailed accordingly. All other load-bearing components are designed and detailed to have 
sufficient strength to ensure that the chosen means of energy-dissipation can be maintained. 
The NBC 2015 requires that all elements not considered part of the SFRS have the capacity to 
undergo the earthquake induced deformations, and that stiff elements, such as nonloadbearing 
walls and partitions, behave elastically or are separated from the SFRS. 
 
Every structure or structural component has several possible modes of failure, some of which 
are ductile, while others are brittle. The satisfactory seismic response of structures requires that 
brittle failure modes be avoided. This is accomplished through the application of a capacity 
design approach, which has been used for seismic design of reinforced concrete structures 
since the 1970’s (Park and Paulay, 1975). The objective of the capacity design approach is to 
force the structure to yield in a ductile manner without failing at the expected displacements 
(including other components of the structure, such as columns). At the same time, the rest of 
the structure needs to remain strong enough, say in shear, or flexible enough not to fail under 
gravity loads at these displacements. 
 
This concept can be explained by using the example of a chain shown in Figure 2-20, which is 
composed of both brittle and ductile links. When subjected to force, F , if the brittle link is the 
weakest, the chain will fail suddenly without significant deformation (see Figure 2-20a)). If a 
ductile link is the weakest, the chain will show significant deformation before failure, and may 
not fail or break if the deformation is not too great (see Figure 2-20b)). The structural designer is 
responsible for ensuring that the structure experiences a desirable ductile response when 
exposed to the design earthquake, that is, an earthquake of the expected intensity for the 
specific building site location. 
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Figure 2-20. Chain analogy for capacity design: a) brittle failure; b) ductile failure.  

The capacity design approach can be applied to the seismic design of RM shear walls. The key 
failure modes in RM walls include flexural failure (which is ductile and therefore desirable in 
seismic conditions) and shear failure (which is brittle and should be avoided in most cases). For 
a detailed discussion of masonry failure modes refer to Section 2.3.1.  
 
Note that the following three resistance “levels” are used in seismic design of masonry shear 
walls: 

 Factored resistances rM  and rV , determined using appropriate material resistance 
factors, that is, 

m
 = 0.6 and 

s
 = 0.85, and specified material strength; 

 Nominal resistances nM  and nV , determined without using material resistance factors, 
that is, 

m
 = 1.0 and 

s
 = 1.0, and specified material strength; 

 Probable resistances pM  and pV , determined without using material resistance factors; 
stress in the tension reinforcing is taken equal to yf25.1 , and the masonry compressive 
strength is equal to mf  . 

For the probable resistance parameters discussed above, it should be noted that the flexural 
resistance of a masonry shear wall is usually governed by the yield strength of the 
reinforcement, yf , while the masonry compressive strength, mf  , has a much smaller influence. 
Thus, the probable resistances are determined by taking the masonry strength equal to mf  and 
the real yield strength of the reinforcement equal to 1.25 the specified strength, that is, yf25.1 .  
 
Consider a masonry shear wall subjected to an increasing lateral seismic force, V , and the 
corresponding deflection shown in Figure 2-21a). The wall has been designed for a “design 
shear force” shown by a horizontal line. However, the actual wall capacity typically exceeds the 
design force, and the wall is expected to deform either in a flexural or shear mode at higher load 
levels. Conceptual force-deflection curves corresponding to shear and flexural failure 
mechanisms are also shown on the figure. These curves are significantly different: a shear 
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failure mechanism is characterized by brittle failure at a small deflection, while a ductile flexural 
mechanism is characterized by significant deflections before failure takes place. 
 
An earthquake will cause significant lateral deflections, which are more or less independent of 
the strength of the structure. If the governing failure mode corresponding to the lowest capacity 
occurs at a smaller deflection, the wall will fail in that mode. For example, the wall shown in 
Figure 2-21a) is expected to experience shear failure, since the maximum force corresponding 
to shear failure is lower than the force corresponding to flexural failure. 
 
Consider a wall that is designed to fail in shear when the shear resistance, AV , and 
corresponding displacement A  have been reached, and to fail in flexure when the shear force, 

BV , and corresponding displacement B  have been reached (see Figure 2-21b)). If the wall is 
weaker in flexure than in shear, that is, AB VV  , the shear failure will never take place. In this 
case, a ductile link corresponding to the flexural failure is the weakest and governs the failure 
mode. Such a wall will experience significant deflections before the failure (note that AB  ); 
this is a desirable seismic performance. 
 
However, suppose that the wall flexural resistance is higher (this is also known as “flexural 
overstrength”) and now corresponds to moments associated with the shear force, CV , as shown 
in Figure 2-21c). Now the wall will fail in shear at the force, AV , and will never reach the force CV . 
This is not a desirable wall design, since shear failure is brittle and sudden and should be 
avoided. Thus, it is important that the member shear strength be greater than its flexural 
overstrength, as we will discuss later in this section. 
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Figure 2-21. Shear force-deflection curves for flexural and shear failure mechanisms:  
a) a possible design scenario; b) flexural mechanism governs; c) shear mechanism governs 
(adapted from Nathan). 
 
The last example demonstrates that making the wall “stronger” can have unintended adverse 
effects, and can change the failure mode from a ductile flexural mode (good) to a brittle shear 
mode (bad). Thus a designer should not indiscriminately increase member moment capacity 
without also increasing its shear capacity. According to the capacity design approach, ductile 
flexural failure will be assured when the shear force corresponding to the upper bound of 
moment resistance at the critical wall section is less than the shear force corresponding to the 
lower bound shear resistance of the shear failure mechanism. This will be explained with an 
example of the shear wall shown in Figure 2-22.  
 
When the moment at the base is equal to the nominal moment resistance, nM (this is considered 
to be an upper bound for the moment resistance value and it is explained below), the 
corresponding shear force acting at the effective height is equal to  

ennb hMV   

or 
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)(* ffnnb MVMV   

 
as shown in Figure 2-22a). nbV  denotes the resultant shear force corresponding to the 
development of nominal moment resistance, nM , at the base of the wall. To ensure the 
development of a ductile flexural failure mode, nbV  must be less than the corresponding factored 
shear resistance, rV , as indicated in Figure 2-22b). 

 

Figure 2-22. Comparison of shear forces at the base of the wall: a) shear force corresponding to 
the nominal flexural resistance, and b) shear force equal to the shear resistance. 

 
Although CSA S304-14 Cl.16.3.1 requires that the capacity design approach should be applied 
to ductile masonry walls, it is also recommended that this approach be applied to all RM shear 
walls. As a minimum, the factored shear resistance, rV , should not be less than the shear 

corresponding to the factored moment resistance, rM , of the wall system at its plastic hinge 
location. 
 
The minimum required factored shear resistance for various wall classes discussed in Section 
2.6.5 is based on the Capacity Design concept discussed in this section. 

2.5.2 Ductile Seismic Response  
A prime consideration in seismic design is the need to have a structure capable of deforming in 
a ductile manner when subjected to several cycles of lateral loading well into the inelastic range. 
Ductility is a measure of the capacity of a structure or a member to undergo deformations 
beyond yield level while maintaining most of its load-carrying capacity. Ductile structural 
members are able to absorb and dissipate earthquake energy by inelastic (plastic) 
deformations, which are usually associated with permanent structural damage.  
 
The concept of ductility and ductile response is introduced in Section A-2. Key terms related to 
the ductile seismic response of masonry shear walls, including ductility ratio, curvature, plastic 
hinge, etc., are discussed in detail in Section B.2. It is very important for a structural designer to 
have a good understanding of these concepts before proceeding with the seismic design and 
detailing of ductile masonry walls in accordance with CSA S304-14. 
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2.5.3 Structural Regularity 
16.3.2  

Combinations of SFRSs acting in the same direction may be used, provided that each system 
continues over the full building height. When SFRSs are not continuous over the building height 
or change type over the building height, when elements from two or more SFRS types are 
combined to create a hybrid system, or when a significant irregularity exists, an inelastic 
analysis such as a static pushover or dynamic analysis shall be performed to: 
a) verify the compatibility of the systems; 
b) confirm the assumed energy-dissipating mechanisms; 
c) show that the inelastic rotational demands are less than the inelastic rotational capacities; 
and 
d) account for redistribution of forces. 
Note: The inelastic analysis may be waived if the performance of the system has been 
previously verified by experimental evidence or analysis. Systems requiring inelastic analysis 
shall be treated as alternative solutions under the NBC. 
 
Commentary 

 
This provision is intended to ensure a satisfactory seismic performance of structures with more 
than one SFRS, also known as “hybrid systems”. In the case of masonry structures, this may 
refer to different masonry SFRSs, e.g. RM walls characterized by different ductility levels (a mix 
of Moderately Ductile and Ductile walls), or a combination of wall and frame systems. For 
example, the design of open storefront buildings with walls on three sides and non-structural 
glazing on the fourth side (see Figure 1-12) may require the use of framed SFRS on the open 
side of the building. It is required to ensure compatibility of these SFRSs in terms of lateral 
displacements/drifts (S304-14 Cl.16.3.2). Also, internal forces in the frame and wall members 
must be redistributed based on the calculations.     

2.5.4 Analysis Assumptions – Effective Section Properties 
16.3.3  

In lieu of a more accurate method for determining effective cross-sectional properties, the 
design seismic force and deformations of a SFRS may be calculated based on reduced section 
properties to account for nonlinear behavior. These effective cross-sectional properties should 
be used to determine forces and deflections in shear walls subjected to seismic effects. 
 
The SFRS components’ gross cross-sectional properties shall be modified according to the 
following: 
 

  mgsge fAPII '3.0    where gecr III   

  mgsge fAPAA '3.0   where gecr AAA   

 
where sP  is factored axial force due to dead and live loads determined at the base of the wall for 

the seismic load combinations. For all shear walls in the main SFRS, an average value of 
 mgs fAP '  may be used. Note that gecr III ,, denote the moments of inertia of cracked, 

effective, and gross cross-sections of a masonry shear wall, respectively. Also, gecr AAA ,,

denote the cross-sectional areas of cracked, effective, and gross cross-sections of a masonry 
shear wall, respectively.  
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Since this provision applies to RM sections, transformed section properties should be 
considered; this is similar to S304-14 provisions for deflection calculations for flexural members 
(Cl.11.4.3).  
 
Commentary 

 
The behaviour of masonry walls subjected to increasing lateral loading is initially elastic until 
cracking takes place, at which point there is a substantial drop in stiffness. Figure 2-23 shows 
the conceptual force versus deformation envelopes for RM walls subjected to lateral loading. It 
can be seen that the initial elastic stiffness Ki drops to a smaller value, corresponding to 
effective stiffness Ke, due to cracking in walls with shear-dominant behaviour (Figure 2-23b)), or 
yielding in walls with flexure-dominant behaviour (Figure 2-23 a)).  S304-14 Cl.16.3.3 introduced 
equations for estimating the effective post-cracking stiffness of ductile RM shear walls. This 
stiffness reduction is quantified through effective moment of inertia Ie and effective cross-
sectional area Ae, as discussed above. The extent of the stiffness reduction depends on the 
level of axial precompression (the stiffnesses higher in walls with higher axial stresses). This is 
in line with the findings of research by Priestley and Hart (1989), and the provisions related to 
reinforced concrete shear walls (CSA A23.3-04 Cl.21.2.5.2.2). It should be noted that masonry 
shear walls are expected to experience a more significant drop in stiffness than RC shear walls. 
In an hypothetical situation where a wall is not subjected to axial precompression, a reduction in 
stiffness in a masonry wall is 70% according to S304-14 (compared to a 40% stiffness reduction 
in a reinforced concrete shear wall according to CSA A23.3-04). Note that the equation for 
effective stiffness of reinforced concrete shear walls has changed in CSA A23.3-14 
(Cl.21.2.5.2): the effective stiffness no longer depends on axial compression stress, but 
depends on the ductility level. The maximum stiffness reduction for RC shear walls ranges from 
0 to 50%. Refer to Section C.3.5 for a more detailed discussion regarding the effect of cracking 
on wall stiffness. 

 
Figure 2-23. Effective stiffness in reinforced masonry shear walls: a) flexure-dominant 
behaviour, and b) shear-dominant behaviour (based on Shing et al. 1990, 1991). 
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2.5.5 Redistribution of design moments from elastic analysis 
16.6.3  

 
The redistribution of design moments obtained from elastic analysis, using the effective cross-
sectional properties specified in Cl.16.3.3 (see Section 2.5.4), may be used where it can be 
demonstrated that the ductility capacities of affected components are not exceeded. 
Note: inelastic redistribution of moments may result in reduced maximum moment resistance 
requirements. 

2.5.6 Minor shear walls as a part of the SFRS  
16.3.4  

 
Masonry shear walls designed according to S304-14 seismic provisions should be designed to 
provide the required ductility under the action of the specified factored loads (Cl.16.3.4.1). 
Cl.16.3.4.2 addresses the requirements for minor shear walls in masonry buildings. It states that 
when it can be shown through analysis that the stiffest masonry shear walls attract 90% or more 
of the design seismic force on the building, such walls can be designated as the main SFRS 
and shall then be designed for 100% of the design seismic force.  
 
Walls not considered to be part of the main SFRS shall be designed to behave elastically or to 
have sufficient non-linear capacity to support their gravity loads while undergoing deformations 
compatible with those of the main SFRS.  
 
Any masonry shear wall with sufficient stiffness to attract 2.5% or more of the design seismic 
force or 50% of the average shear wall force in themain SFRS shall be included in the main 
SFRS. 
 
Minor shear walls may be included in the main SFRS. 

2.6 CSA S304-14 Seismic Design Requirements 

2.6.1 Classes of reinforced masonry shear walls 
Table 4.1.8.9 of NBC 2015 identifies the following five classes of masonry walls based on their 
expected seismic performance quantified by means of the ductility-related force modification 
factor, dR  (see also Section 1.7): 

1. Unreinforced Masonry and other masonry structural systems not listed below ( 0.1dR ) 
2. Conventional Construction shear walls ( 5.1dR ) 
3. Moderately Ductile shear walls ( 0.2dR ) 
4. Moderately Ductile Squat shear walls ( 0.2dR )  
5. Ductile shear walls ( 0.3dR ) – note that this is a new class. 

Classes 3, 4, and 5 are referred to as “ductile shear walls”. The same value of overstrength 
factor, oR , of 1.5 is prescribed for all the above listed wall classes, except for unreinforced 
masonry where oR  is equal to 1.0.  
 
CSA S304-14 Clause 16 outlines the seismic design provisions for masonry shear walls. Note 
that these provisions have been substantially revised compared to the S304.1-04 provisions. 
 
Note that class “limited ductility shear walls” (S304.1-04, Cl.10.16.4) no longer exists. 
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The seismic design and detailing requirements for various masonry Seismic Force Resisting 
Systems (SFRSs) are summarized in Table 2-1. In accordance with NBC 2015 Sent.4.1.8.1.1, 
seismic design must now be performed for all structures in Canada. The requirements are 
somewhat relaxed in areas with a lower seismic hazard, when   16.02.0 aaE SFI and 

  03.00.2 aaE SFI  (NBC 2015 Sent.4.1.8.1.2). 
 

Table 2-1. Summary of Seismic Design and Detailing Requirements for Masonry SFRSs in CSA 
S304-14 

 
Type of SFRS Common 

applications dR  oR  Expected 
seismic 
performance  

Summary of CSA 
S304-14 design 
requirements 

CSA S304-14 
reinforcing and 
detailing 
requirements 

Unreinforced 
masonry 

Low-rise 
buildings 
located in low 
seismicity 
regions 

1.0 1.0 Potential to 
form brittle 
failure modes 

 Can be used only 
at sites where  

  35.02.0 aSaFEI  

 Walls must have 
factored shear and 
flexural resistances 
greater than or equal to 
corresponding factored 
loads 

Reinforcement not 
required 

Conventional 
Construction 
shear walls 

Used for most 
building 
applications 

1.5 1.5 Design to 
avoid soft 
stories or 
brittle failure 
modes 

     Walls must have 
factored shear and 
flexural resistances 
greater than or equal to 
corresponding factored 
loads 
     Capacity design 
approach followed to 
determine min shear 
resistance (Cl.16.5.4)  

Minimum seismic 
reinf. requirements 
(Cl.16.4.5) apply if  

  35.02.0 aSaFEI  

otherwise follow 
minimum non-
seismic reinf. 
requirements 
(Cl.10.15.1) 

Moderately 
Ductile shear 

walls 

Used for post-
disaster or 
high-risk 
buildings or 
where 

0.2dR  is 

desired 

2.0 1.5 Dissipation of 
earthquake 
energy by 
ductile flexural 
yielding in 
specified 
locations; 
shear failure to 
be avoided 

 Walls to be 
designed using factored 
moment resistance 
such that plastic hinges 
develop without shear 
failure and local 
buckling 
 A 25% reduction in 
masonry resistance for 

rV  calculations 

 Sliding shear failure 
at joints to be avoided 
 Wall height-to-
thickness ratio 
restrictions in place to 
avoid out-of-place 
instability 
 Boundary elements 
may be provided at wall 
ends to increase 
compressive strain limit 

Minimum seismic 
reinforcement 
requirements 
(Cl.16.4.5) must be 
satisfied, as well as 
seismic detailing 
requirements for 
moderately ductile 
walls (Cl.16.8.5) 
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Ductile shear 
walls 

Used for post-
disaster or 
high-risk 
buildings or 
where 

0.2dR  is 

desired 

3.0 1.5 Dissipation of 
earthquake 
energy by 
ductile flexural 
yielding in 
specified 
locations; 
shear failure to 
be avoided 

 Walls to be 
designed using factored 
moment resistance 
such that plastic hinges 
develop without shear 
failure and local 
buckling 
 A 50% reduction in 
masonry resistance for 

rV  calculations 

 Sliding shear failure 
at joints to be avoided 
 Wall height-to-
thickness ratio 
restrictions in place to 
avoid out-of-place 
instability 
 Boundary elements 
may be provided at wall 
ends to increase 
compressive strain limit 

Minimum seismic 
reinforcement 
requirements 
(Cl.16.4.5) must be 
satisfied, as well as 
seismic detailing 
requirements for 
ductile walls 
(Cl.16.9.5) 
 
 

 
According to NBC 2015 Cl.4.1.8.9.(1) (Table 4.1.8.9), unreinforced masonry walls can be 
constructed at sites where   35.02.0 asE SFI , but the building height cannot exceed 30 m. 
 
Reinforced masonry must be used for loadbearing and lateral load-resisting masonry, and 
masonry enclosing elevator shafts and stairways, where the seismic hazard index 

  35.02.0 aaE SFI  (S304-14, Cl.16.2.1).  Note that the minimum CSA S304-14 seismic 
reinforcement requirements for masonry walls are summarized in Table 2-3. 
 
Note that squat shear walls are common in typical low-rise masonry construction, including 
warehouses, school buildings, and fire halls. Some of these buildings, for example fire halls, are 
considered to be post-disaster facilities according to NBC. The restriction, first introduced in 
NBC 2005 (Sent. 4.1.8.10.2), prescribes that post-disaster facilities require an SFRS with dR  of 
2.0 or higher. An implication of this provision is that squat shear walls in post-disaster buildings 
be designed following the CSA S304-14 provisions for “moderately ductile squat shear walls”. 

2.6.2 Plastic hinge region 
 

16.6.2 
16.8.4 
16.9.4 

 

 

A plastic hinge is defined by S304-14 Cl. 16.6.2 as “a region of a member where inelastic 
flexural curvatures occur and additional seismic detailing is required”. The required extent 
(height) of the plastic hinge region above the base of a shear wall in the vertical direction, ph , is 

prescribed by CSA S304-14 as follows (see Figure 2-24): 

1. Moderately Ductile shear walls (Cl.16.8.4):  

ph = greater of 2/wl or 6/wh  and 1.5p wh l  Ductile shear walls (Cl.16.9.4): 

0.5 0.1p w wh l h    and 0.8 1.5w p wl h l   

2. Moderately Ductile and Ductile shear walls with boundary elements (Cl.16.10.3): 
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0.5 0.1p w wh l h    and 2.0w p wl h l   

Where wl is the length of the longest wall that is a part of the SFRS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2-24. The extent of plastic hinge region ph  

 
Commentary 

 

According to CSA S304-14 Cl.16.6.2, the plastic hinge is the region of the member where 
inelastic flexural curvatures occur. In RM shear walls that are continuous along the building 
height, this region is located at the wall base, as shown in Figure 2-24. The plastic hinge extent 
(height) can be determined as a fraction of the wall height and/or length. In taller flexural walls 
(three stories or higher), this region can be up to one storey high (usually located at the first 
storey level). In low-rise buildings, this height is smaller, but it does exist, even in squat shear 
walls when they are subjected to the combined effects of axial load and bending and show 
flexure-dominated response. 

 
The ability of a plastic hinge to sustain these plastic deformations will determine whether a 
structural member is capable of performing at a certain ductility level. The extent of the plastic 
hinge region is usually termed the plastic hinge height or plastic hinge length. The ph  value 
depends on the moment gradient, wall height, wall length, and level of axial load. 
The CSA S304-14 plastic hinge length requirements for ductile shear walls are different from the 
corresponding CSA S304.1-04 requirements. Note that the CSA S304-14 prescribed plastic 
hinge length values are intended for detailing purposes, and that smaller ph  values should be 
used for curvature and deflection calculations.   
 
There are a few different equations for estimating the ph   value to be used in curvature 
calculations. Banting (2013) summarized various equations for plastic hinge height in shear 
walls (mostly related to RC structures). 
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The findings of an experimental research study by Shing et al. (1990) showed that the plastic 
hinge height in RM shear walls is in the order of 6/wh . Banting and El-Dakhakhni (2014) 
studied plastic hinge heights in RM shear walls with boundary elements, and concluded that ph  
depends on a combination of parameters, including wall length and height, and height/length 

ww lh / aspect ratio. The plastic hinge height ranged from 50 to 100% of the wall length wl . The 
results of the study showed that the plastic hinge height for the test specimens depended more 
on the ww lh / ratio than on the wall length. For example, the specimen with the highest ww lh / of 
3.23 had the largest plastic hinge height equal to wl . 
 
The CSA S304-14 plastic hinge height provisions are in line with the research findings and 
codes in other countries. For example, in the New Zealand Masonry Standard NZS 4230:2004 
(SANZ, 2004), Cl. 7.4.3 prescribes the plastic hinge height to be the greater of wl , 6/wh , or 600 
mm.  
 
The design and detailing of reinforcement within the plastic hinge regions of ductile masonry 
shear walls is critical, and is discussed in the following sections. These regions are usually 
heavily reinforced, and it is critical to ensure proper anchorage of reinforcement. Open-end 
blocks or H-blocks may simplify reinforcing and grouting in these regions. 
 
The plastic hinge regions of ductile masonry walls must be fully grouted. Observations from past 
damaging earthquakes (e.g. 1994 Northridge, California earthquake and the 2011 Christchurch, 
New Zealand earthquakes) that caused damage to RM walls have shown that the quality of 
grout placement, and the bond of the grout to the masonry units and reinforcement have a 
strong influence on the performance of RM structures. Reinforced block walls with large voids 
around reinforcing bars suffered severe damage in the 1994 Northridge, California earthquake 
(TMS, 1994). Many RM buildings were exposed to the 2011 Christchurch, New Zealand 
earthquake. Most of them performed well, considering the shaking intensity and the damage to 
other building typologies (including RC buildings). It was observed that RM walls with 
incomplete grouting at the base suffered more extensive damage, see Centeno, Ventura, and 
Ingham (2014); Dizhur et al. (2011).  
 
Experimental studies have also confirmed the effect of grouting quality on the simulated seismic 
response of RM shear walls. Incomplete grouting at the toes of a RM shear wall specimen 
designed for ductile flexural response resulted in a reduced ductility capacity, and led to its 
premature failure (compared to other similar specimens), based on the experimental study by 
Robazza et al. (2015; 2017). Complete grouting in plastic hinge zones of ductile RM shear walls 
is a must for their satisfactory seismic performance.    

2.6.3 Ductility check 
 

16.8.7 
16.8.8 
16.9.7 

 

 
CSA S304-14 prescribes the following simplified ductility requirements for RM shear walls: 

1. The neutral axis depth/wall length ratio, wlc , should be within the following limits: 

a) For Moderately Ductile shear walls (Cl.16.8.7):  
15.0wlc  when 0.5ww lh  and the drift ratio 01.01  odf RR (provided that 

400yf MPa) 

b) For Ductile shear walls (Cl.16.9.7): 
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125.0wlc  when 0.5ww lh  and the drift ratio 01.01  odf RR (provided that 

400yf MPa) 

2. When these requirements are not satisfied, a detailed ductility verification needs to be 
performed according to Cl.16.8.  
 

The objective of the ductility check is to confirm that the plastic hinge’s rotational capacity, ic, 
exceeds inelastic rotational demand due to seismic loading, id (Cl.16.8.8.1). 

idic            ( 14) 

The approach for ductility verification is illustrated in Figure 2-25, which shows the displacement 
and curvature distribution in a ductile shear wall. The bending moment distribution is shown in 
Figure 2-25b), with the curvature distribution shown in Figure 2-25c). Elastic curvature 
corresponds to the onset of yielding in vertical reinforcement, y , while plastic curvature, 

 u y  , corresponds to plastic deformations within the plastic hinge height, ph . Curvature 

ductility for this wall is equal to the ratio of total curvature and the curvature at the onset of yield, 
that is, u y  . Note that S304-14 does not require calculation of curvature ductility, however 

curvatures are used to determine the plastic hinge rotational capacity (ic). This is done by 
integrating the plastic curvature over the plastic hinge height ph  (assumed to be equal to lw/2) 

(Cl.16.8.8.3), that is, 

 ic u y ph      or  

( 0.002) 0.025
2

mu w
ic

l

c

 
          (15) 

Note that the first term in the above equation denotes total rotation at the ultimate, while the 
second term denotes yield rotation (which is taken as 0.004 wl ). 
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Figure 2-25. Ductile shear wall at the ultimate: a) wall elevation; b) bending moment diagram;  

c) curvature diagram; d) deflections. 

 
For the ductility check purposes, the maximum compressive strain mu  is limited to of 0.0025. 

The intent of this restriction is to limit deformations and the related damage in the highly 
stressed zone of a wall section. 
 
The inelastic rotational demand id depends on the inelastic lateral displacement p at the top of 
the wall due to seismic loading, as shown in Figure 2-25d). This displacement is equal to the 
design displacement due to the factored seismic force Vf corresponding to the force modification 
factor RdRo, reduced by the elastic displacement at the top of the wall f1 (calculated using the 
modified section properties (Cl.16.3.3) and factored seismic loads). id can be determined as 
follows 

 
min

11

2




 





w
w

fdof
id

h

ΔRRΔ
w


      (16) 

where min = 0.003 for Moderately Ductile walls (corresponding to c/lw≤ 0.25) and 0.004 for Ductile 
walls (corresponding to c/lw≤ 0.2). These c/lw limits were determined by substituting min values in 
Eq.8-18, and can be useful for preliminary design to estimate a suitable wall length and amount of 
vertical reinforcement. 

 
The overstrength factor w  is equal to 

3.1
f

n
w M

M   

In the above equation, Mn denotes the nominal moment capacity. 
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Commentary 
 
Whether a structural member is capable of sustaining inelastic deformations consistent with an 
expected displacement ductility ratio,  , will depend on the ability of its plastic hinge region to 
sustain corresponding plastic rotations. Plastic hinge rotations will depend on the available 
curvature ductility,  , and the expected plastic hinge height. Refer to Section B.3 for a detailed 

explanation of curvature ductility and the relationship between curvature ductility and the 
displacement ductility ratio. 
 
It is important for a structural designer to understand the effect of curvature ductility upon the 
ductile seismic performance of flexural members. For example, the wall section shown in Figure 
2-26a) is lightly reinforced and has a small axial compression (or tension) load. There will be a 
small flexural compression zone due to the light reinforcement, thus the neutral axis depth, 1c , 
will be small relative to the wall length (note the corresponding strain distribution - line 1 in 
Figure 2-26b). As a result, curvature, which is the slope of line 1, will be large and usually 
adequate to accommodate the plastic hinge rotations imposed on a structure during a major 
earthquake. However, when the wall is heavily reinforced and has a significant axial 
compression load, a large flexural compression zone will be present, resulting in a relatively 
large neutral axis depth, 2c , as shown in Figure 2-26b) (note the corresponding strain 
distribution - line 2 on the same diagram). For the same maximum masonry compressive strain 
of 0.0025, the curvature 2 (given by the slope of line 2) is much less than for lightly loaded wall 
(curvature  

1 ). Thus the curvature ductility of the lightly loaded wall is much greater than the heavily 
loaded wall. Note that the maximum compression strain is equal in both cases. 

 
Figure 2-26. Strain distribution in a reinforced masonry wall at the ultimate: a) wall section;  
b) strain distribution. 
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Therefore, the ratio of neutral axis depth, c , relative to the wall length, wl , that is, wlc ratio, is an 
indicator of the curvature ductility in a structural component. The wlc limits for ductile shear 
walls prescribed by CSA S304-14 cover most cases, and save designers from performing time-
consuming ductility calculations. 
 
The chart shown in Figure 2-27 can be used to estimate the amount of vertical reinforcement 
such that the corresponding wlc  values satisfy the S304-14 ductility requirements. (Note that 

this chart and the corresponding table are also presented in Appendix D.) A uniform distribution 
of vertical reinforcement has been assumed according to the approach presented in Section 
C1.1.2. The maximum wlc limits (0.20 for Rd= 3 and 0.25 for Rd= 2) have been set based on 

the minimum rotational demand.  
 
The lines on the chart correspond to the constant normalized reinforcement ratio  , as defined 
by the equation below. The  values range from 0 to 0.1, with a 0.02 interval.  

mm

vys

f

f

'


   

where reinforcement ratio for vertical bars is 

w

vt
v lt

A

*
  

Normalized axial stress (determined from the equation below) is an input parameter. 

tlf

P
mff

wm

f

'
'/                                    where mff '/667.1  

The horizontal axis contains wlc values, which correspond to the given normalized axial stress 

and the selected  value. The user can determine the required reinforcement ratio 
corresponding to the  value as follows:   

ys

mm
v f

f





'

  

 
The following units are used for the calculations: fP  (N); wl , t  (mm); vtA   (mm2); and mf ' (MPa). 

An application of the chart is illustrated in Example 5b (Chapter 3).  
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Figure 2-27. Chart for estimating wlc ratio for design purposes (assuming uniformly distributed 

vertical reinforcement per Section C1.1.2). 
 
When the wlc  limit is not satisfied for a specific design, the designer needs to undertake a 

ductility check using detailed calculations to confirm that the ductility requirements have been 
met. The CSA S304-14 ductility check for masonry shear walls is performed in a similar manner to 
reinforced concrete shear walls designed per the CSA A23.3 standard. It should be noted that 
CSA S304-14 assumes that the plastic hinge height for ductility check purposes is equal to 

2p wh l . However, recent research evidence (NIST, 2017; NIST, 2010) shows that 0.2p eh h
reflects the results of experimental studies related to the ductile seismic response of RM shear 
walls (note that eh  represents effective the wall height). 

 
When the outcome of the ductility check is negative, the designer needs to revise the design to 
meet this requirement. This can be achieved by reducing the amount of vertical reinforcement or 
increasing the wall length. Also, S304-14 Cl.16.10 includes new provisions for increasing the 
compressive strain in ductile shear wall classes beyond the basic value mu= 0.0025. This can 
be achieved by increasing confinement in end zones of the wall. Refer to Section 2.6.10 for a 
discussion on reinforcement detailing in ductile RM shear walls with boundary elements. 
 
Refer to Section B.2 for further guidance regarding the ductility concept, and Examples 5a, 5b, 
and 5c in Chapter 3 for applications of the CSA S304-14 ductility requirements.  
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2.6.4 Wall height-to-thickness ratio restrictions 
 

16.7.4 
16.8.3 
16.9.3 

 

 
CSA S304-14 prescribes the following height-to-thickness ( th ) limits for the compression zone 
in plastic hinge regions of ductile shear walls: 
1. Conventional construction  

Slenderness limits and design procedures for masonry walls need to be followed 
(Cl.10.7.3.3) - it is possible to design walls with tkh  ratio greater than 30 

2. Moderately ductile shear walls (Cl.16.8.3):  
20)10( th  (unless it can be shown for lightly loaded walls that a more slender wall is 

satisfactory for out-of-plane stability) 
3. Moderately ductile squat shear walls (Cl.16.7.4): 

20)10( th (unless it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability). 

4. Ductile shear walls (Cl.16.9.3): 
12)10( th   

Note that h  denotes the unsupported wall height (between the adjacent horizontal supports), 
kh  denotes the effective buckling length, and t  denotes the actual wall thickness (e.g. 140 mm, 
190 mm, 240 mm, etc.). 
 
Relaxed th  ratios  

S304-14 permits the use of relaxed th ratios for walls with thicker sections (flanges, boundary 
elements) at the ends, and/or rectangular walls where the length of the compression zone is 
within the prescribed limits.  

 
1. Rectangular-shaped wall sections: 
S304-14 Cl.16.8.3.3 allows relaxed th  ratios ( 30)10( th ) for Moderately Ductile walls 

and Cl.16.9.3.3 allows relaxed th  ratios ( 16)10( th ) for Ductile walls, provided that 

wbc  and wlc  ratios are within certain limits. For shear walls of rectangular cross section 

as shown in Figure 2-28a), the neutral axis depth needs to meet one of the following 
requirements (see Figure 2-28b)): 

wbc 4  

or 

wlc 3.0  

2. Walls with flanged sections (both Moderately Ductile and Ductile walls): 
CSA S304-14 allows relaxed th  ratios ( 30)10( th ) for walls with flanged sections 
provided that the neutral axis depth meets the following requirement (see Figure 2-28c)): 

wbc 3   

where wb3  is the distance from the inside of a wall return of minimum length h2.0 . The 

flange thickness needs to be at least 190 mm. Note that in the case of a flanged wall section 
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such as that shown in Figure 2-28c), the non-flanged wall end is more critical for out-of-
plane instability. 

 

Figure 2-28.  Compression zone restrictions related to wall slenderness: a) rectangular wall 
section; b) corresponding strain distribution and compression zone restrictions, and c) limits for 
the flanged wall sections. 

 
Note that CSA S304-14 Cl.16.8.6 restricts the maximum compressive strain in masonry m in the 
plastic hinge zone of Moderately Ductile and Ductile walls to 0.0025. However, Cl.16.10.1 and 
16.10.2 permit the use of higher compressive strain in walls with boundary elements or 
confinement in the compression zone (see Section 2.6.8). 
 
Commentary 

 
The purpose of these th provisions is to prevent instability due to out-of-plane buckling of shear 
walls when subjected to the combined effects of in-plane axial loads and bending moments, as 
shown in Figure 2-29. This phenomenon is associated not only with compression in the 
masonry, but also with the compression stresses in the flexural reinforcement that has 
previously experienced large inelastic tensile strains. According to Paulay (1986), this instability 
occurs when the neutral axis depth, c , is large, as illustrated in Figure 2-26 (see depth 2c ), and 

the plastic hinge region at the base of the wall (height ph ) is large (one storey high or more). 
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Figure 2-29. Out-of-plane instability in a shear wall subjected to in-plane loads (adapted from 
Paulay and Priestley, 1993, reproduced by permission of the American Concrete Institute). 

A rational explanation for this phenomenon was first presented by Paulay (1986). When the wall 
experiences large curvature ductility, large tensile strains will be imposed on vertical bars placed 
at the extreme tension edge of the section. At this stage, uniformly spaced horizontal cracks of 
considerable width develop over the plastic hinge height (see Figure 2-30a)). During the 
subsequent unloading, the tensile stresses in these bars reduce to zero. A change in the lateral 
load direction will eventually cause an increase in the compression stresses in these bars. 
Unless the cracks close, the entire internal compression within the section must be resisted by 
the vertical reinforcement, as shown in Figure 2-30b) and d). At that stage, out-of-plane 
displacements may increase rapidly as the stiffness of the vertical steel to lateral deformation is 
small, thereby causing the out-of-plane instability. However, if the cracks close before the entire 
portion of the wall section previously subjected to tension becomes subjected to compression, 
masonry compressive stresses will develop in the section, the stiffness to lateral deformation is 
increased and the instability may be avoided (see Figure 2-30c) and e). Refer to Section B.4 for 
a detailed discussion of the wall height-to-thickness ratio restrictions, and the analysis 
procedure developed by Paulay and Priestley (1992, 1993). 

 

Figure 2-30. Deformations and strain patterns in a buckled zone of a wall section (Paulay,1986, 
reproduced by permission of the Earthquake Engineering Research Institute). 
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CSA S304-14 has relaxed th  limits for ductile shear walls compared to the CSA S304.1-04 
requirements. In particulr, it is possible to relax the limits for Moderately Ductile shear walls if it 
can be shown for lightly loaded walls that a more slender wall is satisfactory for out-of-plane 
stability. A possible solution for enhancing out-of-plane stability involves the provision of flanges 
at wall ends. However, the out-of-plane stability of the compression zone, which includes the 
flange and sometimes a portion of the web, must be adequate. This check is demonstrated in 
Example 4c (Chapter 3), where a Moderately Ductile squat shear wall with the th  ratio of 33 
and added flanges at its ends has been shown to satisfy the CSA S304-14 out-of-plane stability 
requirement. 
 
The following analysis presents one method of checking if the flanged wall provides sufficient 
stiffness to prevent out-of-plane instability. For the purpose of this check, a wall can be 
considered as lightly loaded when the compressive stress cf , due to the dead load 

(corresponding to the axial load, DLP ), is less than mf 1.0 , that is, 

m
w

DL
c f

tl

P
f  1.0 . 

 
Consider a wall section with flanges added at both ends to enhance the out-of-plane stability 
shown in Figure 2-31a). The wall is subjected to the factored axial load fP , the bending 
moment fM , and is reinforced with both a concentrated reinforcement of area cA , at each end, 
and distributed reinforcement along the wall length (total area dA ).  
 
The effective flange width, fb , can be initially estimated, and then revised if the out-of-plane 
stability is not satisfactory. A good initial minimum estimate would be 

tb f 2  

where t  denotes the wall thickness (see Figure 2-31b)).  Note that this is an iterative procedure 
and the flange width may need to be increased to satisfy the stability requirements. 
 
The buckling resistance of the compression zone should be checked according to the procedure 
described below. 
 
First, the area of the compression zone LA  can be determined from the equilibrium of vertical 
forces shown in Figure 2-31a): 

0321  mf CCTTP                                

where 

cys AfCT  31  

dys AfT 2  

  Lmmm AfC '85.0   

thus 

mm

dysf
L f

AfP
A

'85.0 


  

The area of the compression zone can be determined from the geometry shown in Figure 
2-31b), that is, 

ttbtaA fL *)(*    
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Thus, the depth of the compression zone a  can be found from the above equation as follows 

t

ttbA
a fL

2* 
  

The distance from the centroid of the masonry compression zone to the extreme compression 
fibre is equal to 

   
L

f

A

ttbat
x

2)(2* 22 
  

 

a) b) 

Figure 2-31. Flanged wall section: a) internal force distribution; b) flange geometry. 

The compression zone of the wall may be either L-shaped or rectangular (non-flanged), 
however only the flange area will be considered for the buckling resistance check (the flange 
area is shown shaded in Figure 2-31b)). This is a conservative approximation and is considered 
to be appropriate for this purpose. The gross moment of inertia of the flange section around the 
axis parallel with the logitudinal wall axis can be determined from the following equation 

12

* 3
f

xg

bt
I   

The use of gross moment of inertia, as opposed of a partially or fully cracked one, is considered 
appropriate in this case, because the web portion of the compression zone and the effect of the 
reinforcement have been ignored.  
 
The buckling strength for the compression zone will be determined according to S304-14 Cl. 
10.7.4.3, as follows: 

  2
2

5.01 kh

IE
P

d

mer
cr 




   

where 
75.0er   resistance factor for member stiffness 

0.1k   effective length factor for compression members (equal to 1.0 for pin-pin support 
conditions – a conservative assumption which can be used for this application) 
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0d  ratio of factored dead load moment to total factored moment (equal to 0 when 100% live 
load is assumed) 

mE  - modulus of elasticity for masonry 
The resultant compression force, including the concrete and steel component, can be 
determined as follows: 

cysmfb AfCP   

The out-of-plane buckling resistance is considered to be adequate when 

crfb PP   

 
This check gives conservative results, as shown in Example 5b in Chapter 3. 
 

2.6.5 Minimum Required Factored Shear Resistance 
 

16.5.4 
16.7.3.2 
16.8.9.2 
16.9.8.3 
16.10.4.3 

 

 
The S304-14 minimum factored shear resistance requirements are based on the Capacity 
Design approach, which was discussed in Section 2.5.1. 
 
For the design of RM shear walls, the factored shear resistance, 

rV , should be greater than the 
shear due to effects of factored loads, but not less than the smaller of 
1. the shear corresponding to the development of moment resistance, as follows: 

a. the shear corresponding to the development of factored moment resistance, 
rM , of 

the wall system at its plastic hinge location for Conventional Construction (Cl.16.5.4) 
or Moderately Ductile Squat (Cl.16.7.3.2) shear walls,  

b. the shear corresponding to the development of nominal moment capacity, nM , for 

Moderately Ductile shear walls (Cl.16.8.9.2),  

c. the shear corresponding to the development of probable moment capacity, pM , for 

Ductile shear walls (Cl.16.9.8.3) and walls with boundary elements (Cl.16.10.4.3), 
and 

2. the shear corresponding to the lateral seismic load (base shear) where earthquake effects 
were calculated using RdRo=1.3.  
 

It is also important that other structural members which are not a part of the SFRS are able to 
undergo the same lateral displacements as the SFRS members without experiencing brittle 
failure. 
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2.6.6 Shear/diagonal tension resistance – seismic design requirements 
 

10.10.2 
16.8.9.1 
16.9.8.1 
16.10.4.1 

 

 
The CSA S304-14 general design provisions for shear (diagonal tension) resistance contained 
in Cl.10.10.2 were discussed in Section 2.3.2. Special seismic design provisions for the plastic 
hinge zone of the walls are as follows: 

1. Conventional construction shear walls (Cl.10.10.2):  

smr VVV   

(the same equation used for the non-seismic design) 
2. Moderately Ductile Squat shear walls (Cl.10.10.2): 

smr VVV   

(the same equation used for the non-seismic design of squat shear walls) 
3. Moderately Ductile shear walls (Cl.16.8.9.1): 

smr VVV  75.0  

(a 25% reduction in the masonry shear resistance) 
4. Ductile shear walls (Cl.16.9.8.1): 

smr VVV  5.0  

(a 50% reduction in the masonry shear resistance) 
5. Moderately ductile and ductile shear walls with boundary elements (Cl.16.10.4.1): 

smmur VVV  ))2(0025.0(   

(the masonry and axial compressive load contributions to shear capacity are reduced to 
account for the effects of damage expected at higher ductility) 

 
For Moderately Ductile Squat shear walls, Cl.16.7.3.1 requires that the shear force be applied 
along the entire wall length, and not concentrated near one end. The purpose of this provision is 
to ensure that a top transfer beam, or an alternative provision (bond beam provided at the top of 
the wall), will enable the development of the desirable shear failure mechanism shown in Figure 
2-16a), and prevent the partial shear failure shown in Figure 2-16b). Shear failure mechanisms 
for squat shear walls are discussed in Section 2.3.2.2. 
 
 
Commentary 

 
Tests have shown that shear walls that fail in shear have a very poor cyclic response and 
demonstrate a sudden loss of strength. Also, walls that initially yield in flexure may fail in shear 
after several large inelastic cycles, with a resulting rapid strength degradation. Therefore, the 
shear steel (horizontal reinforcement) is usually designed to carry the entire shear load in the 
plastic hinge region of a wall (Anderson and Priestley, 1992). Seismic design provisions for 
ductile reinforced concrete shear walls (CSA A23.3 Cl.21.6.9) completely neglect the concrete 
contribution to the wall shear resistance in the plastic hinge zone. 
 
CSA S304-14 provisions permit the use of the entire masonry shear resistance for all wall 
classes, except for moderately ductile and ductile wall classes, where 75 and 50% of the 
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masonry shear resistance, mV , can be considered, respectively. CSA S304.1-04 contained a 
50% reduction in the masonry shear resistance contribution for moderately ductile shear walls. 
 
The overall shear strength is assumed to decrease in a linear fashion as the displacement 
ductility ratio increases, as discussed by Priestley, Verma, and Xiao (1994). This concept is 
illustrated in Figure 2-32 (note that displacement ductility ratio   corresponds to the ductility-

related force modification factor dR ). A ductile flexural response is ensured if the lateral force 

corresponding to the flexural strength is less than the residual shear strength, residualV . A brittle 

shear failure takes place when the lateral force corresponding to flexural strength is greater than 

the initial shear strength, initialV . When the lateral force corresponding to flexural strength is 

between the initial and residual shear strength, then shear failure occurs at a ductility 
corresponding to the intersection of the lateral force and shear force-displacement ductility plot. 
Anderson and Priestley (1992) recommended to allow 100% of the masonry shear strength up 
to ductility ratio of 2, and then to linearly decrease the masonry component of the shear strength 

to zero at the ductility ratio of 4. Note that CSA S304-14 allows 100 % of mV  up to 5.1dR , 

which corresponds roughly to a displacement ductility ratio of 1.5, but reduces the mV  

contribution to 50 % at 0.3dR . 

 
 

Figure 2-32. Interaction between the shear resistance and the displacement ductility ratio 
(adapted from Priestley, Verma, and Xiao, 1994, reproduced by permission of the ASCE1). 

  

                                                
1 This material may be downloaded for personal use only. Any other use requires prior permission of the 
American Society of Civil Engineers. This material may be found at 
http://cedb.asce.org/cgi/WWWdisplay.cgi?9403737 
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2.6.7 Sliding shear resistance – seismic design requirements 
 

10.10.5 
16.9.8.2 
16.10.4.2 

 

 
CSA S304-14 general design provisions for sliding shear resistance in Cl.10.10.5 were 
discussed in Section 2.3.3. The special seismic design provisions for sliding shear resistance 
are as follows: 

1. Ductile shear walls (Cl.16.9.8.2) and shear walls with boundary elements (Cl.16.10.4.2):  

CV mr   

Only the reinforcement in the tension zone should be used to determine the C value. 
The compressive reinforcement is assumed to have yielded in tension in a previous 
loading cycle and is now exerting a compressive force across the shear plane as it yields 
in compression. 

2. All other wall classes: 
The same equation as used for non-seismic design (Cl.10.10.5). 

 
Commentary 

 
The mechanism of sliding shear resistance was discussed in detail in the Commentary portion 
of Section 2.3.3. The sliding shear resistance mechanism for ductile walls subjected to seismic 
loading is illustrated in Figure 2-17, and is unchanged from CSA S304.1-04. 
 
It should be noted that sliding shear often governs the shear strength of RM walls, particularly 
for squat shear walls in low-rise masonry buildings. To satisfy the sliding shear requirement, an 
increase in the vertical reinforcement area is often needed. However, this increases the moment 
capacity and the corresponding shear force required to yield the ductile flexural system, so the 
sliding shear requirement is not satisfied. Dowels at the wall-foundation interface can improve 
sliding shear capacity, but they may also increase the bending capacity if they are too long. 
Note that, for squat shear walls it is impossible to prevent sliding shear if the shear 
reinforcement is designed to meet the capacity design requirements. In that case, shear keys 
could be used to increase the sliding shear resistance. 
 
To minimize the chances of sliding shear failure, TCCMAR’s findings recommended roughening 
the concrete foundation surface at the base of the wall, with the roughness ranging from 1.6 mm 
(1/16 in) to 3.2 mm (1/8 in). A more effective solution is to provide shear keys at the base of the 
wall that are as wide as the hollow cores and 38 mm (1.5 in) deep, with sides tapered 20 
degrees. Tests have shown that these shear keys eliminate wall slippage under severe loading 
(Wallace, Klingner, and Schuller, 1998). 
 
The chance of excessive sliding shear displacements in RM shear walls subjected to seismic 
loading may be a concern for designers, particularly for buildings with several wall segments 
connected by means of lintel beams and/or floor diaphragms. Current masonry design code 
provisions for sliding shear resistance are force-based, and do not offer approaches for 
estimating sliding displacements in RM shear walls. Centeno (2015) developed the Sliding 
Shear Behavior (SSB) method for calculating the base sliding displacements in RM shear walls. 
This method enables the designer to estimate the wall’s yield mechanism and the 
corresponding sliding displacements. The sliding displacements can be determined in a step-by-
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step manner. Refer to Appendix B and Centeno at al. (2015) for more details on the SSB 
method.  
 

2.6.8 Boundary elements in Moderately Ductile and Ductile shear walls 
2.6.8.1 Background 
Boundary elements are thickened and specially reinforced sections provided at the ends of 
shear walls. The presence of boundary elements in tall shear walls subjected to significant 
bending moments at their base results in an enhanced curvature capacity compared to walls 
with distributed reinforcement, because longitudinal reinforcement in boundary elements resists 
more of the flexural compressive force for the wall section. This is illustrated in Figure 2-33.  The 
concentrated reinforcement in the boundary elements also increases the local reinforcement 
ratio, and promotes better distribution of flexural cracks, greater height of the plastic hinge zone, 
and an enhanced ductility potential. To sustain high flexural and normal stresses, vertical 
reinforcement in the boundary elements must be well confined using properly anchored 
transverse reinforcement. This applies particularly to the plastic hinge regions of shear walls.  
 

 

Figure 2-33. Curvature and cracking pattern in RM shear walls: a) a wall with boundary 
elements, and b) a rectangular wall without boundary elements. 

Boundary elements were initially applied in the seismic design of RC shear walls, where they 
proved to be effective in enhancing ductility in flexure-dominated walls by providing confinement 
and higher strain in the compression zone. Their effectiveness was verified through 
experimental and analytical research (Moehle, 2015). Pertinent seismic design provisions for 
boundary elements in ductile RC shear walls are included in CSA A23.3-14. 
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In the last decade, experimental research studies on RM shear walls with boundary elements 
were conducted in Canada by Shedid, El-Dakhakhni, and Drysdale (2010, 2010a), Banting 
(2013), and Banting and El-Dakhakhni (2012; 2013; 2014). The test specimens had enlarged 
boundary elements similar to pilasters. These boundary elements were made of hollow masonry 
units. The specimens were subjected to reversed cyclic loading and the results showed that the 
presence of boundary elements significantly increased ductility in RM walls.  
 
Boundary elements also provide stability against lateral out-of-plane buckling in thin wall 
sections. S304-14 has provided special provisions for h/t restrictions in walls with boundary 
elements (thickened wall sections), see Section 2.6.4. 
 
A typical RM shear wall with boundary elements is shown in Figure 2-34.  
 
Footing design for RM shear walls with boundary elements can be performed according to CSA 
A23.3-14, e.g. Cl.21.10.4.3 and 21.10.4.4 related to footings for RC shear walls. It is critical to 
ensure proper anchorage of vertical and transverse reinforcement into the footing.  

 

Figure 2-34. A RM shear wall with boundary elements: a) wall elevation; b) wall cross-section 
showing boundary elements, and c) strain distribution.  

 
It is of interest to note that the U.S. masonry design standard TMS 402/602-16 (Clauses 
9.3.6.6.1 to 9.3.6.6.5) contains provisions for boundary elements in RM shear walls. However, 
Cl.9.3.6.6.1 states that it is expected that boundary elements will not be required in lightly 
loaded walls (e.g. mgf fAP '1.0 for symmetrical wall sections), in walls that are either short 
(squat) or moderate in height (aspect ratio 0.1wff lVM ), or in walls subjected to moderate 
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shear stresses. It is expected that most masonry shear walls in low- to medium-rise buildings 
would not develop high enough compressive strains to warrant special confinement.  
 
According to the TMS 402/602-16 standard, boundary elements may be required in RM shear 
walls with flexure-dominant behaviour when the wlc  ratio exceeds a certain limit. The purpose 
of this check is to limit the ultimate curvature in the plastic hinge region of the wall (similar to the 
S304-14 ductility check procedure discussed in Section 2.6.3). TMS 402 also provides a stress-
based check for boundary elements, i.e. it provides compressive stress limit (0.2 mf ' ) beyond 
which boundary elements need to be provided in the compression zone. According to the same 
check, the boundary element may be discontinued when the calculated compressive stress is 
less than 0.15 mf ' . When special boundary elements are used, TMS 402 requires that testing 
be done to verify that the provided detailing is capable of developing the required compressive 
strain capacity.  
 
As an alternative to boundary elements, the New Zealand masonry standard NZS 4230:2004 
Cl.7.4.6.5 prescribes the use of horizontal confining plates in ductile RM walls. These thin 
perforated metal plates (made either of stainless steel or galvanized steel) are placed in mortar 
bed joints in the compression zone of rectangular walls. The confining plates are effective in 
increasing the maximum masonry compressive strain in plastic hinge regions up to 0.008 (this 
value is same as prescribed by CSA S304-14 for shear walls with boundary elements). The 
provision of confining plates in the New Zealand masonry standard is based on research by 
Priestley (1981) and Priestley and Elder (1983). 
 
2.6.8.2 When are boundary elements required 
 

16.6.4 
16.10 

 

   
S304-14 Cl.16.10.1 prescribes the use of boundary elements in RM shear walls for the first 
time. Boundary elements should be provided when the ductility requirements of Cl. 16.8.8 or 

16.9.7 are not satisfied assuming a masonry compression strain limit mu of 0.0025. When 

boundary elements are used, the maximum compressive strain mu can be higher than 0.0025, 

but it should not exceed 0.008. S304-14 Cl.16.6.4 states that tests should be performed to verify 

the ductility and strain capacities of the wall when the compressive strain limit mu of 0.0025 is 

exceeded. 
 
 
Commentary 

 
S304-14 does not provide guidance on how to calculate the maximum compressive strain in 
boundary elements. For seismic design purposes, the maximum required compressive strain 

mu in boundary elements can be calculated from the S304-14 ductility requirements 

(Cl.16.8.8). The calculated strain value should be used for detailing transverse reinforcement in 
boundary elements, according to the equations presented in Section 2.6.8.5.    
 
Priestley (1981) proposed stress-strain equations for unconfined and confined block masonry 
based on his research study that focused on the use of steel confining plates for enhancing 
maximum compressive strain in RM walls. The proposed equations take into account the 
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volumetric ratio of transverse reinforcement, and could be applied to RM walls with boundary 
elements confined by steel ties. 
 
2.6.8.3  Minimum cross-sectional dimensions of boundary elements  
 

16.11.2  
 

The minimum length of a boundary element, bl , is governed by the compression zone depth in 

a RM shear wall (see Figure 2-33). S304-14 Cl.16.11.2 specifies that bl  should not be less than 

the largest of the following three values: 
 

))0025.0(,2,1.0( mumuwb cclcl    

 
16.8.3.2 
16.9.3.2 

 

 
The minimum required thickness of a boundary element, bt , is governed by the wall 
height/thickness (h/t) restrictions which were discussed in Section 2.6.4. S304-14 contains the 
following provisions for walls with thicker sections at the ends (e.g. boundary elements), see 
Figure 2-35: 
 
a) Moderately Ductile walls (Cl.16.8.3.2) – the th restriction ( 20)10( th ) applies to the 

zone from the compression face to one-half of the compression zone depth; the remaining 
length of the wall’s compression zone should meet a relaxed requirement 30)10( th . 

 
b) Ductile walls (Cl.16.9.3.2) - the th restriction ( 12)10( th ) applies to the zone from the 

compression face to one-half of the compression zone depth; the remaining length of the 
wall’s compression zone should meet a relaxed requirement  

      16)10( th . 
 

16.11.11  
 
Boundary elements should have the same cross-sectional dimensions over the wall height, 
unless it can be shown by rational analysis that the changes in strength and stiffness have been 
accounted for in the design and detailing requirements. 
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Figure 2-35.CSA S304-14 th requirements for Moderately Ductile and Ductile walls with 
boundary elements. 

 
2.6.8.4  Shear flow resistance at the interface between a boundary element and the 

wall web  
 

16.11.10  
 
Shear flow resistance at the boundary element and web interface for a shear wall should be 
calculated using the shear friction formula below 

smfr FV          (17) 

where 

frV   = shear flow resistance, N/mm 

   = coefficient of friction, taken as 1.0 for masonry to masonry sliding plane where all voids at 
the intersection are filled solid, and 

sF   = factored tensile force at yield of horizontal reinforcement that is detailed to develop the 

yield strength on both sides along the interface, N/mm. 
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Commentary 

 
The shear friction concept has been applied to ensure an adequate shear flow resistance at the 
interface between a boundary element and the wall web. It is assumed that the shear flow 
resistance is provided by horizontal reinforcing bars extending from the wall web into the 
boundary elements (Figure 2-36a)). Adequate anchorage of horizontal reinforcement is critical 
for the shear flow resistance. The shear flow resistance across the interface will depend on the 
bar cross-sectional area Ab (for example, 2-15M horizontal bars) and the vertical spacing s 
(Figure 2-36b)). The above equation assumes that masonry does not contribute to the shear 
flow resistance. The factored tensile force resistance per unit length can be determined as 
follows: 
 

s

Af
F bys
s


  

 
Refer to Section C.2 for a discussion regarding shear resistance along interfaces such as wall 
intersections and flanges.  

 

Figure 2-36. Shear flow at the interface between a boundary element and the wall web: a) a 
cross-section showing the intersection, and b) an elevation showing horizontal forces providing 
the vertical shear flow resistance. 
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2.6.8.5  Reinforcement detailing requirements for boundary elements and 

compression reinforcement in Moderately Ductile and Ductile walls 
 

16.6.5 
16.11.5 
16.11.6 

 

 
S304-14 Cl.16.11 outlines the provisions for seismic detailing of reinforcement in boundary 
elements, but S304-14 Cl.16.6.5 stipulates that the same reinforcement detailing requirements 
should be followed while detailing compression reinforcement zones in Moderately Ductile and 
Ductile shear walls. 
 
Boundary elements are reinforced with vertical reinforcing bars and transverse reinforcement in 
the form of ties (hoops), as shown in Figure 2-37a). The ties are in the form of regular ties 
(outside the plastic hinge zone) and buckling prevention ties (within the plastic hinge zone), see 
Figure 2-37b). Buckling prevention ties are intended to prevent buckling of the longitudinal 
reinforcement under reversed cyclic loading. In order to ensure proper confinement, 
intermediate vertical reinforcing bars should be provided not more than 150 mm spacing away 
from a laterally supported bar.   
 
Seismic cross ties may be also provided to support vertical reinforcing bars, if required. A 
seismic cross tie (S304-14 Cl.16.11.5) is a reinforcing bar with a 90° hook at one end and a 
135° hook at the other end (Figure 2-37b)). The seismic cross ties shall engage vertical 
reinforcing bars at each end, and where successive ties engage the same vertical reinforcing 
bar the 90° hook shall be alternated end for end. These ties are not required in boundary 
elements with 4 vertical bars because each bar is already supported by means of closed ties. 
Detailing of seismic cross ties requires that a 90° hook has min 6 bar diameter extension at one 
end, and a 135° hook should be anchored into the confined core with minimum extension of the 
lesser of 6 bar diameters or 100 mm at the other end. 
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Figure 2-37. Reinforcement arrangement in a boundary element: a) cross-section showing 
vertical and transverse reinforcement; b) seismic cross ties, and c) wall elevation showing 
distribution of ties over the height of a boundary element. 

 
S304-14 Cl.16.11.6 prescribes the minimum area of transverse reinforcement Ash (including 

buckling prevention ties and seismic cross ties) within the spacing s and perpendicular to ch , 

that is, dimension of the confined core.  
 
S304-14 permits the use of rectangular or spiral hoops (ties). For the rectangular hoop 
reinforcement, the minimum area Ash in each principal direction should not be less than the 
larger of the following: 
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Where  

bbg ltA  is gross cross-sectional area of the boundary element, 

Ach is cross-sectional area of core of the boundary element, 

and nk  is the factor accounting for the effectiveness of transverse reinforcement in in a 

boundary element, that is, 
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n
k  

And ln is the number of bars around the perimeter of the boundary element core that are 

supported by legs of hoops or cross ties. 
 

Factor 1pk is the factor accounting for the maximum compressive strain level in a boundary 

element, as follows 

mupk 301.01   

The specified yield strength for the hoop reinforcement, yhf , should not be taken greater than 

500 MPa. Key parameters used in the above equations are illustrated in Figure 2-38. 
 
For the circular hoop reinforcement, the minimum volumetric ratio should not be less than 
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Figure 2-38. Notation related to transverse reinforcement requirements for boundary elements. 

 
Note that S304-14 reinforcement area requirements for boundary elements are very similar to 
CSA A23.3-04 Cl.21.4.4.2 related to transverse reinforcement for RC columns in ductile 
moment resisting frames. However, these RC design provisions have changed in CSA A23.3-14 
(see Cl.21.2.8.2). 
 

Table 2-2. CSA S304-14 Reinforcement Detailing Requirements for Boundary Elements 

 Within the Plastic 
Hinge Zone 

 

Outside the Plastic Hinge 
Zone 

Vertical 
reinforcement: 
amount 
(at least 4 bars) 

Clause 16.11.8 Clause 16.11.8 
Total area of vertical 
reinforcement: 

wws lbA 00075.0  

 

wws lbA 0005.0  

Vertical 
reinforcement:  
 
Splicing 

Clause 16.11.9  
At any section within the 
plastic hinge region, no 
more than 50 percent of the 
area of vertical 
reinforcement may be 
lapped in boundary 
elements of Ductile shear 
walls.  

Not prescribed. 
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Vertical reinforcement within 
plastic hinge regions of 
boundary elements should 
not be offset bent. 

Regular ties 
(hoops) and 
buckling 
prevention 
ties: 
 
Spacing 

Clause 16.11.4 Clause 12.2.1 
Spacing of buckling 
prevention ties and seismic 
cross ties should not exceed 
the lesser of 
a) 6 times the diameter of 

the longitudinal bars; 
b) 24 tie diameters, or 
c) One-half of the least 

dimension of the 
member. 

Regular lateral ties not less than 
3.65 mm diameter, and the tie 
spacing should be the least of  
a) 16 times the diameter of the 

longitudinal bars; 
b) 48 tie diameters, or 
c) The least dimension of the 

boundary member. 

Buckling 
prevention 
and seismic 
cross-ties:  
 
Detailing 
 
 

Clause 16.11.7  
Bucking prevention ties to 
be provided by single or 
overlapping hoops.  
Where seismic cross ties 
are required, they shall be of 
the same bar size and 
spacing as the buckling 
prevention tie.  

Not required. 

Seismic 
cross-ties 

Clause 16.11.5  
The seismic cross ties are 
reinforcing bars with a 90 
degree hook at one end and 
a 135 degree hook at the 
other end. These cross ties  
should engage vertical 
reinforcing bars at each end. 

Not required. 

  

2.6.9 Seismic reinforcement requirements for masonry shear walls 
CSA S304-14 includes several requirements pertaining to the amount and distribution of 
horizontal and vertical wall reinforcement. It should be noted that Conventional Construction 
shear walls do not require special seismic detailing like Moderately Ductile and Ductile walls. 
Conventional Construction walls need to be designed to resist the effect of factored loads (like 
for any other non-seismic design), and to satisfy the minimum S304-14 seismic reinforcement 
requirements presented in this section.  
 
According to NBC 2015 Cl.4.1.8.9.(1) (Table 4.1.8.9), unreinforced masonry SFRS can be 
constructed at sites where  0.2 0.35E a aI F S  , but the building height cannot exceed 30 m. 
 

The compressive stress due to the factored axial load must be less than mf 1.0 in Conventional 

Construction walls at sites where  0.2 0.35E a aI F S  (S304-14 Cl.16.5.3). 

 
Reinforcement requirements for loadbearing walls and shear walls, including the minimum 
seismic reinforcement, are summarized in Table 2-3, with references made to pertinent CSA 
S304-14 clauses. 
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Table 2-3. CSA S304-14 Wall Reinforcement Requirements: Loadbearing Walls and Shear 
Walls 

Minimum area: 
vertical & 
horizontal 

reinforcement   

Non-seismic design 
requirements 

Minimum seismic requirements 

for   35.02.0 aaE SFI  

Clause 10.15.1.1 Clause 16.4.5.1 
Minimum vertical reinforcement for 
loadbearing walls subjected to 
axial load plus bending shall be 

gAvA 00125.0min  for ts 4  

 2400125.0min tvA  for ts 4  

S304-14 does not contain 
provisions regarding the minimum 
horizontal reinforcement area. 
 

Loadbearing walls (including shear walls) 
shall be reinforced with horizontal and 
vertical steel reinforcement having a 

minimum total area of gAstotalA 002.0  

distributed with a minimum area in one 

direction of at least gAvA 00067.0min   

(approximately one-third of the total area). 
 
Reinforcement equivalent to at least one 
15M bar shall be provided around each 
masonry panel, and around each opening 
exceeding 1000 mm in width or height. 
Such reinforcement shall be detailed to 
develop the yield strength of the bars at 
corners and splices. 

Maximum area:  
vertical & 
horizontal 

reinforcement 

Clause 10.15.2 
Maximum horizontal or vertical reinforcement area  

gAsA 02.0max for ts 4  

 2402.0max tsA  for ts 4  
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Spacing: 
vertical 

reinforcement 

Non-seismic design 
requirements 

Minimum seismic requirements 

for   35.02.0 aaE SFI  

Clause 10.15.1.2 Clause 16.4.5.3&16.5.2 
Where vertical reinforcement is 
required to resist flexural tensile 
stresses, it shall be 
a) continuous between lateral 

supports; 
b) spaced at not more than 2400 

mm along the wall; 
c) provided at each side of 

openings over 1200 mm long; 
d) provided at each side of 

movement joints, and  
e) provided at corners, 

intersections and ends of 
walls. 

 

Vertical seismic reinforcement shall be 
uniformly distributed over the length of 
the wall.  
For all ductile wall classes and walls with 
conventional construction at sites where 

  75.02.0 asE SFI (Cl.16.4.5.3): 

the spacing shall not exceed the lesser of  
a) )10(6 t mm 

b) 1200mm 
Except for walls with conventional 
construction for sites where 

  75.02.0 asE SFI (Cl.16.5.2): 

the spacing shall not exceed the lesser of  
c) )10(12 t mm 

d) 2400mm 
 

 Clause 10.15.1.4 Clause 16.4.5.4 

Spacing: 
horizontal 

reinforcement  

Where horizontal reinforcement is 
required to resist effects of shear 
forces, it shall be:  
a) continuous between lateral 

supports; 
b) spaced not more than lesser 

of 2400 mm or 2wl  o/c for 

bond beam reinforcement;  
c) spaced at not more than 600 

mm for joint reinforcement for 
50% running bond and 400 
mm for other patterns; 

d) provided above and below 
each opening over 1200 mm 
high; and 

e) provided at the top of the wall 
and where the wall is 
connected to roof and floor 
assemblies. 

Horizontal seismic reinforcement shall be 
continuous between lateral supports. Its 
spacing shall not exceed 
a) 400 mm where only joint reinforcement 
is used; 
b) 1200 mm where only bond beams are 
used; or 
c) 2400 mm for bond beams and 400 mm 
for joint reinforcement where both are 
used. 
 

 
Notes: 

tAg 1000   denotes gross cross-sectional area corresponding to 1 m wall length (for vertical 
reinforcement), or 1 m height (for horizontal reinforcement) 
s   = bar spacing 
t   = actual wall thickness 
wl  = wall length
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CSA S304-14 contains new and/or revised provisions related to the detailing of reinforcement 
for moderately ductile and ductile shear walls, which are summarized in Table 2-4. 

Table 2-4. CSA S304-14 Additional Reinforcement Detailing Requirements for Plastic Hinge 
Regions of Moderately Ductile and Ductile Shear Walls 

  Moderately Ductile Shear 
Walls 

 

Ductile Shear Walls 

Grouting 

 Clauses 16.6.2&16.8.5.2 Clause 16.6.2 
Masonry within the plastic hinge 
region shall be fully grouted 
(Cl.16.6.2). 
However, partial grouting is permitted 
(Cl.16.8.5.2) when 

21  ww lh  and either 

a)   35.02.0 aaE SFI  or  

b)   35.02.0 aaE SFI  
but compressive stress due to 

factored axial load is less than mf 1.0
. 

Masonry within the plastic 
hinge region shall be fully 
grouted. 

Vertical 
reinforcement 

Spacing Clause 16.8.5.3&16.4.5.3 Clause 16.9.5.3&16.4.5.3 
The lesser of 4wl  and the value 

prescribed by Cl.16.4.5.3, but it need 
not be less than 600 mm. 
 
The area of concentrated 
reinforcement at each wall end 
should not exceed 25% of the 
distributed reinforcement 
(Cl.16.8.5.3). 

The lesser of 4wl  and the 

value prescribed by 
Cl.16.4.5.3, but it need not be 
less than 400 mm. 
 
The area of concentrated 
reinforcement at each wall end 
should not exceed 25% of the 
distributed reinforcement 
(Cl.16.9.5.3). 

Detailing 
 
 

Clause 16.8.5.1 Clause 16.9.5.2 

Lap splice length minimum dl5.1
within plastic hinge region 
(Cl.16.8.5.5). 

At any section within the 
plastic hinge region, no more 
than 50 percent of the area of 
vertical reinforcement may be 
lapped. 
Lap splice length minimum 

dl5.1 within plastic hinge region 

(Cl.16.9.5.5). 

Horizontal 
reinforcement 

Spacing Clause 16.8.5.4 Clause 16.9.5.4 
Reinforcing bars are to be used in 
the plastic hinge region, at a spacing 
not more than 1200 mm or 2wl . 

Reinforcing bars are to be 
used in the plastic hinge 
region, at a spacing not more 
than 600 mm or 2wl . 

Detailing Clause 16.8.5.4&16.8.5.5 Clause 16.9.5.4&16.9.5.5 
Horizontal reinforcement shall not be 
lapped within  

Horizontal reinforcement shall 
not be lapped within  
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a) 600 mm or  

b) 5wl  

whichever is greater, from the wall 
ends. 
 
The bars should have at least 90° 
hooks at the ends of the wall. 
 

Lap splice length minimum dl5.1
within plastic hinge region 
(Cl.16.8.5.5) 

a) 600 mm or  

b) 5wl  

whichever is greater, from the 
wall ends. 
 
The bars should have 180° 
hooks around the vertical 
reinforcing bars at the ends of 
the wall. 
 
Lap splice length minimum 

dl5.1 within plastic hinge region 

(Cl.16.9.5.5) 

 
CSA S304-14 minimum seismic reinforcement requirements for all classes of RM shear walls 
are illustrated in Figure 2-39. To ensure the desirable seismic performance of ductile shear 
walls, CSA S304-14 prescribes additional reinforcement requirements which are illustrated in 
Figure 2-40 and Figure 2-41. 
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Figure 2-39. Reinforced masonry shear walls: CSA S304-14 minimum seismic reinforcement 
requirements. 
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Figure 2-40. Moderately ductile reinforced masonry shear walls: additional CSA S304-14  
seismic reinforcement requirements. 
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Figure 2-41. Ductile reinforced masonry shear walls: additional CSA S304-14 seismic 
reinforcement requirements. 
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Commentary 
 
S304-14 Cl.16.8.5.4 and 16.9.5.4 require that horizontal reinforcement laps not be within the 
greater of 

 600 mm or  
 5wl   

from the end of a Moderately Ductile or Ductile wall, as shown in Figure 2-40 and 2-41. This 
requirement guards against lap splice failure in the end sections that may have either large 
masonry strains in the vertical direction, or masonry damage from previous cycles.  
 
Cl.16.9.5.4 prescribes the requirements for anchorage of horizontal reinforcement in Ductile 
shear walls. Adequate anchorage needs to be provided at each end of a potential diagonal 
crack. 180° hooks are required around the vertical reinforcing bars at the ends of the wall (see 
Figure 2-42a)). Although this type of anchorage is most efficient, it may cause congestion at the 
end zone for narrow blocks. For that reason, anchorage requirements are somewhat relaxed for 
Moderately Ductile shear walls (Cl.16.8.5.4), where 90° hooks bent downwards into the end 
core are required. This is in line with the New Zealand masonry design standard (NZS 
4230:2004) C 10.3.2.9, which recommends the use of 90° hooks as an alternative solution for 
ductile shear walls (see Figure 2-42b)).  
 
Vertical reinforcement should be uniformly distributed over the wall length. Shear walls with 
distributed reinforcement have almost the same moment resistance as shear walls with 
reinforcement concentrated at the end zones, but the distributed reinforcement has beneficial 
effects by controlling cracking and maintaining shear strength.  
 
According to Cl.16.9.5.2, at any section within the plastic hinge region of Ductile shear walls, no 
more than half of the area of vertical reinforcement may be lapped, that is, laps should be 
staggered. This provision guards against failure of an entire lap splice, helps increase the hinge 
length, and thereby decreases the masonry strain. 

 

Figure 2-42. Anchorage of horizontal reinforcement: a) 180° hooks; b) 90° hooks (reproduced 
from NZS 4230:2004 with the permission of Standards New Zealand under Licence 000725). 
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CSA S304.1-04 and S304-14 seismic reinforcement requirements – a comparison 
Most of the S304-14 seismic requirements for shear wall reinforcement existed in the 2004 
edition of the standard (S304.1-04). A comparison is summarized below. 
1. S304.1-04 contained the minimum seismic requirements related to reinforcement area in 

RM shear walls. These requirements remain mostly unchanged in S304-14, however, 
reinforcement spacing requirements have been somewhat expanded. General spacing 
requirements for vertical reinforcement are stated in Cl.16.4.5.3. However, where,  75.02.0 asE SFI , Cl.16.5.2  allows the vertical reinforcement spacing for Conventional 
Construction shear walls, to be relaxed to 12(t+10) mm or 2400 mm. This amounts to twice 
the spacing permitted for ductile classes and walls with conventional construction at sites 
with higher seismic hazard index values. 

2. S304.1-04 Cl.10.16.5.4.2 required 180° end hooks for horizontal reinforcement bars in the 
plastic hinge region of Moderately Ductile shear walls. However, S304-14 Cl.16.8.5.4 
permits the use of 90° end hooks for horizontal reinforcement in Moderately Ductile shear 
walls; this is a relaxed provision. However, 180° end hooks are required for horizontal 
reinforcement in the new Ductile shear wall category (S304-14 Cl.16.9.5.4). 

3. S304.1-04 10.16.4.1.3 required full grouting in Moderately Ductile shear wall plastic hinge 
zones. S304-14 Cl.16.8.5.2 permits partial grouting in Moderately Ductile shear walls with a 

low aspect ratio  ( 21  ww lh ), either where   35.02.0 aaE SFI , or where

  35.02.0 aaE SFI , but the compressive stress due to the factored axial load is less than 

mf 1.0 .  

4. S304.1-04 Cl.10.16.5.4.1 restricted the lapping of vertical reinforcement in plastic hinge 
zones of Moderately Ductile shear walls; this restriction is not included in S304-14, but the 
same restriction now applies to Ductile shear walls (S304-14 Cl.16.9.5.2). 
 

2.6.10 Minimum reinforcement requirements for Moderately Ductile 
Squat shear walls 

 
16.7.5  

 
CSA S304-14 prescribes the following requirements for the minimum amount of reinforcement 
in Moderately Ductile Squat shear walls: 

 Horizontal reinforcement ratio h : 

 ywwsfh fhbV    

 Relationship between horizontal ( h ) and vertical ( v ) reinforcement ratios:  

 ywwsshv flbP    

 
Commentary 

 
The seismic design requirements for Moderately Ductile Squat shear walls were introduced in 
the 2004 edition of S304.1. In general, the squat wall requirements are more relaxed than those 
pertaining to Moderately Ductile flexural shear walls, because shear failure in squat shear walls 
is not as critical as in taller flexural walls, and can provide some ductility. Thus the design and 
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detailing requirements related to the flexural failure mechanism (e.g. ductility check) are not 
required for squat walls. 
 
The reinforcement requirements in Cl.16.7.5 have been derived from the mechanism of a squat 
shear wall failing in the shear-critical mode shown in Figure 2-43a). Consider a squat shear wall 
subjected to the combined effect of factored shear force, fV , and the seismic axial force, sP (due 
to gravity and live loads using earthquake load factors). The effect of these forces can be 
presented in the form of distributed shear stress, fv , and distributed axial stress, fp , as follows  

ww

f
f lb

V
v


        (18) 

and 

ww

s
f lb

P
p


       (19) 

 
The wall is reinforced with horizontal and vertical reinforcement, where the reinforcement ratios 
h  for horizontal reinforcement, and v  for vertical reinforcement, are given by 

ww

v
v lb

A


      and      

ww

h
h hb

A


  

where 

tbw  overall wall thickness (referred to as “web width” in CSA S304-14) 

wl = wall length 

wh = wall height 

 
If the yield stress of the reinforcement is given by yf , the factored unit capacity of the 
reinforcement in the two directions is yhs f  and yvs f  (see Figure 2-43c) and d)). 
 
Once the shear force in the wall reaches a certain level, inclined shear cracks develop in the 
wall at a 45 angle to the horizontal axis, as shown in Figure 2-43b) (note that this is an 
idealized model and that the angle may be different from 45). The areas of masonry between 
these inclined cracks act as compression struts. Consider a typical unit length strut shown in 
Figure 2-43c). This strut remains in equilibrium only if there is enough force in the vertical 
reinforcement to satisfy moment equilibrium about the base. Note that the force in both the 
vertical and horizontal bars that pass through the strut do not create any net force on the strut. 
 
The equilibrium of forces in the strut requires that 

fyvsf vfp           

When the fp  and fv  expressions are substituted into the above equation, the resulting 

relationship between the horizontal and vertical reinforcement (same as Cl. 16.7.5) is as follows 

ywws

s
hv flb

P


   (20) 
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The equilibrium in the horizontal direction requires that the tensile capacity of the horizontal 
reinforcement, yhs f , be (see Figure 2-43d)) 

fwwyhs Vhbf          

This equation can be presented in an alternative form which is included in Cl.16.7.5. 

ysww

f
h fhb

V





  (21) 

It is worth noting that the required ratios of horizontal and vertical reinforcement are equal for 
walls with low axial load, that is, 0fP . This scenario applies to the common case of low-rise 
masonry buildings with a light roof weight. 
 
Note that the vertical and horizontal reinforcement design should be based on the applied 
flexural and shear forces, but the designer should confirm that the minimum reinforcement 
requirements discussed in this section are also satisfied. 

 

Figure 2-43. Shear failure mechanism for a squat shear wall: a) wall subjected to shear and 
axial load; b) crack pattern; c) compression strut; d) free-body diagram.  
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2.6.11 Summary of Seismic Design Requirements for Reinforced 
Masonry Walls 

Table 2-5. Summary of the CSA S304-14 Seismic Design Requirements for Reinforced 
Masonry Walls 

Provision (guide 
reference section 
shown in the 
brackets)  

Conventional 
Construction 
shear walls 

Moderately 
Ductile shear 
walls 

Ductile shear 
walls 

Moderately 
Ductile squat 
shear walls  

( 1ww lh ) 

Ductility factor 
dR =1.5 dR =2.0 dR =3.0 dR =2.0 

Plastic hinge 
region (2.6.2) 

Not applicable 

Cl16.8.4 Cl.16.9.4 

No special 
provisions 

hp = greater of  

2wl or 6/wh  

and 1.5p wh l  

0.5 0.1p w wh l h   

and

0.8 1.5w p wl h l   

Cl.16.6.2 and 
16.8.5.2 

Cl.16.6.2 

Masonry within the 
plastic hinge region 
shall be fully 
grouted (Cl.16.6.2), 
however partial 
grouting is 
permitted in some 
cases (Cl.16.8.5.2) 

Masonry within the 
plastic hinge region 
shall be fully 
grouted. 

Ductility check 
(2.6.3) 

Not applicable 

Cl.16.8.7&16.8.8 Cl.16.9.7&16.8.8 

1. 0025.0mu  

2. 15.0wlc   

when 0.5ww lh  

& 01.01  odf RR  

Alternatively, a 
ductility check 
required (Cl.16.8.8) 

1. 0025.0mu  

2. 125.0wlc  

when 0.5ww lh  

& 01.01  odf RR  

Alternatively, a 
ductility check 
required (Cl.16.8.8) 

Wall height-to-
thickness ratio 
restrictions 
(2.6.4) 

Cl.10.7.3.3 Cl.16.8.3 Cl.16.9.3 Cl.16.7.4 
Must meet non-
seismic 
slenderness 
requirements and 
design procedures 

20)10( th  

Unless it can be 
shown for lightly 
loaded walls that a 
more slender wall 
is satisfactory for 
out-of-plane 
stability 
 

12)10( th  20)10( th  

Unless it can 
be shown for 
lightly loaded 
walls that a 
more slender 
wall is 
satisfactory for 
out-of-plane 
stability 

Relaxed h/t limits possible for rectangular and thickened 

wall sections with limited wbc  and wlc ratios 
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Provision 
(guide 
reference 
section shown 
in the brackets)  

Conventional 
Construction 
shear walls 

Moderately 
Ductile shear 
walls 

Ductile shear 
walls 

Moderately 
ductile squat 
shear walls  
( 1wlwh ) 

Shear/diagonal 
tension 
resistance 
(2.6.6) 

Cl.10.10.2 Cl.16.8.9.1 Cl.16.9.8.1 Cl.10.10.2 

sVmVrV   

Same as non-
seismic design 

s
V

m
V

r
V  75.0  

25% reduction in 
the masonry shear 
resistance 

sVmVrV  5.0  

50% reduction in 
the masonry 
shear resistance 

Same as 
Conventional 
Construction 
walls 
Cl.16.7.3.1 
Shear force 
applied 
uniformly along 
the wall length 

Sliding shear 
resistance 
(2.6.7) 
 
 
 
 
 
 

Cl.10.10.5 Cl.10.10.5 Cl.16.9.8.2 Cl.10.10.5 

CV mr   

Same as non-
seismic design 
 
 

C
mr

V   

Same as non-
seismic design 
 

C
mr

V   

Only 
reinforcement in 
the tension zone 
to be taken into 
account for C 
calculation. 

Same as 
Conventional 
Construction 
walls 

Minimum  
seismic 
reinforcement 
area 
(2.6.9) 

Minimum seismic 
reinf. requirements 
(Cl.16.4.5) 
apply when  

  35.02.0 aSaFEI

otherwise apply 
minimum non-
seismic reinf. 
requirements 
(Cl.10.15.1) 

Cl.16.4.5 
Minimum seismic reinforcement area requirements apply 
for all classes of ductile masonry walls (see Table 2-3) 

 Cl.16.7.5 
Additional 
reinforcement 
requirements 
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2.6.12 Comparison of the Seismic Design and Detailing Requirements 
for Reinforced Masonry Walls in CSA S304-14 and CSA S304.1-04 

 
Table 2-6. Comparison of CSA S304-14 and S304.1-04 Seismic Reinforcement Requirements 
for Shear Walls  
 

 CSA S304.1-04 
 

CSA S304-14 
 

Applicability 
of minimum 
seismic 
reinforcement 
requirements 

Clause 4.6.1 Clause 16.2.1 
At sites where the seismic 
hazard index 

  35.02.0 aaE SFI , 

reinforcement conforming to 
Clause 10.15.2 shall be 
provided for masonry 
construction in loadbearing 
and lateral load-resisting 
masonry 

At sites where the seismic hazard index 

  35.02.0 aaE SFI , reinforcement 

conforming to Clause 16.4.5 shall be 
provided for masonry construction in 
loadbearing and lateral load-resisting 
masonry 

Minimum 
area: vertical 
& horizontal 
Reinforcement  

Clause 10.15.2.2 Clause 16.4.5.1 
Loadbearing walls (including 
shear walls) shall be 
reinforced horizontally and 
vertically with steel having a 
minimum total area of  

gstotal AA 002.0  

distributed with a minimum 
area in one direction of at 
least 

gv AA 00067.0min 
(approximately one-third of 
the total area) 
 

Remained unchanged 
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 CSA S304.1-04 CSA S304-14 
Spacing: 
vertical 
reinforcement 

Clause 10.16.4.3.2 Clause 16.4.5.3&16.5.2 
Vertical seismic reinforcement 
shall be uniformly distributed 
over the length of the wall. Its 
spacing shall not exceed  the 
lesser of  
a) )10(6 t mm 

b) 1200 mm 

c) 4wl  (for limited ductility or 

moderately ductile walls 
only) 

but it need not be less than 
600 mm 

For all ductile wall classes and walls 
with conventional construction at sites 

where   75.02.0 asE SFI
(Cl.16.4.5.3): 
the spacing shall not exceed the lesser 
of  
a) )10(6 t mm 

b) 1200mm 
Except for walls with conventional 
construction for sites where 

  75.02.0 asE SFI (Cl.16.5.2): 

the spacing shall not exceed the lesser 
of  
c) )10(12 t mm 

d) 2400mm 
 

Spacing: 
horizontal 
reinforcement 

Outside plastic hinge regions 
(Cl.10.15.2.6): 
Horizontal seismic 
reinforcement shall be 
continuous between lateral 
supports. Its spacing shall not 
exceed 
a) 400 mm where only joint 
reinforcement is used; 
b) 1200 mm where only bond 
beams are used; or 
c) 2400 mm for bond beams 
and 400 mm for joint 
reinforcement where both are 
used. 
 
Within plastic hinge regions 
(Cl. 10.16.4.3.3): 
Reinforcing bars are to be 
used in the plastic hinge 
region, at a spacing not more 
than 
a) 1200 mm or  

b) 2wl  

Outside plastic hinge regions 
(Cl.16.4.5.4): 
Horizontal seismic reinforcement shall 
be continuous between lateral supports. 
Its spacing shall not exceed 
a) 400 mm where only joint 
reinforcement is used; 
b) 1200 mm where only bond beams are 
used; or 
c) 2400 mm for bond beams and 400 
mm for joint reinforcement where both 
are used 
 
Within plastic hinge regions (Cl.16.8.5.4 
and 16.9.5.4): 
Reinforcing bars are to be used in the 
plastic hinge region, at a spacing not 
more than 1200 mm (Moderately Ductile 
walls) or 600 mm (Ductile walls) or 2wl

. 
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2.7 Special Topics 

2.7.1 Unreinforced Masonry Shear Walls 
 
According to NBC 2015 Cl.4.1.8.9.(1) (Table 4.1.8.9) and S304-14 Cl. 16.2.1, unreinforced 

masonry SFRS can be constructed at sites where   35.02.0 asE SFI .  

 
According to S304-14 Cl.16.2.2, unreinforced shear walls shall not be combined with shear 
walls designed as reinforced shear walls in a SFRS where shear walls share the lateral load as 
a function of wall rigidity. 
 
S304-14 seismic design provisions for unreinforced masonry shear walls are presented in this 
section. 
 
2.7.1.1 Shear/diagonal tension resistance (in-plane and out-of-plane) 
 

7.10.1 
7.10.2 
7.10.3 

 

 
The design provisions for factored in-plane and out-of-plane diagonal tension shear resistance, 

rV , for unreinforced masonry shear walls are the same as those for RM walls, except that there 
is no steel contribution term ( 0sV ). The background for these provisions is discussed in 
detail in Sections 2.3.2 and 2.4.2. 
 
Commentary 

 
Diagonal tension is a brittle failure mode, characterized by the development of a major diagonal 
crack that forms when the masonry tensile resistance has been reached (see Section 2.3.1.2). 
This is an undesirable failure mechanism and should be avoided, preferably by providing 
horizontal reinforcement in masonry walls loaded in-plane and located in regions where 

  35.02.0 aaE SFI . 
 
2.7.1.2 Sliding shear resistance (in-plane and out-of-plane) 
 

7.10.5.1 
7.10.5.2 

 

 
Design provisions for in-plane and out-of-plane sliding shear resistance for unreinforced 
masonry walls are somewhat different from those for RM, in that both bed-joint sliding masonry 
resistance and the frictional resistance are considered. Note that in RM walls only frictional 
resistance is considered, as discussed in Section 2.3.3. 
 
The in-plane sliding shear resistance,

rV , along bed joints between courses of masonry, also 
known as bed-joint sliding resistance, is given in Cl.7.10.5.1 as 

116.0 PAfV mucmmr    

where 
   = the coefficient of friction 

= 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 
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= 0.7 for a masonry-to-smooth concrete or bare steel sliding plane 
= other (when flashings reduce friction that resists sliding shear, a reduced coefficient of 
friction accounting for the flashing material properties should be used) 

1P  = the compressive force in masonry acting normal to the sliding plane, normally taken as dP  
(equal to 0.9 times the dead load). For infill shear walls, an additional component, equal to 
90% of the factored vertical component of the compressive force resulting from the diagonal 
strut action, should be added (see Figure 2-44c)). 

ucA  = uncracked portion of the effective cross-sectional area of the wall that provides shear 
bond capacity (note that both out-of-plane loads and in-plane loads can cause cracking of 
the masonry wall) 

 
For the in-plane sliding shear resistance, ucA  should be determined as follows 

veuc dtA   

where  
et  = effective wall thickness; et  is equal to the sum of two face shell thicknesses for hollow 

walls, and to the actual wall thickness t  for fully grouted walls 
vd  = effective wall depth, equal to wl8.0  
wl  = wall length 

 

For the out-of-plane sliding shear resistance, ucA  should be determined as follows 

weuc ltA   

The sliding shear resistance at the base of the wall (along the bed joint between the support and 
the first course of masonry) is equal to (see Figure 2-44b)) 

CV mr    

where C   is  compressive force in the masonry acting normal to the sliding plane, normally 
taken as dP  (equal to 0.9 times the dead load), since yT =0, that is,  

yd TPC       

Design equations for the out-of-plane sliding resistance stated in Cl.7.10.5.2 are the same as 
the equations for the in-plane sliding shear resistance presented above. 
 
Commentary 

 
The two forms of the sliding shear failure mechanism (bed-joint sliding and base sliding), are 
presented in Figure 2-44a) and b). Sliding shear failure is likely to govern the design of masonry 
shear walls in low-rise buildings, due to the low axial load acting on these walls (see 
Commentary in Section 2.6.7). In unreinforced masonry walls, dowels can provide the required 
sliding shear resistance at the base, but it should be noted that a sliding shear failure can still 
take place at the section at the top of the dowels, which is undesirable. However, it should be 
noted that the sliding shear failure mechanism is a ductile one, and has been characterized by 
significant lateral deformations along the failure plane in major earthquakes.  
 
Note that in the equation for bed-joint sliding resistance, the first term represents the shear bond 
resistance of masonry mortar, while the second term represents the sliding shear resistance 
based on the Coulomb friction model. In determining the sliding shear resistance for the bed-
joint sliding mechanism for seismic design of unreinforced masonry walls, the first term in the 
equation should be ignored if the wall cracks due to either in-plane or out-of-plane bending. If 
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the wall remains uncracked, the second term (shear friction resistance) should not be included. 
The smaller of the two values should be used in the design. 
 
For the sliding resistance at the base of the wall, sliding shear resistance is provided by the 
weight of the wall above and yielding of steel dowels. Note that the dowel contribution is 
possible only after a small shear slip at the base takes place and a horizontal crack forms at the 
wall-to-foundation interface. 
 

 

Figure 2-44. Sliding shear failure mechanism: a) bed-joint sliding; b) sliding at the base of the 
wall; c) sliding shear in infilled masonry walls. 

 
The bed-joint sliding failure mechanism is also characteristic of infilled masonry walls, as shown 
in Figure 2-44c). Seismic design considerations for masonry infill walls are discussed in Section 
2.7.2. 
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2.7.1.3 Flexural resistance due to combined axial load and bending 
 

7.2  
 
A masonry wall of length, wl , and thickness, t , subjected to factored axial load, fP , and 
factored bending moment, fM , has an eccentricity, e, equal to 

f

f

P

M
e   

According to Cl.7.2.3, unreinforced masonry walls should be designed to remain uncracked 
when  

wle 33.0   for in-plane bending, or 

te 33.0   for out-of-plane bending, 
but the maximum stresses must not exceed tm f  for tension and mm f 6.0  for compression 
(Cl.7.2.4), where tf  is the flexural tensile strength of masonry (see Table 5 of CSA S304-14). 
 
The maximum stresses at the wall ends can be calculated as follows: 
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e
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f  6.0max  
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e

f
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A

P
f max  

where 
fP  and fM  are the factored axial load and the factored bending moment acting on the wall 

section 

wee ltA     effective cross-sectional area of masonry 

et  = effective wall thickness equal to the sum of two face shell thicknesses for hollow walls, and 
to the actual wall thickness t  for fully grouted walls 

6

2
we

e

lt
S


   section modulus of effective wall cross-sectional area   

An unreinforced masonry wall should be designed assuming cracked sections (Cl.7.2.1) when 
eccentricity about either major or minor wall axis is less than 

lime , where 

lime = 0.33 times the dimension of the section perpendicular to the axis about which moments 
are being computed for rectangular walls and columns, or 

0.5 times the distance from the centroid of the section to the extreme compression fibre 
in the direction of bending for non-rectangular walls and columns. 
 
An equivalent rectangular stress block per Cl.10.2.6 should be used for the design. 
 
The centroid of the compression zone must coincide with the load eccentricity,e, as shown in 
Figure 2-45b), and the compression capacity,

rP , can then be determined from the following 
equation: 

  2
2

85.0 






  e
l

tfP w
emmr   

note that 
rP  must be greater than fP . 
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Figure 2-45. Stresses due to combined axial load and bending in an unreinforced masonry wall: 
a) uncracked wall; b) cracked wall. 

 

Commentary 
 
It is realistic to assume that unreinforced masonry wall sections will experience cracking under 
seismic conditions. Reports from the past earthquakes have shown that unreinforced masonry 
suffers extensive damage in earthquakes, e.g. 1994 Northridge, California earthquake 
(magnitude 6.7); for more details refer to TMS (1994). Despite the extensive damage, it should 
be noted that the building stock of unreinforced masonry block walls in California is very limited, 
since the provision for reinforcement in masonry structures started after the 1933 Long Beach 
earthquake. This cannot be said for most seismic zones in Canada. 
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2.7.2 Masonry Infill Walls 
 

7.13 
10.12 

 

 
Infill walls are masonry wall panels enclosed by reinforced concrete or steel frame members on 
all four sides. Infill walls are not listed as a wall class in NBC 2015, and therefore fall under the 
classification of “other masonry SFRS(s)”. They are only allowed in low seismic regions where 

  20.02.0 aaE SFI , and have 0.1 od RR  and a height limitation of 15 m. 

 
CSA S304-14 design provisions for masonry infill walls, introduced for the first time in the 2004 
edition of the code, are summarized below. 
 
General design requirements 

1. Masonry infill walls are treated as shear walls and should be designed to resist all in-
plane and out-of-plane loads (Cl.7.13.1). 

2. Masonry infill walls should be designed to resist any vertical loads transferred to them by 
the frame (Cl.7.13.2.4). 

3. The increased stiffness of lateral load-resisting elements that consist of masonry infill 
shear walls working with the surrounding frame, should be taken into account when 
distributing the applied loads to these elements (Cl.7.13.2.5).   

4. When a diagonal strut is used to model the infill shear wall according to Cl.7.13.3, an 
infill frame can be designed using a truss model (see the note to Cl.7.13.2.5). 

 
Design approaches for masonry infill walls 
CSA S304-14 offers three possible design and construction approaches for infill walls: 

1. Participating infill (diagonal strut approach) – when there are no openings or gaps 
between the masonry infill and the surrounding frame, but the infill is not tied or bonded 
to the frame, the infill should be modelled as a diagonal strut according to Cl.7.13.3. 
Where openings or gaps exist, the designer must show through experimental testing or 
special investigations that the diagonal strut action can be formed and all other structural 
requirements for the infill shear walls can be developed (Cl.7.13.2.3).  

2. Frame and infill composite action – when the infill shear wall is tied and bonded to the 
frame to create a composite shear wall, where the infill forms the web and the columns 
of the frame form the flanges of the shear wall (Cl.7.13.2.2).   

3. Isolated infill - it is also possible to design an isolated infill panel (a note to Cl.7.13.1 and 
Cl.7.13.2.3), which is separated from the frame structure by a gap created by vertical 
movement joints along the ends and a horizontal movement joint under the floor above 
or beam. In that case, masonry infill is a nonloadbearing wall and cannot be treated as a 
shear wall. Restraints must be provided at the top of the wall to ensure stability for out-
of-plane seismic forces. 

 
Diagonal strut model 
For structural design purposes, infill walls should be modelled as diagonal struts, as shown in 
Figure 2-46 (Cl.7.13.2.1). The key properties of the diagonal strut model are summarized below. 
 
Diagonal strut width w  should be determined as follows (Cl.7.13.3.3): 

22
Lhw    

where 
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h  = vertical contact length between the frame and the diagonal strut 

L  = horizontal contact length between the frame and the diagonal strut 

mE , fE  = moduli of elasticity of the masonry wall and frame material, respectively 

h, l  = height and length of the infill wall, respectively 
2 2

dl h l     length of the diagonal 

et  = sum of the thickness of the two face shells for hollow or semi-solid block units and the 

thickness of the wall for solid or fully grouted hollow or semi-solid block units 

cI , bI  = moments of inertia of the column and the beam of the frame respectively 

 = angle of diagonal strut measured from the horizontal, where 

l

h
tan  

Effective diagonal strut width, ew , to be used for the strength calculations should be taken as 
(Cl.7.13.3.4) 

2wwe   

or  

4e dw l  

whichever is the least. 
 
The design length of the diagonal strut, sl , should be equal to (Cl.7.13.3.5) 

2s dl l w   

Depending on the strut end conditions (fixed or pinned), an effective length can be calculated by 
multiplying the design length by the effective length factor for compression members,k (see 
Annex B to CSA S304-14). 
 
The design length for the diagonal strut in reinforced infill walls should be determined as the 
smallest of the following (Cl.10.12.3):  
 design length sl  as defined above, or  
 infill wall height h or length l , when minimum reinforcement and lateral anchorage are 
provided for the span in that direction. 
 
In-plane resistance of masonry infill walls 
According to CSA S304-14, masonry infills should be designed considering the following failure 
mechanisms: 
 Compression or buckling failure in diagonal strut, and  
 In-plane shear failure of the masonry infill. 
 
Diagonal strut – compression resistance (Cl.7.13.3.4.3) 
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The compression strength of the diagonal strut, rP , is equal to the compression strength of the 
masonry times the effective cross-sectional area, that is, 

  emmr AfP  85.0  

where 

eee twA *  

Note that the masonry compressive strength should be reduced by 5.0  (corresponding to 
the masonry strength for compression normal to the head joints). The concept of effective cross-
sectional area is addressed by S304-14 Cl.7.3 (unreinforced masonry walls) and Cl.10.3 (RM 
walls).  
 
Diagonal strut – buckling resistance 

In determining the compression resistance, rP , slenderness effects should be included in 
accordance with Cl.7.7.5.  
 
The designer should ensure that the horizontal component of the diagonal strut compression 

resistance, hP , is larger than the factored shear load, fV , acting on the infill (see Figure 2-46c)). 

 
Bed-joint sliding shear resistance of infill walls (Cl.7.13.3.1 for unreinforced infills and Cl.10.12.4 
for reinforced infills) 
Bed-joint sliding resistance is the key in-plane shear resistance mechanism characteristic, both 
for unreinforced and reinforced infill walls (Cl.7.10.4). See Section 2.7.1.2 for a discussion on 
the bed-joint sliding mechanism. 
 
Infill shear walls should be designed so that a bed-joint sliding shear failure is prevented 
(Cl.7.13.3.1). This failure mechanism can lead to a knee-braced condition that could cause a 
premature failure of the column in the surrounding frame, as shown in Figure 2-49a). 
 
CSA S304-14 Cl.10.12.4 states that the RM infills need to be designed to resist all applied shear 
loads in accordance with Cl.10.10.1, as they relate to the diagonal tension shear resistance 
discussed in Section 2.3.2 of this guide. However, it should be noted that the shear resistance 
corresponding to the diagonal tension cracking does not represent the limited or ultimate load 
condition for infill walls (see the discussion in the commentary part of this section). 
 
Sliding shear resistance of infill walls (Cl.7.13.3.2 for unreinforced infills and Cl.10.12.5 for 
reinforced infills) 
  
Infill shear walls should be designed for sliding shear according to Section 2.3.3, but the vertical 

component of the diagonal strut compression resistance, vP , must be considered in determining 

the sliding shear resistance, as shown in Figure 2-44c). 
 
Effective diagonal strut stiffness 
S304-14 contains a new provision regarding the effective stiffness of diagonal strut. The 
effective stiffness should be calculated as  
 

s

meeffst
eff l

Etw
K


   
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Where sl  is the strut length and st is the factor to account for the reduction in stiffness, taken as 

0.5. 
 
Reinforcement 
Reinforcement is required to resist tensile and shear stresses in infills (Cl.10.12.2). The 
minimum reinforcement requirements stated in Cl.10.15 should be followed. 
 
Effect of masonry infill on frame members (Cl.7.13.3.2) 
Adjacent frame members and their connections should be designed to resist additional shear 
forces resulting from the diagonal strut action (see Note 3 to Cl.7.13.3.2). 
 
Commentary 

 
The infilling of frames is associated with the construction of medium- and high-rise steel and 
reinforced concrete (RC) buildings, where the frames carry gravity and lateral loads, and the 
infills provide the building envelope and internal partitions. Historically, the frames have been 
engineered according to the state of the knowledge of the time, with the infill panels considered 
to be “nonstructural” elements (FEMA 306, 1999). However, recent damaging earthquakes in 
several countries (e.g. the 1999 Kocaeli earthquake in Turkey, the 2001 Bhuj earthquake in 
India, the 2001 Chi earthquake in Taiwan, the 2003 Boumerdes earthquake in Algeria, etc.) 
revealed significant deficiencies and poor seismic performance of RC frame buildings with 
masonry infills, thereby causing significant human and economic losses (Murty, Brzev, et al. 
2006).  
 
The introduction of infills into frames changes the lateral-load transfer mechanism of the 
structure from a predominantly frame action to a predominantly truss action, as shown on Figure 
2-37 (Kaushik, Rai, and Jain, 2006). Masonry infills in RC or steel frame buildings are usually 
modelled as diagonal compression struts, so an infilled frame can be modelled as a braced 
frame with pin connections at beam-column joints. 
 
It should be recognized that the seismic response of infilled frames is very complex. At a low 
level of seismic loads, the infill panels are uncracked and often cause a significant increase in 
the stiffness of the entire structure. In some cases, the stiffness of a RC frame with infills may 
be in the order of 20 times larger than that of the bare frame. At that stage, infills usually attract 
most of the lateral forces, but as the load increases, the infills crack and their stiffness drops. As 
a result, the stiffness of an infilled frame progressively decreases in each subsequent loading 
cycle, and more of the load is transferred to the frame. For that reason, the frames must have 
sufficient strength to avoid the collapse of the structure (Kaushik, Rai, and Jain, 2006). CSA 
S304-14 requires that masonry infills should be able to resist the lateral seismic loads without 
any assistance from the frames (Cl.7.13.3.1).  
 
To safeguard frames from being designed for very low seismic forces, some building codes 
require that the frame alone be designed to independently resist at least 25% of the design 
seismic forces, in addition to the forces caused by gravity loads. CSA S304-14 Cl.7.13.3.2 (Note 
3) states that the frame members and their connections should be designed to resist additional 
shear forces introduced by the diagonal strut action. For example, the columns will have to 
resist a shear force equal to the horizontal component of the diagonal strut compression 
resistance, hP  (see Figure 2-46c)).  
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The following two analytical models can be considered in the design of infilled frames (see 
Figure 2-47):  

i) uncracked braced frame with diagonal struts; this model results in a high stiffness 
(corresponding to a short period) and small lateral deflections, and  

ii) bare frame with cracked frame members (assuming failed infills); this model results 
in a low stiffness (corresponding to a long period) and large deflections.   

It should be noted that the first model will give the maximum design forces, while the second 
one will give the maximum lateral deflections. The designer needs to consider both models in 
the analysis and use the most critical values for the design. 
 
Problems associated with seismic performance of infilled frame structures arise from 
discontinuities of infills along the building height, and the resulting vertical stiffness discontinuity 
(see the discussion on irregularities in Section 1.12.1). In such infilled frames, there is a high 
level of forces to be resisted by the frame components. In some cases, discontinuity of infills at 
the ground floor level results in a soft storey mechanism, which has caused the collapse of 
several buildings in past earthquakes (see Figure 2-48). In developing countries, construction 
quality combined with inadequate detailing of RC frame components may occur, which leads to 
a non-ductile seismic response of these structures.  
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Figure 2-46. Diagonal strut model: a) actual strut width; b) effective strut width; c) analytical 
model. 
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Figure 2-47. Masonry infills alter the seismic response of a frame structure: a) bare frame; 
 b) diagonal strut mechanism (Source: Murty, Brzev, et al. 20061). 
 

 

  a)      b)  

Figure 2-48. Soft storey mechanism: a) vertical discontinuity in masonry infills2 ; b) building 
damage in the 2003 Boumerdes, Algeria earthquake3.   

 
Infill walls may fail due to the effects of in-plane or out-of-plane seismic forces. The in-plane 
seismic response of masonry infills is generally governed by shear failure mechanisms. The 
response depends on several factors, including the relative stiffness of the infill and frame, the 
material properties, and the contact between the infill and frame. The following behaviour 
modes are characteristic of masonry infills subjected to in-plane seismic loads (Tomazevic 
1999; FEMA 306, 1999): 

1. Bed-joint sliding failure: this mechanism takes place along horizontal mortar joints and 
results in the separation of infill into two or more parts (see Figure 2-49a) and b)). The 
separated parts of the masonry infill cause free column deformations, ultimately resulting 
in plastic hinging in the columns. This is a ductile, displacement-controlled mechanism, 
since the earthquake energy is dissipated through the friction along the bed joints. This 
mechanism is likely to occur when the frame is strong and flexible. If the plane of 

                                                
1 Reproduced by permission of the Earthquake Engineering Research Institute (EERI) 
2 Source: Murty, Brzev, et al., 2006, reproduced by permission of the EERI 
3 Source: S. Brzev 
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weakness forms near the column mid-height, there is a chance for a short-column effect 
in the frame that can lead to a shear failure (see Figure 2-49a)). Note that when an infill 
panel experiences a bed-joint sliding failure, an equivalent diagonal strut may not form, 
so that sliding becomes the governing failure mechanism. 

2. Diagonal strut mechanism with corner compression failure: this mechanism takes place 
due to the high concentration of compression stresses in the diagonal strut. The 
formation of a diagonal strut is preceded by diagonal tension cracking in the infill shown 
in Figure 2-49c). These cracks start in the centre of the infill and run parallel to the 
compression strut. As the load increases, the cracks propagate until they extend to the 
corners of the panel. When the capacity of the diagonal strut has been reached, the 
crushing takes place over a relatively small region (see Figure 2-49d)). The onset of 
diagonal shear cracking should not be considered as the limiting or ultimate load 
condition for infill walls, because the ultimate load is governed by either the capacity of 
the diagonal strut or the bed-joint sliding shear resistance. 

 
Figure 2-49. Masonry infill behaviour modes: a) and b) bed-joint sliding1; c) diagonal tension2;  
d) corner compression2. 
 
The diagonal strut mechanism can account for the additional stiffness provided by infill panels. It 
has been adopted by some design codes and guidelines for over 30 years, based on the 
pioneering research done in the1960s.  It is the basis for the diagonal strut model which was 
initially included in CSA S304.1-04 (Stafford-Smith,1966), and its background has been further 
described in a more recent publication (Stafford-Smith and Coull, 1991). In this model, the 
effective strut width, ew , is a function of the relative flexural stiffness of the column/beam and the 
infill, the height/length aspect ratio of the infill panel, the stress-strain relationship of the infill 

                                                
1 Tomazevic, 1999, reproduced by permission of the Imperial College Press 
2 FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency 
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material, and the magnitude of diagonal load acting on the infill. Diagonal strut properties 
prescribed by international codes vary significantly (Kaushik, Rai, and Jain, 2006). For example, 
the New Zealand Masonry Code NZS 4230:2004 prescribes that ew  should be taken as 25% of 
the length of the diagonal. Eurocode 8 (1988) prescribes that ew  should be taken as 15% of the 
diagonal length of the infill. Appendix B of TMS 402/602-16 contains diagonal strut provisions, 
which were discussed by Henderson, Bennett, and Tucker (2007).  
 
A key design parameter related to the diagonal strut model is the length of bearing (or contact) 
between the adjacent column and the infill (this parameter is denoted as h  and 

L  in CSA 
S304-14 Cl.7.13.3.3, for the column-infill or beam-infill contact length respectively). 
Experimental studies have shown that the bearing length is governed by the flexural stiffness of 
the column relative to the in-plane bearing stiffness of the infill. The stiffer the column, the longer 
the length of bearing, and the lower the compressive stresses at the interface (Stafford-Smith 
and Coull, 1991). This phenomenon is reflected in the CSA S304-14 equations used to 
determine h  and 

L  values. Note that these S304-14 provisions are unique, in that they 
prescribe two contact lengths – other codes and design recommendations use only the column 
contact length (corresponding to h  in CSA S304-14). 
 
Out-of-plane failure takes place due to ground shaking transverse to the plane of the wall. This 
mode of failure is more likely to occur at upper stories of a building, due to amplified 
accelerations, but it can also happen at lower stories due to concurrent in-plane loading that 
may damage the masonry. Arching is the prevalent mechanism in resisting out-of-plane seismic 
loads, because considerable out-of-plane strength can be developed even in cracked infills. 
This has been confirmed by several experimental studies (Dawe and Seah, 1989, and Abrams, 
Angel, and Uzarski, 1996). Note that the arching action is possible only for infills in direct 
contact with the frame (i.e. without a gap at the top). Out-of-plane strength estimates based on 
the flexural model of the infill acting as a vertical beam subjected to uniform load due to out-of-
plane seismic load are rather conservative. Note that CSA S304-14 does not contain provisions 
related to out-of-plane resistance of masonry infills. TMS 402/602-16 contains an empirical 
design equation for the out-of-plane resistance of masonry infills based on the arching action, as 
proposed by Dawe and Seah (1989). 
 
Isolated infill: when an infill panel is isolated from the frame, the gap (often called seismic gap), 
must be filled with a very flexible soundproof and fireproof material, e.g. boards of soft rubber or 
special caulking. The gap size (usually in the order of 20 to 40 mm) depends on the stiffness of 
the structure, the deformation sensitivity of the partition walls, and the desired seismic 
performance (Bachmann 2003). In addition to the gap on the sides and top of the panel, a 
restraint for out-of-plane resistance is required. This is typically provided in the form of clip 
angles or dowels at the top and/or sides that restrain out-of-plane motion only. These anchors 
should coincide with vertical and horizontal wall reinforcing (see CSA A370-04 for restraint 
information). 
 
The above discussion pertains mainly to solid infills. Perforations within infill panels are the most 
significant parameter affecting the seismic behaviour of infilled systems. Openings located in the 
centre portion of the wall can lead to weak infill behaviour. On the other hand, partial height 
infills can be relatively strong. The frames are often relatively weak in column shear, and partial 
height infills could potentially lead to a short-column mechanism (FEMA 306, 1999). 

2.7.3 Stack Pattern Walls 
Stack pattern is the arrangement of masonry units in which the head joints are vertically aligned 
(CSA S304-14 Cl.2.2). Stack pattern is not recommended for walls resisting seismic loads 
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because, unlike a running bond pattern, the wall integrity provided by overlapping units is not 
available. The term stack pattern is now used, rather than stack bond, to highlight the lack of 
bond provided by this configuration of units. Stack pattern walls can be found in existing 
masonry buildings throughout Canada (see Figure 2-50a)), and some older walls of this type are 
being demolished, as shown in Figure 2-50b). These walls act as a series of individual vertical 
columns, and the provision of horizontal reinforcement is essential to tie them together. 

 

 
 

a) 

 
b) 

Figure 2-50. Stack pattern walls: a) stack pattern wall in an existing masonry building1;  
b) demolished stack pattern wall2. 
 
CSA S304-14 provisions regarding stack pattern walls of relevance for the seismic design are 
summarized in this section.  
  

                                                
1 Credit: Svetlana Brzev 
2 Credit: Bill McEwen 
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2.7.3.1 Reinforcement requirements 
 

CSA A371-04 Cl.8.1.3  
 
Joint reinforcement or other horizontal reinforcement is required when structural or veneer 
masonry is laid in stack pattern, defined as less than a 50 mm overlap of masonry units. 
 

10.10.4  
 
Horizontal reinforcement for in-plane shear resistance in stack pattern walls shall be spaced at  

a) maximum 800 mm for bond beam reinforcing, and  
b) maximum 400 mm for wire joint reinforcing. 

 
10.15.1 
16.4.5 

 

 
Reinforced stack pattern walls need to meet the minimum horizontal and vertical reinforcement 
requirements for non-seismic condition contained in Cl. 10.15.1, and the additional minimum 
seismic requirements of Cl.16.4.5 (see Section 2.6.11 and Table 2-3). 
 
Commentary 

 
Provision of horizontal reinforcement is critical for enhancing continuity in stack pattern walls. 
CSA S304-14 permits the use of joint reinforcement spaced at 400 mm or less, in addition to the 
bond beam reinforcement provided at a maximum spacing of 2400 mm (Cl.10.15.1.3). Codes in 
other countries, e.g. the U.S. masonry code TMS 402/602-16 Cl.4.5 states that the horizontal 
reinforcement in masonry not laid in running bond shall be placed at a maximum spacing of 48 
in. (1219 mm) on centre in horizontal mortar joints or in bond beams, and the minimum area of 
horizontal reinforcement shall be 0.00028 multiplied by the gross vertical cross-sectional area of 
the wall using specified dimensions. For 190 mm units, the 0.00028 value can be met by 9-
gauge joint reinforcement spaced at 400 mm, but bond beams are probably more effective in 
providing the desired continuity. 
 
Note that gross cross-sectional area gA  for minimum area of vertical reinforcement according to 
Cl.10.15.1.1, should be calculated based on the effective compression zone width b discussed 
in Section 2.7.3.3. 
 
2.7.3.2 In-plane shear resistance 
 

10.10.4  
 
The maximum factored vertical in-plane shear resistance in reinforced stack pattern walls shall 
not exceed that corresponding to the shear friction resistance of the continuous horizontal 
reinforcing used to tie the wall together at the continuous head joints (see Section 2.7.3.1 for 
horizontal reinforcement requirements). 
 
Shear friction resistance shall be taken as 

hmr CV         

where 
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  = 0.7 shear friction coefficient 

hC  = compressive force in the masonry acting normal to the head joint. It is normally taken as 

the factored tensile force at yield of the horizontal reinforcement crossing the joint. This 
reinforcement must be detailed to develop its yield strength on both sides of the vertical joint. 
 
CSA S304-14 does not contain any provisions related to unreinforced stack pattern walls. 
Cl.7.10.4 for unreinforced walls is identical to Cl.10.10.4 for the in-plane seismic resistance of 
reinforced stack pattern walls. 
 
Commentary 

 
In-plane shear resistance of stack pattern walls is less than that of walls built in running bond. 
There is no masonry contribution to the shear resistance, so the resistance depends exclusively 
on the reinforcement crossing the vertical head joint. This is similar to the treatment of shear 
resistance at wall intersections prescribed in Cl.7.11 (see Section C.2). 
 
Shear friction resistance,

rV , is proportional to the coefficient of friction,  , and the clamping 
force, hC , acting perpendicular to the wall height, h (see Figure 2-51). hC  is equal to the sum of 
tensile yield forces developed in reinforcement bars of area bA , spaced at the distances, that is: 

 
 
 

Reinforcing bars providing the shear friction resistance should be distributed uniformly across 
the vertical joint. The bars should be long enough so that their yield strength can be developed 
on both sides of the joint. Note that, in theory, a sliding shear plane can form along any vertical 
joint in a stack pattern wall. 

 

Figure 2-51. In-plane shear resistance of stack pattern walls. 

  

shAfC bysh 
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2.7.3.3 Out-of-plane shear resistance 
 

10.10.3  
 
The out-of-plane shear resistance of stack pattern walls is determined according to the same 
provisions for walls built in running bond (see Section 2.4.3). Note that for the purpose of shear 
resistance calculations, b includes the width of the cell and webs at a vertical bar within the 
length of the reinforced unit. 
 
Commentary 

 
Unless horizontal reinforcement is provided in sufficient amount (size and spacing), the out-of-
plane shear resistance of stack pattern walls is similar to that of a series of isolated vertical 
columns. In Figure 2-52 some stacks are not reinforced with vertical bars and so it is important 
to have adequate horizontal reinforcement to tie the stacks together. 
 
2.7.3.4 Design for the combined axial load and flexure 
The design approach for reinforced stack pattern walls for combined axial load and flexure is 
similar to that presented in Sections 2.3.4 and 2.4.4 for running bond. In determining the out-of-
plane flexural resistance, the flexural tensile strength tf  should be taken equal to zero for 
tensile resistance parallel to bed joints (S304-14 Cl.5.2.1). Also, the effective compression zone 
width b should be taken according to Cl.10.6.1.  
 

10.6.1  
 
For the case of out-of-plane loading (or “minor axis bending” as referred to in S304-14), the 
effective compression zone width,b, used with each vertical bar in the design of stack pattern 
walls with vertical reinforcement shall be taken as the lesser of 
a) spacing between vertical bars,s, or 
b) the length of the reinforced unit. 
 
Figure 2-52 shows a portion of a reinforced stack pattern wall. In this example, the length of the 
reinforced units is less than the spacing between bars and so the compression zone width,b, to 
be used with such bar is equal to the block length. 

 
Figure 2-52. Effective compression zone width b for out-of-plane seismic effects in stack pattern 
walls. 
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Commentary 
 
The seismic performance of stack pattern walls without closely spaced horizontal reinforcement 
has been much less satisfactory than for walls constructed in running bond. The presence of 
horizontal reinforcement is critical for tying together vertical columns formed by stacked blocks 
(NZS 4230:2004).  
 
Unreinforced stack pattern walls located in regions with moderate to high seismic risk are 
considered to be vulnerable to seismic effects and should be either retrofitted or demolished. It 
is suggested that unreinforced stack pattern walls not be used in seismic regions. 

2.7.4 Nonloadbearing Walls 
Nonloadbearing walls resist the effects of their own dead load and any out-of-plane wind and 
earthquake loads. This includes partitions and exterior walls that do not support floors and roofs 
(S304-14 Cl.2.2). However, walls that do not support floors and roofs, but resist the in-plane 
forces from wind and earthquake loads are considered loadbearing shear walls (see Section 
2.5.4.7 for a detailed discussion on seismic reinforcement requirements for shear walls). 
 

16.2.1 
16.2.3 

 

With the exception noted below, nonloadbearing walls, including masonry enclosing elevator 
shafts and stairways must be reinforced at sites where   35.02.0 aaE SFI  (Cl.16.2.1).  
 
Although not recommended by the authors, unreinforced masonry partitions can be designed for 
sites where   75.02.0 aaE SFI , provided that they a) have a mass less than or equal to 200 
kg/m2, b) have a height less than or equal to 3 m, and c) are laterally supported at the top and 
bottom. Unreinforced masonry partitions that do not exceed 3 m in height and are not laterally 
supported at the top may be designed to span horizontally between vertical elements providing 
lateral support. 
 

16.4.5  
 
Minimum seismic reinforcement requirements for nonloadbearing walls are summarized below: 

1. If   35.02.0 aaE SFI  

Minimum seismic reinforcement is not required per CSA S304-14. 

2. If   75.02.035.0  aaE SFI  (Cl.16.4.5.2a) 

Nonloadbearing walls shall be reinforced in one or more directions with reinforcing steel 
having a minimum total area of  

gstotal AA 0005.0   
The area should be taken perpendicular to the direction of the reinforcement considered. 
The reinforcement may be placed in one direction, provided that it is located to 
reinforce the wall adequately against lateral loads and that it spans between lateral 
supports. 

3. If   75.02.0 aaE SFI  (Cl.16.4.5.2b) 

Nonloadbearing walls shall be reinforced horizontally and vertically with steel having a 
minimum total area of  

gstotal AA 001.0  distributed with a minimum area in one direction of at least  
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gv AA 00033.0min  (approximately one-third of the total area). 

gA  denotes gross cross-sectional area corresponding to unit wall length (for vertical 

reinforcement), or unit height (for horizontal reinforcement).  
 
16.5.2  

For all nonloadbearing and partition walls at sites where   75.02.0 asE SFI the spacing shall 

not exceed the lesser of  
a) )10(6 t  mm 
b) 1200mm 

Except for sites where   75.02.035.0  asE SFI the spacing shall not exceed the lesser of  

c) )10(12 t mm 
d) 2400mm 
 
16.4.5.4  

Horizontal seismic reinforcement must be continuous between lateral supports in both 
loadbearing and nonloadbearing walls. Its spacing cannot exceed 

(a) 400 mm where only joint reinforcement is used; 
(b) 1200 mm where only bond beams are used; or 
(c) 2400 mm for bond beams and 400 mm for joint reinforcement where both are used. 

 
In terms of seismic design, the effect of out-of-plane seismic loads is likely going to govern the 
design of nonloadbearing walls. The approach for out-of-plane flexural design is similar to that 
presented in Section 2.4.4 for RM walls. For unreinforced nonloadbearing walls, the design 
procedure presented in Section 2.7.1.3 should be followed. 

2.7.5 Flanged shear walls 
 
Flanged shear walls are discussed in Section C.2. A typical L-shaped flanged wall section is 
shown in Figure 2-53. CSA S304-14 does not contain any specific seismic provisions related to 
flanged shear walls. Flanged shear walls are required to resist earthquake forces in both 
principal directions.  

 

Figure 2-53. Reinforced masonry shear wall with flanges. 
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Paulay and Priestley (1992) proposed effective overhanging flange widths for reinforced 
concrete and RM shear walls. For tension flanges, it is assumed that vertical forces due to 
shear stresses introduced by the web of the wall into the flange spread out at a slope of 1:2. For 
reinforced concrete flanged shear walls, the flexural strength of wall section with the flange in 
compression is insensitive to the effective flange width as the neutral axis is probably in the 
flange. After significant tension yield excursion in the flange, the compression contact area 
becomes rather small after load reversal, with outer bars toward the tips of the flange still in 
tensile strain. 
 
As a result, the overhanging flange width 

Tb  to be used in seismic design for the flanges under 
tension and compression are as follows: 

 Tension flange: wh5.0  

 Compression flange: wh15.0  

where wh  denotes the wall height. Note that these 
Tb  values are different than the overhanging 

flange widths prescribed by CSA S304-14 for non-seismic design (see Table C-1 and Figure C-
10 in Appendix C). 
 
Shear walls with unsymmetrical flanges will have different flexural resistances, depending on 
whether flange acts in tension or in compression. Research studies on T-section walls have 
shown that such walls can exhibit larger ductility when the flanges are in compression. 
However, T- and L-section walls may have limited ductility when flanges are in tension (Paulay 
and Priestley, 1992; Priestley and Limin, 1995). Their experiments have shown that wall failure 
was sudden and brittle, and was initiated by a compression failure of the non-flange end of the 
wall, as shown in Figure 2-54b). This was principally due to the large compression force needed 
to balance the large tension capacity of the reinforcement in the flange section. 
 
In walls with unsymmetrical flanges, such as the T-section wall shown in Figure 2-54, the 
designer should be careful when applying the capacity design approach to determine flexural 
and shear capacity. The flexural capacity of the wall section is reached when the flange is in 
compression and the axial load is at minimum, minfP ,as shown in Figure 2-54a). However, the 
maximum shear occurs when the flange is in tension and the axial load is at maximum, maxfP , 
as shown in Figure 2-54b) (this will result in a significantly higher flexural strength). A similar 
approach should be taken when the capacity design approach is applied to shear walls with 
pilasters. 
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Figure 2-54. T-section flanged shear wall: a) flexural design scenario: web in tension; b) shear 
design scenario: web in compression. 

S304-14 design provisions related to shear transfer at wall intersections (including flanged 
walls) are discussed in Section C.2.  

2.7.6 Wall-to-Diaphragm Anchorage 
 

CSA A370-14           
 
Masonry shear walls must be adequately anchored to floor and roof diaphragms in accordance 
with CSA S304-14. (CSA A370-14 Cl. 7.2.2) 
 
Anchors connecting masonry walls in general to their lateral supports must be designed to resist 
specified loads. The maximum anchor spacing between walls and horizontal lateral supports 
typically should not exceed ten times the nominal wall thickness (t+10 mm) (Cl.7.2.1). Anchors 
must be fully embedded in reinforced bond beams or reinforced vertical cells.   
 
When the unfactored load applied normal to a wall is greater than 0.24 kPa, the ultimate 
strength of a wall anchor must not be less than 1,600 N (Cl.8.2.1). 
 
Commentary 

 
Anchorage is one of the most important and, in many cases, the most vulnerable component of 
existing masonry buildings exposed to earthquake effects. Many failures of masonry buildings 
result from a wall-diaphragm failure, that allows an out-of-plane wall failure, followed by a 
diaphragm failure. 
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Wall anchors must be effective in resisting the horizontal design forces from in-plane and out-of- 
plane seismic loads. According to the capacity design approach, anchors should be designed to 
remain elastic in a seismic event (no yielding). This can be achieved by designing the anchor 
capacity based on the wall capacity, or on the elastic wall forces (corresponding to odRR  of 
1.0).  
 
The anchors need to resist tension and shear forces, as shown in Figure 2-55. 

 

Figure 2-55. Tension and shear anchors at the wall-to-diaphragm connection. 

Seismic load provisions for nonstructural components and their connections (including anchors) 
are provided in NBC 2015 Cl.4.1.8.18. 
 

2.7.7 Masonry Veneers and their Connections  
2.7.7.1 Background 
In some applications and exposure conditions, the need for better control over rain penetration 
led to the incorporation of an air space or cavity in traditional masonry walls to provide a 
capillary break between two wythes. This type of two-stage wall can be referred to as a 
rainscreen wall, when the air space behind the outermost element is drained and vented to the 
exterior, and an effective air barrier is included in the backup assembly. Masonry veneer, an 
important component of a modern rainscreen wall, is a nonloadbearing masonry facing attached 
to, and supported laterally by a structural backing. The structural backing may be structural 
masonry, concrete, metal stud or wood stud. A section of a typical rainscreen wall is shown in 
Figure 2-56. 
 
While masonry veneers of brick, block or stone are nonloadbearing components, there are 
structural issues to be addressed if they are to perform satisfactorily. Veneers must be 
connected adequately to a structural backing by means of metal ties to ensure effective transfer 
of lateral loads due to wind and earthquakes. Steel angles are usually used to support veneers 
across openings (lintels), and to provide horizontal movement joints (shelf angles). For more 
information related to masonry veneers refer to the Technical Manual of the Masonry Institute of 
BC (2017). 
 
Veneer design is addressed by CSA S304-14 Cl.9.  
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Figure 2-56. Key components of a masonry veneer (Reproduced by permission of the Masonry 
Institute of BC). 

2.7.7.2 Ties 
Brick ties are the key components that connect a masonry veneer to a structural backing to 
ensure effective lateral load transfer. Tie requirements are outlined in CSA A370-14 Connectors 
for Masonry. The older kinds of ties, such as strip ties and Z-ties (now referred to as 
“Prescriptive Ties“), are seldom used in modern commercial construction, and cannot be used 

where the seismic hazard index,   35.02.0 aaE SFI . The modern, 2-piece, adjustable, 

engineered ties that are now in common use are simply referred to as “Ties”. CSA A370-14 
contains strict design requirements for the corrosion resistance, strength, deflection and free 
play of ties. It also contains requirements for fasteners (screws), and anchors for connecting 
masonry walls and for attaching stone.  
 
CSA A370-14 requires stainless steel ties for masonry over 13 m high for areas subject to high 
wind-driven rain. Hot dipped galvanized coatings are the acceptable minimum corrosion 
protection for most walls 13 m or lower in these areas, and for all walls in drier areas. To define 
these areas, the standard provides wind-driven rain data for locations across Canada in Annex 
E, in terms of their Annual Driving Rain Index (aDRI). 
 
The maximum tie spacing is prescribed by S304-14 Cl.9.1.3 and A370-14 Cl.7.1 as follows 
 600 mm vertically, and  
 820 mm horizontally 
Note that S304-14 and A370-14 prescribe different maximum values for horizontal tie spacing 
(820 and 800 mm respectively). The value of 820 mm in S304-14 is shown here because it 
provides for typical stud spacings in imperial units, and because S304-14 is the higher-level 
standard. 
 
While this maximum spacing combination is often feasible for stiff backups like block and 
concrete, in most cases they cannot be achieved under the calculation method specified for 
flexible stud backups. In these cases, spacings of 600 mm vertically and 410 horizontally are 
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common. In addition to the general tie spacing, ties must also be located within 300 mm of 
jambs and tops of walls, and within 400 mm of the base of walls. The wind load lateral deflection 
limit for flexible stud backups supporting masonry veneer is span/360.   
 
The factored resistance of a tie (

rP ) is addressed by A370-14 Cl.9.4.2.1.2, and can be 
determined as a function of the ultimate tie strength ultP  from the following equation 

ultr PP *  

where   is the the resistance factor, which can assume the following values 
  = 0.9 for tie material strength 

  = 0.6 for embedment failure, failure of fasteners, or buckling failure of the connection. 
 
2.7.7.3 Seismic load provisions for ties 
Seismic load provisions for ties apply in areas in which the seismic hazard index   35.02.0 aaE SFI , and for all post-disaster buildings (NBC 2015 Cl.4.1.8.18.2). 
 
Ties are designed to resist the lateral wind and seismic loads acting perpendicular to the veneer 
surface, based on the tributary tie area. Note that in many cases, wind loads may govern, even 
in higher seismic areas. Seismic lateral loads on ties are determined from the provisions for 
elements and components of buildings and their connections (NBC 2015 Cl. 4.1.8.18). The 

seismic tie load pV  is determined from the following equation: 

 

  ppEaap WSISFV 2.03.0  

where  

 2.0aS = 5 % damped spectral response acceleration for a 0.2 sec period (depends on the        

site location; values for various locations in Canada from NBC 2015 Appendix C) 

aF = foundation factor, which is a function of site class (soil type) and )2.0(aS  (NBC 2015 

4.1.8.4(7))  

EI = building importance factor equal to1.0, except 1.3 for schools and community centres, 
and 1.5 for post-disaster buildings (NBC 2015 4.1.8.5)  
       

pS = horizontal force factor for part or portion of a building and its anchorage (see NBC 

2015, Table 4.1.8.18, Case 8) 

      pxrpp RAACS       (where 0.47.0  pS )    

pC  = seismic coefficient for a particular nonstructural component (equal to 1.0 for ties)  

rA  = response amplification factor to account for the type of attachment (equal to 1.0 for 
ties) 

nxx hhA 21   amplification factor to account for variation of response with the height of the 

building (maximum 3.0 for the worst case at top of wall for ties). Note that 3xA  is the 

worst case for a tall building that may have higher mode contribution to accelerations in the 

top part of the building; thus 3xA  would be used for the entire top floor. For a single-

storey building this doesn’t make much sense. However, the accelerations will be higher at 
the top of a wall where the capacity is reduced because of low vertical load on the bricks, so 
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3xA  may be reasonable for the top row of ties. This could be reduced in the lower part of 

the wall, but for construction simplicity it would generally be better to maintain one spacing 
on most projects. This could depend on the relative amounts of masonry veneer on the 
upper and lower portions of the walls.  

pR  = element or component response modification factor that accounts for ductility (equal to 

1.5 for ties).  

So, the pS  value for tie design is 

      0.25.10.30.10.1 pS  

pW  = tributary weight for a specific tie, equal to the unit weight of the veneer masonry 

(typically taken as 1.8 kN/m2 for brick and cored block) times the tributary area (equal to the 
product of tie spacing for each direction).  

The tie design load depends on the type of veneer backup (rigid/flexible), as per S304-14 
Cl.9.1.3.3: 

 For rigid backups (e.g. concrete block walls), the tie force is equal to the seismic load pV  
corresponding to the tributary area weight pW . 

 For flexible backups (e.g. steel or wood stud walls), a tie must resist  40% of the tributary 
lateral load on a vertical line of ties. However, a tie must also be able to resist the load from 
double the tributary area on the tie. 

 
Factored tie capacities 

rV  are normally provided by test data from the manufacturers. The tie 
capacity is considered to be adequate provided that 

rp VV   

If this is not a case, the tributary area and resulting tie spacing can be reduced until the above 
requirement is satisfied, or a stronger tie can be considered. In many cases, the design will 
begin with a given tie strength, with the resulting spacing calculated and assessed (see design 
Example 7 in Chapter 3). 

2.7.8 Constructability Issues 
Most of the information provided in this section has been adapted from the Technical Manual 
prepared by the Masonry Institute of BC (2017). The requirements for masonry construction are 
contained in CSA A371-14 Masonry Construction for Buildings. This standard provides direction 
to masonry contractors and masonry designers on the proper procedures for the erection of 
masonry walls  
 
2.7.8.1 Reinforcement 
RM is basically another form of reinforced concrete construction. However, reinforcing and 
grouting details should consider the cell configuration of the masonry units. Care should be 
taken to disperse the rebar throughout the wall, and to avoid congestion in individual vertical 
cells. The cell size of the masonry units will dictate the size and number of bars that can be 
effectively grouted. A reinforcement arrangement, such as the one shown in Figure 2-57, is 
unsuitable and should be avoided. Typical RM makes use of 15M or 20M bars. Units of 150 and 
200 mm nominal width should not contain more than one vertical bar per cell (2 bars at splices). 
25M bars are occasionally used, but are more difficult to handle and require long laps. Vertical 
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bars are typically placed in one layer in the centre of the wall. Site coordination is required to 
ensure that rebar foundation dowels are installed to coincide with RM cell locations. 
 
Horizontal rebar is placed in bond beam courses using special bond beam blocks that have 
depressed or knock-out webs. Bond beams are typically spaced at 2400 mm vertically, but may 
also be positioned to coincide with lintel courses over openings. Bond beams may also be 
required at closer spacings for certain shear wall situations. Joint reinforcement is often used in 
combination with bond beam bars. It is a ladder of 9-gauge (3.7 mm) galvanized wire installed in 
the mortar bed (horizontal) joint, which positions a wire in the centre of each block face shell. It 
must be spaced at a maximum of 600 mm for ½ running bond masonry, but at 400 mm for other 
patterns, or when used as seismic reinforcement. Joint reinforcement resists wall cracking and 
may contribute to the horizontal steel area in the wall. If joint reinforcement is not used, the 
maximum spacing of bond beams is 1200 mm for seismic detailing, except for stack pattern 
masonry where the limit is 800 mm for all reinforced walls (CSA S304-14 10.10.4). 
 

 
a)                                                                           b) 

Figure 2-57. Masonry reinforcing: a) inappropriate reinforcement arrangement: 2 bars vertically 
and 2 bars horizontally in a 20 cm wall are almost impossible to grout, particularly at splices 
where the steel is doubled; b) wire joint reinforcement laid in bedjoints (Reproduced by 
permission of the Masonry Institute of BC). 

Vertical reinforcing is required at each side of control joints, and at the corners, ends and 
intersections of walls. Horizontal reinforcing is required at the tops of walls, and where walls are 
connected to a roof or floor assembly. In addition to seismic reinforcing requirements for flexure, 
shear and minimum steel area, loadbearing walls require reinforcement equal to at least one 
15M around all masonry panels, and any openings over 1,000 mm in length or height. Although 
not recommended by the authors, CSA S304-14 (Clause 4.6.1) allows unreinforced masonry 
partitions if they are less than 200 kg/m2 in mass and 3 m in height, but only for seismic hazard 
indices   75.02.0 aaE SFI .  
  
Unless they are designed to span horizontally, nonloadbearing masonry partitions must have 
adequate top anchorage to avoid out-of-plane collapse. Dowels or angle clips must align with 
cells containing vertical bars (see Section 2.7.6 and CSA A370-14 for anchorage details). Bond 
beams at the tops of walls constructed under slabs or beams should be located in the second 
course below the top support to allow access for the effective grouting of that bond beam. Cells 
in the top course above the bond beam that contain vertical bars can be dry packed with grout 
as they are laid with open-end units.    
 
2.7.8.2 Masonry grout 
Masonry grout, or “blockfill”, must flow for long distances through relatively small cells to anchor 
wall reinforcement. It is therefore placed at a much higher slump than regular concrete – in the 
range of 200 to 250 mm. While this water content would be problematic for cast-in-place 
concrete, in masonry the extra water necessary for placement is absorbed into the masonry 
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units, which reduces the in-place water/cement ratio, thereby providing adequate strength in the 
wall. Standard compressive strength tests using non-absorbent cylinders provide misleading 
data, as the extra water is trapped within the cylinder. Testing has shown the actual grout 
strength to be at least 50% higher than cylinder results. This situation is recognized in CSA 
S304-14 by basing masonry strength requirements on grout strengths of only 12.5 MPa by 
cylinder test. In some cases, a higher cement content grout (20 MPa) may be preferred for 
pumping reasons. 
 
The most commonly used type of grout is Course Grout, which has a maximum aggregate size 
of 12 mm. Fine Grout uses coarse sand for aggregate and is usually only used in small core 
units such as reinforced brick. Grout is supplied either by ready-mix truck or mixed on site, with 
quality control data available from the supplier or field test cylinders respectively. 
 
While grouting, care must be taken to completely fill the reinforced cores and to ensure that all 
bars, bolts and anchors are fully embedded. Vibration is usually not practical, but bars can be 
shaken to “puddle” the grout. Grout is often pumped in 2.4 m pours from bond beam to bond 
beam. The maximum pour height for typical “high-lift grouting” in CSA A371 -14 is 4.5 m, but 
this should only be considered for H-block or 250 and 300 mm units. For total grout pours of 3 m 
or more, the grout must be placed in lifts of 2 m or less.  
 
Sample base specification: 
 Grout to meet CSA A179-14 requirements 
 Minimum compressive strength 12.5 MPa at 28 days by cylinder test under the property 

specification 
 Maximum aggregate size 12 mm diameter 
 Grout slump 200 to 250 mm 
 
2.7.8.3 Masonry mortar 
Unlike reinforcing and grout, there are few issues in the specification, preparation and 
installation of mortar for structural masonry. CSA A179-14 Mortar & Grout for Unit Masonry, 
covers mortar types and mixing. Type S mortar is almost always used for structural masonry 
because it provides the balance of mortar strength and bond that is required for good seismic 
performance. Unlike most cement-based products, compressive strength is not the dominant 
material criteria. Good bond is critical, and results from mortar properties such as workability, 
adhesion, cohesion and water retention. Adequate bond binds the units together to provide 
structural integrity, tensile and shear capacity, and moisture resistance. In a mortar mix, 
Portland cement provides compressive strength and durability, while mortar cement, masonry 
cement or lime provides the properties that lead to good bond.     
 
Most mortar is mixed on-site, and can be checked against the material proportions specified in 
CSA A179-14. Inspection of site-mixed mortar is generally not a significant concern for 
designers, because the bricklayer and the specifier are both looking for workable, well-
proportioned mixes that provide installation efficiency for the mason, and good long-term 
performance for the designer. There are also pre-manufactured dry and wet mortars. The 
compressive strength required in CSA A179-14 for these products can be confirmed by plant or 
site cube test data.  
 
Mortar joints must be well filled and properly tooled for good performance. Concave tooled joints 
are the best shape for both structural purposes and weather resistance. Mortar joints 
accommodate minor dimensional variations in the masonry units, and provide coursing 
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adjustment that may be necessary to meet required dimensions. Mortar joints also contribute to 
the architectural quality of the masonry assembly through colour and modularity. 
 
2.7.8.4 Unit sizes and layout 
Concrete masonry units are made in various sizes and shapes to fit different construction 
needs. Each size and shape is also available in various profiles and surface treatments. 
Concrete unit sizes are usually referred to by their nominal dimensions. Thus, a unit known as 
20 cm or 200x200x400 mm, will actually measure 190x190x390 mm to allow for 10 mm joints 
(see Figure 2-58). Standard nominal widths are 100, 150, 200, 250 and 300 mm, with 200 mm 
being the most common size for structural walls. 
 
Working to a 200 mm module will minimize cutting, and maintain the alignment of vertical cells 
for rebar, as illustrated in Figure 2-59. Where possible, piers, walls and openings should be 
dimensioned in multiples of 200 mm (half units). Foundation dowels must also be laid out and 
installed to match the module of vertically reinforced cells. 

 

Figure 2-58. A typical 200 mm block unit (Hatzinikolas, Korany and Brzev, 2015, reproduced by 
the authors’ permission). 

 

 
 

 
 

 
 
 
 

Figure 2-59. Examples of good and poor masonry layout (Reproduced by permission of the 
Masonry Institute of BC). 

Good layout with 
no cut units 

Many cut units reduce 
productivity, increase waste and 
may interfere with vertical rebar 
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2.7.8.5 Other construction issues 
In “high-lift grouting” (over 1.5 m), clean-out/inspection holes at the base of the reinforced cells 
may facilitate the removal of excessive mortar droppings and, more importantly, can confirm 
that grout has reached the bottom of the core. Clause 8.2.3.2.2 of CSA A371-14 allows the 
common practice of waiving the requirement for clean-out/inspection holes by the designer, 
when the masonry contractor has demonstrated acceptable performance, or where the walls are 
not structurally critical. In some cases, the designer may require the initial walls to have clean-
outs, pending demonstrated performance, and then waive them for the remaining walls.  
 
Vertical movement joints in RM walls are required to accommodate thermal and moisture 
movements, and possible foundation settlement. They are typically specified at a maximum 
spacing of 15 m.  
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3 Design Examples 
 
EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBC 2015 
 
Consider a single-storey warehouse building located in Niagara Falls, Ontario. The building plan 
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure 
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70 
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the 
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil 
at the building site is classed as a Site Class D per NBC 2015. 
 
Calculate the seismic base shear force for this building to NBC 2015 seismic requirements 
(considering the masonry walls to be detailed as “conventional construction”). Next, determine 
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity. 
Assume that the roof acts like a rigid diaphragm. 

 



9/1/2018                    3-3 

SOLUTION: 
 
1.  Calculate the seismic weight  W  (NBC 2015 Cl.4.1.8.2) 
a) Roof loads: 
- Snow load (Niagara Falls, ON)                      sW   = 0.25*(1.8*0.8+0.4)= 0.46 kPa 

(25% of the total snow load is used for the seismic weight) 
- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete 
topping)                                                                     DW  = 3.30 kPa 

Total roof seismic weight  roofW = (0.46kPa+3.30kPa)(64.0m*27.0m)= 6497 kN 

b) Wall weight: 
Assume solid grouted walls                                 w = 4.0 kN/m2 
(this is a conservative assumption and could be changed later if it is determined that partially 
grouted walls would be adequate) 
The usual assumption is that the weight of all the walls above wall midheight is part of the 
seismic weight (mass) that responds to the ground motion and contributes to the total base 
shear. 
Tributary wall surface area: 

- North face elevation   = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m2 
- South face elevation (same as north face elevation)        = 181.1 m2 
- East face elevation   = 0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m)  =   81.4 m2 
- West face elevation (same as east face elevation)         =   81.4 m2 

Total tributary wall area                                                                          Area   = 525.0 m2 
                                                            ________________________________________ 
Total wall seismic weight      AreawWwall * =  4.0*525.0= 2100 kN 

 
The total seismic weight is equal to the sum of roof weight and the wall weight, that is, 

wallroof WWW  = 6497+2100= 8597 kN  8600 kN 

 
2. Determine the seismic hazard for the site (see Section 1.4). 
 Location: Niagara Falls, ON (see NBC 2015 Appendix C)                      

)2.0(aS = 0.321   

)5.0(aS = 0.157 

)0.1(aS = 0.072 

)0.2(aS = 0.032 

(5.0)aS = 0.0076 

PGAref = 0.207 
 Foundation factor – Site Class D and PGAref = 0.207 (see Tables 1-3 to 1-7) 

(0.2)F = 1.09  

(0.5)F = 1.30  

(1.0)F = 1.39 

(2.0)F = 1.44 

(5.0)F = 1.48 
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 Site design spectrum  TS  (see Section 1.4) 

For T =0.2 sec:     0.2 (0.2) 0.2aS F S  = 1.09*0.321=0.35        2.0S =0.35   

or    0.5 (0.5) 0.5aS F S  =1.3*0.157=0.20 (larger value governs) 

For T =0.5 sec:      0.5 (0.5) 0.5aS F S  =1.3*0.157=0.20           5.0S =0.20 

For T =1.0 sec      1.0 (1.0) 1.0aS F S  =1.39*0.072=0.10           0.1S =0.10 

For T =2.0 sec       2.0 (2.0) 2.0aS F S  =1.44*0.032=0.046       2.0S =0.05 

For T =5.0 sec       5.0 (5.0) 5.0aS F S  =1.48*0.0076=0.011     5.0S =0.01 

 
The site design spectrum  TS  is shown below. 

 
 Building period (T ) calculation (see Section 1.6 and NBC 2015 Cl.4.1.8.11(3).c) for wall 
structures) 

nh = 6.6 m   building height 

  4305.0 nhT  = 0.21 sec 

Then interpolate between  2.0S  and  5.0S to determine the design spectral acceleration: 

 TS =  21.0S = 0.35 
 
3. Compute the seismic base shear (see Section 1.6) 
The base shear is given by the expression (NBC 2015 Cl.4.1.8.11) 

                         
 

W
RR

IMTS
V

od

Ev  

where 
EI = 1.0   (building importance factor, equal to 1.0 for normal importance, 1.3 for high 

importance, and 1.5 for post-disaster buildings) 
vM = 1.0 (higher mode factor, equal to 1.0 for T 1.0 sec, that is, most low-rise masonry 

buildings) 
Building SFRS description:  masonry structure – conventional construction (see Table 1-13 or 
NBC 2015 Table 4.1.8.9), hence   dR = 1.5 and  oR = 1.5      
 
The design base shear V  is given by: 



9/1/2018                    3-5 

  0.35*1.0*1.0
0.16

1.5*1.5
v E

d o

S T M I
V W W W

R R
    

but should not be less than  
 

 
min

4.0 0.023*1.0*1.0
0.001

1.5*1.5
v E

d o

S M I W
V W W

R R
    

Note that  4.0S value (0.023) was obtained by interpolation from the site design spectrum 

chart  TS . 

The design base shear V need not be taken more than greater of the following two values:  

 
max

2 0.2 2*0.35 1.0
0.10

3 3 1.5*1.5
E

d o

S I W
V W W

R R

            
    

, provided 5.1dR .      

And  

 max

1.0
0.5 0.20 0.09

1.5*1.5
E

d o

I W
V S W W

R R

        
  

 

The upper limit on the design seismic base shear governs and therefore 
 

0.10 0.10*8600 860V W     kN 
 
Note that the upper limit on the base shear is often going to govern for low-rise masonry 
structures which have low fundamental periods. The lower bound value would generally only 
apply to very tall buildings. 
 
4. Determine if the equivalent static procedure can be used (see Section 1.6 and NBC 
2015 Cl. 4.1.8.7). 
According to the NBC 2015, the dynamic method is the default method of determining member 
forces and deflections, but the equivalent static method can be used if the structure meets any 
of the following criteria:  
(a) is located in a region of low seismic activity where the seismic hazard index 

  35.02.0 aaE SFI . 
In this case, the seismic hazard index is  2.0aaE SFI =1.0*1.09*0.321=0.35 since 

(0.2) 1.09aF F  . 
 (b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction.  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-16 
of Section 1.12.1. A single storey structure by definition will not have any irregularities of Type 1 
to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7 
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on 
the torsional sensitivity.  
(c) has any type of irregularity, other than Type 7 and Type 9, and is less than 20 m in 
height with period T < 0.5 seconds in either direction.  
This structure satisfies the height and period criteria. 
 
Since the criterion c) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure. It will be shown later that, even when using a conservative assumption, the 
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For 
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structures with the lateral resisting 
elements distributed around the 
perimeter walls the B value will almost 
always be less than 1.7. 
 
5. Distribute the base shear force to 
the individual walls. 
In this example, the structure is 
symmetric in each direction and so the 
centre of mass, MC , and the centre of 
resistance, RC ,  coincide at the 
geometric centre of the structure. One might argue that in this simple system with walls at only 
each side of the building, the system is statically determinate in each direction and the total 
shear on each side can be determined using statics. However, how much shear goes to each of 
the walls on a side depends on the relative stiffness of the walls, although once yielding occurs 
the force on each wall depends on the yield strength of the wall.  
 
a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to 
act through the centre of resistance) 
Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in 
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height, 
length, thickness) and mechanical properties and it can be concluded that these walls have the 
same stiffness.  
 
As a result, equal shear force will be developed at each side. The force per side is equal to (see 
the figure): 

430860*5.05.0 V  kN 
So, shear force in each of the two walls in the N-S direction is equal to: 

215
2

430

2

5.0


V
VV  kN 

 
b) Seismic forces in the N-S direction taking into account the effect of accidental torsion 
The building is symmetrical in plan and so the centre of mass MC  coincides with the centre of 
resistance RC   (see Section 1.11 for more details on torsional effects). Therefore, there are no 
actual torsional effects in this building. However, NBC 2015 Cl.4.1.8.11.(9) requires that 
torsional moments (torques) due to accidental eccentricities must be taken into account in the 
design. The forces due to accidental torsion can be determined by applying the seismic force at 
a point offset from the RC  by an accidental eccentricity nxa De 1.0 , thereby causing the 
torsional moments equal to  

  5504)0.64*1.0(*8601.0  nxx DVT  kNm 

Note that 0.64nxD  m (equal to the total length of the structure in the East/West direction). 

 
As a result of the accidental torsion, seismic shear forces resisted by each side of the building 
are different. These forces can be calculated by taking the sum of moments around the RC  
(torsional moment created by force must be equal to the sum of moments created by the side 
forces). The resulting end forces are equal to V6.0  and V4.0 , thereby indicating an increase in 
the end forces by V1.0  due to accidental torsion. 
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It should be noted that, in this example, accidental torsion would cause forces in the E-W walls 
as well because of the rigid diaphragm. But a conservative approach is to ignore the 
contribution of E-W walls and take all the torsional forces on the N-S walls. 
 
The shear force in each N-S wall from accidental torsion is equal to: 

43
2

645504

2
 nx

T

DT
V  kN 

 
Thus, the maximum shear force in each of the two walls is the sum of the lateral component 
plus the torsional force, 

25843215  TVW VVV  kN 

 
Note that the same result could be obtained by 
applying the lateral load through a point equal to 
the accidental eccentricity to one side of the 
centre of rigidity and then solving for the wall 
forces using statics (see the figure). This would 
show that  

2586.0*
2

860
6.0*

2


V
VW  kN 

 
Therefore, even though this building is 
symmetrical in plan, the accidental torsion causes 
increased seismic shear force in each wall of 43 
kN, corresponding to a 20% increase compared to the design without torsion. However, this is 
based on the assumption that the N-S walls resist all the torsion. Walls in the E-W direction 
would also resist the torsional forces, and in this example the contribution to total torsional 
stiffness would be roughly the same for the E-W and N-S walls. Thus, one could reduce the 
torsional forces on the N-S walls by roughly one half. 
 
c) Seismic forces in the E-W walls 
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and 
consequently the same stiffness, the shear force will be equal at the East and West side. The 
force per side is equal to 

430860*5.05.0 V  kN 
 Seismic forces in the E-W walls – torsional effects ignored 
Shear force in each E-W wall is equal to (there are seven walls per side): 

61
7

430

7

5.0


V
VV  kN 

 Seismic forces in the E-W walls – torsional effects considered: 

746.0*
7

860
6.0*

7


V
VW  kN 

 
6. Check whether the structure is torsionally sensitive (see Section 1.11.2). 
NBC 2015 Cl. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be determined 
by comparing the maximum horizontal displacement anywhere on a storey, to the average 
displacement of that storey. Torsional sensitivity is determined in a similar manner as the effect 
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of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of nxD1.0  
from the centre of mass MC . In case of a rigid diaphragm, displacements are proportional to the 
forces developed in the walls. Therefore, B  can be determined by comparing the forces at the 
sides of the building with/without the effect of accidental torsion. 
 
The maximum displacement would be proportional to 0.6V, while the displacement on the other 
side would be proportional to 0.4V. Thus, the average displacement is proportional to 0.5V. 
Thus 

2.1
5.0

6.0


V

V
B  

Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would 
have also been allowed under criterion b) as discussed in step 4 above. 
 
7. Discussion 
It was assumed at the beginning of this example that the roof structure can be modeled like a 
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S 
wall would be equal to 0.5V.  From a reliability point of view, it does not seem quite right that the 
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around. 
On the other hand, the flexible diaphragm may have a longer period and the forces would be 
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models). 
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBC 2015 
 
A typical floor plan and vertical elevation are shown below for a four-storey mixed use 
(commercial/residential) building located at Abbotsford, BC. The ground floor is commercial with 
a reinforced concrete slab separating it from the residential floors, which have lighter floor 
system consisting of steel joists supporting a composite steel and concrete deck. The front of 
the building is mostly glazing, which has no structural application.  
 
First, determine the seismic force for this building according to the NBC 2015 equivalent static 
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and 
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that 
the strong N-S walls can resist the torsion. 
 
Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the 
seismic forces obtained with and without torsional effects. 
 
For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for  
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a 
preliminary design) and the compressive strength mf   is 10.0 MPa. Grade 400 steel has been 
used for the reinforcement. The building is of normal importance and is supported on Class C 
soil. Consider Conventional Construction reinforced masonry shear walls. 
 
Movement joints are not to be considered in this example. Note that movement joints in the N-S 
walls would have caused slight changes in the stiffness values of these walls. 
 
Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and 
glazing): 
4th floor (roof level) = 3 kPa    Note: 1 kPa = 1 kN/m2 
2nd and 3rd floor = 4 kPa 
1st floor (concrete floor) = 6 kPa 
25% snow load = 0.4 kPa 
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SOLUTION: 
 
1.  Design assumptions 
 Rigid diaphragm 
 All walls are solid grouted 
 
2.  Calculate the seismic weight  W  (see NBC 2015 Cl.4.1.8.2) 
Wall weight: 
N-S walls - 200 mm thick                 w = 4.18 kPa 
E-W walls – 300 mm thick           w = 6.38 kPa 
Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while 
the length of an E-W wall is 10.0 m. 
 
Seismic weight 1W : 

     kNmmkPamkPamkPa
mm

W 357920*200.60.10*2*38.620*2*18.4
2

0.3

2

0.5
1 






   

Seismic weight 2W : 

     kNmmkPamkPamkPa
mm

W 248420*200.40.10*2*38.620*2*18.4
2

0.3

2

0.3
2 






   

Seismic weight 3W  (same as 2W ) : 

kNW 24843   

Seismic weight 4W : 

     kNmmkPakPamkPamkPa
m

W 180220*204.00.30.10*2*38.620*2*18.4
2

0.3
4 








Note that the seismic weight for each floor level is the sum of the wall weights and the floor 
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height 
(below and above a certain floor level) was considered in the wall area calculations. 
The total seismic weight is equal to 

kNWWWWW 1035018022484248435794321   

 
3.  Calculate the seismic base shear force (see Section 1.6). 
 
a) Find seismic design parameters used to determine seismic base shear. 
 Location: Abbotsford, BC (see NBC 2015 Appendix C)                      

)2.0(aS = 0.701   

)5.0(aS = 0.597 

)0.1(aS = 0.350 

)0.2(aS = 0.215 

(5.0)aS = 0.071 

PGAref = 0.306 
 Foundation factor – Site Class C and PGAref = 0.306 (see Tables 1-3 to 1-7) 

(0.2)F = (0.5)F = (1.0)F = (2.0)F = (5.0)F = 1.0 

 Site design spectrum  TS  (see Section 1.4) 
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For T =0.2 sec:     0.2 (0.2) 0.2aS F S  = 1.0*0.701=0.70        2.0S =0.70   

or    0.5 (0.5) 0.5aS F S  =1.0*0.597=0.60 (larger value governs) 

For T =0.5 sec:      0.5 (0.5) 0.5aS F S  =1.0*0.597=0.60          5.0S =0.60 

For T =1.0 sec      1.0 (1.0) 1.0aS F S  =1.0*0.35=0.35            0.1S =0.35 

For T =2.0 sec       2.0 (2.0) 2.0aS F S  =1.0*0.215=0.22         2.0S =0.22 

For T =5.0 sec       5.0 (5.0) 5.0aS F S  =1.0*0.071=0.07         5.0S =0.07 

  
 Building period (T ) calculation (NBC 2015 Cl.4.1.8.11.3(c)) –  wall structures 

nh = 14.0 m   building height 

  4305.0 nhT  = 0.36 sec 

  
Building period T = 0.36 sec, so interpolate between  2.0S  and  5.0S , hence   TS = 0.65 

 
 EI = 1.0 (normal importance building) 

 vM = 1.0 (higher mode factor, equal to 1.0 for T 1.0 sec) 

 Building SFRS description: masonry structure – Conventional Construction shear walls can 
be used for building height of 14 m (see Table 1-13 and NBC 2015 Table 4.1.8.9). 
In this case  2.0aaE SFI =1.0*1.0*0.70=0.70, hence 0.35 <  2.0aaE SFI <0.75 thus the 

maximum building height is 30 m. Hence  

dR = 1.5 and  oR = 1.5     

 
b) Compute the design base shear (NBC 2015 Cl.4.1.8.11). 
The design base shear V  is determined according to the following equation: 
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  0.70*1.0*1.0
0.31

1.5*1.5
v E

d o

S T M I
V W W W

R R
    

but should not be less than  
 

 
min

4.0 0.12*1.0*1.0
0.05

1.5*1.5
v E

d o

S M I W
V W W

R R
    

Note that  4.0S value (0.15) was obtained by interpolation from the site design spectrum 

chart  TS . 

The design base shear V need not be taken more than greater of the following two values:  

 
max

2 0.2 2*0.70 1.0
0.21

3 3 1.5*1.5
E

d o

S I W
V W W

R R

            
    

, provided 5.1dR .      

and  

 max

1.0
0.5 0.60 0.27

1.5*1.5
E

d o

I W
V S W W

R R

        
  

- this value governs 

 
Therefore, the design seismic base shear is equal to 

0.27 0.27*10350 2900V W     kN 
 
4. Determine whether the equivalent static procedure can be used (see Section 1.5 and 
NBC 2015 Cl. 4.1.8.7). 
According to the NBC 2015, the dynamic method is the default method, but the equivalent static 
method can be used if the structure meets any of the following criteria:  
(a) is located in a region of low seismic activity where   35.02.0 aaE SFI , 

In this case, the seismic hazard index is  2.0aaE SFI =1.0*1.0*0.70=0.70 > 0.35 and so this 
criterion is not satisfied. Note that (0.2) 1.0aF F  . 
(b) is a regular structure less than 60 m in height with period T < 2 seconds in either 
direction,  
This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above). 
To confirm that this structure is regular, the designer needs to review the irregularities discussed 
in Section 1.12.1. It can be concluded that this building does not have any of the irregularity 
types identified by NBC 2015 and so this criterion is satisfied. 
(c) has any type of irregularity (other than Type 7 or Type 9 that requires the dynamic 
method if B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either 
direction  
This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5 
sec. The torsional sensitivity B  should be checked to confirm that B < 1.7 (see Section 1.11.2). 
 
Since the criterion b) has been satisfied, the design can proceed by using the equivalent static 
analysis procedure.  
 
5. Seismic force distribution over the building height (see Section 1.9). 
According to NBC 2015 Cl. 4.1.8.11.(7), the total lateral seismic force, V ,  is to be distributed 
over the building height in accordance with the following formula (see Figure 1-5): 
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where 

xF  – seismic force acting at level x   

tF  – a portion of the base shear to be applied in addition to force nF  at the top of the building. 

In this case, tF = 0 since the fundamental period is less than 0.7 sec. 

Interstorey shear force at level x  can be calculated as follows: 


n

x
itx FFV  

Bending moment at level x  can be calculated as follows: 

 



n

xi
xiix hhFM  

These calculations are presented in Table 1. 
 
Table 1. Distribution of Seismic Forces over the Wall Height 
 
Level 

xh   

(m) 
xW   

(kN) 
xxhW  xF   

(kN) 
xV  

(kN) 
xM  

(kNm) 
4 14.0 1802 25228 810 810 0 
3 11.0 2484 27324 877 1687 2430 
2 8.0 2484 19872 638 2325 7492 
1 5.0 3579 17895 575 2900 14468 

   10349 90319 2900  28968 

 
Distribution of seismic forces over the building height and the corresponding shear and moment 
diagrams are shown on the figure below. 

 




n

i
ii

xx
tx

hW

hW
FVF

1
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It is important to confirm that the sum of seismic forces xF  over the building height is equal to 
the base shear  

VVb  2900 kN 

The bending moment at the base of the building, also called the base bending moment, is equal 
to  

bM = 28968  29000 kNm. 

 
6. Find the seismic forces in the E-W walls – torsional effects ignored. 
Due to asymmetric layout of the E-W walls, the centre of 
mass MC  in the building under consideration does not 
coincide with the centre of resistance RC , hence there are 
torsional effects in all walls. However, since the N-S walls are 
significantly more rigid compared to the E-W walls, it can be 
assumed that the N-S walls will resist the torsional effects 
(see step 8 for a detailed discussion). As a consequence, it 
can be assumed that the base shear force in the E-W 
direction is equally divided between the two E-W walls (see 
the figure), that is, 

1450
2

2900

2


V
Vxo  kN 

 
Similarly, the base bending moment in each wall is equal to 

14500
2

29000

2
 b

bx

M
M  kNm 
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7. Find the seismic forces in the E-W walls – torsional effects considered (see Section 
1.11). 
To determine the wall forces from the 
torsional forces a 3-D analysis should 
be made. Even though the walls are 
considered uniform over the entire 
height, the contribution of shear 
deformation relative to bending 
deformation is different over the height. 
An approximate method that does not 
require a 3-D analysis is to consider the 
structure as an equivalent single-storey 
structure. The entire shear is applied at 
the effective height, eh , defined as the 
height at which the shear force fV   
must be applied to produce the base 
moment fM , that is, 

0.10
2900

29000


f

f
e V

M
h  m 

This model, although not strictly correct, will be used to determine the elastic distribution of the 
torsional forces as well as the displacements. The top displacement of the wall is assumed to be 
1.5 times the displacement at the eh  height (see step 8 for displacement calculations).  
 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ), which will be calculated in the following 
tables. 
 
First, the centre of mass will be determined, as shown on the figure. The calculations are 
summarized in Table 2. 
 
Table 2. Calculation of the Centre of Mass ( MC ) 
 

Wall iw  

(kN) 
ix  

(m) 
iy  

(m) 
ii xw *  ii yw *  

1X  733.7 10.00 20.00 7337 14674 

2X  733.7 10.00 13.33 7337 9780 

1Y  961.4 0 10.00 0 9614 

2Y  961.4 20.00 10.00 19228 9614 

Floors 6960 10.00 10.00 69600 69600 

  10350   103502 113282 

 
The MC  coordinates can be determined as follows: 

00.10
10350

103502
*





i
i

i
ii

CM w

xw
x  m           94.10

10350

113282
*






i
i

i
ii

CM w

yw
y  m 
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Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 3, although because there are only two equal walls in each direction the RC  will lie 
between the walls. 
 
Table 3. Calculation of the Centre of Resistance ( RC ) 
 

Wall 
t   
(m) 

wlh * )( tEK m  ** xK x103 

(kN/m) 
yK x103 

(kN/m) 
ix  

(m) 
iy  

(m) 
iy xK   

*103 
ix yK   

*103 

1X  0.29 1.0 0.143 352.5   20.
00 

 7050.0 

2X  0.29 1.0 0.143 352.5   13.
33 

 4699.0 

1Y  0.19 0.5 0.5  807.5 0  0  

2Y  0.19 0.5 0.5  807.5 20.
00 

 16150.0  

     705.0 1615.0   16150.0 11750.0 

Notes: 
* - ehh  = 10.0 m effective wall height 

** - see Table D-3 
 
Note that the elastic uncracked wall 
stiffnesses K  for individual walls have been 
determined from Table D-3, by entering 
appropriate height-to-length ratios. In this 
design, all walls and piers have been 
modelled as cantilevers (fixed at the base 
and free at the top) – see Section C.3 for 
more details regarding wall stiffness 
calculations. The modulus of elasticity for 
masonry is mE 8.5*106 kPa 
(corresponding to mf   of 10 MPa). 
 
The RC  coordinates can be determined as 
follows (see the figure): 

10
10*1615

10*16150
*

3

3





i
yi

i
iyi

CR K

xK
x  m 

67.16
10*705

10*11750
*

3

3






i
xi

i
ixi

CR K

yK
y  m 

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W 
walls, we need to determine the actual eccentricity in the y direction ( ye ), that is, 

73.594.1067.16  CMCRy yye  m 

In addition, the accidental eccentricity needs to be considered, that is, 
0.220*1.01.0  nya De  m 

The total maximum eccentricity in the y-direction is equal to 
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73.70.273.51  ayty eee  m 

or 
73.30.273.52  ayty eee  m 

Note that the latter value does not govern and will not be considered in further calculations. 
 
Torsional moment is determined as a product of the shear force and the eccentricity, that is, 

2241773.7*2900* 1  tyeVT  kNm 

Torsional effects are illustrated on the figure below. 

 
Seismic force in each wall has two components: translational (no torsional effects) and torsional, 
that is, 

itioi VVV   

where 




i

i
io K

K
VV *   translational component  

and 

i
i

it K
J

cT
V *

*
   torsional component 

622 10*169  yiyixixi cKcKJ   torsional stiffness (see Table 4) 

xic , yic  - distance of the wall centroid from the centre of resistance ( RC ) (see the figure below) 

 
Translational and torsional force components for the individual walls are shown below. 
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Calculation of translational and torsional forces is presented in Table 4. 
 
Table 4.  Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction 
 

Wall 
xK *103 

(kN/m) 
yK *103 

(kN/m) 
ic  

(m) 

2
ii cK  *106 

 x

x

K

K

 

xoV  

(kN) 
xtV  

(kN) 
totalV  

(kN) 

1X  352.5  -3.33 3.84 0.5 1450 -154 1296  

2X  352.5  3.33 3.84 0.5 1450  154 1604 

1Y   807.5 -10.00 80.80   -1070 -1070 

2Y   807.5 10.00 80.80   1070 1070 

  705.0 1615.0  169.0     

 
It can be concluded from the above table that the maximum force in the E-W direction is equal 
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained 
ignoring torsional effects. 
 
It can be noted that the contribution of E-W walls to the overall torsional moment T  of 22417 
kNm is not significant (see Table 4). 

kNmmkNmkNT WE 10173.3*1543.3*154   

because 
%5045.022417/1017  TT WE  

this shows that the E-W walls contribute only 5% to the overall torsional moment. 
 
The contribution of N-S walls to the overall torsional moment is as follows: 

kNmmkNmkNT SN 2140010*107010*1070   

and 
%9522417/21400  TT SN  

and 
kNmTTT SNWE 22417214001017     (this is also a check for the torsional forces) 
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Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable, 
since these walls contribute approximately 95% to the overall torsional resistance. 
 
8. Calculate the displacements at the roof level (consider torsional effects). 
Approximate deflections in the E-W walls can be determined according to the procedure 
outlined below. It should be noted that the force distribution calculations have been performed 
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to 
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the 
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K ) 
value to account for the effect of cracking. 
 
a) The reduced stiffness to account for the effect of cracking (see Section 2.5.4) 
The reduced stiffness for walls 1X  and  2X  will be determined according to Section 2.5.4 
(S304-14 Cl.16.3.3), that is, 
 

  mgsge fAPII '3.0   

 
Here, 

(2*6.67*6.67)(3.0 2*4.0 6.0) 1513sP      kN (axial force due to dead load in wall 2X ) 

 3 4290*10 )*10.0 290*10gA   mm2 (gross cross-sectional area for 290 mm block wall, solid 

grouted, length 10.0 m; see Table D-1 for eA  values for the unit wall length) 

mf  =10.0 MPa 

Since  

   3 40.3 ' 0.3 1513*10 10.0*290*10 0.35s g mP A f     

It appears that 

0.35e

g

I

I
  

thus 

( ) 0.35e
ce c c

g

I
K K K

I
     

where cK  is elastic uncracked stiffness. In this case, stiffness is taken as proportional to the 

ratio of moment of inertia values because the wall is expected to behave in flexure-dominant 
manner (otherwise a ratio of cross-sectional areas could be used – see Example 3). 
 
b) The translational displacement in the walls 1X  and  2X  can be calculated as follows 
 

2
20 3

2

1450
11.8

0.35 0.35*352.5*10 /
X o

X
X

V kN
mm

K kN m
     

According to NBC 2015 Cl. 4.1.8.13, these deflections need to 
be multiplied by the Eod IRR  ratio (see Section 1.13). In this 
case, EI = 1.0, and so 

 20 11.8 11.8*1.5*1.5 26.6X d omm R R mm     
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Since the previous analysis assumed that the seismic force 
acts at the effective height eh , the displacement at the top 
of the wall will be larger (see the figure). The top 
displacement can be calculated by deriving the 
displacement value at the tip of the cantilever; alternatively, 
an approximate factor of 1.5 can be used as follows: 

20 21.5* 1.5*26.6 40.0top
X x mm mm      

Since this is a rigid diaphragm, it can be assumed that the 
translational displacements are equal at a certain floor 
level – let us use point A at the South-East corner as a 
reference (see the figure). 
 
c) The torsional displacements can be calculated as follows: 
Torsional rotation of the building   can be determined as 
follows, considering the reduced torsional stiffness to account 
for cracking (same as discussed in step a) above): 

4
6

22417
3.79*10

0.35*169*10

T kNm

J
    rad 

where (see the step 7 calculations) 
22417T  kNm     torsional moment 

610*169J           elastic torsional stiffness 
The maximum torsional displacement at the South-East corner 
in the X direction (see point A on the figure): 

4* 3.79*10 *16.67 6.3A
t CRY m mm      

 
Similarly, as above, these displacements need to be multiplied 
by Eod IRR  and also by 1.5 to determine the displacement at 
the top of the roof, and so 

1.5*6.3* 22A top
t d oR R mm    

 
d) Finally, the total maximum displacement at the roof level (at point A) is equal to:  

max 2 40 22 62A top A top
X t mm         

 
9. Check whether the building is torsionally sensitive. 
NBC 2015 Cl. 4.1.8.11(10) requires that the torsional sensitivity B  of the structure be 
determined by comparing the maximum horizontal displacement anywhere on a storey to the 
average displacement of that storey (see Section 1.11.2). This should be done for every storey, 
but in this case will only be done for the one storey as the remaining storeys will have similar B  
values because of the vertical uniformity of the walls. Torsional sensitivity is determined in a 
similar manner like the effect of accidental torsion, that is, by applying a set of lateral forces at a 
distance of nxD1.0  from the centre of mass MC . Since the purpose of this evaluation is to 
compare deflections at certain locations relative to one another, it is not critical to use cracked 
wall stiffnesses. 
 
In this case, the total maximum displacement at point A was determined in step 8 above, that is, 

max 62A mm   

We need to determine the displacement at other corner (point B), that is, the minimum 
displacement. This can be done as follows: 
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Translational component: 

0 20 40B top
X mm     

Torsional component: 
4

1* 3.79*10 *3.3 1.3t Xc m mm      

These displacements need to be multiplied by Eod IRR  
and also by 1.5 to determine the displacement at the top 
of the roof, and so 

1.3*1.5* 5B
t d oR R mm    

Since the direction of torsional displacements is opposite 
from the translational displacements, it follows that 

min 40 5 35B B B
o t mm        

The average displacement at the roof level in the E-W 
direction (see the figure showing the displacement 
components): 

max min 62 35
49

2 2

A B

ave mm
   

     

 

max 62.0
1.27

49.0ave

B


  


 

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with 
the main force resisting elements located around the exterior of the building will not be 
torsionally sensitive.  
 
10. Discussion 
A couple of important issues related to this design example will be discussed in this section. 
 
a) Why should the N-S walls be considered to resist entire torsional effects? 
The distribution of forces to the various elements in the structure is generally based on the 
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible 
and then the forces are distributed on the basis of contributory masses. The present example 
structure with four floors of concrete construction can be considered as having rigid diaphragms, 
and an elastic analysis was performed to determine the wall forces due to the torsional effects. 
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely 
separated, it is expected that they will resist most of the torque from the eccentricity. However, 
since we are designing the structures to respond inelastically, the distribution of forces from an 
elastic analysis should always be questioned. An argument is presented below to show that if 
the forces in the E-W walls are designed to be equal, they will not contribute to the torsional 
resistance.  
 
The elastic torsional analysis for the 
forces in the E-W direction result in 
additional forces of ±154 kN in the E-W 
walls and ±1070 kN in the N-S walls 
(see Table 4). If all the torque is 
resisted by the N-S walls, the force in 
these walls would be ±1120 kN (an 
increase of only 50 kN). 
 

Δ 
 

 
 
 

V 

X1 X2 
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For the earthquake load in the E-W direction the E-W walls must resist the total base shear in 
this direction and so they will have reached their yield strength and progressed along the flat 
portion of the shear/displacement curve as shown in the figure (assuming they have equal 
strength). The torsional load will have caused a small rotation of the diaphragms and so wall 

2X  will have a slightly larger displacement than wall 1X , as shown on the figure. Had the walls 
remained elastic, the shear in wall 2X  would then be greater than wall 1X  and this would 
contribute to the torsional resistance. However, in the nonlinear case, they both have the same 
shear resistance and so do not contribute to the torsional resistance. Thus, in this example, all 
the torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the 
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W 
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two 
directions would occur at the same time, and practice has been to consider only 30% of the 
loads in one direction when combining with the loads in the other direction. Thus, the forces in 
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the 
yield level on one side, but the torsional displacement on the other side would be in the opposite 
direction, so the wall force would be much reduced in the other direction. The two N-S forces 
then provide a torque to resist the torsional motion. Although this resisting torque may not be as 
large as the elastic analysis would predict, the result would not be failure, but only slightly larger 
torsional displacements. 
 
b) Application of the “100%+30%” rule 
In the calculation of total wall seismic forces including the torsional effects (see step 7 above), 
the effect of seismic loads in E-W direction only was taken into consideration when calculating 
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that 
requires the forces in any element that arise from 100% of the loads in one direction be 
combined with 30% of the loads in the orthogonal direction (for more details refer to NBC 
4.1.8.8.(1)c and the commentary portion in Section 1.11.3). 
 
Let us determine the forces in one of the E-W walls, e.g. wall 2X , by applying the “100+30%” 
rule. If only 100% of the force in the E-W direction is considered, the total force in the wall is 
equal to (see Table 4): 

kNVVV tXoX
WE

X 16041541450222 
 

If the seismic load is applied in the N-S direction, the torsional moment would be determined 
based on the accidental eccentricity ae  (since the building is symmetrical in that direction), and 
so the torsional force in the wall 2X  can be prorated by the ratio of torsional eccentricities in the 
E-W and N-S directions as follows, 

kN
m

m

e

e
VV

y

a
tX

SN

X
408.39

73.7

0.2
*154*22


 

The total seismic force in the wall 2X  due to 100% of the load in E-W direction and 30% of the 
load in the N-S direction can be determined as 

kNVVV SN
X

WE
XX 161640*3.016043.0 222  

 
It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule 
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant. 
 
However, it can be shown that the “100+30%” rule would significantly influence the forces in the 
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall 

1Y ) due to torsional effects is equal to (see Table 4)  

kNV WE
Y 10701 
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When the seismic force acts in the N-S direction, the total force in the wall 1Y  (including the 
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on 
accidental torsion) 

kNVV SN

Y
17402900*6.0*6.0

1


 

So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the 
force in the E-W direction the resulting total force is equal to 

kNVVV WE
Y

SN
YY 20611070*3.017403.0 111  

 
In this case, it can be concluded that the difference between the force of 2061 kN (when the 
“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant 
(around 18%). This is illustrated on the figure below.  
 
For those cases where there is a large eccentricity in one direction and the torsional forces are 
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can 
be significant. 
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and 
flexible diaphragm alternatives 
 
Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The 
building plan and relevant elevations are shown on the figure below. The building has an open 
north-west façade consisting mostly of glazing. The roof elevation is at 4.8 m above the 
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel 
columns on the north-west side. Masonry properties should be determined based on 20 MPa 
block strength and Type S mortar (use mf   of 10.0 MPa). Grade 400 steel has been used for the 
reinforcement. 
 
Masonry walls should be treated as “conventional construction” according to NBC 2015 and 
CSA S304-14. A preliminary seismic design has shown that the total seismic base shear force 
for the building is equal to 700V  kN. This force was determined based on the total seismic 
weight W of 2340 kN and the seismic coefficient equal to 0.3, that is, WV 3.0 .  
 
This example will determine the seismic forces in the N-S walls ( 1Y  to 3Y ) due to seismic force 
acting in the N-S direction for the following two cases: 
a) Rigid roof diaphragm (consider torsional effects), and 
b) Flexible roof diaphragm. 
 
Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be 
discussed. 
 
Note that both flexible and rigid diaphragms are considered to have the same weight, although 
this would be unlikely in a real design application. Also, the columns located on the north-west 
side are neglected in the seismic design calculations. 
 
Specified loads: 
roof  = 3.5 kPa 
25% snow load = 0.6 kPa 
wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption) 
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SOLUTION: 
 
a) Rigid diaphragm 
Torsional moment (torque) is a product of the seismic force and the eccentricity between the 
centre of resistance ( RC ) and the centre of mass ( MC ). The coordinates of the centre of mass 
will be determined taking into account the influence of wall masses, the upper half of which are 
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the 
centroid of the roof area is determined by dividing the roof plan into two rectangular sections. 
 
Table 1. Calculation of the Centre of Mass ( MC ) 

Wall 
 

iW  

(kN) 
iX  

(m) 
iY  

(m) 
ii XW *  

 
ii YW *  

 

X1 387 15.00 0.00 5810 0 

X2 116 25.50 18.00 2963 2092 

Y1 232 21.00 9.00 4880 2092 

Y2 52 30.00 2.00 1548 103 

Y3 116 30.00 13.50 3486 1569 

Roof 1 1107 15.00 4.50 16605 4982 

Roof 2 332 25.50 13.50 8466 4482 

  2343     43759 15319 
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The MC  coordinates have been determined from the table as follows (see the figure below): 

68.18
86.2343

02.43757
*






i
i

i
ii

CM W

XW
x  m 

 

54.6
86.2343

38.15324
*





i
i

i
ii

CM W

YW
y  m 

 
Next, the coordinates of the 
centre of resistance ( RC ) will 
be determined. Wall 1X  has 
several openings and the 
overall wall stiffness is 
determined using the method 
explained in Section C.3.3 by 
considering the deflections of 
the following components for a 
unit load (see the figure 
below):  
 solid wall with 4.8 m height 
and 30 m length – cantilever 
( solid ) 
 an interior strip with 1.6 m 
height (equal to the opening 
height) and 30 m length – 
cantilever ( strip ) 
 piers A, B, C, and D – cantilevered ( ABCD )  (the stiffness of the piers A, B, C, and D is 
summed and the inverse taken as ABCD ) 
 
The stiffness of each component is based on the following equation for the cantilever model by 
using appropriate height-to-length ratios (see Section C.3.2), that is, 
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The overall wall deflection is determined from the combined pier deflections, as follows: 

ABCDstripsolidX  1  

Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced with the deflection 
of the four piers. 
 
Finally, the stiffness of the wall 1X  is equal to the reciprocal of the deflection (see Table 2), as 
follows 

71.1
1

1
1 




X
XK  

 
Table 2. Wall 1X  Stiffness Calculations 
 

Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions lh  )*( tEK  Displacement )*( tEK final  

Solid 0.24 4.8 30.0 cant 0.160 2.015 0.496   
Opening 
strip 0.24 1.6 30.0 cant 0.053 6.226 -0.161   

X1A 0.24 1.6 6.2 cant 0.258 1.186     

X1B 0.24 1.6 6.2 cant 0.258 1.186     

X1C 0.24 1.6 6.2 cant 0.258 1.186     

X1D 0.24 1.6 3.0 cant 0.533 0.453     

           (ABCD) 4.012 0.249   

              0.585 1.709 

 
The stiffness of wall 1Y  is determined in the same manner (see the figure below). The 
calculations are summarized in Table 3. 
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Table 3. Wall 1Y  Stiffness Calculations 
 
Wall 
 

t  
(m) 

h  
(m) 

l  
(m) 

End 
conditions 

lh  )*( tEK  Displacement )*( tEK final  

Solid 0.24 4.8 18 cant 0.267 1.142 0.876   
Opening 
strip 0.24 2.4 18 cant 0.133 2.442 -0.409   

Pier E 0.24 2.4 8 cant 0.300 0.992     

Pier F 0.24 2.4 9 cant 0.267 1.142     

          sum(EF) 2.134 0.469   

              0.935 1.070 
 
Next, the centre of resistance ( RC ) will be determined, and the calculations are presented in 
Table 4. 
 
Table 4. Calculation of the Centre of Resistance ( RC ) 
 
Wall 

 
t  

(m) 
h  

(m) 
l  

(m) 
End 

cond. 
lh  

tE

K

*
 xK  

(kN/m) 
yK  

(kN/m) 
iX  

(m) 
iY  

(m) 
iy XK *  ix YK *  

X1 0.24         1.709* 3.49E+06 0 15 0   0.00E+00 

X2 0.24 4.8 9 cant 0.53 0.453 9.24E+05 0 25.5 18   1.66E+07 

Y1 0.24         1.070** 0 2.18E+06 21  0 4.58E+07   

Y2 0.24 4.8 4 cant 1.20 0.095 0 1.94E+05 30  0 5.82E+06   

Y3 0.24 4.8 9 cant 0.53 0.453 0 9.24E+05 30  0 2.77E+07   

              4.41E+06 3.30E+06     7.94E+07 1.66E+07 

Notes: 
* - see Table 2 
** - see Table 3 
 
Note that all walls and piers in this example were modelled as cantilevers (fixed at the base and 
free at the top). For more discussion related to modelling of masonry walls and piers for seismic 
loads see Section C.3. The modulus of elasticity for masonry is taken as mE 8.5*106 kPa 
(corresponding to mf   of 10 MPa). 
 
The RC  coordinates can be determined as follows (see the figure on the next page): 

05.24
10*30.3

10*94.7
*

6

7





i
yi

i
iyi

CR K

xK
x m 

77.3
10*41.4

10*66.1
*

6

7






i
xi

i
ixi

CR K

yK
y  m 

 
Next, the eccentricity needs to be determined. Since we are considering the seismic load effects 
in the N-S direction, we need to determine the actual eccentricity in the x-direction ( xe ), that is, 

37.568.1805.24  CMCRx xxe  m 
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In addition, an accidental eccentricity needs to be considered, as follows: 
0.330*1.01.0  nxa De  m 

 
The total maximum eccentricity in 
the x-direction assumes the 
following two values depending on 
the sign of the accidental 
eccentricity, that is, 

37.80.337.51  axx eee  m 

37.20.337.52  axx eee  m 

 
The torsional moment is determined 
as a product of the shear force and 
the eccentricity, that is, 

586037.8*700* 11  xeVT  kNm 

166037.2*700* 22  xeVT kNm 

 
The seismic force in each wall can be determined as the sum of the two components: 
translational (no torsional effects) and torsional, that is, 

itioi VVV   

where 




i

i
io K

K
VV *   translational component  

i
i

it K
J

cT
V *

*
   torsional component 

822 10*97.2  yiyixixi cKcKJ    torsional rigidity (see Table 5) 

xic , yic  - distance of the wall 

centroid from the centre of 
resistance ( RC ) 
 
The calculation of translational 
and torsional forces is presented 
in Table 5. Translational and 
torsional force components due 
to the eccentricity 1xe  and the 
torsional moment 1T  are shown 
on the figure. Note that the 
torque 1T  causes rotation in the 
same direction like the force V 
(showed by the dashed line) 
around point RC  (this is 
illustrated on Figure 1-8). The 
wall forces shown on the 
diagram are in the directions to 
resist the shear V and torque 1T , 
thus on wall Y1 the translational 
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in 
the opposite direction. The calculation of the forces is presented in Table 5 where the sign 
convention has horizontal wall forces positive to the left and vertical forces positive down, 
resulting in negative values for the torsional forces in walls X1, Y2 and Y3. 
 
Table 5.  Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction 
 

Wall 
iK  

(kN/m) 
ic  

(m) 

2* ii cK   yy KK  oV  

(kN) 
tV1  

(kN) 
totalV1  

(kN) 
tV2  

(kN) 
totalV2  

(kN) 
governV  

(kN) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

X1 3.49E+06 -3.77 4.96E+07     -260 -260 -74 -74 260 

X2 9.24E+05 14.23 1.87E+08     260 260 74 74 260 

 xK  
4.41E+06                   

Y1 2.18E+06 3.05 2.03E+07 0.66 463 131 594 37 500 594 

Y2 1.94E+05 -5.95 6.87E+06 0.06 41 -23 18 -6 35 35 

Y3 9.24E+05 -5.95 3.27E+07 0.28 196 -109 87 -31 165 165 

 yK  
3.30E+06     1.00 700           

  
2* ii cK  

2.97E+08       

 
It should be noted that there are two total seismic forces for each wall in the N-S direction 
(corresponding to torsional moments 1T  and 2T ) – see columns (8) and (10) in Table 5. The 
governing force to be used for design is equal to the larger of these two forces, as shown in 
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and 
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3. 
 
b) Flexible diaphragm 
It is assumed in this example that flexible diaphragms are not capable of transferring significant 
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the 
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act 
as beams spanning between the walls, as shown on the figure below. The diaphragm loads 
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia 
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic 
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example). 
 
Shear forces in the walls aY1  and 2Y  (diaphragm D1): 
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall 1X  inertia 
load: 

  kNkPammkPakPammVD 44838.5*30*4.2)6.05.3(*)30*9(*3.01   
The diaphragm is considered as a beam with the reactions at the locations of walls aY1  and 2Y , 
that is, 

kNmmkNR aY 747915*4481   

and  
kNRVR aYDY 299747448112   (opposite direction from aYR 1  is required to satisfy  

equilibrium) 
 
The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 
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kNkPammVRV waYaY 78238.5*9*4.2*3.074711   

kNkPammVRV wYY 28438.5*4*4.2*3.029922   (note: this force has opposite 

direction from force aYV 1 ) 

 
Shear forces in the walls bY1  and 3Y  (diaphragm D2): 

Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall 2X  inertia 
load: 

  kNkPammkPakPammVD 5.13438.5*9*4.2)6.05.3(*)9*9(*3.02   
The diaphragm is considered as a beam with the reactions at the locations of walls bY1  and 3Y , 
that is, 
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kNRR YbY 3.672/5.13431   

The total force in each wall is obtained when the wall inertia load is added to the diaphragm 
reaction, that is, 

kNkPammVRV wbYbY 10238.5*9*4.2*3.06711   

kNkPammVRV wYY 10238.5*9*4.2*3.06733   

 
Total shear force in wall 1Y : 

The total seismic force in the wall 1Y  is equal to 

kNVVV bYaYY 884102782111   

 
Shear forces in walls 2Y  and 3Y : 

The total shear force in the combined walls 2Y  and 3Y  is equal to 

kNVVV YYY 1821022843223   

This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the 
wall stiffnesses are presented in Table 4): 

kNV
KK

K
V Y

YY

Y
Y 32)182(*17.0)182(*

10*24.910*94.1

10*94.1
*

55

5

23
32

2
2 





  

kNVVV YYY 150)32(1822233   

 
The comparison  
Shear forces in the walls 1Y  to 3Y  obtained in parts a) and b) of this example are summarized 

on the figure below. A comparison of the shear forces is presented in Table 6. 

 
 
Table 6. Shear Forces in the Walls 1Y  to 3Y  for Rigid and Flexible Diaphragms 

 
 

Wall 
Shear forces (kN) 

Rigid diaphragm 
(part a) 

Flexible diaphragm 
(part b) 

1Y  594 972 (884) 

2Y  35 35 (32) 

3Y  165 165 (150) 
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These 
values are increased by 10 % to account for accidental eccentricity. 
 
It can be observed from the table that the flexible diaphragm assumption results in the same 
seismic forces for the walls 2Y  and 3Y , and an increase in the wall 1Y  force. 
 
Deflection calculations 
A fundamental question related to diaphragm design is: when should a diaphragm be modeled 
as a rigid or a flexible one? This is discussed in Section 1.11.4. A possible way for comparing 
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid 
and flexible diaphragm case are presented below. 
 
 Rigid diaphragm (see Example 2, step 8 for a similar calculation) 
The deflection will be calculated for point A as this should be the maximum.  First, a reduction in 
the wall stiffness to account for the effect of cracking will be determined following the approach 
presented in Section 2.5.4 (S304-14 Cl.16.3.3), that is, 

 0.3 'e g s g mA A P A f     

Here, 

 9.0* 9.0 2 *3.5 142sP    kN   (axial force due to dead load in wall 2X ) 

 43 10*2160.9*)10*240 eA mm2  (effective cross-sectional area for 240 mm block wall, 

solid grouted, length 9.0 m; see Table D-1 for eA  values for the unit wall length) 

mf  =10.0 MPa 

Since  

   3 40.3 ' 0.3 142*10 10.0*216*10 0.31s g mP A f     

It appears that 

0.31e

g

A

A
  

Because the behaviour of low-rise shear walls is expected to be shear dominant and so 
stiffness is proportional to cross-sectional area; thus 

( ) 0.31e
ce c c

g

A
K K K

A
     

where cK  is elastic uncracked stiffness 

 
Next, the translational displacement at point A can be calculated as follows: 

0 6

700
0.68

0.31 0.31*3.3*10 /
A

Y

V kN
mm

K kN m
   


 

Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the 
building   can be found from the following equation: 

5
6

5860
6.36*10

0.31*297*10

T kNm

J
    rad 

where (see the torsional calculations performed in part a) of this example) 
5860T  kNm     torsional moment 
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610*297J           elastic torsional stiffness (this value is reduced by 0.5 to take into account 
the cracking in the walls) 
The torsional displacement at point A: 

5* 6.36*10 *24.05 1.53A
t Ax m mm      

The total displacement at point A is can be found as follows (note that the displacements need 
to be multiplied by Eod IRR  ratio, where EI = 1.0): 

   max 0 * 0.68 1.53 *1.5*1.5 5.0A A A
t d oR R mm         

 
 Flexible diaphragm 
As a first approximation the calculation will consider a 21 m long diaphragm portion as a 
cantilever beam, as shown in the figure on the next page. This is an approximate model since 
the diaphragm is not fully fixed at that point, but the model is simple and useful for checking 
magnitude of deformations in a flexible diaphragm for this structure. The total shear force is 
equal to: 

  kNkPammkPakPammVD 31438.5*21*4.2)6.05.3(*)21*9(*3.0   
and the equivalent uniform load is equal to 

0.15 LVv DD  kN/m 
where 

0.21L  m  diaphragm length for the cantilevered portion 
The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at 
the wall 1Y , and walls 1Y , 2Y , and 3Y  also deflect; both effects provide some rotation at the fixed 
end of the cantilever. 
 
Consider a plywood diaphragm with the following properties: 

1500E  MPa plywood modulus of elasticity 
600G  MPa  plywood shear modulus 

4.25Dt  mm  (1” plywood thickness) 

23.00254.0*0.9*  mmtbA D  m2 
 
Let us assume that the two courses of grouted bond beam block act as a chord member, as 
shown on the figure on the next page. The roof-to-wall connection is achieved by means of nails 
driven into the anchor plate and hooked steel anchors welded to the plate embedded into the 
masonry. The corresponding moment of inertia around the centroid of the diaphragm can be 
found as follows: 
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89.3
2

0.9
*096.0*2

2
**2
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













b

AI c  m4 

where 
096.0)2.0*24.0(*2  mmAc  m2       chord area (two grouted 240 mm blocks) 

kPaEm
610*5.8       masonry modulus of elasticity based on mf  = 10.0 MPa (solid grouted 20 

MPa blocks and Type S mortar) 

 
The total displacement at point A is equal to the combination of flexural and shear component, 
that is, 

    mmm
GA

LV

IE

Lv DDA 4010*4010*0.290.11
10*600*23.0*2

0.21*314*2.1

89.3*10*5.8*8

0.21*0.15

**2

*2.1

*8

* 33

36

44

 

The total displacement at point A is can be found by multiplying the above displacement by 

Eod IRR  ratio, that is, 

mmRR od
AA 905.1*5.1*40*max   

 
A quick check of the additional deflection caused by rotation at the fixed end of the cantilever 
indicates that an additional 50 mm could be expected at point A. Thus, the total displacement 
would be about 140 mm. 
 
By comparing the displacements for the rigid and flexible diaphragm model, it can be observed 
that the difference is significant: 

max 5A mm      rigid diaphragm model 

mmA 90max    flexible diaphragm model 
 
Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to: 

9.1019.0
4800

90max 



wh

DR  % 
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The drift is within the NBC 2015 limit of 2.5% (see Section 1.13); however, a flexible diaphragm 
would not be an ideal solution for this design – a rigid diaphragm would be the preferred 
solution. 
 
Discussion 
In this example, seismic forces were determined for the N-S walls due to seismic load acting in 
the N-S direction. It should be noted, however, that there is a significant eccentricity causing 
torsional effects in the E-W walls due to seismic load acting in the E-W direction – these 
calculations were not included in this example.  
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall 
 
Determine minimum seismic reinforcement according to CSA S304-14 for a loadbearing 
masonry shear wall located in an area with a seismic hazard index  2.0aaE SFI  of 0.80. The 
wall is subjected to axial dead load (including its own weight) of 230 kN. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG)  
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 
 
 
 
 

 
SOLUTION: 
The purpose of this example is to demonstrate how the minimum seismic reinforcement area 
should be determined and distributed in horizontal and vertical direction. Once the 
reinforcement has been selected in terms of its area and distribution, the flexural and shear 
resistance of the wall will be determined and the capacity design issues discussed, as well as 
the seismic safety implications of vertical and horizontal reinforcement distribution.  
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

yf = 400 MPa  
s

 = 0.85 

Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it 
will be ignored for the small area included. 
Masonry: 

m = 0.6 

Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table 
4 of S304-14 that 

mf  = 9.8 MPa  

Based on Note 3 to Table 4, this mf   value is normally used for hollow block masonry but can 

also be used for partially grouted masonry if the grouted area is not considered. 
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.6.9 and 
Table 2-3). 
Since  2.0aaE SFI =0.80 > 0.35, minimum seismic reinforcement must be provided (S304-14 

Cl.16.4.5.1). 
 
Seismic reinforcement area 
Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel 
having a minimum area of  

gs AA 002.0min   = 0.002*(190*103 mm2/m) = 380 mm2/m 

for 190 mm block walls, where 

gA =(1000mm)*(190mm)=190*103 mm2/m gross cross-sectional area for a unit wall length of 1 

m 
Minimum area in each direction (one-third of the total area): 

127
3

380

3
00067.0 min

minmin  s
gvh

A
AAA  mm2/m 

Thus the minimum total vertical reinforcement area 

wv lA *127min   = (127 mm2/m)(8 m) = 1016 mm2  

 
In distributing seismic reinforcement, the designer may be faced with the dilemma: should more 
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3rd of the total 
amount of reinforcement can be placed in one direction and the remainder in the other direction. 
In this example, less reinforcement will be placed in the vertical direction, and more in the 
horizontal direction. The rationale for this decision will be explained later in this example. 
 
Vertical reinforcement (area and distribution) (see Table 2-3): 
Since  2.0aaE SFI =0.80 > 0.75, according to S304-14 Cl.16.4.5.3 spacing of vertical reinforcing 

bars shall not exceed the lesser of: 
 )10(6 t =6(190+10)=1200 mm 

 1200mm 
Therefore, the maximum permitted spacing of vertical reinforcement is equal to  
s 1200 mm. 

 
Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note 
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so 

vA = 8*200 =1600 mm2 

(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the 
upper limit prescribed by S304-14). 
 
The corresponding vertical reinforcement area per metre length is 

1000*
w

v
v l

A
A   = 200 mm2/m > minvA =127 mm2/m       OK 

It should be noted that the requirements for spacing of vertical reinforcement have been relaxed 
for Conventional Construction masonry walls at sites where 0.35 ≤  2.0aaE SFI <0.75 (see Table 

2-3).  
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Horizontal reinforcement (area and distribution) (see Table 2-3): 
Let us consider a combination of joint reinforcement and bond beam reinforcement. According 
to S304-14 Cl.16.4.5.4, where both types of reinforcement are used, the maximum spacing of 
bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement 
arrangement is considered: 
 9 Ga. ladder reinforcement @ 400 mm spacing, and  
 2-15M bond beam reinforcement @ 2200 mm (1/3rd of the overall wall height). The area of 
ladder reinforcement (2 wires) is equal to 22.4mm2, and the area of a 15M bar is 200 mm2. So, 
the total area of horizontal reinforcement per metre of wall height is 







  1000*

2200

400

400

4.22
hA 238 mm2/m > minhA =127 mm2/m       OK 

 
So, the total area of horizontal and vertical reinforcement is 

238200  hvs AAA =438 mm2/m   > minsA =380 mm2/m         OK 

 
Note that the total area (438 mm2/m) exceeds the S304-14 minimum requirements (380 mm2/m)   
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also 
a reserve in reinforcement area provides additional safety for seismic effects. 
 
3. Check whether the vertical reinforcement meets the minimum requirements for 
loadbearing walls (S304-14 Cl.10.15.1.1 – see Table 2-3). 
Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements 
would need to be checked, however the check is omitted from this example since it does not 
govern in seismic zones. 
 
4. Design summary 
The reinforcement arrangement for the wall under consideration is summarized below. 
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EXAMPLE 4b: Seismic design of a Conventional Construction squat shear wall  
 
Design a single-storey squat concrete block shear wall shown in the figure below according to 
NBC 2015 and CSA S304-14 seismic requirements for Conventional Construction reinforced 
masonry walls. The building site is located at the site supported by Site Class C soil, and the 
seismic hazard index  2.0aaE SFI  is 0.66. The wall is subjected to a total dead load of 230 kN 
(including the wall self-weight) and an in-plane seismic force of 630 kN. Consider the wall to be 
solid grouted. Neglect the out-of-plane effects in this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 
 
 
 
 
 
 
 

SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

m = 0.6  

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
 fP = 230 kN axial load 

 fV = 630 kN seismic shear force 

 hVM ff *  = 630*6.6  4160 kNm overturning moment at the base of the wall 

Note that, according to NBC 2015 Table 4.1.3.2, load combination for the dead load and seismic 
effects is 1.0*D + 1.0*E. 
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3. Minimum CSA S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3) 
Since  2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (S304-14 
Cl.16.4.5.1). See Example 4a for a detailed calculation of the S304-14 minimum seismic 
reinforcement. 
 
4.  Design for the combined axial load and flexure 
A design for the combined effects of axial load and flexure will be performed using two different 
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering 
concentrated and distributed reinforcement. 
 
Distributed wall reinforcement (see Section C.1.1.2) 
This procedure assumes uniformly distributed vertical reinforcement over the wall length. The 
total vertical reinforcement area can be estimated, and the estimate can be revised until the 
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical 
reinforcement was determined as  

vtA = 3200 mm2 > 1016 mm2 (minimum seismic reinforcement) - OK 

Try 16-15M bars for vertical reinforcement. 
The wall is subjected to axial load 

fP = 230 kN  

The approximate moment resistance for the wall section is given by: 
85.01            8.01   

159.0
190*8000*5.7*6.0

3200*400*85.0

'


tlf

Af

wmm

vtys




  

034.0
190*8000*5.7*6.0

10*230

'

3


tlf

P

wmm

f


  

  15478000
8.0*85.0159.0*2

034.0159.0

2 11









 wlc



 mm 







 





























8000

1544
1

3200*400*85.0

10*230
1

1000

8000
*3200*

1000

400
*85.0*5.0115.0

3

wvtys

f
wvtysr l

c

Af

P
lAfM




4253rM   kNm > 4160fM   kNm       OK 

 
Distributed and concentrated wall reinforcement (see Section C.1.1.1) 
 
This procedure assumes the same total reinforcement area, but the concentrated reinforcement 
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length. 

vtA = 3200 mm2 
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Concentrated reinforcement area at 
each wall end (3-15M bars in total, 
1-15M in last 3 cells): 

cA = 600 mm2 

 
Distributed reinforcement 

dA 3200-2*600=2000 mm2 

 
Distance from the wall end to the 
centroid of concentrated 
reinforcement 

300d  mm  
 
The compression zone depth a :  

190*5.7*6.0*85.0

2000*400*85.010*230

'85.0

3 





tf

AfP
a

mm

dysf




    = 1252 mm 

 
The masonry compression resultant rC :   

   910)1252*190)(5.7*6.0*85.0('85.0  atfC mmm  kN 
 
The factored moment resistance rM  will be determined by summing up the moments around 
the centroid of the wall section as follows (see equation (3) in Section C.1.1.1) 

    610*'222)(  dlAfalCM wcyswmr   

    63 10*30028000600*400*85.0*22)12528000(*10*910  4580rM   kNm 
 
The second procedure was used as a reference (to confirm the results of the first procedure). 
Both procedure give similar rM  values (4253 kNm and 4580 kNm by the first and second 
procedure respectively).  
 
 
5.  Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.5.4)     
 
Cl.16.5.4 requires that the factored shear resistance, rV , for a Conventional Construction shear 
wall should be greater than the shear due to effects of factored loads, but not less than i) the 
shear corresponding to the development of factored moment capacity, rM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Conventional Construction shear walls, the shear capacity should exceed the shear 
corresponding to the nominal moment capacity, as follows 

4253rM    kNm   

The shear force rbV  corresponding to the overturning moment rM  is equal to 
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4253

6.6
r

rb

M
V

h
    645 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

630 1.5 1.5
1090

1.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
 

645rdV  kN 

 
6.  Find the diagonal tension shear resistance (see Section 2.3.2 and S304-14 
Cl.10.10.2.1). 
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

64008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 207 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.44 MPa 

4.6*630

4160


vf

f

dV

M
= 1.03  1.0 

gdvwmmm PdbvV  )25.0(   = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV  (2-15M bond beam reinforcement at 1200 mm spacing): 

1200

6400
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 435 kN 

Total shear resistance 
787435352  smr VVV  kN     

The factored shear resistance exceeds the minimum required factored shear resistance, that is, 
787rV kN > 645rdV  kN       OK 

This is a squat shear wall because 0.1825.0
8000

6600


w

w

l

h
. Maximum shear allowed on the 

section is (S304-14 Cl.10.10.2.1) 

939)2(4.0max 
w

w
gvwmmr l

h
dbfV   kN   

Since 

rr VV max      OK 
Note that a solid grouted wall is required, that is, 0.1g . A partially grouted wall would have 

5.0g , so its shear capacity would not be adequate for this design. 
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7. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 3200 mm2 total area of vertical wall reinforcement 

yssy fAT   = 0.85*3200*400 = 1088 kN  

dP  = 207 kN 

yd TPP 2  = 207+1088 = 1295 kN 

2PV mr  = 0.6*1.0*1295=777 kN 

777rV kN > 645rdV  kN       OK 

 
8. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to 
ensure uniform shear transfer along the entire length (see Section 2.3.2.2). 
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9. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 645rdV   kN minimum required factored shear resistance 

b) 787rV  kN diagonal tension shear resistance 

c) 777rV  kN sliding shear resistance 
 
Since the minimum required factored shear resistance is smallest of the three values, it can be 
concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
 
Note that S304-14 Cl.10.2.8 prescribes the use of a reduced effective depth d  for the flexural 
design of squat shear walls. This example deals with seismic design, and the wall reinforcement 
is expected to yield in tension, this provision was not followed since it would lead to a non-
conservative design; instead, the actual effective depth was used for flexural design. 
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EXAMPLE 4c: Seismic design of a Moderately Ductile squat shear wall 
Design a single-storey squat concrete block shear wall shown on the figure below according to  
NBC 2015 and CSA S304-14 seismic requirements for moderately ductile squat shear walls 
(note that the same shear wall was designed in Example 4b as a conventional construction). 
The building site is located in Ottawa, ON and the seismic hazard index  2.0aaE SFI  is 0.66. 
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher dR  value of 2.0 that can be used for walls 
with Moderate Ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in 
this design. 
 
Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400 
steel reinforcing bars (yield strength yf = 400 MPa) and cold-drawn galvanized wire (ASWG) 
joint reinforcement are used for this design. 

 
 
 
 
 
 
 
Wall dimensions: 

wl =8000 mm  length 

wh = 6600 mm height 

t = 190 mm thickness 
 

 
 
SOLUTION: 
Since  

0.1825.0
8000

6600


w

w

l

h
 

this is a squat shear wall. The wall is to be designed as a moderately ductile squat shear wall, 
and NBC 2015 Table 4.1.8.9 specifies the following dR  and oR  values (see Table 1-13): 

dR = 2.0 and oR = 1.5      

The seismic shear force of 470 kN for a wall with moderate ductility ( 0.2dR ) was obtained by 
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with 
conventional construction ( 5.1dR ), as follows 

 470
0.2

5.1
*630 fV  kN 

 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

Note that the h/t ratio exceeds 
the S304.1 limit of 20 for 
moderately ductile squat shear 
walls (Cl.10.16.6.3).  
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m = 0.6    

From S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2.  Load analysis 
The wall needs to be designed for the following load effects: 
 fP = 230 kN axial load 

 fV = 470 kN seismic shear force 

 hVM ff *  = 470*6.6  3100 kNm overturning moment at the base of the wall 

Note that, according to NBC 2015 Table 4.1.3.2, the load combination for the dead load and 
seismic effects is 1.0*D + 1.0*E. 
 
3. Minimum S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3) 
Since  2.0aaE SFI = 0.66 > 0.35, minimum seismic reinforcement is required (Cl.16.4.5.1). See 

Example 4a for a detailed calculation of the S304-14 minimum seismic reinforcement. 
 
4.  Design for the combined axial load and flexure (see Section C.1.1.2). 
A design for the combined effects of axial load and flexure will be performed by assuming 
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the 
total area of vertical reinforcement was determined as 

vtA = 2200 mm2  > 1016 mm2 (minimum seismic reinforcement) - OK 

and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area 
of 2200 mm2). 
 
The wall is subjected to axial load fP = 230 kN. Note that the load factor for the load 
combination with earthquake load is equal to 1.0. 
 
The moment resistance for the wall section can be determined from the following equations (see 
Example 4b): 

85.01    8.01    109.0   034.0   1273c  mm  
 







 





























8000

1273
1

2200*400*85.0

10*230
1

1000

8000
*2200*

1000

400
*85.0*5.0115.0

3

wvtys

f
wvtysr l

c

Af

P
lAfM




 
3290rM   kNm > 3100fM   kNm       OK 

 
5. Height/thickness ratio check (see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
moderately ductile squat shear walls (Cl.16.7.4): 

20)10( th , unless it can be shown for lightly loaded walls that a more slender wall is 
satisfactory for out-of-plane stability. 
 
For this example, 
h = 6600 mm (unsupported wall height) 
t = 190 mm actual wall thickness 
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So, 
  2033101906600)10( th  

The height-to-thickness ratio for this wall exceeds the S304-14 limits by a significant margin. 
However, S304-14 permits the height-to-thickness restrictions for moderately ductile squat 
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability 
is satisfactory.  
 
This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which 
corresponds to the compressive stress of 

15.0
190*8000

10*230 3


tl

P
f

w

f
c  MPa 

This stress corresponds to only 2% of the masonry compressive strength mf   which is equal to 
7.5 MPa. In general, a compressive stress below 0.1 mf   (equal to 0.75 MPa in this case) is 
considered to be very low. 
 
The recommendations included in the commentary to Section 2.6.4 will be followed here.  A 
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of 
the compression zone must be confirmed for this case. 
 
Try an effective flange width 390fb mm.  The wall section and the internal force distribution is 
shown on the figure below.  

 
 
This procedure assumes the same total reinforcement area vtA  as determined in step 4, but the 
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is 
distributed over the wall length. 

vtA = 2200 mm2 

Concentrated reinforcement area (2-15M bars at each wall end): 
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cA = 400 mm2 

Distributed reinforcement area: 
dA 2200-2*400=1400 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

 100d  mm  
 Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*846.1
5.7*6.0*85.0

1400*400*85.010*230

'85.0








mm

dysf
L f

AfP
A




 mm2 

The depth of the compression zone a : 

772
190

190)190*390(10*846.1* 252








t

ttbA
a fL

 mm 

The neutral axis depth: 

965
8.0


a
c  mm 

The centroid of the masonry compression zone: 

   
326

2)(2* 22





L

f

A

ttbat
x  mm 

In this case, the compression zone is L-shaped, however only the flange area will be considered 
for the buckling resistance check (see the shaded area shown on the figure below). This is a 
conservative approximation and it is considered to be appropriate for this purpose, since the 
gross moment of inertia is used. 
 
Gross moment of inertia for the flange only: 

8
33

10*39.9
12

390*190

12

*
 f

xg

bt
I  mm4 

 
The buckling strength for the compression zone will be 
determined according to S304-14 Cl.10.7.4.3, as follows: 

  

2

2 1017
1 0.5

er m
cr

d

E I
P

kh

 


 


 kN 

where 
75.0er    

0.1k  pin-pin support conditions 
0d   assume 100% seismic live load  

6600h   mm unsupported wall height 
6375850  mm fE  MPa modulus of elasticity for masonry 

 Find the resultant compression force (including the concrete and steel component). 
842400*400*85.010*706 3  cysmfb AfCP   kN 

where 
  706)10*846.1)(5.7*6.0*85.0('85.0 5  Lmmm AfC   kN 
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 Confirm that the out-of-plane buckling resistance is adequate. 
Since  

842fbP kN < 1017crP  kN 

it can be concluded that the out-of-plane buckling resistance is adequate and so the flanged 
section can be used for this design. This is in compliance with S304-14 Cl.16.7.4, despite the 
fact that the th  ratio for this wall is 33, which exceeds the S304-14-prescribed limit of 20. 
 
4a. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 5 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

      )10028000(*400*400*85.0*2)32628000(*10*706)2(22 3  dlAfxlCM wcyswmr 

365510*3655 6  NmmM r   kNm 
Since 

3655rM   kNm > 3100fM   kNm       OK 

 
6.  Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.7.3.2)     
Cl.16.7.3.2 requires that the factored shear resistance, rV , for a Moderately Ductile squat shear 
wall should be greater than the shear due to effects of factored loads, but not less than i) the 
shear corresponding to the development of factored moment resistance, rM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear 
corresponding to the factored moment resistance. In this case, the factored moment resistance 
is equal to 

3655rM   kNm 

The shear force at the top of the wall that would cause an overturning moment equal to rM  is 

3655

6.6
r

rb
w

M
V

h
    554 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

470 2.0 1.5
1085

1.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
554rdV  kN 

 
7.  The diagonal tension shear resistance (see Section 2.3.2 and S304-14 Cl.10.10.2.1)           
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

64008.0  wv ld  mm    effective wall depth 
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0.1g   solid grouted wall 

fd PP 9.0 = 207 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.44 MPa 

4.6*470

3100


vf

f

dV

M
= 1.03  1.0 

gdvwmmm PdbvV  )25.0(   = 0.6(0.44*190*6400+0.25*207*103)*1.0 = 352 kN     

Steel shear resistance sV : 

Assume 2-15M bond beam reinforcement at 1200 mm spacing, so 
400vA  mm2 

1200s  mm 
Horizontal reinforcement area per metre: 

3331000*
1200

400
1000* 

s

A
A v
h  mm2/m 

 

1200

6400
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 435 kN 

Total diagonal shear resistance 
787435352  smr VVV  kN     

The factored shear resistance exceeds the minimum required factored shear resistance, that is, 
787rV  kN > 554rdV   kN       OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.2) 

939)2(4.0max 
w

w
gvwmmr l

h
dbfV   kN      

Since 

rr VV max    OK 
 
Note that S304-14 Cl.16.7.3.1 requires that the method by which the shear force is applied to 
the wall shall be capable of applying shear force uniformly over the wall length. This can be 
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section 
2.3.2.2 (see Figure 2-16). 
 
8. Sliding shear resistance (see Section 2.3.3) 
The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2200 mm2 total area of vertical wall reinforcement 

yssy fAT   = 0.85*2200*400 = 748 kN  

dP  = 207 kN 

yd TPP 2  = 207+748 = 955 kN 

2PV mr   = 0.6*1.0*955 = 573 kN 



9/1/2018                    3-53 

573rV  kN > 554rdV   kN       OK 

Note that 573rV  kN < 787rV   kN for diagonal tension (this indicates that the sliding shear 

resistance governs over the diagonal tension shear resistance). 
 
9. Minimum reinforcement requirements for Moderately Ductile squat shear walls (see 
Section 2.6.10) 
S304-14 Cl.16.7.5 prescribes the following requirements for the amount of reinforcement in 
Moderately Ductile squat shear walls: 
 
Horizontal reinforcement ratio h   

h  should be greater than the minimum value set by S304-14 Cl.16.7.5: 
3

3
min

470*10
1.10*10

190*6600*0.85*400
f

h
w w s y

V

b h f



  

  
 

and the value determined in accordance with Cl.10.10.2 based on the shear resistance 
requirements 

32131
1.70*10

* 190*6600
h

hshear
w w

A

b h
     

where hA  is the total area of horizontal reinforcement along the wall height, that is, 

333 6.4 2131h h vA A d    mm2 

where 

333hA  mm2/m (see step 6) 

In this case, 

minh =1.10*10-3 <  hshear =1.70*10-3 

This indicates that the S304-14 shear resistance requirement governs. The amount of horizontal 
reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is adequate. 
 
Vertical reinforcement ratio v  

Minimum minv  value set by S304-14 Cl.16.7.5: 
3

3
min min

230*10
1.10*10

0.85*190*8000*400
s

v h
s w w y

P

b l f
 


    

  
0.65*10-3 

where 230s fP P  kN. Actual vertical reinforcement ratio vflex  based on the flexural design 

requirements (see step 4): 

310*447.1
190*8000

2200

*


tl

A

w

vt
vflex  

Since  

vflex = 1.447*10-3 > minv = 0.65*10-3 

It appears that the amount of vertical reinforcement determined based on the flexural design 
requirements (11-15M) governs. It can be concluded that the minimum S304-14 reinforcement 
requirements for Moderately Ductile shear walls have been satisfied.  
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10. Shear resistance at the web-to-flange interface (see Section C.2 and Cl.7.11). 
The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and 
vertical shear stress, as shown below. 
Horizontal shear: 

3554*10
0.36

190*8000
rd

f
e w

V
v

t l
    MPa 

where et = 190 mm (effective wall thickness) 

Vertical shear (caused by the resultant compression force fbP  calculated in Step 5): 

67.0
6600*190

10*842

*

3


ww

fb
f hb

P
v  MPa           governs 

Factored shear strength for bonded interfaces (S304-14 Cl.7.11.1): 

0.16 0.26m m mv f    MPa 

Since 
67.0fv MPa > 0.26mv  MPa 

shear reinforcement at the web-to-flange interface is required. Since the horizontal 
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the 
flange (90° hook), and so 

0.85*2*200*400
0.60

1200*190
s s y

s
e

A f
v

s t


  


MPa 

The total shear resistance 
0.26 0.60 0.86r m sv v v     MPa 

Since  
67.0fv MPa < 86.0rv MPa 

the shear resistance at the web-to-flange interface is satisfactory. 
 
11. Design summary 
The reinforcement arrangement for the wall under consideration is shown in the figure below. 
Note that the wall is solid grouted. 
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11. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. There are three shear forces: 
a) 554rdV   kN minimum required factored shear resistance 

b) 787rV  kN diagonal tension shear resistance 

c) 573rV  kN sliding shear resistance 
Since the minimum required factored shear resistance is smallest of the three values, it can be 
concluded that the flexural failure mechanism is critical in this case, which is desirable for 
seismic design. 
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Note that S304-14 Cl.10.2.8 prescribes the use of reduced effective depth d  for flexural design 
of squat shear walls. Since this example deals with seismic design and essentially all the wall 
reinforcement is expected to yield in tension, this provision was not used as it is expected to 
result in additional vertical reinforcement, which would increase the moment capacity and 
possibly lead to a more brittle diagonal shear failure. 
 
Note that the S304-14 ductility check is not prescribed for Moderately Ductile squat shear walls. 
 
This example shows that an addition of flanges can be effective in preventing the out-of-plane 
buckling of Moderately Ductile squat shear walls. This is in compliance with S304-14 Cl.16.7.4, 
despite the fact that the th  ratio for this wall is 33, which exceeds the S304-14-prescribed limit 
of 20. 
 
The last two examples provide an opportunity for comparing the total amount of vertical 
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a 
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall 
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction 
(16-15M bars); this reduction amounts to approximately 30%. 
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EXAMPLE 5a: Seismic design of a Moderately Ductile flexural (non-squat) shear wall 
Perform the seismic design of a shear wall shown in the figure below. The wall is a part of a 
four-storey building located in Montreal, QC (City Hall) where the seismic hazard index, 

 2.0aaE SFI , is 0.60. The design needs to meet the requirements for Moderately Ductile Shear 
Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1,800 kN (including the wall self-weight), an in-plane seismic shear force of 1090 kN, and an 
overturning moment of 10,900 kNm. The elastic lateral displacement at the top of the wall is 15 
mm. Select the wall dimensions (length and thickness) and the reinforcement, such that the 
CSA S304-14 seismic design requirements for Moderately Ductile shear walls are satisfied. Due 
to architectural constraints, the wall length should not exceed 10 m, and 190 mm standard 
blocks should preferably be used. 
 
Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Grade 400 steel 
reinforcement (yield strength yf = 400 MPa) is used for this design. 

 
SOLUTION: 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 20 MPa concrete blocks and Type S mortar: 

mf  = 10.0 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  14 m 
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Length wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 1090 kN seismic shear force 

 fM  = 10900 kNm overturning moment 

 
This is a Moderately Ductile shear wall, and NBC 2015 Table 4.1.8.9 specifies the following dR  
and oR  values: 

dR = 2.0 and oR = 1.5      

 
3. Height/thickness ratio check (S304-14 Cl.16.8.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Moderately Ductile shear walls: 

20)10( th  
For this example, 
h= 5000 mm (the largest unsupported wall height) 
So, 

2401020  ht  mm 
This means that a rectangular wall section with 240 mm thickness could be used. However, 
S304-14 Cl.16.8.3 permits the use of a more slender wall if the wall is lightly loaded (axial stress 
less than mf 1.0 ), and it can be proven that out-of-plane stability can be maintained under 

seismic effects. 
 
Let us consider 190t  mm (standard concrete blocks) – this will result in 2025)10( th . 
 
In this case, the axial stress level is  

1.0095.0
10*190*10000

10*1800

**

3


mw

f

ftl

P
 

 
The Commentary to Section 2.6.4 proposes an approach for verifying the out-of-plane stability 
of masonry shear walls with flanged ends. Let us assume a 1000 mm wide flange at each wall 
end, because S304-14 Cl.16.8.3.4 states that the minimum flange width of h2.0  (= 1000 mm for 
a 5m unsupported wall height at the first storey level) is required to ensure out-of-plane stability 
in ductile shear walls. 
 
The effective flange width 

1000fb  mm   

The wall section and the internal force distribution is shown in the figure below.  
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This procedure assumes that the concentrated reinforcement (area cA ) is provided at the wall 

ends (flanges), while the remaining reinforcement (area dA ) is distributed over the wall length. 

After a few trial estimates, the total area of vertical reinforcement vtA  was determined as follows 

vtA = 2800 mm2 

Concentrated reinforcement area (3-15M bars at each flange): 

cA = 600 mm2 

Distributed reinforcement area: 
dA 2800-2*600= 1600 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

95d  mm  
 Check the buckling resistance of the compression zone. 
The area of the compression zone LA : 

5
3

10*6.4
0.10*6.0*85.0

1600*400*85.010*1800

'85.0








mm

dysf
L f

AfP
A




mm2 

 
Check whether the neutral axis falls in the web. Since the flange area is 

510*9.1*  tbA ff mm2 

It is obvious that the area of compression zone is greater than the flange area, hence the 
neutral axis falls in the web. The depth of the compression zone a  is: 



9/1/2018                    3-60 

1610
190

190)190*1000(10*6.4* 252








t

ttbA
a fL

 

mm 
 
The neutral axis depth: 

2011
8.0


a
c  mm 

The centroid of the masonry compression zone: 

   
567

2)(2* 22





L

f

A

ttbat
x  mm 

 
 
In this case, the compression zone is T-shaped, however 
only the flange area will be considered for the buckling 
resistance check (see the shaded area shown in the figure). This is a conservative 
approximation, and it is considered to be appropriate for this purpose, since the gross moment 
of inertia is used. 
Gross moment of inertia for the flange only: 

10
33

10*58.1
12

1000*190

12

*
 f

xg

bt
I  mm4 

The buckling strength for the compression zone will be determined according to S304-14 Cl. 
10.7.4.3, as follows: 

   

2

2 26566
1 0.5

er m xg
cr

d

E I
P

kh

 


 


kN  

where 
75.0er  

0.1k  pin-pin support conditions 
0d   assume 100% seismic live load 

5000h   mm unsupported wall height 
8500850  mm fE  MPa modulus of elasticity for masonry 

 Find the resultant compression force (including the concrete and steel component). 
2550600*400*85.010*2346 3  cysmfb AfCP   kN 

where 

  2346)10*6.4)(0.10*6.0*85.0('85.0 5  Lmmm AfC   kN 

 Confirm that the out-of-plane buckling resistance is adequate. 
Since  

2550fbP kN < 26566crP  kN 

it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section 
can be used for this design. 
 
Note that S304-14 Cl.16.8.3.4 prescribes a relaxed ( th <30) limit for flanged shear walls 
provided that the neutral axis depth meets the following simplified requirement (see Figure 2-
28): 
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570190*33*  tc  mm 
Note that t3  denotes the distance from the inside of a wall flange to the point of zero strain. So 
the total neutral axis depth (distance from the extreme compression fibre to the point of zero 
strain) is equal to 

760190570*  tcc  mm 
The neutral axis depth determined above is as follows 

2011c  mm > 760 mm  
It can be concluded that the S304-14 simplified ( th ) check performed above is not satisfied, 
and that a detailed verification is required (as presented above), to confirm the wall stability.  
 
4. Design the flanged section for the combined axial load and flexure – consider 
distributed and concentrated wall reinforcement (see Section C.1.1.1). 
The key design parameters for this calculation were determined in step 3 above. The factored 
moment resistance rM  will be determined by summing up the moments around the centroid of 
the wall section as follows 

      )95210000(*600*400*85.0*2)567210000(*10*2346)2(22 3  dlAfxlCM wcyswmr   

 
12392rM   kNm > 10900fM   kNm       OK 

 
5. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Moderately Ductile shear walls (Cl.16.8.7), the 
neutral axis depth ratio ( wlc ) should be less than the following limit: 

15.0wlc  when 5ww lh   

In this case,  

54.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 2011 mm 
and so 

15.02.0100002011 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

151 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

3.129.1
10900

14034


f

n
w M

M
               3.1w  

In this case, the nominal moment capacity is equal to Mn = 14034 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm   were used.  
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The S304-14 minimum rotational demand is min = 0.003 for Moderately Ductile shear walls 
(Cl.16.8.8.2). The actual value is determined from the following equation: 
 

    3

3

11 1083.2

10
2

0.10
0.14

30.1155.10.215

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is less than min = 0.003, hence  
3

min 100.3   id  

The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31022.4002.0
20112

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity iic is greater than rotational demand id, it can be concluded that 
the S304-14 ductility requirements have been satisfied. 
 
6.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.8.9.2)     
 
Cl.16.8.9.2 requires that the factored shear resistance, rV , for a Moderately Ductile shear wall 
should be greater than the shear due to the effects of factored loads, but not less than i) the 
shear corresponding to the development of the nominal moment capacity, nM , or ii) shear 

corresponding to the lateral seismic load (base shear), where earthquake effects were 
calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear 
corresponding to the nominal moment capacity, as follows 

14034nM   kNm   

The shear force resultant acts at the effective height eh , the distance from the base of the wall 

to the resultant of all the seismic forces acting at the floor levels. Note that eh  can be determined 

as follows 

0.10
f

f
e V

M
h  m 

The shear force nbV  corresponding to the overturning moment nM  is equal to 


0.10

14034

e

n
nb h

M
V  1403 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

2510
3.1

5.10.21090

3.1






 odf

fe

RRV
V kN 

The smaller of these two values should be used, hence 
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1403rdV kN 

 
7.  The diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14 
Cl.10.10.2.1 and 16.8.9.1)           
Masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

80008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

Although the seismic hazard index   35.06.02.0 aaE SFI , partial grouting in the plastic hinge 

zone of Moderately Ductile shear walls is permitted by S304-14 Cl.16.8.5.2, because the wall 

has an aspect ratio 24.1 
w

w

l

h
, and is subjected to low axial stress (less than mf 1.0 ). 

However, this design requires full grouting within the plastic hinge zone due to the significant 
shear demand. 
 

fd PP 9.0 = 1620 kN  

Since 
0.8*1090

10900


vf

f

dV

M
= 1.25 > 1.0  use  1.0f

f v

M

V d
 in the equation for masonry shear 

resistance below 

m
vf

f
m f

dV

M
v  )2(16.0 = 0.51 MPa 

gdvwmmm PdbvV  )25.0(   = 0.6(0.51*190*8000+0.25*1620*103)*1.0 = 704 kN     

To find the steel shear resistance sV , assume 2-15M bond beam reinforcing bars at 600 mm 

spacing (this should provide some allowance in the shear strength to satisfy capacity design), 
thus 

400vA  mm2 

600s  mm 

600

8000
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1088 kN 

 
According to Cl.16.8.9.1, there is a 25% reduction in the masonry shear resistance contribution 
for Moderately Ductile shear walls, and so 

16161088704*75.075.0  smr VVV  kN  > 1403rdV  kN       OK 

 
Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

11544.0max  gvwmmr dbfV  kN < rV        

It can be concluded that the above maximum shear resistance requirement has not been 
satisfied. It would be required to increase either wall thickness or length to satisfy this 
requirement. It is recommended to perform this check at an early stage of the design. 
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8. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 Cl.10.10.5.1) 
The factored in-plane sliding shear resistance rV  is determined as follows: 

  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 

For Moderately Ductile shear walls, all vertical reinforcement should be accounted for in the yT  

calculations (Cl.10.10.5.1), (also see Figure 2-17)  
400*2800*85.0 yssy fAT   = 952 kN 

dP  = 1620 kN 

yd TPC   = 1620+952 = 2572 kN 

CV mr   = 0.6*1.0*2572 = 1543 kN 

1543rV  kN > 1403rdV  kN       OK 

 
9. Shear resistance at the web-to-flange interface (see Section C.2 and S304-14 Cl.7.11). 
The factored shear stress at the web-to-flange interface is equal to the larger of the horizontal 
and vertical shear stress, as shown below. 
Horizontal shear can be determined as follows: 

74.0
10000*190

10*1403 3


we

rd
f lt

V
v  MPa 

where et = 190 mm (effective wall thickness) 

Vertical shear over the entire wall height (caused by the resultant compression force fbP  
calculated in Step 3): 

96.0
14000*190

10*2550

*

3


ww

fb
f hb

P
v  MPa           governs 

Factored masonry shear strength for bonded interfaces (S304-14 Cl.7.11.1): 

0.16 0.30m m mv f    MPa 

Since 
96.0fv  MPa > 0.30mv   MPa 

it is required to provide additional shear reinforcement at the web-to-flange interface. The 
horizontal reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement) 
and both bars can be extended into the flange (90° hook). These bars will provide shear 
resistance at the interface. Therefore, 

19.1
190*600

400*200*2*85.0





e

yss
s ts

fA
v


 MPa 

The total shear resistance 
0.30 1.19 1.49r m sv v v      MPa > 96.0fv  MPa    OK 

 
10. S304-14 seismic detailing requirements for Moderately Ductile shear walls – plastic 
hinge region 
According to Cl.16.8.4, the required height of the plastic hinge region for Moderately Ductile 
shear walls must be greater than (see Table 2-5) 

2 2 5.0ph l   m    

or 
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/ 6 14.0 / 6 2.3p wh h    m   

(note that wh  denotes the total wall height) 

So, 5.0ph   m governs   

 
The reinforcement detailing requirements for the plastic hinge region of Moderately Ductile 
shear walls are as follows (see Table 2-4 and Figure 2-40): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2) (the relaxation 

under Cl.16.8.5.2 does not apply in this case). 
2. Horizontal reinforcement requirements  

a) Reinforcement spacing should not exceed the following limits (Cl.16.8.5.4): 
1200s  mm or  

50002100002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
1200s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements  

 Horizontal reinforcement shall not be lapped within (Cl.16.8.5.4) 
 600 mm or  

20005 wl  mm   

whichever is greater, from the ends of the wall. In this case, the reinforcement should not 
be lapped within the distance 2000 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. Lap splice lengths within the plastic 
hinge region are required to be at least dl5.1 (Cl. 16.8.5.5). 

 
Horizontal reinforcement shall be (Cl.16.8.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have at least 90° hooks at the ends of the wall. 
All these requirements will be complied with, as shown on the design summary drawing. 

3. Vertical reinforcement requirements (Cl.16.8.5.1) 
Unlike Ductile shear walls there are no specific lapping restrictions for vertical reinforcement in 
the plastic hinge zone of Moderately Ductile shear walls. Lap splice lengths within the plastic 
hinge region are required to be at least dl5.1  (Cl.16.8.5.5). 

 
11. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that Moderately Ductile shear walls must be solid grouted in the plastic hinge 
region, except for certain specific cases. But they may be partially grouted outside the plastic 
hinge region (this depends on the design forces). 
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12. Discussion 
 
It is important to consider all possible behaviour modes, and to identify the one that governs in 
this design. The following shear resistance values need to be considered: 
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1. 1616rV  kN diagonal tension shear resistance 

2. 1543rV  kN sliding shear resistance 

3. 1403rdV  kN minimum required shear resistance to achieve ductile flexural behaviour 

 
It can be concluded that the minimum required shear force corresponding to the flexural failure 
mechanism is the smallest, so the flexural failure mechanism governs in this case, which is a 
requirement for the Capacity Design approach for Moderately Ductile shear walls. 
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EXAMPLE 5b: Seismic design of a Ductile shear wall with a rectangular cross-section 
Perform the seismic design of a shear wall shown in the figure below. The wall is five-stories  
high, with a total height of 15 m. It is part of a building located in Vancouver, BC (City Hall), 
where the seismic hazard index,  2.0aaE SFI , is 0.85. The design needs to meet the 
requirements for a Ductile Shear Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1800 kN, an in-plane seismic shear force of 943 kN, and an overturning moment of 9430 kNm. 
The elastic lateral displacement at the top of the wall is 13 mm. Select the wall dimensions 
(length and thickness), and the reinforcement so that the CSA S304-14 seismic design 
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall 
length should not exceed 10 m, and a standard rectangular wall section should be used. 
 
Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
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SOLUTION: 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar: 

mf  = 13.5 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  15 m 

Wall length considered for initial calculations: wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 943 kN seismic shear force 

 fM  = 9430 kNm overturning moment 

 
For Ductile shear walls (NBC 2015 Table 4.1.8.9 – see Section 1.7) it is required that Rd = 3.0 
and Ro = 1.5. 
 
According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be 
greater than 1.0. In this case,  

0.15.1
10000

15000


w

w

l

h
  OK 

 
3. Determine the required wall thickness based on the S304-14 height-to-thickness 
requirements (Cl.16.9.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls: 

12)10( th  

For this example, h= 3000 mm (unsupported wall height) 
So, 

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness is 

240t  mm 
Note that it would be possible to use a smaller wall thickness (190 mm) if wbc 4 or 

wlc 3.0 (Cl.16.9.3.3 relaxing provision 16)10( th ). The requirement 

76019044  wbc mm would require a very small neutral axis depth which would be difficult 

to achieve in this case. Therefore a 240 mm wall thickness will be used in this design. 
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4. Determine the wall length based on the shear design requirements. 
Designers may be requested to determine the wall dimensions (length and thickness) based on 
the design loads. In this case, the thickness is governed by the height-to-thickness ratio 
requirements, and the length can be determined from the maximum shear resistance for the 
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304-14 
Cl.10.10.2.1): 

gvwmmrr dbfVV   4.0max  

0.1g   solid grouted wall (required for plastic hinge zone) 

240wb  mm overall wall thickness 

80008.0  wv ld  mm   effective wall depth 

Set  
943 fr VV  kN 

and so 

5570
0.1*8.0*240*5.13*6.0*4.0

10*943

)8.0(4.0

3





gwmm

f
w

bf

V
l


 mm 

Therefore, based on the shear design requirements the designer could select a wall length of 
5.7 m. However, a preliminary capacity design check indicated that a minimum wall length of 
nearly 10 m was required, thus try 

10000wl  mm 

which gives 
1690max rV  kN   

 
5. Minimum S304-14 seismic reinforcement requirements (see Table 2-3). Since 

 2.0aaE SFI = 0.85 > 0.35, it is required to provide minimum seismic reinforcement (S304-14 

Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic 
reinforcement requirements. 
 
6.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2). 
Design for the combined effects of axial load and flexure by assuming uniformly distributed 
vertical reinforcement over the wall length.  
 
The amount of vertical reinforcement can be estimated from the ductility requirements for 
Ductile shear walls (S304-14 Cl.16.8.8). The goal for the S304-14 detailed ductility check is to 
confirm that the rotational capacity exceeds the rotational demand in the plastic hinge zone. 
Based on the minimum rotational demand requirements (min = 0.004), the wlc ratio should not 

exceed 0.2 for Ductile Shear Walls (see Section 2.6.3). An approach for estimating the 
maximum amount of vertical reinforcement required for predefined wlc ratio for walls with 

distributed reinforcement is presented in Section 2.6.3, and its application will be illustrated next.  
 
The main input parameter is the level of axial compression stress relative to compressive 
strength mf ' , that is, 

055.0
240100005.13

101800

''

3







tlf

P

f

f

wm

f

m
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From Fig. 2-27 (see below), for the given axial stress level of 0.055 (vertical axis), and assuming 

wlc =0.2 (horizontal axis) it is possible to determine the corresponding  value; 

06.0  
 
The required vertical reinforcement ratio can be determined from  as follows: 

00143.0
40085.0

5.136.006.0'






ys

mm
v f

f




  

 Since the vertical reinforcement ratio is equal to  

w

vt
v lt

A

*
  

The maximum required area of vertical reinforcement can be determined as follows 
 

34321000024000143.0  wvvt ltA  mm2 

Since this is the maximum amount from the ductility perspective, the goal is to select an amount 
of reinforcement less than the maximum and confirm that the amount is sufficient to satisfy the 
strength requirement (flexural capacity must be larger than the applied bending moment). 

 
 
The proposed area of vertical reinforcement is as follows: 

vtA = 2800 mm2  

In total, 14 vertical reinforcing bars are used in this design: 4-15 M reinforcing bars as 
concentrated reinforcement (2-15M bars at each end) plus 10-15M bars as distributed 
reinforcement, and the average spacing is equal to  

753
13

20010000



s   mm  
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Since 2-15M bars are concentrated at each end, the amount of concentrated reinforcement is 

cA = 400 mm2  

And the amount of distributed reinforcement is 
 cvtd AAA 2 2000 mm2 

For Ductile shear walls, S304-14 Cl.16.9.5.3 notes that the amount of concentrated 
reinforcement at each wall end should not exceed 25% of the distributed reinforcement. Since 

2.02000400 dc AA  < 0.25 OK 

It is also required to check the maximum reinforcement area per S304-14 Cl.10.15.2 (see Table 
2-3). 
Since mms 753  < 960240*44 t  mm 

4800)10*240(02.002.0 3
max  gs AA  mm2/m 

This is significantly larger than the estimated area of vertical reinforcement. 
 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01    8.01     05.0   09.0   1820c  mm 
 







 





























10000

1820
1

2800*400*85.0

10*1800
1

1000

10000
*2800*

1000

400
*85.0*5.0115.0

3

wvtys

f

wvtysr l

c

Af

P
lAfM


  

11300rM   kNm > 9430fM   kNm       OK 

Note that 
2.018.0100001820 wlc  

Therefore, the S304-14 minimum rotational demand requirement for Ductile shear walls is 
satisfied. 
 
7. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ), should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

55.1 
w

w

l

h
Also, the neutral axis depth  

c= 1820 mm 
and so 

125.018.0100001820 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

131 fΔ  mm 
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The overstrength factor must be at least equal to 1.3, and can be determined from the following 
equation: 

36.1
9430

12800


f

n
w M

M
   

In this case, the nominal moment capacity is equal to Mn = 12,800 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
The S304-14 minimum rotational demand is min = 0.004 for Ductile shear walls. The actual value 
is determined from the following equation: 
 

    3

3

11 1008.4

10
2

0.10
0.15

36.1135.10.313

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31087.4002.0
18202

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity iic is greater than rotational demand id, it can be concluded that 
the S304-14 ductility requirements have been satisfied. 
 
8.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.9.8.3)     
 
Cl.16.9.8.3 requires that the factored shear resistance, rV , should be greater than the shear due 
to effects of factored loads, but not less than i) the shear corresponding to the development of 
probable moment capacity, pM , or ii) the shear corresponding to the lateral seismic load (base 

shear), where earthquake effects were calculated using RdRo=1.3. 
 
The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to 
the probable moment capacity, as follows 

13900pM   kNm   

The shear force resultant acts at the effective height eh , that is, the distance from the base of 

the wall to the resultant of all seismic forces acting at the floor levels. Note that eh  can be 

determined as follows 

0.10
f

f
e V

M
h  m 

The shear force pbV  corresponding to the overturning moment pM  is equal to 


0.10

13900

e

p
pb h

M
V  1390 kN 
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The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

3264
3.1

5.10.3943

3.1






 odf

fe

RRV
V kN 

The smaller of these two values should be used, hence 
1390rdV kN 

 
9.  Diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14 
Cl.10.10.2.1 and Cl.16.9.8.1)           
Masonry shear resistance ( mV ): 

240wb  mm overall wall thickness 

80008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 1620 kN  

Since 

0.8*943

9430


vf

f

dV

M
= 1.25 > 1.0  use 0.1

vf

f

dV

M
 in the equation for masonry shear resistance 

below 

m
vf

f
m f

dV

M
v  )2(16.0 = 0.59 MPa 

gdvwmmm PdbvV  )25.0(   = 0.6(0.59*240*8000+0.25*1620*103)*1.0 = 920 kN     

The required steel shear resistance can be found from the following equation (see Section 2.6.5 
and S304-14 Cl.16.9.8.1) (note 50% reduction of Vm) 

rdsmr VVVV  5.0     

hence 
9309205.013905.0  mrds VVV  kN 

The required amount of reinforcement can be found from the following equation 

57.0
8000*400*85.0*6.0

10*930

6.0

3


vys

sv

df

V

s

A


 

Try 2-15M bond beam reinforcing bars at 600 mm spacing ( 400vA  mm2   and  600s  mm): 

67.0
600

400


s

Av  > 0.57    OK 

Steel shear resistance sV : 

600

8000
*400*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1088 kN 

Total diagonal shear resistance: 
0.5 0.5 920 1088 1548r m sV V V       kN    > 1390rdV kN  OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

16904.0max  gvwmmr dbfV   kN   
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Since 
1548rV kN < 1690max rV kN       OK 

In conclusion, the diagonal shear design requirement has been satisfied. 
 
10. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 Cl.10.10.5.1 and 
16.9.8.2) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 2800 mm2 total area of vertical wall reinforcement 

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted 
for in the yT  calculations (S304-14 Cl.16.9.8.2), and so (see Figure 2-17b)  







 








 


10000

182010000
*400*2800*85.0

w

w
yssy l

cl
fAT   = 779 kN 

dP  = 1620 kN 

yd TPC   = 1620+779 = 2399 kN 

CV mr   = 0.6*1.0*2399 = 1440 kN 

1440rV  kN >  1390rdV kN       OK 

 
11. S304-14 seismic detailing requirements for Ductile shear walls – plastic hinge region 
 
According to Cl.16.9.4, the required height of the plastic hinge region for Ductile shear walls is 
(see Table 2-5) 

0.5 0.1 0.5 10000 0.1 15000 6500p w wh l h       mm  

However 
0.8 1.5w p wl h l    

Since 
80008.0 wl mm > 6500 mm 

It follows that 
0.8 8.0p wh l   m governs.  

 
The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are 
as follows (see Table 2-4 and Figure 2-41): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2). 
2. Horizontal reinforcement requirements: 

a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4): 
600s  mm or  

50002100002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
600s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements 

 Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4) 
  600 mm or  
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  5wl = 2000 mm 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within 2000 mm from the end of the wall. The horizontal reinforcement can be 
lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.16.9.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 

3. Vertical reinforcement requirements: 
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.3): 

25004100004  wls  mm, but need not be less than 400 mm, or the minimum 

seismic requirements specified in Cl.16.4.5.3, which states that 1200s  mm (this value 
governs since the wall thickness is 240 mm). Since the lesser value governs, the 
maximum permitted spacing is 1200s  mm. 
 

b) Detailing requirements 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (Cl.16.9.5.2). 
 
12. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be 
partially grouted outside the plastic hinge region (depending on the design forces).  



9/1/2018                    3-77 

 
 
13. Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following shear resistance values need to be considered: 

4. 1548rV  kN diagonal tension shear resistance 

5. 1440rV  kN sliding shear resistance 

6. 1390rdV  kN minimum required shear resistance to achieve ductile flexural behaviour 
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It can be concluded that the minimum required shear force corresponding to the flexural failure 
mechanism is the smallest (1390 kN), so it governs in this case, which is a requirement for the 
Capacity Design approach for Ductile RM shear walls. 
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EXAMPLE 5c: Seismic design of a Ductile shear wall with Boundary Elements 
Perform the seismic design of the same shear wall designed in Example 5b. The building is 
located in Victoria, BC where the seismic hazard index,  2.0aaE SFI , is 1.3. The design needs 
to meet the requirements for a Ductile Shear Wall SFRS according to NBC 2015. 
 
The section at the base of the wall is subjected to a previously calculated total dead load of 
1800 kN, an in-plane seismic shear force of 1310 kN, and an overturning moment of 13100 
kNm. The elastic lateral displacement at the top of the wall is 18 mm. Select the wall dimensions 
(length and thickness) and the reinforcement, so that the CSA S304-14 seismic design 
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall 
length should not exceed 10 m. The wall may have standard rectangular section, or 
alternatively, boundary elements may be provided at wall ends if required by design. 
 
Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as 
solid grouted. Grade 400 steel reinforcement (yield strength yf = 400 MPa) is used for this 
design. 
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SOLUTION: 
 
As the first attempt, the wall will be designed with a rectangular cross-section, and boundary 
elements will be provided only if a rectangular section cannot be used. 
 
1. Material properties and wall dimensions 
Material properties for steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

and masonry: 
From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar: 

mf  = 13.5 MPa (assume solid grouted masonry) 

m = 0.6    

Wall dimensions: 
Overall height wh  15 m 

Wall length considered for initial calculations: wl 10 m 

 
2.  Load analysis 
The section at the base of the wall needs to be designed for the following load effects: 
 fP = 1800 kN axial load 

 fV = 1310 kN seismic shear force 

 fM  = 13100 kNm overturning moment 

For Ductile shear walls (NBC 2015 Table 4.1.8.9 – see Section 1.7), it is required that Rd = 3.0 
and Ro = 1.5. 
 
According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be 
greater than 1.0. In this case,  

0.15.1
10000

15000


w

w

l

h
  OK 

 
3. Determine the required wall thickness based on the S304-14 height-to-thickness 
requirements (Cl.16.9.3, see Section 2.6.4) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls: 

12)10( th  
For this example, 
h= 3000 mm (unsupported wall height) 
So, 

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness is 

240t  mm 
 
4. Minimum S304-14 seismic reinforcement requirements (see Table 2-2) 
Since  2.0aaE SFI = 1.3 > 0.35, it is required to provide minimum seismic reinforcement (S304-
14 Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic 
reinforcement requirements. 
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5.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2). 
 
The total area of vertical reinforcement has been estimated as follows: 

vtA = 6000 mm2  

 
The wall is subjected to axial load fP = 1800 kN. The moment resistance for the wall section 
can be determined from the following equations (see Section C.1.1.2): 

85.01    8.01     09.0   08.0   1910c  mm 
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15500rM   kNm > 13100fM   kNm       OK 

 
6. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ) should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

55.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 1910 mm 
and so 

125.019.0100001910 wlc  

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

181 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

39.1
13100

18200


f

n
w M

M
   

In this case, the nominal moment capacity is equal to Mn = 18,200 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
Based on the S304-14 rotational demand requirement, the minimum rotational demand min = 
0.004 for Ductile shear walls. The actual value is determined from the following equation: 
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   1 1 3

3

18 3.0 1.5 18 1.39
5.60 10

10.0
15.0 10

2 2

wf o d f
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w

w

Δ R R Δ

h


 

    
   

    
 

  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The rotational capacity can be calculated as follows (and should not exceed 0.025) 
 

31053.4002.0
19102

100000025.0
)002.0

2
( 






 





c

lwmu
ic


  

 
Since the rotational capacity is less than the rotational demand, it can be concluded that the 
S304-14 ductility requirements have not been satisfied. The design will be continued by 
providing boundary elements at wall ends, and following the pertinent S304-14 provisions for 
Ductile shear walls with increased compressive strain beyond the 0.0025 limit (S304-14 
Cl.16.10). It is proposed that an overall wall length of 9 m be used, which is less than the 
maximum length (10 m) per design requirements. 
 
7. Determine the minimum required thickness for the boundary elements and the wall 
based on the S304-14 height-to-thickness requirements (Cl.16.9.3, see Section 2.6.8.3) 
S304-14 prescribes the following height-to-thickness ( th ) limit for the compression zone in 
Ductile shear walls with boundary elements (for the zone between the compression face to one-
half of the compression zone depth, see Figure 2-35): 

12)10( th  
For this example, 
h= 3000 mm (unsupported wall height) 
So  

2401012  ht  mm 
Therefore, in this case the minimum acceptable wall thickness of the boundary element is 240 
mm, however a larger size will be selected since larger number of vertical reinforcing bars need 
to be provided, that is, 

390bt  mm 

The maximum required thickness of the wall web is 
1781016  ht  mm 

Therefore, a 190 mm wall thickness could be used for this design based on the height/thickness 
requirements, however a larger thickness is required to meet the shear resistance requirements, 
therefore  

240t  mm 
will be used in this design. 
 
8.  Design the wall for the combined effect of axial load and flexure (see Section C.1.1.1). 
The proposed wall length 9000wl mm is less than the maximum permitted value (10000 mm). 

The proposed dimensions of boundary elements are:  
790bl mm length 

390bt  mm thickness 

These dimensions will be verified at a later stage. 
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The design procedure assumes that the concentrated reinforcement (area cA ) is provided at 

each boundary element, while the remaining reinforcement (area dA ) is distributed over the wall 

web. After a few trial estimates, the total area of vertical reinforcement vtA  was determined as 

follows 

vtA = 5200 mm2 

Concentrated reinforcement in the boundary elements (8-15M bars at each boundary element): 

cA = 1600 mm2 

Check if this amount is sufficient based on S304-14 Cl.16.11.8: 
16209000*240*00075.0**00075.0  wc ltA mm2 

The proposed area is slightly less than the required area, but the difference is insignificant. 
 
Distributed reinforcement in the wall: 

dA 5200-2*1600 = 2000 mm2 

Distance from the wall end to the centroid of concentrated reinforcement cA : 

3952  bld  mm  

The area of the compression zone LA : 

5
3

10*6.3
5.13*6.0*85.0

2000*400*85.010*1800

'85.0








mm

dysf
L f

AfP
A




mm2 

 
If the area of the compression zone exceeds the area of boundary element, it follows that the 
neutral axis falls in the wall web (as opposed to the boundary element). In this case the area of 
boundary element is 

510*08.3790*390*  bbg ltA  mm2 

Since 

gL AA     

it follows that the neutral axis falls in the web. The compression zone depth a  can be 
determined from the following equation: 

5* 3.6*10 390*790
790 1010

240
L f f

f

A b l
a l

t

 
     mm 

The neutral axis depth is 

1259
8.0


a
c  mm 

The centroid of the masonry compression zone: 

 
539

10*6.3

2240*)7901010()
2

790
1010(*790*3902*

2
**

5

2
2

















L

f
f

ff

A

tla
l

alb

x  

 
 
The resultant of masonry compression stress is  
 

  2480)10*6.3)(5.13*6.0*85.0('85.0 5  Lmmm AfC   kN 



9/1/2018                    3-84 

 
Finally, the factored moment resistance of the wall 
section is  
 

     )53929000(10*48.2)2(22 6dlAfxlCM wcyswmr 
 

14300)39529000)(1600*400*85.0(2   kNm 
 

14300rM   kNm > 13100fM   kNm       OK 

Note that 
2.014.090001259 wlc  

therefore the S304-14 minimum rotational demand requirement for Ductile shear walls is 
satisfied. 
 
9.  Determine the size of boundary elements (see Section 2.6.8.3). 
The proposed thickness of a boundary element is  

390bt mm 

and the proposed length is  
790bl mm 

 
Note that the length of a boundary element should not be less than the largest of the following 
three values (Cl.16.11.2): 

))0025.0(,2,1.0( mumuwb cclcl     

The selection of the length is an iterative process, since it is required to perform a design for 
axial load and flexure in order to determine the neutral axis depth c, hence 

3599000*1.012591.0  wlc mm 

630212592 c mm 
The larger of these two values will govern, that is, 

630bl mm 

Hence, the proposed value of 790 mm is OK. Note that the third criterion is as follows 

mumub cl  )0025.0(   

Cannot be followed at this stage because mu  is not known. 

 
10. Perform the S304-14 ductility check (see Section 2.6.3).  
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis 
depth ratio ( wlc ) should be less than the following limit: 

125.0wlc  when 5ww lh   

In this case,  

567.1 
w

w

l

h
 

Also, the neutral axis depth  
c= 1259 mm 
and so 

125.014.090001259 wlc  
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Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed 
ductility check according to S304-14 Cl.16.8.8 needs to be performed. It is required to determine 

the rotational demand id  and the rotational capacity ic , and to confirm that the capacity 

exceeds the demand.  
 
The rotational demand depends on the elastic lateral displacement at the top of the wall, which 
is given as 

181 fΔ  mm 

The overstrength factor must be at least equal to 1.3 and can be determined from the following 
equation: 

3.127.1
13100

16600


f

n
w M

M   

Hence, 
3.1w  

In this case, the nominal moment capacity is equal to Mn = 16,600 kNm, which was calculated in 
the same manner as the factored moment resistance Mr, except that unit values of material 
resistance factors  0.1 sm  were used. 

 
The S304-14 minimum rotational demand is min = 0.004 for Ductile shear walls. The actual value 
is determined from the following equation: 
 

    3

3

11 1049.5
10

2

0.9
0.15

30.1185.10.318

2








 









w
w

fdof
id

h

ΔRRΔ
w




  

This is greater than min = 0.004, so the actual rotational demand will be used.  
The required maximum compressive strain value can be determined from the following equation 
(see Section 2.6.8.2) 
 

  0021.0
9000

1259*2
)002.010*49.5(

2
002.0 3  

w
idmu l

c  

Note that 

mumub cl  )0025.0(   

However, this criterion cannot be applied since mu is less than 0.0025. 

 
11.  Minimum required factored shear resistance (see Section 2.6.5 and S304-14 
Cl.16.10.4.3)     
 
Cl.16.10.4.3 requires that the factored shear resistance, rV , should be greater than the shear 
due to the effects of factored loads, but not less than i) the shear corresponding to the 
development of probable moment capacity, pM , or ii) the shear corresponding to the lateral 

seismic load (base shear), where earthquake effects were calculated using RdRo = 1.3. 
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The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more 
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to 
the probable moment capacity, as follows 

18600pM   kNm   

The shear force resultant acts at the effective height eh , that is, the distance from the base of 

the wall to the resultant of all seismic forces acting at the floor levels. Note that eh  can be 

determined as follows 

0.10
f

f
e V

M
h  m 

The shear force pbV  corresponding to the overturning moment pM  is equal to 


0.10

18600

e

p
pb h

M
V  1860 kN 

The second requirement gives an “almost elastic” factored base shear force for the wall, which 
is equal to 

1310 3.0 1.5
4535

1,.3 1.3
f d o

fe

V R R
V

   
   kN 

The smaller of these two values should be used, hence 
1860rdV kN 

 
12.  Diagonal tension shear resistance (see Section 2.6.5 and S304-14 Cl.10.10.2.1)           
Masonry shear resistance ( mV ): 

240wb  mm overall wall thickness 

72008.0  wv ld  mm    effective wall depth 

0.1g   solid grouted wall 

fd PP 9.0 = 1620 kN  

m
vf

f
m f

dV

M
v  )2(16.0 = 0.59 MPa 

Since 

2.7*1310

13100


vf

f

dV

M
= 1.39 > 1.0  

use 0.1
vf

f

dV

M
 

gdvwmmm PdbvV  )25.0(   = 0.6(0.59*240*7200+0.25*1620*103)*1.0 = 852 kN     

The required steel shear resistance can be found from the following equation (see Section 2.6.5 
and S304-14 Cl.16.10.4.1) 

rdsmmur VVVV  ))2(0025.0(   

Since 
59.0)0021.0*2(0025.0)2(0025.0 mu  

Then 



9/1/2018                    3-87 

1357852*59.0186059.0  mrds VVV  kN 

The required amount of reinforcement can be found from the following equation 

92.0
7200*400*85.0*6.0

10*1357

6.0

3


vys

sv

df

V

s

A


 

Try 2-20M bond beam reinforcing bars at 600 mm spacing ( 600vA  mm2   and  600s  mm): 

0.1
600

600


s

Av  > 0.92    OK 

Steel shear resistance sV : 

600

7200
*600*

1000

400
*85.0*6.06.0 

s

d
fAV v
yvss   = 1470 kN 

Total diagonal shear resistance: 
1973147085259.059.0  smr VVV  kN    > 1860rdV  kN    OK 

Maximum shear allowed on the section is (S304-14 Cl.10.10.2.1) 

15204.0max  gvwmmr dbfV   kN   

Since 
1973rV kN > 1520max rV kN       

the above maximum shear resistance requirement has not been satisfied. It would be required 
to increase either wall thickness or length to satisfy this requirement. It is recommended to 
perform this check at an early stage of the design.  
 
13. Sliding shear resistance (see Sections 2.3.3 and 2.6.7, and S304-14 Cl.10.10.5.1 and 
16.10.4.2) 
The factored in-plane sliding shear resistance rV  is determined as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 5200 mm2 total area of vertical wall reinforcement 

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted 
for in the yT  calculations (S304-14 Cl.16.10.4.2), (also see Figure 2-17b)  







 








 


9000

12599000
*400*5200*85.0

w

w
yssy l

cl
fAT   = 1520 kN 

dP  = 1620 kN 

yd TPC   = 1620+1520 = 3140 kN 

CV mr   = 0.6*1.0*3140 = 1884 kN 

1884rV  kN >  1860rdV kN       OK 

 
14. Shear at the interface (see Section 2.6.8.4 and S304-14 Cl.16.11.10) 
It is required to check whether the horizontal wall reinforcement is sufficient to resist the vertical 
shear stresses at the boundary element interface. The shear flow demand is based on the 
design shear force transferred over the storey height, that is, 

620
0.3

1860


h

V
V rd
sf kN/m 

The shear flow resistance is as follows (Cl.16.11.10) 
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smfr FV   

The resistance provided by horizontal reinforcement (2-20M bars at 600 mm spacing) is as 
follows 

204340*0.1*6.0  smfr FV  kN/m 

Where 
    340600600*400*85.0  sAfF vyss  kN/m 

is the shear flow resistance provided by the horizontal reinforcement. Since  

sffr VV   

it follows that additional horizontal reinforcement is required to satisfy the requirement. Let us 
assume that 2-20M bars (total area 600 mm2) will be provided at 200 mm spacing throughout 
the wall height at the first-floor level, that is, 

    1020200600*400*85.0  sAfF vyss  kN/m 

6121020*0.1*6.0  smfr FV  kN/m 

This shear flow resistance approximately satisfies the shear flow demand. The difference (620-
612=8 kN/m) is 1% of the total demand, which is insignificant. 
 
15. Detailing of boundary elements (see Section 2.6.8.5 and S304-14 Cl.16.11) 
 
1) Regular ties and buckling prevention ties within the plastic hinge zone 

 
Dimensions of a boundary element: 

790bl mm length 

390bt mm thickness 
510*08.3390*790*  bbg tlA mm2 

For the rectangular hoop reinforcement, the minimum area Ash in each principal direction should 
not be less than the larger of the following (S304-14 Cl.16.11.6): 

c
yh

m

ch

g
pnsh hs

f

f

A

A
kkA 

'
2.0 1  

or 

c
yh

m
sh hs

f

f
A 

'
09.0  

where 

33.1
28

8

2








l

l
n n

n
k  

8ln  number of supported bars around the perimeter of a boundary element 

163.00021.0*301.0301.01  mupk   
510*0.2690*290 chA mm2 

is the area of the confined core and 690ch mm is the larger dimension of the confined core 

(the dimension in other direction is 290 mm) 
The maximum spacing of buckling prevention ties within the plastic hinge zone should not 
exceed the lesser of (S304-14 Cl.16.11.4) 



9/1/2018                    3-89 

)2,24,6( btieb tdds   

Where db is longitudinal bar diameter, and dtie is the tie diameter, hence 
9015*66 bd mm 

24010*2424 tied mm 

19523902 bt mm 

Hence, 
90s mm governs 

Assume  
80s mm 

The required area of tie reinforcement in boundary elements should be at least equal to the 
larger of  

124690*80*
400

5.13

10*0.2

10*08.3
*163.0*33.1*2.0

'
2.0

5

5

1  c
yh

m

ch

g
pnsh hs

f

f

A

A
kkA mm2 

or 

168690*80*
400

5.13
09.0

'
09.0  c

yh

m
sh hs

f

f
A mm2 

Hence 
168shA mm2 governs 

This area of reinforcement can be achieved through 3-10M bars (total area 300 mm2): two bars 
are a part of a regular tie enclosing the boundary element, plus a cross tie supporting 
intermediate bars. 
 
2) Regular ties and buckling prevention ties outside the plastic hinge zone 

 
The maximum spacing of buckling prevention ties outside the plastic hinge zone should not 
exceed the lesser of (S304-14 Cl.12.2.1) 

),48,16( btieb tdds   

Where db is longitudinal bar diameter, and dtie is the tie diameter, hence 
24015*1616 bd mm 

48010*4848 tied mm 

390bt mm 

Hence, 
240s mm governs 

Assume  
240s mm 
 

3) Vertical reinforcement: detailing 
At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (S304-14 Cl.16.11.9). 
 
16. The S304-14 seismic detailing requirements for Ductile shear walls – plastic hinge 
region 
 
According to Cl.16.10.3, the required height of the plastic hinge region for Ductile shear walls is 
(see Table 2-5) 
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0.5 0.1 0.5 9000 0.1 15000 6000p w wh l h       mm  

However 
2.0w p wl h l    

Since 
9000wl mm > 6000 mm 

It follows that 
9.0p wh l   m governs.   

 
The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are 
as follows (see Table 2-4 and Figure 2-41): 
1. The wall in the plastic hinge region must be solid grouted (Cl.16.6.2). 
2. Horizontal reinforcement requirements: 

a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4): 
600s  mm or  

4500290002  wls  mm 

Since the lesser value governs, the maximum permitted spacing is  
600s  mm 

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK. 
b) Detailing requirements 

 Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4) 
  600 mm or  
  5wl = 1800 mm 

whichever is greater, from the end of the wall. In this case, the reinforcement should not 
be lapped within the distance 1800 mm from the end of the wall. The horizontal 
reinforcement can be lapped at the wall half-length. 
 
Horizontal reinforcement shall be (Cl.16.9.5.4): 
i) provided by reinforcing bars only (no joint reinforcement!); 
ii) continuous over the length of the wall (can be lapped in the centre), and  
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall. 

3. Vertical reinforcement requirements: 
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.3): 

2250490004  wls  mm, but need not be less than 400 mm   

or the minimum seismic requirements specified in Cl.16.4.5.3, which states that  
1200s  mm (this value governs since the wall thickness is 240 mm). 

            Since the lesser value governs, the maximum permitted spacing is 1200s  mm. 
b) Detailing requirements 

At any section within the plastic hinge region, no more than half of the area of vertical 
reinforcement may be lapped (Cl.16.9.5.2). 
 
17. Design summary 
The reinforcement arrangement for the wall under consideration is summarized in the figure 
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be 
partially grouted outside the plastic hinge region (depending on the design forces). 
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects 
 
Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane 
loads in Example 4b, according to NBC 2015 and CSA S304-14 requirements. The wall is a part 
of a single-storey warehouse building located in Burnaby, BC, with soil corresponding to Site 
Class D. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN 
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15 
MPa unit strength, Type S mortar, and solid grouting. The wall is reinforced with 15M Grade 400 
vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in S304-14 will 
not be considered in this design. 

 
 
SOLUTION: 
 
1. Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry:  

m = 0.6    

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar: 

mf  = 7.5 MPa (assume solid grouted masonry) 

 
2. Determine the out-of-plane seismic load according to NBC 2015 (see Section 2.7.7.3). 
This design requires the calculation of seismic load pV  for parts of buildings and nonstructural 
components according to NBC 2015 Cl.4.1.8.18. First, seismic design parameters need to be 
determined as follows: 
 Location: Burnaby, BC (NBC 2015 Appendix C)                     

)2.0(aS = 0.768  and PGAref = 0.50 

 Foundation factors  
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(0.2)aF F  0.9 and Site Class D for PGAref = 0.50 (from Table 1-3 or NBC 2015 Table 

4.1.8.4.B) 
 EI = 1.0  normal importance building 
Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBC 
2015, Table 4.1.8.18, Case 1) 

0.1pC    0.1rA   5.2pR   0.3xA  ( nx hh    top floor) 

 2.15.20.30.10.1  pxrpp RAACS       

 0.47.0  pS    O.K. 

 pW  = 4.0 kN/m2 unit weight of the 190 mm block wall (solid grouted) 

Seismic load pV  can be calculated as follows: 

  ppEaap WSISFV 2.03.0 =0.3*0.9*0.69*1.0*1.2*(4.0 kN/m2) = 0.99 kN/m2  1.0 kN/m2 

 
3. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
According to S304-14 Cl.10.6.1, the effective compression zone width (b ) should be taken as 
the lesser of the following two values (see Figure 2-19): 

600 sb  mm   spacing of vertical reinforcement 
or 

760190*44  tb  mm 
All design calculations in this example will be performed considering a vertical wall strip of width 

600b  mm. 
 
4. Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin 
supports at the base and top. The loads on the wall 
consist of axial load due to roof load and wall self-
weight, plus the seismic out-of-plane load. The roof 
load and wall self-weight create moments due to 
minimum axial load eccentricity. 
 Axial load per wall width equal to 600b  mm: 

0.1725.176.0*
8

230
* 

m

kN
b

l

P
P

w
f  kN 

 Minimum eccentricity (S304-14 Cl.10.7.2)  
 te 1.0min  0.019 m 

 Out-of-plane seismic load per wall width equal to 
600b  mm: 

6.06.0*0.1 pv  kN/m 

 Design bending moment (at the midheight): 

8

6.6*6.0
019.0*17

8

*
*

22

min  wp
f

hv
epM  

        = 3.59  3.6 kNm 
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5. Check whether the wall resistance for the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
This can be verified from a P-M interaction diagram which can be developed using the EXCEL© 
software (or commercially available masonry design software). Relevant tables used to develop 
the diagram are presented below, while the detailed theoretical background is outlined in 
Section C.1.2. Note that the design width is equal to mmb 600 . 
 
Table 1. Design Parameters 
 

Design parameter Unit Symbol Value 

Wall thickness  mm t 190 

Design width mm b 600 

Masonry maximum strain    EPSm 0.003 

Masonry strength MPa f'm 7.5 

Steel yield strength MPa fy 400 

Steel modulus of elasticity  MPa Es 200000 

Effective depth mm d 95 

(c/d)balanced     0.6 

Reinforcement area mm^2/b As 200 
Material resistance-
masonry   Fim 0.6 

Material resistance-steel   Fis 0.85 

X- factor   X 1 

BETA1   BETA1 0.8 

Effective area mm^2 Ae 114000 
 
In this case, the reinforcement is placed at the centre of the wall and so 

95
2

190

2


t
d  mm 

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and 
maximum compressive strain in masonry) can be determined from the following proportion 

y

m

b

b

cd

c







 

For 003.0m  and 002.0y  it follows that 

dcb 6.0  

The area of vertical reinforcement per width 600b  mm can be determined as follows: 

200600*
600

200
*  b

s

A
A b
s  mm2    (15M@ 600 mm reinforcement) 

 
To determine whether the wall can carry the combined effect of axial load and bending moment, 
it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction 
diagram). The P-M interaction diagram for this example was developed using Microsoft 
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EXCEL spreadsheet, but other methods or computer programs are also available. The results 
of the calculations are presented in Table 2. 
 
Table 2. P-M Interaction Diagram Values 
 

  
  

  c/d c Cm EPSs Tr Mr Pr 

    mm N   N kNm kN 

Points controlled 
by steel c<cb  

  0.01 0.95 1744.2 0.02 68000 0.16504 -66.256 

  0.1 9.5 17442 0.02 68000 1.59071 -50.558 

  0.2 19 34884 0.02 68000 3.04886 -33.116 

  0.3 28.5 52326 0.02 68000 4.37445 -15.674 

  0.4 38 69768 0.02 68000 5.56749 1.768 

  0.5 47.5 87210 0.02 68000 6.62796 19.21 

  0.6 57 104652 0.02 68000 7.55587 36.652 

Points controlled 
by masonry c>cb 

  0.6 57 104652 0.002 68000 7.55587 36.652 

  0.7 66.5 122094 0.00129 43714.3 8.35123 78.3797 

  0.8 76 139536 0.00075 25500 9.01403 114.036 

  0.9 85.5 156978 0.00033 11333.3 9.54426 145.645 

Full section under 
compression 

  1 95 174420 0 0 9.94194 174.42 

  1.2 114 209304 -0.0005 -17000 10.3396 209.304 

  1.3 123.5 226746 -0.0007 -23538 10.3396 226.746 

  1.5 142.5 261630 -0.001 -34000 9.94194 261.63 

  1.7 161.5 296514 -0.0012 -42000 9.01403 296.514 

  2 190 348840 -0.0015 -51000 6.62796 348.84 

Pure compression             0 348.84 
 
The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated 
on the figure below. For more detailed explanation related to the development of P-M interaction 
diagrams refer to Section C.1.2. 
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The P-M interaction diagram showing the point of interest ( 6.3fM  kNm and 17fP  kN) is 
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-
plane bending is adequate for the given design loads and the reinforcement determined in 
Example 4b. 
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Wall P-M Interaction Diagram
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6. Check whether the out-of-plane shear resistance of the wall is adequate (S304-14 
Cl.10.10.3, see Section 2.4.2). 
Design shear force at the support per wall width 600b  mm: 

0.2
2

6.6*6.0

2

*
 wp

f

hv
V  kN 

According to S304-14 Cl.10.10.3, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV         

where 

mm fv  16.0 = 0.44 MPa  ( mf  = 7.5 MPa for solid grouted 15 MPa block) 

95d  mm    effective depth (to the block mid-depth) 
600b  mm  effective compression zone width 

The axial load dP  can be determined as 

 5.1525.17*9.09.0  fd PP  kN 

(note that the load has been prorated in proportion to the effective compression zone width b ). 
So, 

4.17)15500*25.095*600*44.0(*6.0 rV  kN 
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Since 
0.2fV  kN < 4.17rV  kN    OK 

Maximum shear allowed on the section is 

 5.37)95*600(*5.7*6.0*4.0*4.0max  dbfV mmr   kN          OK         

 
7. Check the sliding shear resistance (see Section 2.4.3). 
The factored out-of-plane sliding shear resistance rV  is determined according to S304-14 
Cl.10.10.5.2, as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement per wall width 600b  mm  

yssy fAT   = 0.85*200*400 = 68 kN  

5.159.0  fd PP  kN 

yd TPP 2  = 15.5+68 = 83.5 kN 

2PV mr  = 0.6*1.0*83.5= 50.0 kN 

0.50rV kN > 0.2fV kN       OK 

Note that the sliding shear resistance does not govern in this case, however this mechanism 
often governs the in-plane shear resistance. 
 
8. Conclusion 
It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall 
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design 
governs (this is a common scenario in design practice). 
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects 
 
Consider the same masonry wall discussed in Example 6a, but in this example treat is as a 
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm 
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane 
seismic resistance of the wall according to NBC 2015 and CSA S304-14 seismic requirements.  
 
Consider the following two cases: 
a) unreinforced wall, and 
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design). 
 
Use the seismic load determined in Example 6a, that is, 0.1pv  kN/m2. 

 
SOLUTION: 
 
Material properties 
Steel (both reinforcing bars and joint reinforcement): 

s
 = 0.85  yf = 400 MPa   

Masonry: 

m = 0.6    

Compression resistance (S304-14 Table 4, 15 MPa concrete blocks and Type S mortar): 

mf  = 9.8 MPa (ungrouted, or partially grouted ignoring grout area)  

Tension resistance normal to bed joint (S304-14 Table 5): 

tf = 0.4 MPa (ungrouted) 

 
Find the design shear force and the bending moment. 
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall 
height is 6.6wh  m. A unit wall strip (width 1000b  mm) will be considered for this design.  
 
The forces on the wall consist of the axial load due to the wall self-weight and the bending 
moment due to seismic out-of-plane load (NBC 2015 load combination 1xD+1xE). 
 Factored axial load per width b  of 1.0 m: 
wall weight w = 2.46 kN/m2 (ungrouted 190 mm block wall) 

1.80.1*
2

6.6
*)46.2(*

2
*  b
h

wP w
f  kN/m 

 Out-of-plane seismic load per width b  of 1.0 m: 
0.1pv  kN/m 

 Factored bending moment (at the midheight): 

5.5
8

6.6*0.1

8

* 22

 wp
f

hv
M  kNm/m 

 Factored shear force (at the support): 

3.3
2

6.6*0.1

2

*
 wp

f

hv
V  kN/m 
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a) Unreinforced wall 
 
Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section 2.7.1.3). 
Find the load eccentricity: 

mmm
kN

kNm

P

M
e

f

f 68068.0
1.8

5.5
  

According to S304-14 Cl.7.2.1, an unreinforced masonry wall is to be designed as uncracked if 
te 33.0  

where t   denotes the wall thickness ( mmt 190 ) 
mmt 63190*33.033.0   

In this case, 
mmtmme 6333.0680   

so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the 
allowable value) according to S304-14 Cl.7.2. The design procedure is explained in Section 
2.7.1.3. 
 
First, we need to determine properties for the effective wall section for a width 1000b  mm. 
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows: 

310*4.75eA  mm2/m effective cross-sectional area 
610*66.4eS  mm3/m section modulus of effective cross-sectional area 

 
The maximum compression stress at the wall face can be calculated as follows: 

MPa
S

M

A

P
f

e

f

e

f
c 29.118.1107.0

10*66.4

10*5.5

10*4.75

10*1.8
max

6

6

3

3

  

The allowable value is equal to 
MPafmm 9.58.9*6.0   

Since 
MPaMPaf c 9.529.1max   

it follows that the maximum compression stress is less than the allowable value. 
 
Find the maximum tensile stress as follows: 

MPa
S

M

A

P
f

e

f

e

f
t 07.118.1107.0

10*66.4

10*5.5

10*4.75

10*1.8
max

6

6

3

3

  

 The allowable value is equal to 
MPaf tm 24.04.0*6.0   

Since 
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MPaMPaf t 24.007.1max   

it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable. 
 
In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is 
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also, 
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where 
the seismic hazard index  2.0aaE SFI =1.0*1.0*0.66=0.66 > 0.35.  Therefore, the design will 
proceed considering a reinforced nonloadbearing wall. 
 
b) Reinforced wall 
 
i. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.7.4). 
According to S304-14 Cl.16.4.5.2a, if   75.02.035.0  aaE SFI  nonloadbearing walls shall be 
reinforced in one or more directions with reinforcing steel having a minimum total area of  

gstotal AA 0005.0   
The reinforcement may be placed in one direction, provided that it is located to reinforce the wall 
adequately against lateral loads and spans between lateral supports. 

gstotal AA 0005.0  = 0.0005*(190*103 mm2) = 95 mm2/m 
where 

gA =(1000mm)*(190mm)=190*103 mm2 gross cross-sectional area per metre of wall length 

Let us choose 15M vertical reinforcement (area 200 mm2 ) at 1200 mm spacing which is the 
maximum spacing allowed (1200 mm). 

The area of reinforcement per metre of wall length is 

167
1200

1000
*200 sA mm2/m  > 95 mm2/m   OK 

 
ii. Determine the effective compression zone width (b ) for the out-of-plane design (see 
Section 2.4.2). 
The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm, 
as follows: 

7.9
0.1

2.1
*1.8 fP  kN 

6.6
0.1

2.1
*5.5 fM  kNm 

0.4
0.1

2.1
*3.3 fV  kN 

 
iii. Check whether the wall resistance to the combined effect of axial load and bending is 
adequate (see Section C.1.2). 
Since this is a partially grouted wall, its flexural resistance will be determined using a T-section 
model.  
 
According to S304-14 Cl.10.6.1, the effective compression zone width (b ) should be taken as 
the lesser of the following two values (see Figure 2-19): 

1200 sb  mm  
or 

760190*44  tb  mm 
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Therefore, 760b  mm will be used as the width of the masonry compression zone. 
 
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38 
mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1, 
considering the case of an ungrouted 200 mm block wall. 

 
Since the reinforcement is placed at the centre of the wall, the effective depth is equal to 

95
2

190

2


t
d  mm 

The reinforcement area used for the design needs to be determined as follows: 
200 bs AA  mm2 

The internal forces will be determined as follows (see Figure C-9): 
68000200*400*85.0  sysr AfT   N 

Since 
77700680009700  rfm TPC  N 

and 
  abfC mmm  '85.0   

the depth of the compression stress block a can be determined as follows 

20
760*8.9*6.0*85.0

77700

'85.0


bf

C
a

mm

m


 mm  

Since 
mmtmma f 3820   

the neutral axis is located in the face shell (flange). The moment resistance around the centroid 
of the wall section can be determined as follows 

6.6)22095(*77700)2(  adCM mr  kNm 

Since  
6.6rM  kNm = 6.6fM  kNm 

it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could 
be reduced to s =1000 mm to allow for an additional safety margin (the revised moment 
resistance calculations are omitted from this example). 
 
iv. Check whether the out-of-plane shear resistance of the wall is adequate (see Section 
2.4.2). 
According to S304-14 Cl.10.10.3, the factored out-of-plane shear resistance ( rV ) shall be taken 
as follows 

)25.0( dmmr PdbvV        where 
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mm fv  16.0 = 0.50 MPa 

95d  mm    effective depth 
200b  mm  web width - equal to the grouted cell width (156 mm) plus the thickness of the 

adjacent webs (26 mm each) 
The axial load dP  can be determined as 

 7.87.9*9.09.0  fd PP  kN 

Thus, 
0.7)8700*25.095*200*50.0(*6.0 rV  kN 

Since 
0.4fV  kN < 0.7rV  kN    OK 

Maximum shear allowed on the section is 

 3.14)95*200(*8.9*6.0*4.0*4.0max  dbfV mmr   kN          OK         

 
v. Check the sliding shear resistance (see Section 2.4.3). 
The factored in-plane sliding shear resistance rV  is determined according to S304-14 
Cl.10.10.5.2, as follows: 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

sA  = 200 mm2 area of vertical reinforcement at 1.2 m spacing 

yssy fAT   = 0.85*200*400 = 68.0 kN  

dP  = 8.7 kN 

yd TPP 2  = 8.7+68.0 = 76.7 kN 

2PV mr  = 0.6*1.0*76.7 = 46.0 kN 

0.46rV kN > 0.4fV kN       OK 

 
vi. Conclusion 
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is 
satisfactory. It should be noted that the flexural resistance governs in this design. The required 
amount of vertical reinforcement (15M@1200 mm) corresponds to the following area per metre 
length  

167
1000

* 
s

AA bs  mm2 

which is significantly larger than the minimum seismic reinforcement prescribed by S304-14, 
that is, 95stotalA  mm2/m. Note that 15M@1200 mm is also the minimum vertical reinforcement 
that meets the minimum spacing requirements using typical15M bars. 
 
Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was 
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at 
400 mm spacing could be considered to improve the overall seismic performance of the wall.  
 
It should be noted that, in exterior walls the mortar-bedded joints could be significantly affected 
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints); 
some of the grooves are up to 10 mm deep. The designer should consider this effect in the 
calculation of the compression zone depth. 
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EXAMPLE 7: Seismic design of masonry veneer ties 
 
Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a 
school gymnasium in Montréal, Quebec. The building is founded on Site Class C. The design 
should be performed to the requirements of NBC 2015, CSA S304-14, and CSA A370-14. 
Consider the following two types of the veneer backup: 
a) Concrete block wall (a rigid backup), and 
b) Steel stud wall with 400 mm steel stud spacing (a flexible backup). 
c) Evaluate the minimum tie strength requirements for the rigid and flexible backup. 
 
SOLUTION: 
 
This design problem requires the calculation of seismic load pV  for nonstructural elements 
according to NBC 2015 Cl.4.1.8.18 (for more details see Section 2.7.7.3). Note that the wind 
load could govern in a tie design for many site locations in Canada, however wind load 
calculations were omitted for this seismic design example. 
 
First, seismic design parameters need to be determined as follows: 
 Location: Montréal (City Hall), Quebec (NBC 2015 Appendix C)                     

)2.0(aS = 0.595 and PGAref = 0.379 

 Foundation factor  
(0.2)aF F  1.0 and Site Class C for PGAref = 0.379 (from Table 1-3 or NBC 2015 

Table 4.1.8.4.B) 
 EI = 1.3   school (high importance building) 
At this point, it would be appropriate to check whether the seismic design of ties is required for 
this design. According to NBC 2015 Cl.4.1.8.18.2, seismic design of ties is required when the 
seismic hazard index   35.02.0 aaE SFI  (and also for post-disaster buildings in lower seismic 
regions). In this case, 

 2.0aaE SFI = 1.3*0.88*0.69=0.79   0.35 

Therefore, seismic design is required. 
 Find pS  (horizontal force factor for part or portion of a building and its anchorage per NBC 

2015, Table 4.1.8.18, Case 8) 
0.25.10.30.10.1  pxrpp RAACS       

where 
0.321  nxx hhA  for top of wall worst case 

Since 0.47.0  pS    O.K. 

 pW  = 1.8 kN/m2 unit weight of the veneer masonry (concrete blocks) 

Seismic load pV  can be calculated as follows: 

  ppEaap WSISFV 2.03.0 =0.3*1.0*0.595*1.3*2.0*(1.8 kN/m2) =0.85 kN/m2 

Note that the above load is determined per m2 of the wall surface area.  
 
a) Concrete block backup (rigid) 
Assume the maximum tie spacing permitted according to S304-14 Cl.9.1.3 of 600 mm vertically 
and 820 mm horizontally (see Section 2.7.7.2), resulting in a tributary tie area for a concrete 
backup wall of  
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A = 0.82*0.60 = 0.49 m2 
The required factored tie capacity should exceed the factored tie load, that is, 

AVV pf * = (0.85 kN/m2)*(0.49 m2) = 0.42 kN 

Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum 
tributary area calculated from pV  and the factored tie capacity fV , that is, 

pf VVA   

 
b) Steel stud backup (flexible) 
Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral 
load on a vertical line of ties (S304-14 Cl.9.1.3.3, see Section 2.7.7.3): 

tpf AVV **4.0 = 0.4*(0.85 kN/m2)*(1.92m2) = 0.65 kN 

where tA = 0.4m*4.8m = 1.92 m2 is tributary area on a vertical line of ties based on a probable 

0.4 m horizontal tie spacing, and 4.8 m wall height 
 
According to the same S304-14 clause, the tie must also be able to resist a load corresponding 
to double the tributary area on a tie, that is, 

AVV pf **2 = 2*(0.85 kN/m2)*(0.4m*0.6m) = 0.41 kN 

Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie 
spacing of 0.6 m prescribed by S304-14 Cl.9.1.3.1. 
 
In conclusion, the tie design load for the flexible veneer backup is fV = 0.65 kN. 

 
c) Minimum strength requirements 
 CSA A370-14 Cl.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In 
order to obtain the ultimate tie strength, the factored strength needs to be divided by the 
resistance factor  . According to CSA A370-14 Cl.9.4.2.1.2, the resistance factor is 0.9 for tie 
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the 
connection. It is conservative to use lower resistance factor in determining the ultimate tie 
strength ultV .  
 For the steel stud backup: 

 fr VV 0.65 kN 

thus the ultimate strength can be determined as follows 

08.1
6.0

65.0



r

ult

V
V  kN 

This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.  
 For the concrete block backup: 

 fr VV 0.42 kN 

thus the ultimate strength can be determined as follows 

7.0
6.0

42.0



r

ult

V
V  kN 

This value is less than the minimum of 1 kN, so the minimum requirement governs.  
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EXAMPLE 8: Seismic design of a masonry infill wall 
 
A single-storey reinforced concrete frame structure is shown in the figure below. The frame is 
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the 
frame. The wall is built using 190 mm hollow blocks and Type S mortar.  
 
a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions 
according to CSA S304-14 assuming the infill-frame interaction. 
 
b) Assuming that the infill wall provides the total lateral resistance, determine the maximum 
lateral load that the infilled frame can resist. Consider the following three failure mechanisms: 
strut compression failure, diagonal tension resistance, and sliding shear resistance. 

 
Given: 

fE  =25000 MPa concrete frame modulus of elasticity  

mf   = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4, 

CSA S304-14) 
 
SOLUTION: 
 
a) Find the diagonal strut properties. 
 
 Key properties for the masonry wall and the concrete frame 
Concrete frame: 

fE  =25000 MPa 

Beam and column properties: 

9
4

10*133.2
12

)400(
 cb II  mm4 

Masonry: 
83308.9*850850  mm fE  MPa 

Effective wall thickness (face shells only): 
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75et  mm (Table D-1, 200 mm hollow block wall) 

 Diagonal strut geometry (see Section 2.7.2 and S304-14 Cl.7.13) 
3000h  mm 
3600l  mm 

Find   (angle of diagonal strut measured from the horizontal): 

833.0
3600

3000
)tan( 

l

h                8.39  

Length of the diagonal: 
2 2 2 23000 3600 4686dl h l       mm 

 
Find the strut width (see Figure 2-46): 

  1587
8.39*2sin*75*8330

3000*10*133.2*25000*4

22sin

4

2

4
1

94
1


















 





em

cf
h tE

hIE
 

 

  3322
8.39*2sin*75*8330

3600*10*133.2*25000*4

2sin

4 4
1

94
1


















 




em

bf
L tE

lIE
 

Strut width: 

    368233221587 2222  Lhw    mm 

Effective diagonal strut width ew  for the compressive resistance calculation should be taken as 
the least of (Cl.7.13.3.3) 

1841236822  wwe  mm 

or 
4 4686 4 1172e dw l    mm 

thus 
11701172 ew  mm 

The design length of the diagonal strut sl  should be equal to (Cl.7.13.3.4.4) 

2 4686 3682 2 2845s dl l w      mm 

 
b) Determine the maximum lateral load which the infilled frame can resist assuming that 
the infill wall provides the total lateral resistance. 
 
 Diagonal strut: compression resistance (Cl.7.13.3.4.3 and Section 2.7.2) 
The compression strength of the diagonal strut maxrP  is equal to the compression strength of 
masonry times the effective cross-sectional area, that is, 

  emmr AfP  85.0max  

where 

m = 0.6 

5.0  the masonry compressive strength parallel to bed joints  

877501170*75*  eee wtA   mm2 the effective cross-sectional area  

 
3.21987750*8.9*6.0*5.0*85.0max rP  kN 
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The corresponding lateral force is equal to the horizontal component of the strut compression 
force hP , that is, (see the figure below) 

0.168)8.39cos(*3.219)cos(*max  rh PP  kN 

 
Before proceeding with the design, slenderness effects should also be checked. First, the 
slenderness ratio needs to be determined as follows (S304-14 Cl.7.7.5): 
* 1.0*2845

15.0
190

sk l

t
   

where 
0.1k  assume pin-pin support conditions 

2845sl   mm  design length for the diagonal strut 

190t  mm  overall wall thickness 
The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account, 
that is, 

19*1.021  tee  mm 
Since 
*

15.0sk l

t
 > 5.65.310 21  ee  and 0.30

*


t

lk d  

the slenderness effects need to be considered. 
 
The critical axial compressive force for the diagonal strut crP  will be determined according to 
S304-14 Cl.7.7.6.3 as follows: 

  
1380

5.01 2

2





dd

effmer
cr

kl

IE
P




 kN 

where 
65.0er    

0d   assume 100% seismic live load 

8330mE  MPa modulus of elasticity for masonry 
610*2094.0  oeff II  mm4 

where 
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  6
33

10*522
12

)4.75190(190*1170



oI  mm4 moment of inertia of the effective cross-

sectional area based on the effective diagonal strut width 1170ew  mm and the effective wall 

thickness 4.75et mm (face shells only). 

 
Since 

3.219max rP  kN < 1380crP  kN 

it follows that compression failure governs over buckling failure. 
 
 The diagonal tension shear resistance (see Section 2.3.2 and S304-14 Cl.10.10.2). 
Find the masonry shear resistance ( mV ): 

190wb  mm overall wall thickness 

28808.0  wv ld  mm    effective wall depth 

5.0g   ungrouted wall 

0dP  (ignore self-weight) 

mm fv  16.0 = 0.5 MPa 

gdvwmmm PdbvV  )25.0(  = 0.6(0.5*190*2880+0)*0.5  82.0 kN     

This is a squat shear wall because 0.183.0
3600

3000


w

w

l

h
. In this case, there is no need to find 

the maximum permitted shear resistance per S304-14 Cl.10.10.2.1 rVmax  because it is not 
going to control for an unreinforced wall without gravity load. 
 
 Sliding shear resistance (see Section 2.7.1 and Cl.7.10.5) 

116.0 PAfV mucmmrs    

The factored in-plane sliding shear resistance rV  is determined as follows. 
  = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane 

2160002880*75  veuc dtA  mm2    uncracked portion of the effective wall cross-sectional 

area  
The compressive force in masonry acting normal to the sliding plane is normally taken as dP  
plus an additional component, equal to 90% of the factored vertical component of the 
compressive force resulting from the diagonal strut action vP  (see the figure on the previous 
page).  

vd PPP *9.01   

where 
)tan(* rsv VP   

thus 
)tan(*9.001 rsVP   

The sliding shear resistance can be determined from the following equation 

))tan(*9.0(16.0  rsmucmmrs VAfV   

or 
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0.118
)8.39tan(*9.0*0.1*6.01

216000*8.9*6.0*16.0

)tan(*9.0**1

16.0








 



m

ucmm
rs

Af
V  kN 

 
 Discussion 
It is important to consider all possible behaviour modes and identify the one that governs in this 
design. The following three lateral forces should be considered: 
a) 168hP  kN shear force corresponding to the strut compression failure 

b) 82mV  kN diagonal tension shear resistance 

c) 118rsV  kN sliding shear resistance 

It could be concluded that the diagonal tension shear resistance governs, however once 
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum 
shear force developed in an infill wall corresponds either to the strut compression resistance or 
the sliding shear resistance (see the discussion in Section 2.7.2). In this case, sliding shear 
resistance governs and so 118max  rsr VV kN. 
 
It should be noted that the maximum shear force developed in the infill maxrV  will be transferred 
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not 
the scope of the masonry design, however the designer should always consider the entire 
lateral load path and the force transfer between the structural components. 
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A. Response of Structures to Earthquakes 
 
This appendix contains background related to fundamentals of seismic response of structures to 
earthquakes. A discussion on elastic and inelastic response is included, and a primer on modal 
dynamic analysis. 
 

A.1. Elastic Response 
When an earthquake strikes, the base of a building is subject to lateral motion while the upper 
part of the structure initially is at rest. The forces created in the structure from the relative 
displacement between the base and upper portion cause the upper portion to accelerate and 
displace. At each floor the lateral force required to accelerate the floor mass is provided by the 
forces in the vertical members. The floor forces are inertial forces, not externally applied forces 
such as wind loads, and exist only as long as there is movement in the structure.  
 
Earthquakes cause the ground to shake for a relatively short time, 15 to 30 seconds of strong 
ground shaking, although large subduction earthquakes may last for a few minutes. The motion 
is cyclic and the response of the structure can only be determined by considering the dynamics 
of the problem. A few important dynamic concepts are discussed below.  
 
Consider a simple single-storey building with masonry walls and a flat roof. The building can be 
represented by a Single Degree of Freedom (SDOF) model (also known as a stick model) as 
shown in Figure A-1a). The mass, M , lumped at the top, represents the mass of the roof and a 
fraction of the total wall mass, while the column represents the combined wall stiffness, K , in 
the direction of earthquake ground motion. If an earthquake causes a lateral deflection,  , at 
the top of the building, Figure A-1b), and if the building response is elastic with stiffness, K , 
then the lateral inertial force, F , acting on the mass M  will be  
 

 KF  
 
When the mass of a SDOF un-damped structure is allowed to oscillate freely, the time for a 
structure to complete one full cycle of oscillation is called the period, T , which for the SDOF 
system shown is given by 

K

M
T 2   (seconds) 

 
Instead of period, the term natural frequency,  , is often used in seismic design. It is related to 
the period as follows 
 

M

K

T


 2
  (radians/sec) 

 
Frequency is sometimes also expressed in Hertz, or cycles per second, instead of radians/sec, 
denoted by the symbol cps , where     
 



2

1


Tcps  
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Figure A-1. SDOF system: a) stick model; b) displaced position.    

As the structure vibrates, there is always some energy loss which will cause a decrease in the 
amplitude of the motion over time - this phenomenon is called damping. The extent of damping 
in a building depends on the materials of construction, its structural system and detailing, and 
the presence of architectural components such as partitions, ceilings and exterior walls. 
Damping is usually modelled as viscous damping in elastic structures, and hysteretic damping 
in structures that demonstrate inelastic response. In seismic design of buildings, damping is 
usually expressed in terms of a damping ratio,  , which is described in terms of a percentage of 
critical viscous damping. Critical viscous damping is defined as the level of damping which 
brings a displaced system to rest in a minimum time without oscillation. Damping less than 
critical, an under-damped system, allows the system to oscillate; while an over-damped system 
will not oscillate but take longer than the critically damped system to come to rest. Damping has 
an influence on the period of vibration, T, however this influence is minimal for lightly damped 
systems, and in most cases, is ignored for structural systems. For building applications, the 
damping ratio can be as low as 2%, although 5% is used in most seismic calculations where 
some nonlinear response is present. Damping in a structure increases with displacement 
amplitude since with increasing displacement more elements may crack or become slightly 
nonlinear. For linear seismic analysis viscous damping is usually taken as 5% of critical as the 
structural response to earthquakes is usually close to or greater than the yield displacement. A 
smaller value of viscous damping is usually used in non-linear analyses as hysteretic damping 
is also considered. 
 
One of the most useful seismic design concepts is that of the response spectrum. When a 
structure, say the SDOF model shown in Figure A-1, is subjected to an earthquake ground 
motion, it cycles back and forth. At some point in time the displacement relative to the ground 
and the absolute acceleration of the mass reach a maximum, max  and maxa , respectively. 
Figure A-2a) shows the maximum displacement plotted against the period, T . Denote the 
period of this structure as 1T . If the dynamic properties, i.e. either the mass or stiffness change, 
the period will change, say to 2T . As a result, the maximum displacement will change when the 
structure is subjected to the same earthquake ground motion, as indicated in Figure A-2b). 
Repeating the above process for many different period values and then connecting the points 
produces a plot like that shown in Figure A-2c), which is termed the displacement response 
spectrum. The spectrum so determined corresponds to a specific input earthquake motion and a 
specific damping ratio,  . The same type of plot could be constructed for the maximum 
acceleration, maxa , rather than the displacement, and would be termed the acceleration 
response spectrum.  
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Figure A-2. Development of a displacement response spectrum - maximum displacement 
response for different periods T : a) 1TT  ;  b) 2TT  ; c) many values of T . 

Figure A-3a) shows the displacement response spectrum for the 1940 El Centro earthquake at 
different damping levels. Note that the displacements decrease with an increase in the damping 
ratio,  , from 2% to 10%. Figure A-3b) shows the acceleration response spectrum for the same 
earthquake. For the small amount of damping present in the structures, the maximum 
acceleration, maxa , occurs at about the same time as the maximum displacement, max , and 
these two parameters can be related as follows 

max

2

max

2








T

a


 

Thus, by knowing the spectral acceleration, it is possible to calculate the displacement spectral 
values and vice versa. It is also possible to generate a response spectrum for maximum 
velocity. Except for very short and very long periods, the velocity, maxv , is closely approximated 
by  

maxmax

2








T

v


 

This is generally called the pseudo velocity response spectrum as it is not the true velocity 
response spectrum. 
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a) 

 
b) 

Figure A-3. Response spectra for the 1940 El Centro NS earthquake at different damping levels: 
a) displacement response spectrum; b) acceleration response spectrum. 

The response spectrum can be used to determine the maximum response of a SDOF structure, 
given its fundamental period and damping, to a specific earthquake acceleration record. 
Different earthquakes produce widely different spectra and so it has been the practice to choose 
several earthquakes (usually scaled) and use the resulting average response spectrum as the 
design spectrum. For years, the NBC seismic provisions have used this procedure where the 
design spectrum for a site was described by one or two parameters, either peak ground 
acceleration and/or peak ground velocity, that were determined using probabilistic means. 
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More recently, probabilistic methods have been used to determine the spectral values at a site 
for different structural periods. Figure A-4 shows the 5% damped acceleration response 
spectrum for Vancouver used in developing the NBC 2005. This is a uniform hazard response 
spectrum, i.e., spectral accelerations corresponding to different periods are based on the same 
probability of being exceeded, that is, 2% in 50 years. This is discussed further in Section 1.3. 
The NBC 2015 code uses the same method but has been updated by using many more records 
to determine the hazard and has extended the period range out to 10 seconds. 

 

Figure A-4. Uniform hazard acceleration response spectrum for Vancouver, 2% in 50 year 
probability, 5% damping.  

A.2. Inelastic Response 
For any given earthquake ground motion and SDOF elastic system it is possible to determine 
the maximum acceleration and the related inertia force, elF , and the maximum displacement, 

el . Figure A-5a) shows a force-displacement relationship with the maximum elastic force and 
displacement indicated. If the structure does not have sufficient strength to resist the elastic 
force, elF , then it will yield at some lower level of inertia force, say at lateral force level, yF . It 
has been observed in many studies that a structure with a nonlinear cyclic force-displacement 
response similar to that shown in Figure A-5b) will have a maximum displacement that is not 
much different from the maximum elastic displacement. This is indicated in Figure A-5c) where 
the inelastic (plastic) displacement, u , is shown just slightly greater than the elastic 
displacement, el . This observation has led to the equal displacement rule, an empirical rule 
which states that the maximum displacement that the structure reaches in an earthquake is 
independent of its yield strength, i.e. irrespective of whether it demonstrates elastic or inelastic 
response. The equal displacement rule is thought to hold because the nonlinear response 
softens the structure and so the period increases, thereby giving rise to increased 
displacements. However, at the same time, the yielding material dissipates energy that 
effectively increases the damping (the energy dissipation is proportional to the area enclosed by 
the force-displacement loops, termed hysteresis loops). Increased damping tends to decrease 
the displacements; therefore, it is possible that the two effects balance one another with the 
result that the elastic and inelastic displacements are not significantly different. 
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Figure A-5. Force-displacement relationship: a) elastic response; b) nonlinear (inelastic) 
response; c) equal displacement rule. 

There are limits beyond which the equal displacement rule does not hold. In short period 
structures, the nonlinear displacements are greater than the elastic displacements, and for very 
long period structures, the maximum displacement is equal to the ground displacement. 
However, the equal displacement rule is, in many ways, the basis for the seismic provisions in 
many building codes which allow the structure to be designed for forces less than the elastic 
forces. But there is always a trade-off, and the lower the yield strength, the larger the nonlinear 
or inelastic deformations. This can be inferred from Figure A-5c) where it is noted that the 
difference between the nonlinear displacement, u , and yield displacement, y , which 
represents the inelastic deformation, would increase as the yield strength decreases. Inelastic 
deformations generally relate to increased damage, and the designer needs to ensure that the 
strength does not deteriorate too rapidly with subsequent loading cycles, and that a brittle failure 
is prevented. This can be achieved by additional “seismic” detailing of the structural members, 
which is usually prescribed by the material standards. For example, in reinforced concrete 
structures, seismic detailing consists of additional confinement reinforcement that ensures 
ductile performance at critical locations in beams, columns, and shear walls. In reinforced 
masonry structures, it is difficult to provide similar confinement detailing, and so restrictions are 
placed on limiting the reinforcement spacing, on levels of grouting, and on certain strain limits in 
the masonry structural components (e.g. shear walls) which provide resistance to seismic loads 
(see Chapter 2 for more details on seismic design of masonry shear walls). 

A.3. Ductility 
Ductility relates to the capacity of the structure to undergo inelastic displacements. For the 
SDOF structure, whose force-displacement relation is shown in Figure A-5c) the displacement 
ductility ratio,  , is a measure of damage that the structure might undergo and can be 
expressed as 
 

y

u




  

 
The ratio between the maximum elastic force, elF , and the yield force, yF , is given by the force 
reduction factor,R , defined as 
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y

el

F

F
R   

 
If the material is elastic-perfectly plastic, i.e. there is no strain hardening as it yields (see Figure 
A-5b), and if u  is equal to el , then it can be shown that   is equal toR . 
 
For different types of structures and detailing requirements, most building codes tend to 
prescribe the R  value while not making reference to the displacement ductility ratio,  , thus 
implying that the  and R values would be similar. 

A.4. A Primer on Modal Dynamic Analysis Procedure 
The main objective of this section is to explain how more complex multi-degree-of-freedom 
structures respond to earthquake ground motions and how such response can be quantified in a 
form useful for structural design. This background should be helpful in understanding the NBC 
seismic provisions.  
 

A.4.1. Multi-degree-of-freedom systems 
The idea of modelling the building as a SDOF structure was introduced in Section A.1, and the 
dynamic response to earthquake ground motions was developed in terms of a response 
spectrum. Such a simple model might well represent the lateral response of a single storey 
warehouse building with flexible walls or bracing system, and with a rigid roof system where the 
roof comprises most of the weight (mass) of the structure. However, this is not a good model for 
a masonry warehouse with a metal deck roof, where the walls are quite stiff and the deck is 
flexible and light relative to the walls. Such a system requires a more complex model using a 
multi-degree-of-freedom (MDOF) system. A shear wall in a multi-storey building is another 
example of a MDOF system.  
 
Figure A-6 shows two examples of MDOF structures. A simple four-storey structure is shown in 
Figure A-6a), and a simple MDOF model for this building consists of a column representing the 
stiffness of vertical members (shear walls or frames), with the masses lumped at the floor levels. 
If the floors are rigid, it can be assumed that the lateral displacements at every point in a floor 
are equal, and the structure can be modelled with one degree of freedom (DOF) at each floor 
level (a DOF can be defined as lateral displacement in the direction in which the structure is 
being analyzed). This will result in as many degrees of freedom as the number of floors, so this 
building can be modelled as a 4-DOF system. It must also be assumed that there are no 
torsional effects, that is, there is no rotation of the floors about a vertical axis (torsional effects 
are discussed in Section 1.11). The analysis will be the same irrespective of the lateral force 
resisting system (a shear wall or a frame), aside from details in finding the lateral stiffness 
matrix for the floor displacements.  
 
The warehouse building shown in Figure A-6b) is another example of a MDOF structure. The 
walls are treated as a single column with some portion of the wall and roof mass, 1M , located at 
the top. The roof can be treated as a spring (or several springs) with the remaining roof mass, 

2M , attached to the spring(s). How much mass to attach to each degree of freedom, and how 
to determine the stiffness of the roof, are major challenges in this case. 
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Figure A-6. MDOF systems: a) multi-storey shear wall building; b) warehouse with flexible roof. 

 

A.4.2.  Seismic analysis methods 
The question of interest to structural engineers is how to determine a realistic seismic response 
for MDOF systems? The possible approaches are:  
 static analysis,  and  
 dynamic analysis (modal analysis or time history method). 

 
The simplest method is the equivalent static analysis procedure (also known as the quasi-static 
method) in which a set of static horizontal forces is applied to the structure (similar to a wind 
load). These forces are meant to emulate the maximum effects in a structure that a dynamic 
analysis would predict. This procedure works well when applied to small, simple structures, and 
also to larger structures if they are regular in their layout. 
 
NBC 2015 specifies a dynamic analysis as the default method. The simplest type of dynamic 
analysis is the modal analysis method. This method is restricted to linear systems, and consists 
of a dynamic analysis to determine the mode shapes and periods of the structure, and then 
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uses a response spectrum to determine the response in each mode. The response of each 
mode is independent of the other modes, and the modal responses can then be combined to 
determine the total structural response. In the next section, the modal analysis procedure will be 
explained with an example.  
 
The second type of dynamic analysis is the time history method. This consists of a dynamic 
analysis model subjected to a time-history record of an earthquake ground motion. Time history 
analysis is a powerful tool for analyzing complex structures and can take into account nonlinear 
structural response. This procedure is complex and time-consuming to perform, and as such, 
not warranted for low-rise and regular structures. It requires an advanced level of knowledge of 
the dynamics of structures and it is beyond the scope of this document. For detailed background 
on dynamic analysis methods the reader is referred to Chopra (2007). 
 

A.4.3. Modal analysis procedure: an example 
Consider a four-storey shear wall building example such as that shown in Figure A-6a). The 
building can be modelled as a stick model, with a weight,W , of 2,000 kN lumped at each floor 
level, and a uniform floor height of 3 m (see Figure A-7). For simplicity, the wall stiffness and the 
masses are assumed uniform over the height. This model is a MDOF system with four degrees 
of freedom consisting of a lateral displacement at each storey level. A MDOF system has as 
many modes of vibration as degrees of freedom. Each mode has its own characteristic shape 
and period of vibration. The periods are given in Table A-1, the four mode shapes are given in 
Table A-2 and shown in Figure A-7. In this example, the stiffness has been adjusted to give a 
first mode period of 0.4 seconds, which is representative of a four-storey structure based on a 
simple rule-of-thumb that the fundamental period is on the order of 0.1 sec per floor. Note that 
the first mode, also known as the fundamental mode, has the longest period. The first mode is 
by far the most important for determining lateral displacements and interstorey drifts, but higher 
modes can substantially contribute to the forces in structures with longer periods. In this 
example the mode shapes have been normalized so that the largest modal amplitude is unity. 
 
For linear elastic structures, the equations governing the response of each mode are 
independent of the others provided that the damping is prescribed in a particular manner. Thus, 
the response in each mode can be treated in a manner similar to a SDOF system, and this 
allows the maximum displacement, moment and shear to be calculated for each mode. In the 
final picture, the modal responses have to somehow be combined to find the design forces (this 
will be discussed later in this section). Modal analysis can be performed by hand calculation for 
a simple structure, however, in most cases, the use of a dynamic analysis computer program 
would be required. 
 
Knowing the mode shapes and the mass at each level, it is possible to calculate the modal 
mass for each mode, which is given in Table A-1 as a fraction of the total mass of the structure. 
The modal masses are representative of how the mass is distributed to each mode, and the 
sum of the modal masses must add up to the total mass. When doing modal analysis, a 
sufficient number of modes should be considered so that the sum of the modal masses adds up 
to at least 90% of the total mass. In the example here this would indicate that only the first two 
modes would need to be considered (0.696 + 0.210 = 0.906). 
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Figure A-7. Four-storey shear wall building model and modal shapes. 

As an example of how the different modes can be used to determine the structural response, 
Figure A-8 shows a typical design acceleration response spectrum which will be used to 
determine the modal displacements and accelerations. The four modal periods are indicated on 
the spectrum (note that only the first two periods are identified on the diagram; T1=0.40 and 
T2=0.062 sec) and the spectral acceleration Sa at each of the periods is given in Table A-3. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-8. Design acceleration response spectrum. 

A very useful feature of the modal analysis procedure is that it gives the base shear in each 
mode as a product of the modal mass and the spectral acceleration Sa for that mode, as shown 
in Table A-3. For example, the base shear for the first mode is equal to (8000kN x 0.696) x 0.74 
= 4127 kN). Note that the spectral acceleration is higher for the higher modes, but because the 
modal mass for these modes is smaller, the base shear is smaller. The inertia forces from each 
floor mass act in the same directions as the mode shape, that is, some forces are positive while 
others are negative for the higher modes (refer to mode shapes shown in Figure A-7). It can be 
seen from the figure that the forces from the first mode all act in the same direction at the same 
time, while the higher modes will have both positive and negative forces. Thus, the base shear 
from the first mode is usually larger than that from the other modes. 
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The modal base shears shown in Table A-3 are the maximum base shears for each mode. It is 
very unlikely that these forces will occur at the same time during the ground shaking, and they 
could have either positive or negative signs. Summing the contribution of each mode where all 
values are taken as positive, known as the absolute sum (ABS) method, produces a very high 
upper bound estimate of the total base shear. Statistical analyses have shown that the square-
root-of-the-sum-of-the squares (RSS) procedure, where the contribution of each mode is 
squared, and the square root is then taken of the sum of the squares, gives a reasonably good 
estimate of the modal sum, especially if the modal periods are widely separated.  
 
Table A-3 shows the base shear values estimated by the two methods and gives an indication 
of the conservatism of the ABS method for this case (total base shear of 6,462 kN), where the 
modal periods are widely separated, and use of the RSS method is appropriate since it gives a 
lower total base shear value of 4,468 kN. Note that there is a third method that is incorporated in 
many modal analysis programs called the complete-quadratic-combination (CQC) method. This 
method should be used if the periods of some of the modes being combined are close together, 
as would be the case in many three-dimensional structural analyses, but for most structures 
with well-separated periods and low damping, the result of the RSS and CQC methods will be 
nearly identical (this is true for most two-dimensional structural analyses). 
 
The amplitude of displacement in each mode is dependent upon the spectral acceleration for 
that mode and its modal participation factor, which is a measure of the degree to which a certain 
mode participates in the response. The value of the modal participation factor depends on how 
the mode shapes are normalized, and so will not be given here, however the values are smaller 
for the higher modes with the result that the displacements for the higher modes are generally 
smaller than those of the first mode. The modal displacements are presented in Table A-4 (to 
three decimal places, which is why some values are shown as zero) and plotted in Figure A-9 
for the first two modes as well as the RSS value. In this example, the influence of the two 
highest modes is very small and has been omitted from the diagram. It is difficult to distinguish 
between the first mode displacements and the RSS displacements in Figure A-9; this is 
characteristic of structures with periods less than about 1 second, such as would be the case for 
most masonry structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure A-9. Modal displacements. 
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Modal analysis gives the modal shears and bending moments in each member and these 
values can be used to generate the shear and moment diagrams. These are summarized in 
Tables A-5 and A-6 and are graphically presented in Figure A-10. Only the results from the first 
two modes are shown as the higher modes contribute very little to the response. Except for 
some contribution to the shears, the second mode is insignificant in contributing to the total 
values calculated using the RSS method.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

a)      b) 

Figure A-10. Modal analysis results: a) shear forces; b) bending moments. 

The inertia force at each floor for each mode can be determined by taking the difference 
between the shear force above and below the floor in question. Modal inertia forces along with 
the RSS values are summarized in Table A-7, and show that the higher modes at some levels 
contribute more than the first mode. Note that the sum of the inertia forces for each mode is 
equal to the base shear for that mode. However, the sum of the RSS values of the floor forces 
at each level is 6284 kN (obtained by adding values for storeys 1 to 4 in the last column of the 
table); this is not equal to the total base shear of 4468 kN found by taking the RSS of the base 
shears in each mode (see Table A-3). This demonstrates the key rule in combining modal 
responses: only primary quantities from each mode should be combined. For example, if 
the designer is interested in the shear force diagram for the structure, it is necessary to find the 
shear forces in each mode and then combine these modal quantities using the RSS method. It 
is incorrect to find the total floor forces at each level from the RSS of individual modal values, 
and then use these total forces to draw the shear diagram. Even interstorey drift ratios, defined 
as the difference in the displacement from one floor to the next divided by the storey height, 
should be calculated for each mode and then combined using the RSS procedure. It would be 
incorrect to divide the total floor displacements by the storey height; although in this example 
since the deflection is almost entirely given by the first mode, this approach would be very close 
to that found using the RSS method. 
 
One of the disadvantages of modal analysis is that the signs of the forces are lost in the RSS 
procedure and so equilibrium of the final force system is not satisfied. Equilibrium is satisfied in 
each mode, but this is lost in the procedure to combine modal quantities since each quantity is 
squared. That is why it is important to determine quantities of interest by combining only the 
original modal values. 
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A.4.4.  Comparison of static and modal analysis results 
The equivalent static force analysis procedure, which will be presented in more detail in Section 
1.6, has been applied to the four-storey structure described above for the spectrum shown in 
Figure A-8. Table A-8 compares the results of the two types of analyses. It can be seen that 
both the base shear and moment given by the modal analysis method is about 75% of that 
given by the static method. This occurs with short period MDOF structures that respond in 
essentially the first mode because the modal mass of the first mode for walls is about 70 to 80% 
of the total mass. The top displacement from the modal analysis is 78% of the static 
displacement, nearly the same as the ratio of the base moments; this would be expected given 
that the deflection is mostly tied to the moment.  
 
If the structure is a single-storey, SDOF system, the two analyses methods will give the same 
result. But for MDOF systems, such as two-storey or higher buildings, dynamic analysis will 
generally result in smaller forces and displacements than the static procedure.  
 
The floor forces from the two analyses are quite different. The floor forces in the upper storeys 
obtained by modal analysis are less than the static forces, but in the lower storeys, a reverse 
trend can be observed. The reason for this is the contribution of the higher modes to the floor 
forces. It can be seen in Table A-7, that at the 2nd storey, the second mode contribution is the 
largest of all the modes. To ensure the required safety level when seismic design is performed 
using the equivalent static analysis procedure, NBC 2015 seismic provisions (e.g. Clause 
4.1.8.15) provides additional guidance on the level of floor forces to be used in connecting the 
floors to the lateral load resisting elements. 
 
Table A-1. Modal Periods and Masses 
 

Mode 
Period 
(sec) 

Modal mass/ 
Total mass 

1 0.400 0.696 
2 0.062 0.210 
3 0.022 0.070 
4 0.012 0.024 

Sum  1.000 

 

Table A-2. Mode Shapes 

Storey 
Mode Shapes 

1st mode 2nd mode 3rd mode 4th mode 

0 0.000 0.000 0.000 0.000 
1 0.093 0.505 1.000 -1.000 
2 0.328 1.000 0.334 0.969 
3 0.647 0.544 -0.972 -0.619 
4 1.000 -0.727 0.427 0.175 

Note: mode shapes are normalized to a maximum of 1 
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Table A-3. Spectral Accelerations, Sa, and Base Shears 

Mode 
Period 
(sec) 

Spectral 
Acceleration 

Sa (g) 

Modal mass / 
Total mass 

Base 
Shear 
(kN) 

1 0.400 0.74 0.696 4127 

2 0.062 0.96 0.210 1617 

3 0.022 0.96 0.070 534 

4 0.012 0.96 0.024 184 

                                       Total base shear     ABS 6462 

                                        Total base shear    RSS 4468 

Note: total weight = 8000 kN 
 

Table A-4. Modal Displacements 

Storey 
Modal Displacements (cm) 

RSS 
1st mode 2nd mode 3rd mode 4th mode 

Base 0.000 0.000 0.000 0.000 0.00 
1 0.367 0.021 0.002 0.000 0.37 
2 1.300 0.042 0.001 0.000 1.30 
3 2.564 0.023 -0.002 0.000 2.56 
4 3.963 -0.031 0.001 0.000 3.96 

 

Table A-5. Modal Shear Forces 

Storey 
Shear Forces (kN) 

RSS 
1st mode 2nd mode 3rd mode 4th mode 

0-1 4127 1617 534 -184 4468 
1-2 3942 999 -143 204 4074 
2-3 3287 -224 -369 -172 3320 
3-4 1996 -888 289 68 2205 

 

Table A-6. Modal Bending Moments 

Storey 
Bending Moments (kNm) 

RSS 
1st mode 2nd mode 3rd mode 4th mode 

Base 40053 -4511 -931 255 40320 
1 27675 339 670 -298 27686 
2 15849 3335 240 313 16201 
3 5988 2665 -867 -204 6614 
4 0 0 0 0 0 

 
  



9/1/2018                     A-16 
 
 
 

 

Table A-7. Modal Inertia Forces (Floor Forces) 

Storey 
Floor Forces (kN) 

RSS 
1st mode 2nd mode 3rd mode 4th mode 

1 185 618 677 -388 1012 
2 655 1223 226 376 1455 
3 1291 665 -658 -240 1612 
4 1996 -888 289 68 2205 

Sum 4127 1617 534 -184 4468 

 

Table A-8. Comparison of Static and Dynamic Analyses Results 

Storey Shear Forces 
(kN) 

Floor Forces 
(kN) 

Moments 
(kNm) 

Deflections 
(cm) 

Static Modal(1) Static Modal(2) Static Modal(3) Static Modal(4) 
Base   0 0 53280 40320 0 0 

 5920 4468       
1   592 1012 35520 27686 0.48 0.37 
 5328 4074       

2   1184 1455 19536 16201 1.70 1.30 
 4144 3320       

3   1776 1612 7104 6614 3.32 2.56 
 2368 2205       

4   2368 2205 0 0 5.11 3.96 
Notes: (1) see Table A-5, last column   
           (2) see Table A-7, last column;   
           (3) see Table A-6, last column;    
           (4) see Table A-4, last column. 
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B  Relevant Research Studies and Code Background  
This appendix contains additional background material relevant to the aspects of masonry 
design discussed in Chapter 2. Findings of some relevant research studies, as well as the 
discussion on provisions of masonry design codes from other countries, are included. This 
information may be useful to readers interested in gaining a more detailed insight into the 
subject. However, it should be noted that designers may use alternative design provisions in 
situations where CSA S304 is silent on a specific issue.  The design provisions contained in 
design standards from other countries cannot supersede the provisions of pertinent Canadian 
standards. 

B.1 Shear/Diagonal Tension Resistance 
 
The CSA S304 shear strength design equation for RM shear walls was first included in the 1994 
version of the standard (CSA S304.1-94) and it is largely based on the research performed in 
1970s and 1980s, e.g. research program by the US-Japan Joint Technical Coordinating 
Committee for Masonry Research (TCCMAR). Numerous experimental studies on RM shear 
walls subjected to reversed cyclic loading conducted since the 1990’s provide additional data for 
developing new or revised shear strength design equations.  
 
The CSA S304 shear strength equation was evaluated by several researchers, including Seif 
ElDin and Galal (2015a); El-Dakhakhni et al. (2013); Davis et al. (2010); Voon and Ingham 
(2007). Davis et al. (2010) compared the estimated shear strength predictions based on 8 
different code expressions (including the CSA S304.1-04) with the results from 56 tests of fully 
grouted RM shear walls with shear dominated response. The average ratio of the test strength 
to the estimated strength for the CSA S304 expression was 1.50 with a Coefficient of Variation 
(COV) of 0.15; this is considered a rather conservative prediction. 
 
El-Dakhakhni et al. (2013) tested 8 fully grouted cantilever RM shear wall specimens with shear 
dominated behaviour subjected to reversed cyclic loading. The specimens were squat walls with 
aspect ratio ranging from 0.6 to 1.5, were characterized by horizontal reinforcement ratios of 
0.07 to 0.13%, and the level of applied axial stress varied from 0 to approximately 0.08xf’m. The 
study examined the effectiveness of design shear strength expressions included in the 
Canadian (CSA S304.1-04), US (TMS 402/ACI 530/ASCE 5-11), New Zealand (NZS 
4230:2004) and European (Eurocode 6) masonry design codes. The results demonstrated that 
the CSA S304.1-04 produced the most conservative predictions of all the codes (mean 
experimental/calculated ratio = 1.51 and COV= 18.1%). Shear strength predictions based on 
international masonry codes, especially the US TMS 402/602 code (mean= 1.14 COV= 12.7%) 
and New Zealand code NZS 4230:2004 (mean= 1.13 COV= 16.9%) gave a better fit of the 
experimental results.   
 
El-Dakhakhni et al. (2013) also observed that the shear strength expression of the Canadian 
concrete design standard CSA A23.3-04, based on the Simplified Modified Compression Field 
Theory (SMCFT) approach (Bentz et al. 2006), gave the most accurate prediction of shear 
strength for squat walls (mean= 1.06 COV= 10.8%). The underlying theory is the Modified 
Compression Field Theory developed in the 1980s (Vecchio and Collins,1986), which has been 
referred to as the General Method for Shear Design of RC flexural members in Canada (CSA 
A23.3-04). The same approach was adopted for the design of RM beams in Canada in CSA 
S304-14 (Cl.11.3.4). The design equations are similar to CSA A23.3-04, but the input parameter 
values were calibrated for masonry design purposes. Also, a new parameter Kb has been 
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introduced to take into account the level of grouting and type of masonry units. This is based on 
the research by Sarhat and Sherwood (2010; 2013), which included the results of their own 
experimental studies and a survey of the experimental data by other researchers. 
 
The New Zealand Masonry Standard NZS 4230:2004 (SANZ, 2004) states that the axial load 
contribution to masonry shear resistance in squat shear walls is equal to tan9.0 N . This 
contribution results from a diagonal strut mechanism, which is based on an assumption that 
axial compression load N forms a compression strut at an angle   to the vertical axis (see  
Figure B-1). The axial load must be transmitted through the flexural compression zone, while 
the horizontal component of the strut force resists the applied shear force (Priestley et al., 
1994). This model implies that the shear strength of squat walls under axial loads should be 
greater than that of more slender walls, and higher than that prescribed in CSA S304-14. 
According to this model, the axial load contribution is limited to gmAfN  1.0 .  

 

Figure B-1. Contribution of axial load to wall shear strength (reproduced from NZS 4230:2004 
with the permission of Standards New Zealand under License 000725). 

 
The shear strength equation in the US masonry design code TMS 402/602-16 (previous 
versions were labelled as TMS 402/ACI 530/ASCE 5) was derived from research dating back to 
the 1980s (Shing et al. 1990a; 1990 b). The equation has been evaluated by several 
researchers, including Alogla et al. (2014); Davis et al. (2010); and Voon and Ingham (2007). 
Davis et al. (2010) compared the estimated shear strength predictions based on the TMS 
402/602 expression with the results from 56 tests of fully grouted RM shear walls with a shear 
dominated response. The average ratio of the test strength to the estimated strength was 1.17 
with a COV of 0.15, indicating that the expression is somewhat conservative. Alogla et al. 
(2014) also examined the TMS 402/602 shear strength expression predictions for more than 60 
walls from literature. It was observed that the shear strength calculated using the TMS 402/602 
design expression overestimated the shear strength of the examined walls by about 10%.  
 
Several design factors influence the shear/diagonal tension resistance of RM walls. A brief 
overview of the available experimental research evidence on RM shear walls subjected to 
reversed cyclic loading related to these factors is discussed below. El-Dakhakhni and Ashour 
(2017) performed a detailed review of past experimental studies on the subject.  
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Axial compression: 
 
An experimental study on 16 fully grouted RM wall specimens examined the effect of axial 
stress on the wall’s shear resistance (Shing et al., 1989). The axial stress ranged from 0 to 
approximately 0.1xf’m. The results indicated that the load at the first diagonal crack increased 
with the applied axial load. The study also demonstrated that an increasing axial load could 
result in a change in the failure mechanism from a flexural/shear mode to a brittle shear mode.  
 
An experimental study on RM wall specimens by Voon and Ingham (2006) showed that a 
relatively moderate increase in axial compression stress level from 0 to 0.025xf’m resulted in an 
increase in the maximum wall shear resistance of more than 20%. However, RM walls 
subjected to higher axial compression had a reduced post-cracking deformation capacity, 
resulting in a more brittle response. Ibrahim and Suter (1999) tested 5 squat RM shear walls 
under reversed cyclic loading (aspect ratio ranged from 0.47 to 1.0) and observed that the level 
of applied axial stress has a significant effect on the shear capacity. 
 
Wall aspect ratio (squat shear walls): 
 
The findings of several experimental studies, e.g. Matsumura (1987), Okamoto et al. (1987), 
and Voon (2007), confirmed that RM walls with lower aspect ratios exhibited shear strengths 
that were larger than more slender masonry walls. The researchers concluded that the shear 
strength enhancement was due to the more prominent role of arching action in RM walls with 
low aspect ratios, in which shear was mainly resisted by compression struts (see Figure 2-16a). 
Voon and Ingham (2006) reported that the shear resistance decreased by 15% when the wall 
aspect ratio increased from 1.0 to 2.0. A squat wall specimen with an aspect ratio of 
approximately 0.6 showed a significant increase in shear resistance (by over 100%) compared 
to an otherwise similar specimen with an aspect ratio of 1.0. The findings of an experimental 
study by Okamoto et al. (1987) confirmed that the wall shear strength increased by 20 % when 
the aspect ratio decreased from 2.3 to 1.6, and by 30 % when aspect ratio decreased from 2.3 
to 0.9. A study on partially grouted RM walls by Schultz (1996) showed that a decrease in the 
wall aspect ratio was reported to have a beneficial effect on the shear resistance, that is, squat 
walls are expected to have larger shear resistance than flexural walls of the same height. 
However, squat wall specimens also showed a reduced deformation capacity and increased 
strength deterioration. 
 
A few studies on RM squat shear walls subjected to reversed cyclic loading were performed in 
Canada (Seif ElDin and Galal, 2015b; 2016a; 2016b; 2017; El-Dakhakhni et al., 2013). The 
results confirmed the findings of other studies with regard to the shear strength of squat RM 
shear walls. 
 
Horizontal reinforcement: 
 
Shing et al. (1989) concluded that horizontal reinforcement influences the post-cracking 
response of RM walls. The study included 8 walls that failed in a shear dominated mode. and 
had horizontal reinforcement ratios ranging from 0.12 to 0.22 %. The onset of cracking 
(occurrence of the first major diagonal crack) depends primarily on the tensile strength of the 
masonry and the applied axial load. However, increasing the amount of horizontal reinforcement 
caused a change in the failure mechanism from a brittle shear mode to a ductile flexural mode.  
 
Sveinsson et al. (1985) tested 10 RM piers (a double curvature loading condition) and varied the 
amount of horizontal reinforcement from 0.075 to 0.394%. They concluded that the horizontal 
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reinforcement was effective in increasing shear strength, but higher amounts of reinforcement 
did not correspond to a proportional gain in strength. For example, a 16% increase in the shear 
strength was observed in a specimen which had twice the amount of horizontal reinforcing bars 
compared to an otherwise similar specimen. 
 
Shear reinforcement in RM shear walls does not seem to be as effective as in RC shear walls. A 
possible explanation is that the reinforcing bars located where the inclined crack crosses near 
the end of the bar are unable to develop their full yield strength in the masonry walls. To 
account for this phenomenon, the New Zealand Masonry Standard NZS 4230:2004 (SANZ, 
2004) prescribes a coefficient of 0.8 in the sV  equation, while CSA S304-14 uses a 0.6 factor. 
This phenomenon is particularly pronounced in short walls, where it is likely that the length of 
the shear reinforcement is insufficient to fully develop its yield strength. 
 
Seif ElDin and Galal (2015b) tested 9 squat RM walls under quasi-static cyclic loading. Contrary 
to the previous experimental studies, they observed that the horizontal reinforcement 
contributes to the wall shear resistance with its full yield capacity (there is no reduction 
coefficient as discussed above). This can be explained by the redistribution in the shear 
resistance between the reinforcement and the masonry, especially at high ductility demands. 
Most previous researchers quantified shear contribution of reinforcement based on the 
difference between the shear capacities of specimens with different transverse reinforcement 
ratios. 
  
It appears that horizontal reinforcement in RM shear walls does not have as good anchorage as 
the corresponding reinforcement in RC shear walls. Anderson and Priestley (1992) have noted 
that straight bars or 90 hooks were used in some experimental studies (see Figure B-2a), 
whereas the horizontal reinforcement in RC shear walls is usually anchored in a more effective 
way, such as by 180 hooks. The type and extent of anchorage are expected to influence the 
effectiveness of shear reinforcement. Sveinsson et al. (1985) tested 10 fully grouted RM piers 
and studied (among other factors) the effect of anchorage conditions in horizontal reinforcement 
(90 versus 180 hooks). They recommended the use of 180 hooked end anchorage for 
horizontal reinforcement because it produced better energy dissipation, and enabled the bars to 
develop their full tensile strength This is particularly true for shorter walls/piers. 
 
Seif ElDin and Galal (2016a) tested 3 squat RM wall specimens with shear dominant behaviour 
under reversed cyclic loading. The specimens were identical, except for the end anchorage of 
the horizontal reinforcing bars: the first specimen had 180 hooks, the second one 90 hooks, 
and the third one had straight bars (no hooks). The results showed that the specimen with 180 
hooks provided the most effective anchorage and attained the largest shear capacity and 
displacement ductility, while the specimen with straight bars attained the smallest shear 
capacity and displacement ductility. However, the difference in the strength values was not 
significant (it was within 10%). The most significant difference was in the post-peak behaviour. 
The specimen with straight bars showed the most rapid post-peak degradation of the lateral 
load resistance. The 180 hooks proved to be effective in providing confinement for the vertical 
end bars in the wall, while the 90 hooks were less effective. For that reason, displacement 
ductility of the specimen with 180 hooks (4.2) was higher than the specimen with 90 hooks 
(3.9) and the one with straight bars (3.6). This difference again indicates the superior ductility 
potential of the 180 end hooks, but the other anchorage conditions may be acceptable in some 
cases. The researchers recommended the use of horizontal reinforcing bars with 90 hooks for 
masonry structures located in regions of low to moderate seismic hazard, and/or outside the 
plastic hinge regions in ductile shear walls.        
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Vertical reinforcement: 
 
Anderson and Priestley (1992) found that shear strength didn’t show any correlation with the 
vertical reinforcement ratio, hence the CSA S304 shear design equation ignore the effect of 
vertical reinforcement. However, according to some researchers (Shing et al., 1990; Tomazevic, 
1999; Voon, 2007), a fraction of the wall shear resistance can be attributed to the presence of 
vertical reinforcement.  Dowel action in vertical reinforcing bars enables shear transfer across a 
diagonal crack by the localized kinking in reinforcing bars due to their relative displacement (see 
Figure B-2b) (note that compression kinks cancel out some of the tension kinks). However, once 
the vertical reinforcement yields, as it would in the plastic hinge zone of ductile walls, its 
contribution to the shear resistance drops significantly and could be ignored. 

 

Figure B-2. Wall reinforcement contributing to shear resistance: a) horizontal reinforcement 
acting in tension; b) dowel action in vertical reinforcement (Tomazevic, 1999, reproduced by 
permission of the Imperial College Press). 

 
Ductility: 
 
Experimental studies on RM shear walls with shear dominant behaviour (aspect ratio less than 
2.0) have demonstrated that significant levels of ductility and energy dissipation capacity are 
possible in these walls (Sveinsson et al. 1985; Shing et al. 1989; Voon and Ingham 2006; El-
Dakhakhni et al. 2013). Shing et al. (1989) observed that the displacement ductility ratio tends 
to increase with an increase of axial load for the shear dominated specimens. They attributed 
the increased ductility level to the aggregate interlock forces which are enhanced by the 
increase of axial load. 
 
It has been recognized that shear degradation at higher ductility demands occurs in shear-
dominated RM walls. In their empirical equation which estimates the shear strength of RM shear 
walls, Anderson and Priestley (1992) proposed factor k to account for the degradation of the 
shear resistance provided by masonry for the inelastic response when the displacement ductility 
ratio increases from 2.0 to 4.0. The value decreases linearly from 1.0 to 0 as the displacement 
ductility ratio increases from 2.0 to 4.0. 
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Grouting: 
 
Experimental studies have reported a significant reduction in the shear resistance of partially 
grouted walls compared to otherwise identical fully grouted walls. Brzev (2011) performed a 
review of available experimental data related to the subject. The review included 29 partially 
grouted RM wall specimens tested in the period from 1978 to 2010, including Nolph (2010); 
Nolph and ElGawady (2012); Elmapruk (2010); Minae et al. (2010); Maleki (2008); Maleki et al. 
(2009); Voon (2007a); Schultz (1996); and Chen et al. (1978). Most specimens (24 out of 29) 
were squat RM walls and had a horizontal reinforcement ratio of 0.07% or higher and 180 
hooks. All specimens had a vertical reinforcement ratio of 0.07% or higher, while 15 out of 29 
specimens had a vertical reinforcement ratio of 0.3% or higher. 
 
Lateral load resisting mechanisms for lightly reinforced partially grouted RM shear walls are 
significantly different than for fully grouted walls. Research evidence related to the seismic 
response of partially grouted walls consists primarily of experimental studies where individual 
wall specimens were subjected to quasi-static cyclic loading, although there are also a few 
shake-table studies. 
 
Most research studies on specimens subjected to quasi-static cyclic loading report shear 
dominated mechanism of seismic response characterized by stair-stepped and/or diagonal 
tension cracks in the masonry panels enclosed by grouted bond beams and vertical cells. These 
cracks are indicative of the formation of compression struts within the panel. The failure is often 
accompanied by spalling of face shells in the block units (Nolph, 2010). 
 
In general, the response of tested specimens to the cyclic loads was reasonably stable. None of 
the specimens displayed a sudden failure, and the resistance gradually deteriorated with 
progressively increasing cyclic loading. 
 
Most specimens achieved a displacement ductility ratio of 2.0 or higher, except for the 
specimens tested by Nolph (2010) and Elmapruk (2010), which were characterized by relatively 
high vertical reinforcement ratios (0.46% for the Nolph specimens and 0.33% for the Elmapruk 
specimens). It was observed that the displacement ductility ratio decreased with an increase in 
the vertical reinforcement ratio. The specimens tested by Voon (2007a) also showed a ductility 
ratio of less than 2.0, but these specimens had no horizontal reinforcement. 
 
Schultz (1996) tested a series of 6 partially grouted RM wall specimens under in-plane cyclic 
loads. Only the outermost vertical cores and a single course bond beam at midheight were 
grouted. The mechanism of shear resistance in the tested walls was characterized by the 
development of vertical cracks between the ungrouted and grouted masonry due to stress 
concentrations or planes of weakness (this mechanism is different from the one expected to 
develop in solidly grouted RM walls). It was also reported that an increase in horizontal 
reinforcement ratio did not have a significant effect on the overall shear resistance. 
 
An experimental study by Voon and Ingham (2006) showed that the shear strength of a solidly 
grouted wall specimen was approximately 110% higher than an otherwise identical specimen 
with 30% grouted cores. Also, the specimen with 55% grouted cores had a shear strength more 
than 50% higher than the specimen with 30% grouted cores.  However, the difference 
decreases when the shear stress is compared using the net wall area.  
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Ingham et al. (2001) reported the results of an experimental study on 12 full-scale RM squat 
wall specimens subjected to in-plane cyclic lateral loading (aspect ratios ranged from 0.57 to 
1.33). Of the twelve specimens, nine were partially grouted, and three were fully grouted. The 
walls were designed to fail in the diagonal tension shear mode. The test results showed that the 
fully grouted RM wall specimens demonstrated significantly higher displacement ductility (on the 
order of 6.0) than the displacement ductility of otherwise identical partially grouted specimens 
(about 4.0) It should be noted that all partially grouted specimens achieved a displacement 
ductility of 2.0 or higher. A possible reason for the higher ductility in the fully grouted RM wall 
specimens is that they ultimately failed in a sliding shear mode, which is characterized by large 
deformations at the base of the wall. The partially grouted specimens failed in the diagonal 
tension mode. Force-displacement responses for a partially grouted Wall 2 and a fully grouted 
Wall 3 specimen are shown in Figure B-3 (the specimens were otherwise similar, except for the 
grouting pattern).  

 

Figure B-3. Force-displacement responses for partially grouted (left) and fully grouted (right) 
wall specimens (Ingham et al., 2001, reproduced by permission of the Masonry Society). 

B.2 Sliding Shear Resistance 
 
Sliding shear resistance according to the CSA S304-14 standard has been determined based 
on friction resistance from Coulomb’s Law, as discussed in Section 2.3.3. However, a sliding 
shear mechanism is also characterized by sliding displacements along the sliding interface 
(usually base of the wall). In long walls with openings consisting of several interconnected piers, 
sliding movements at the base of one pier might cause damage in the adjacent piers. However, 
current international masonry design codes, including CSA S304-14, do not contain provisions 
for estimating sliding displacements in the walls or corresponding displacement limits. Centeno 
(2015) studied sliding failure mechanisms in RM shear walls and estimated sliding 
displacements due to lateral loading. He proposed a Sliding Shear Behavior (SSB) method for 
estimating the base sliding displacements in RM shear walls (Centeno, 2015; Centeno et al., 
2015). This section summarizes the method, which can be applied through a step-by-step 
process. The objective of the process is to determine: 1) the wall’s yield mechanism, and 2) the 
magnitude of sliding displacements that occur in that mechanism. There are two principal yield 
mechanisms associated with sliding shear (Figure B-4): a) a sliding shear mechanism and b) a 
combined flexural-sliding shear mechanism. The sliding shear mechanism occurs when the 
lateral force, V, is equal to or greater than the sliding shear resistance of the RM wall, where the 
sliding displacements develop at the base of the wall. The combined flexural-sliding shear 
mechanism occurs when the RM wall yields in flexure and forms an open flexural crack along 
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the wall length. Inelastic displacements in the wall are equal to the sum of flexural and shear 
displacements.  

 

Figure B-4. Yield mechanisms in RM shear walls subjected to monotonic lateral loading: a) 
sliding shear mechanism and b) flexural yield mechanism (Centeno, 2015). 

 
For displacement estimation purposes, Centeno (2015) identified three yield mechanisms that 
lead to sliding displacements: i) Sliding Shear (SS) mechanism, ii) Combined Flexural-Sliding 
Shear (CFSS) mechanism, and iii) Sliding Failure (SF) mechanism. These mechanisms are 
based on the two mechanisms illustrated in Figure B-4. The SS mechanism is illustrated in 
Figure B-4a), while the remaining two mechanisms (CFSS and SF) are variants of mechanism 
shown in Figure B-4b). In RM walls that experience a SS mechanism, sliding displacements 
occur when an applied lateral force exceeds the wall’s sliding shear resistance.  In the walls that 
experience a CFSS or a SF mechanism, sliding displacements are the result of dowel 
deformations that occur in order for dowel action to transfer shear across an open flexural crack 
during cyclic loading.  In a CFSS mechanism, displacements are elastic but influenced by 
degradation in dowel action shear stiffness, while in a SF mechanism, the displacements are 
inelastic and occur when the applied shear force exceeds the dowel action yield resistance. 
 
The procedure for estimating sliding displacements according to the SSB method is presented 
below. 

Part 1: Determine the Wall’s Yield Mechanism 

 
Step 1: Determine the plastic moment resistance, Mp, and its corresponding lateral force 
resistance, VFl. 
 
Step 2: Establish the Upper Bound Sliding Shear Resistance, : 

    (B.1) 
 

            , where  (B.2) 
             

             (B.3) 
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             (B.4) 

             (B.5) 

 
where: 

:  masonry cover s: rebar spacing 
: masonry grout compression strength 

(MPa) 
fy: reinforcing steel yield stress 

As: total area of reinforcing steel :  axial compression force 
µFr: friction coefficient, (µFr = 0.6) c:   depth of compression zone 
H:  wall height L:  wall length 

: height to length aspect ratio  
:      friction force due axial compression : friction force due to flexural 

compression       
(upper bound) 

: dowel action yield resistance CDA:  dowel action strength coefficient 
 
Step 3: Determine if the yield mechanism is a Sliding Shear (SS) Mechanism:  
If  < , then yield mechanism is Sliding Shear Mechanism. Continue to Part II, Step A1. 
If  ≥ , then yield mechanism is not Sliding Shear Mechanism.  Continue to Step 4. 
 
Step 4: Calculate the overturning moment, Mo, and corresponding lateral force, Vo, required to 
close flexural crack during cyclic loading: 
4.1: Determine the overturning moment, Mo:  

 (B.6) 

 

 

     (B.7) 
where: 
Mo: overturning moment to close flexural crack 
CM: overturning moment coefficient 
Vo: lateral force to close flexural crack 
 
Step 5: Determine if yield mechanism is Sliding Failure Mechanism 
If  < , then yield mechanism is Sliding Failure Mechanism. Must increase the wall’s dowel 
resistance, , and return to step 1. 
If  > , then yield mechanism is not Sliding Failure Mechanism.  Continue to Step 6. 
 
Step 6: Determine if yield mechanism is a Combined Flexural Sliding Shear (CFSS) 
Mechanism.  
6.1: Calculate the upper limit aspect ratio, TAR2, for which a wall develops a CFSS mechanism. 

                (B.8) 

If H/L < TAR2 then yield mechanism is CFSS Mechanism. Continue to Part II, Step B1. 
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If H/L ≥ TAR2 then yield mechanism is a Flexural Mechanism. Sliding displacements in the wall 
design will be small.  If necessary, the sliding displacements can be measured by continuing to 
Part II, Step B1. 
 
Part II: Estimate the Sliding Displacements 
 
Step A: Estimate sliding displacements for a SS mechanism 
 
A1: Calculate the upper limit aspect ratio, TAR1, for which a wall develops a SS mechanism. 
TAR1 = H/L (when  )  (B.9) 
(Note: Calculating TAR1 requires trying multiple values of H/L until finding the aspect ratio that 
meets the condition in equation B.9) 
A2: Calculate the friction from flexural compression, ,   
This is a correction of the friction force component that corresponds to flexural yielding, because 
in a wall that develops a sliding shear mechanism not all of the tension reinforcement will reach 
its yielding stress due to flexure. Therefore, the friction force, FrFl, is only a fraction of the upper 
bound friction force, , determined in step 2.  

 
(B.10) 

A3: Determine sliding shear resistance, VSS, due to a SS mechanism: 

 (B.11) 
 
A4: Calculate wall lateral stiffness, ,  
Following the recommended empirical equation by Shing et al. (1990) for the lateral stiffness of 
a wall with a shear-dominant response: 

 
(B.12) 

 

(B.13) 

where: 
: elastic shear stiffness : Elastic Modulus of Masonry 

: post-cracking shear stiffness : Poisson ratio, (for Masonry,  = 0.2) 
  t: wall thickness  
 
A5: Sliding Displacement Equation for SS Mechanism, 

 , when  (B.14) 

where: 
: wall base sliding displacement 

µ: displacement ductility ratio 
 
Step B: Estimate sliding displacements for a CFSS mechanism 
 
B1:  Determine Triggering aspect ratios: TAR1, TAR2 and TAR3. 
TAR1 = H/L  when    (B.9) 

 

(B.8) 

TAR3 = H/L when   (B.15) 
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Note that calculation of TAR1 and TAR3 requires trying multiple values of H/L until finding the 
aspect ratio that meets the condition in equations B.9 and B.15, respectively) 
 
B2: Calculate dowel action secant stiffness coefficient, Ck. 

 
(B.16a) 

 
(B.17b) 

where: 
µ: displacement ductility ratio 
B3: Determine dowel action yield stiffness, kDA. 

 
(B.18) 

 

Note: f’g (MPa), db (mm) (B.19) 

 
B4: Calculate base sliding displacement, ∆Base. 

 

(B.20) 

 

B.3 Ductile Seismic Response of Reinforced Masonry Shear Walls 
A prime consideration in seismic design is the need to have a structure that is capable of 
deforming in a ductile manner when subjected to several cycles of lateral loading well into the 
inelastic range. This section explains a few key terms related to ductile seismic response, 
including ductility ratio, curvature, plastic hinge, etc. It is important for a structural designer to 
have a good understanding of these concepts before proceeding with the seismic design and 
detailing of ductile masonry walls according to CSA S304-14. In particular, the content of this 
section is related to the ductility check for RM shear walls discussed in Section 2.6.3. 
 
Ductility is a measure of the capacity of a structure or a member to undergo deformation beyond 
yield level, while maintaining most of its load-carrying capacity. Ductile structural members are 
able to absorb and dissipate earthquake energy by inelastic (plastic) deformations that are 
usually associated with permanent structural damage. These inelastic deformations are 
concentrated mainly in regions called plastic hinges. In general, plastic hinges develop in shear 
walls responding in the flexural mode and are typically formed at their base. An example of a 
plastic hinge formed in a RM wall subjected to seismic loading is shown in Figure 2-8a. The 
concept of ductility and ductile seismic response was introduced in Section 1.4.3. 
 
A common way to quantify ductility in a structure is through the displacement ductility ratio  . 
This is the ratio of the maximum lateral displacement experienced by the structure at the 
ultimate ( u ), to the displacement at the onset of inelastic response ( y ) (see Figure 1-5c).  
 

y

u




  
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Next, the concept of curvature will be explained by an example of a RM shear wall subjected to 
bending due to a shear force applied at the top, as shown in Figure B-5a. Consider a wall 
segment ABCD of unit height. This segment deforms due to bending moments, so sections AB 
and CD rotate by a certain angle relative to their original horizontal position (these deformed 
sections are denoted as A’B’ and C’D’). Rotation between the ends of the segment defines the 
curvature  , as shown in Figure B-5b. Curvature represents relative section rotations per unit 
length. It should be noted that curvature is directly proportional to the bending moment at the 
wall section under consideration, if the section remains elastic. 
 
Consider any section CD that undergoes curvature , as shown in Figure B-5c. Strain 
distribution along the wall section is defined by the product of curvature and the distance from 
the neutral axis, located by the depth c . The maximum compressive strain in masonry m is 
given by 
 

cm    

 
 

Figure B-5. Curvature in a shear wall subjected to flexure: a) wall elevation; b) deformed wall 
segment ABCD; c) strain distribution along the section CD.  

For the seismic design of RM walls, it is of interest to determine curvatures at the following two 
stages: the onset of steel yielding and at the ultimate stage. Consider a RM wall section 
subjected to axial load and bending shown in Figure B-6a.  
Yield curvature y corresponds to the onset of yielding characterized by tensile yield strain y  
developed in the end rebars, as shown in Figure B-6b, where  
 

cdlw

y
y 



  

Ultimate curvature u corresponds to the ultimate stage, when the maximum masonry 
compressive strain m  has been reached. The maximum m  value has been limited to 0.0025 
by CSA S304-14 (see Figure B-6c) to prevent damage to the outer blocks in the plastic hinge 
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region. Note that the neutral axis depth c  is going to decrease as more of the reinforcement has 
yielded (see Figure B-6c). 

 

Figure B-6. Curvature in a RM wall section: a) wall cross section; b) yield curvature; c) ultimate 
curvature; d) moment-curvature relationship. 

The curvature value depends on the load level, the section geometry, the amount and 
distribution of reinforcement, and the mechanical properties of steel and masonry. An actual 
moment-curvature relationship for ductile sections is nonlinear, however it is usually idealized by 
elastic-plastic (bilinear) relationship, as shown in Figure B-6d. 
 
Once the curvatures at the critical stages have been determined, the curvature ductility ratio   
can be found as follows 

y

u




   

 
When the curvature distribution along a structural member (e.g. shear wall) is defined, rotations 
and deflections can be calculated by integrating the curvatures along the member. This can be 
accomplished in several ways, including the moment area method.  
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Rotations and deflections in a masonry shear wall at the ultimate state can be determined 
following the approach outlined above. Consider a cantilevered shear wall of length wl and 
height wh , and the plastic hinge length pl (see Figure B-7a). The wall is subjected to a seismic 
shear force at the top, which results in a corresponding bending moment diagram as shown in 
Figure B-7b. The curvature diagram shown in Figure B-7c has two distinct portions: an elastic 
portion, with the maximum curvature equal to the yield curvature y , and the plastic portion with 
the maximum curvature equal to the ultimate curvature u . Note that the elastic portion of the 
curvature diagram has the same shape as the bending moment diagram (since the curvatures 
and bending moments are directly proportional). The actual curvature distribution in the plastic 
region varies in a nonlinear manner, as shown in Figure B-7c. For design purposes, the 
curvature can be taken as constant over the plastic hinge length pl  (note that the areas under 
the actual and the equivalent plastic curvature are set to be equal). The elastic rotation e and 
the plastic rotation p  are presented in Figure B-7d. The plastic rotation can be determined as 
the area of the equivalent rectangle of width yu    and height pl , as shown in Figure B-7c. 
These rotations can be calculated from the curvature diagram as follows: 

peu    

where 

2
wy

e

h



  

  pyup l   

 
The maximum deflection u  at the top of the wall is shown in Figure B-7d. This deflection has 
two components: elastic deflection y corresponding to the yield curvature y , and the plastic 
deflection p  due to a rigid body rotation, since bending moments do not increase once the 
yielding has taken place. Deflection values can be found by taking the moment of the curvature 
area around point A, as follows: 
 

33

2

2

2
wywwy

y

hhh 
  

 
   pwpyup lhl 5.0   

 

pyu   

 
The above equations can be used to determine the displacement ductility ratio  , in terms of 
the curvature ductility   and other parameters, as follows: 
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5.01131           

Alternatively, the curvature ductility ratio  can be expressed in terms of the displacement 
ductility ratio, as follows: 

 
  1

5.03

12




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pwp

w
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

    

 
It should be noted that   and   values are different for the same member. Once the yielding 
has taken place, the deformations concentrate at the plastic hinges, so the curvature ductility   
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is expected to be larger than the displacement ductility  . This difference is more pronounced 
in walls with larger displacement ductility ratios. 
 

 
Figure B-7. Shear wall at the ultimate: a) wall elevation; b) bending moment diagram;  
c) curvature diagram; d) deflections. 
 

B.4 Wall Height-to-Thickness Ratio Restrictions 
 
The out-of-plane wall instability of RM and RC shear walls due to in-plane lateral reversed cyclic 
loading is a complex phenomenon, which has proven to be difficult to account for by means of a 
rational mechanics-based approach. The out-of-plane instability of RC shear walls in multi-
storey buildings was observed in the 2010 Maule, Chile earthquake (M 8.8) (Westenenk et al. 
2012) and the 2011 Christchurch, New Zealand earthquake (M 6.3) (Elwood 2013). However, 
there is no evidence of out-of-plane instability for RM shear walls in past earthquakes, and 
experimental research evidence is extremely limited. Azimikor et al. (2011) and Herrick (2014) 
performed a literature review of past experimental studies related to this subject.  
 
A pioneering research study on this subject was undertaken by Paulay and Priestley (1992, 
1993). They concluded that a RC or RM shear wall can experience lateral instability when the 
longitudinal reinforcement in its end zones is subjected to compression loads subsequent to 
cycles of tensile plastic strain. Horizontal cracks form along the height of the plastic hinge region 
in the wall end zone during tension load cycles, and may not fully close during subsequent 
compression load cycles. Due to the presence of open cracks and the residual plastic strains in 
the vertical reinforcement within the wall end zone, that zone becomes very flexible and 
susceptible to significant out-of-plane displacements at low compression stress levels. It is 
possible to determine the critical out-of-plane displacement beyond which instability will occur 
for a specific design case. This displacement is equal to the minimum distance between the 
centroid of steel and face of masonry block. For example, the critical displacement is equal to 
b/2 for a wall with thickness b and one layer of longitudinal reinforcement (where a reinforcing 
bar is placed in the centre of a hollow core). 
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Paulay and Priestley (1993) developed an analytical model which offers a means to find the 
minimum wall thickness required to avoid out-of-plane instability. The minimum thickness value 
depends on several parameters, including the vertical reinforcement ratio, the desired curvature 
and displacement ductility ratios, the plastic hinge length, and the mechanical properties of the 
steel and masonry. Paulay and Priestley also performed an experimental study to confirm their 
analytical model. They tested a few reinforced concrete shear wall specimens and a concrete 
masonry wall specimen. The masonry wall specimen failed by out-of-plane buckling at a very 
large displacement ductility   of around 14. 
 
The application of this procedure will be illustrated on an example of a RM wall. The equation 
for the critical wall thickness cb  is as follows (Paulay and Priestley, 1992) 

wc lb 022.0                

Curvature ductility,  , is related to displacement ductility,  , as shown in Section B.3. The 
plastic hinge length pl is taken equal to 6wh , and so the equation can be simplified as follows 
 

 12.2    

 
The displacement ductility ratio  can be considered equal to dR prescribed by NBC 2015 for 
different SFRSs (note that  values in the range from 2.0 to 3.0 are considered in this 
example). By following the above procedure, it is possible to obtain the wc lb ratios 
corresponding to different  values. The results are summarized in Table B-1. 
 
For example, if the wall length wl is equal to 5,000 mm, the corresponding critical thickness cb is 
equal to 150 mm for  = 2.0, or 230 mm for  = 3.0. Paulay and Priestley suggest that the 
critical wall thickness should be expressed as a fraction of the wall length rather than its height. 
 

Table B-1. Critical Wall Thickness cb  Versus the Displacement Ductility Ratio   

    cw bl  

2.0 2.2 31 
2.5 3.3 25 
3.0 4.4 22 

 
A recent Canadian experimental program (Azimikor 2012; Robazza 2013; Azimikor et al. 2012; 
2017; Robazza et al. 2017a; 2017b; 2018) demonstrated that the out-of-plane wall instability is 
difficult to induce in RM shear walls at the ductility demand levels relevant for Canadian 
masonry design practice. Phase 1 of the program focused on simulating the behaviour of the 
wall end zones using uniaxial specimens. The purpose of the study was to understand the out-
of-plane instability phenomenon and identify key factors influencing its development. Phase 2 
consisted of testing several full-scale RMSW specimens under in-plane reversed cyclic loading. 
Masonry for the test specimens was laid in 50% running bond using Type S mortar for faceshell 
bedding and standard Canadian concrete hollow block units. 
 
Phase 1 consisted of testing 5 prismatic specimens with a rectangular cross-section (600 mm 
length and 140 mm thickness), which were designed to simulate the end zone of a RM shear 
wall (Azimikor 2012; Azimikor et al. 2012; 2017). All specimens had the same height (3.8 m), 
resulting in a h/t ratio of 27. The vertical reinforcement ratio varied from 0.24% (the minimum 
permissible by CSA S304.1-04) to 1.07% (the maximum practical in the masonry industry). The 
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loading protocol consisted of reversed-cyclic uniaxial tension and compression displacement 
cycles of incrementally increasing magnitude until failure. Four specimens experienced out-of-
plane instability, while the fifth specimen was a reference specimen which was subjected to 
monotonic compression and experienced a compression/crushing failure. These tests had some 
limitations: the specimens were isolated and were not able to simulate actual boundary 
conditions along the wall height and the effect of strain gradient along the wall length. It was 
concluded that the level of applied tensile strain in a wall end-zone was one of the critical factors 
governing its out-of-plane stability. The maximum tensile strain that may be imposed on a 
ductile RM shear wall’s end-zone could be determined, at least in part, by a kinematic 
relationship between the axial strain and the out-of-plane displacement. A preliminary 
mechanical model was proposed which provided a theoretical prediction of the maximum tensile 
strain before an instability would take place. 
 
Phase 2 comprised of an experimental study of 8 full-size RMSW specimens of varying h/t and 
aspect (h/L) ratios, vertical and horizontal reinforcement amounts and detailing, applied axial 
pre-compression, and cross-section shape (6 specimens had regular rectangular cross-
sections, while the other 2 specimens had T-shaped cross-sections) (Robazza 2013; Robazza 
et al. 2017a; 2017b; 2018). The specimens were subjected to either cyclic or reversed-cyclic 
loading until failure. All specimens were designed to exhibit flexure-controlled behavior 
characterized by the development of high tensile strains over a distinct region of plastic hinging, 
which is a theoretical prerequisite for the occurrence of out-of-plane instability. The specimens 
had aspect ratios varying from 1.5 to 3.0, which were required to maintain a relatively large 
plastic hinge height while still avoiding a shear failure. The specimens were designed with 
relatively high h/t ratios, ranging from 21.1 to 28.6, which exceeded the maximum CSA S304.1-
04 limits for ductile RM shear walls. However, only one specimen experienced out-of-plane 
displacements large enough to precipitate instability, which occurred only after the wall had 
reached its ultimate shear capacity and experienced substantial degradation.  
 
It was found that several factors may influence the out-of-plane response of RM shear 
wallsubjected to in-plane loading, including ductility and tensile strain demands, applied pre-
compression levels and construction practices, as well as the effects of alternative failure 
mechanisms. This research also demonstrated that the strain gradient in a RM wall is a very 
important factor. This was not included in previous numerical models for out-of-plane stability in 
RM or RC shear walls, which were developed exclusively based on data from testing uniaxial 
specimens (e.g. Paulay and Priestley, 1993; Chai and Elayer, 1999). The estimates based on 
these models may lead to overly conservative h/t requirements.  
 
Findings of the research by Paulay and Priestley (1992; 1993) were incorporated in the seismic 
design provisions for RM shear walls in New Zealand. The New Zealand masonry design 
standard NZS 4230:2004 prescribes the following minimum thicknesses for limited ductility walls 
(  of 2.0) and ductile walls (  of 4.0): 
1. For walls up to 3 storeys high (Cl.7.4.4.1 and 7.3.3), minimum thickness t  should not be 

less than 20nL  (or nL05.0 ), where nL denotes clear vertical distance between lines of 
effective horizontal support or clear horizontal distance between lines of effective vertical 
support. Commentary to Cl.7.3.3 states that “for a given wall thickness, t , and the case 
when lines of horizontal support have a clear vertical spacing of tLn 20 , then vertical lines 
of support having a clear horizontal spacing of tLn 20 shall be provided.” 

2. For walls more than 3 storeys high (Cl.7.4.4.1) minimum thickness t  shall not be less than 
3.13nL  (or nL075.0 ). However, a smaller wall thickness can be used provided that one of 

the following conditions is satisfied (maximum strain in masonry u is equal to 0.003 
according to NZS 4230:2004) (see Figure 2-28): 

a) tc 4  or 
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b) wlc 3.0  or 

c) tc 6 from the inside of a wall return of a flanged wall, which has a minimum length 

nL2.0 . 

The relaxed thickness requirement applies to the cases where the neutral axis depth is small, 
and so the compressed area may be so small that the adjacent vertical strips of the wall will be 
able to stabilize it. This is likely the case with rectangular walls subjected to low axial 
compression.  
 
Commentary to NZS 4230 Cl.7.4.4.1 states that it is considered unlikely that failure due to 
lateral instability of the wall will occur in structures less than 3 storeys high, because of the rapid 
reduction in flexural compression with height. This is also in line with the statement made by 
Paulay (1986), that out-of-plane stability is likely to take place in walls with large plastic hinge 
length (one storey or more).  
 
Paulay and Priestley (1992) stated that “where the wall height is less than three storeys, a 
greater slenderness should be acceptable. In such cases, or where inelastic flexural 
deformations cannot develop, the wall thickness t  need not be less than nL05.0 ” (where 

nL denotes clear wall length between the supports).  
 
FEMA 306 (1999) also discusses the issue of wall instability. This document also refers to the 
procedure by Paulay and Priestley (1993) and provides the following recommendation for 
minimum wall thickness in ductile walls (  of 4.0):  
 

24wlt   or 18ht   

 
Note that the above requirement, which applies to the walls with displacement ductility ratio 
(  ) equal to 4.0. 
  
FEMA 306 (1999) also points out that “the lack of evidence for this type of failure in existing 
structures may be due to the large number of cycles at high ductility that must be achieved – 
most conventionally designed masonry walls are likely to experience other behaviour modes 
such as diagonal shear before instability becomes a problem.”  
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C Relevant Design Background  
This appendix contains additional information relevant for masonry design as discussed in 
Chapter 2, but it is not directly related to the seismic design provisions of CSA S304-14. 
Applications of the design methods and procedures presented in this appendix can be found in 
Chapter 3, which contains several design examples. This appendix addresses in detail several 
topics of interest to masonry designers, e.g., the calculation of in-plane wall stiffness, including 
the effect of cracking, and force distribution in perforated shear walls. However, modeling and 
analysis of multi-storey perforated shear walls are not covered in this document. 

C.1  Design for Combined Axial Load and Flexure 

C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading 
 
10.2  

 
Seismic shear forces acting at floor and roof levels cause overturning bending moments in  
shear walls, which reach a maximum at the base level. In general, shear walls are subjected to 
the combined effects of flexure and axial gravity loads. The theory behind the design of masonry 
wall sections subjected to effects of flexure and axial load is well established, and is essentially 
the same as that of reinforced concrete walls. A typical reinforced masonry wall section is 
shown in Figure C-1a), along with the distribution of internal forces and strains arising from the 
axial load and moment. According to CSA S304-14, the strain distribution along the wall length 
is based on the assumptions that the wall section remains plane and that the maximum 
compressive masonry strain m  is equal to 0.003 (see Figure C-1b)). Figure C-1c) shows the 
distribution of internal forces on the base of the wall, as well as the axial load, fP  and the 
bending moment, fM . In the compression zone, the equivalent rectangular stress block has a 
depth a , and a maximum stress intensity of mm f '85.0  . Note that the  factor assumes a 
value of 1.0 for members subjected to compression perpendicular to the bed joints, such as 
structural walls (S304-14 Cl.10.2.6). Each reinforcing bar develops an internal force (either 
tension or compression) equal to the product of the factored stress and the corresponding bar 
area. The internal vertical forces must be in equilibrium with fP , and the factored moment 
capacity rM  can be determined by taking the sum of the moments of the internal forces around 
the centroid of the section. 
 
The following three design scenarios and the related simplified design procedures will be 
discussed in this section: 

1. Wall reinforcement (both concentrated and distributed) and axial load are given – find 
moment capacity 

2. Wall is reinforced with distributed reinforcement only – find moment capacity 
3. Wall reinforcement needs to be estimated (factored bending moment and axial force are 

given) 
 
The first two are applicable for the common situations where a designer assumes the minimum 
seismic reinforcement amount and desires to find its moment capacity. 
 
Approximate design approaches that can be used to assist designers in each of these scenarios 
are presented below. For detailed analysis and design procedures, the reader is referred to 
Drysdale and Hamid (2005) and Hatzinikolas, Korany and Brzev (2015). 
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Figure C-1. A reinforced masonry shear wall under the combined effects of axial load and 
flexure: a) plan view cross section; b) strain distribution; c) internal force distribution.  

 
C.1.1.1 Moment capacity for a wall section with concentrated and distributed 

reinforcement 
 
Rectangular section 
A simplified wall design model is shown in Figure C-2. The wall reinforcement can be divided 
into: 
 Concentrated reinforcement at the ends (area cA  at each end), and 

 Distributed reinforcement along the wall length (total area dA ). 

It is assumed that the concentrated wall reinforcement yields either in tension or in compression 
at the wall ends. Also, it is assumed that the distributed reinforcement yields in tension. 
 
A procedure to find the factored moment capacity rM  for a shear wall with a given vertical 
reinforcement (size and spacing) is outlined below. 
 
From the equilibrium of vertical forces (see Figure C-2b)), it follows that  

0321  mf CCTTP                               ( 1)         

where 

cys AfCT  31  

dys AfT 2  

  atfC mmm  '85.0   

The compression zone depth, a , can be determined from equation 1 as follows 

tf

AfP
a

mm

dysf

'85.0 


     ( 2) 
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8.01   when 20' mf MPa (note that 1  value decreases when 20' mf MPa, as prescribed 
in S304-14 Cl.10.2.6) 
 
The neutral axis depth, c , measured from the extreme compression fibre to the point of zero 
strain is given by  
 1ac   
Next, the factored moment capacity, rM , can be determined by summing up the moments 
around the centroid of the wall section (point O) as follows 

 
  '222)( dwlcAyfsawlmCrM                  ( 3) 

where d   is the distance from the extreme compression fibre to the centroid of the concentrated 
compression reinforcement.  

 

Figure C-2. A simplified design model for rectangular wall section: a) plan view cross-section 
showing reinforcement; b) internal force distribution. 

 
10.2.8  

For squat shear walls, CSA S304-14 prescribes the use of a reduced effective depth d for 
flexural design, i.e. 

hld w 7.067.0   

As a result, the moment capacity should be reduced by taking a smaller lever arm for the tensile 
steel, as follows: 

   
 



  2'22)( wldcAyfsdwlcAyfsawlmCrM                  ( 4) 

Note that the reinforcement area cA  in squat walls should be increased to provide more than 
one reinforcing bar, since the end zone constitutes a larger portion of the overall wall length in 
these cases. 
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The CSA S304-14 provision for the reduced effective depth in squat walls contained in Cl.10.2.8 
is intended to account for the effect of the deep beam behaviour of squat walls. This provision 
makes more sense for non-seismic design, and it should not be used if the tension steel yields 
in seismic conditions. 
 
Flanged section 
In the case of the flanged wall section shown in Figure C- 3, the factored moment capacity rM  
can be determined by summing up the moments around the centroid of the wall section (point 
O) as follows 

    )2(22 dlAfxlCM wcyswmr    

where 

mm

dysf
L f

AfP
A

'85.0 


  

is the area of compression zone, and its depth is 

t

ttbA
a fL

2* 
  

   
L

f

A

ttbat
x

2)(2* 22 
  

and the resultant of masonry compression stress is  
  Lmmm AfC '85.0    

 

Figure C- 3. A simplified design model for a flanged wall section. 
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Section with boundary elements 
 
In the case of the wall section with boundary elements shown in Figure C-4, the factored 
moment capacity rM  can be determined by summing up the moments around the centroid of 
the wall section (point O) as follows 

    )2(22 dlAfxlCM wcyswmr    

Where 

mm

dysf
L f

AfP
A

'85.0 


  

is the area of compression zone. When the neutral axis falls within the boundary element, the 
depth of compression block is 

f

L

b

A
a   

but if neutral axis falls in the wall web, the depth of the compression zone is 

f
ffL l

t

lbA
a 


  

The centroid of the masonry compression zone can be determined from the following equation: 

 

L

f
f

ff

A

tla
l

alb

x

2
2

2 









  

and the resultant of masonry compression stress is  
  Lmmm AfC '85.0    

 

Figure C-4. A simplified design model for a wall section with boundary elements. 
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C.1.1.2 Moment capacity for rectangular wall sections with distributed vertical 
reinforcement 

The previous section discussed a general case of a shear wall with both concentrated and 
distributed vertical reinforcement. In low to medium-rise concrete and masonry wall structures, 
the provision of distributed vertical reinforcement is often sufficient to resist the effects of 
combined flexure and axial loads (see Figure C-5a)). The factored moment capacity for walls 
with distributed vertical reinforcement can be determined based on the approximate equation 
proposed by Cardenas and Magura (1973), which was originally developed for reinforced 
concrete shear walls. The equation was derived based on the assumption that the distributed 
wall reinforcement shown in Figure C-5b) can be modeled like a thin plate of length wl  (equal to 
the wall length), and the thickness is such that the total area vtA  is the same as that provided by 
distributed reinforcement along the wall length. The factored moment capacity can be 
determined as follows: 






















wvtys

f
wvtysr l

c

Af

P
lAfM 115.0


                          (5) 

where 

vtA - the total area of distributed vertical reinforcement 

c - neutral axis depth 

tlf

Af

wmm

vtys

'


   

tlf

P

wmm

f

'
   

112 






wl

c
 

 
85.01    and   8.01   

 

 

Figure C-5. Shear wall with distributed vertical reinforcement: a) vertical elevation; b) actual 
cross section; c) equivalent cross-section. 
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C.1.1.3  An approximate method to estimate the wall reinforcement 
Consider the wall cross-section shown in Figure C-6a). In design practice, there is often a need 
to produce a quick estimate of wall reinforcement based on the given factored loads. In this 
case, the loads consist of the factored bending moment fM and the axial force fP acting at the 
centroid of the wall section (point O).  
 
The goal of this procedure is to find the total area of wall reinforcement sA . To simplify the 
calculations, an assumption is made that the reinforcement yields in tension and that the 
resultant force rT  acts at the centroid of the wall section, that is, (see Figure C-6b)). 

sysr AfT                         ( 6) 

Initially, the compression zone depth a  can be estimated in the range from 0.2 wl  to 0.3 wl . The 

moment resistance is usually not too sensitive to the a  value as long it is relatively small. For 
example, the designer could use an estimate wla 3.0 . 

 

Figure C-6. Reinforcement estimate: a) plan view wall cross-section; b) distribution of internal 
forces. 

Next, compute the sum of moments of all forces around the centroid of the compression zone 
(point C), as follows 

02)(2)(  alTalPM wrwff  

From the above equation it follows that  

2)(

2)(

al

alPM
T

w

wff
r 


                    ( 7) 

The area of reinforcement can then be determined from equation (7) as follows 

ysrs fTA   

The area of reinforcement estimated by this procedure is usually close to the required value. A 
uniform reinforcement distribution over the wall length is recommended for seismic design, 
since research studies have shown that shear walls with a uniform reinforcement distribution 
show better seismic response in the post-cracking range. In addition, the seismic detailing 
requirements for vertical reinforcement need to be followed. 
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C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading 
Masonry walls are subjected to the effects of seismic loads acting perpendicular to their surface 
– this is called out-of-plane seismic loading.  For design purposes, wall strips of a predefined 

width are treated as beams 
spanning vertically or 
horizontally between lateral 
supports. When the walls 
span in the vertical 
direction, floor and/or roof 
diaphragms provide the 
lateral supports.  
 
Walls can also span 
horizontally, in which case 
the lateral supports need to 
be provided by cross walls 
or pilasters, as shown in 
Figure C-7. Note that 
support on four edges is 
very efficient, since these 
walls behave as two-way 
slabs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure C-7. Masonry walls under out-of-plane seismic loads: a) spanning vertically between 
floor/roof diaphragms; b) spanning horizontally between pilasters. 

Consider a reinforced concrete masonry wall subjected to the effects of a factored axial load 
fP and a bending moment fM , as shown in Figure C-8a). The wall is reinforced vertically, with 
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only the reinforced cores grouted. It is assumed that the size and distribution of vertical 
reinforcement are given. The notation used in Figure C-8b) is explained below: 
t  - overall wall thickness (taken as actual block width, e.g. 140 mm, 190 mm, etc.) 

ft - face shell thickness 

b - effective width of the compression zone (see Section 2.4.2 and Figure 2-19) 
d - effective depth, that is, distance from the extreme compression fibre to the centroid of the 
wall reinforcement; typically, the reinforcement is placed in the centre of the wall, so  

2td   

sA - total area of steel reinforcement placed within the effective width b  

 
It is assumed that the steel has yielded, that is, ys   , and the corresponding stress in the 
reinforcement is equal to the yield stress, yf . This is a reasonable assumption for low-rise 
masonry buildings, since the axial load is low and the walls are expected to fail in the steel-
controlled mode. The design procedure is outlined below. 
 
 The resultant forces in steel rT and masonry mC  can be determined as follows: 

sysr AfT   

  abfC mmm  '85.0   

 The equation of equilibrium of internal forces gives (see Figure C-8d)) 

rfm TPC   

 The depth of the compression stress block a  is equal to 

bf

C
a

mm

m

'85.0 
   ( 8) 

 The moment resistance can be found from the following equation 

)2(' adCM mr    (9) 
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Figure C-8. A wall under axial load and out-of-plane bending: a) vertical section showing 
factored loads; b) plan view of a wall cross-section; c) strain distribution; d) internal force 
distribution. 

For partially grouted wall sections (where only reinforced cores are grouted), the designer needs 
to confirm that 

fta   

When the above relation is correct, then the compression zone is rectangular, as shown in 
Figure C-9a). Note: in solidly grouted walls, the compression zone is always rectangular! 
 
When fta  , the compression zone needs to be treated as a T-section and an additional 
calculation is required to determine the a value. The following equations can be used to 
determine the moment resistance in sections with a T-shaped compression zone: 
 The resultant force in the steel rT  can be determined as follows: 

sysr AfT   
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 The resultant force in the masonry, mC ,  acts at the centroid of the compression zone and 
can be determined from the equation of equilibrium of internal forces, that is, 

rfm TPC   

Once the compression force in the masonry is found, the area of the masonry compression 
zone, mA  (see Figure C-9b)), is given by 

  mmmm AfC  '85.0   
 The depth of the compression stress block a  can be found from the following equation 

  wffm btatbA   

where 

wb = width of the grouted cell plus the adjacent webs 
 The distance from the extreme compression fibre to the centroid of the compression zone a  
is equal to 

  

m

f
fff

A

ta
ttatb

a







 



2

22

    (10) 

 
 

Figure C-9. Masonry compression zone: a) rectangular shape; b) T-shape; c) effective width 
and tributary width. 
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 The moment resistance can be found from the following equation 

 adCM mr '   (11)  

Note that rM '  denotes the moment capacity for a wall section of width b . It is usually more 
practical to convert the rM '  value to a unit width equal to 1 metre (see Figure C-9c)), as follows 

 sMM rr 0.1'   (12) 

where  
s  - spacing of vertical reinforcement expressed in metres (where sb  ) 

rM  - factored moment capacity in kNm/m. 
 
The design of masonry walls subjected to the combined effects of axial load and bending is 
often performed using P-M interaction diagrams. The axial load capacity is shown on the vertical 
axis of the diagram, while the moment capacity is shown on the horizontal axis. The points on 
the diagram represent the combinations of axial forces and bending moments corresponding to 
the capacity of a wall cross-section. An interaction diagram is defined by the following four 
distinct points and/or regions: 1) balanced point, 2) points controlled by steel yielding, 3) points 
controlled by masonry compression, and 4) pure compression (zero eccentricity). A conceptual 
wall interaction diagram is presented in Figure C-10. 

 

Figure C-10. P-M interaction diagram. 

 
1. Balanced point 
At the load corresponding to the balanced point, the steel has just yielded, that is, ys   . The 
position of the neutral axis bc  can be determined from the following proportion (refer to strain 
diagram in Figure C-8c)): 

y

m

b

b

cd

c







 

or  

)(
ym

m
b dc





  
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For 400yf  MPa and 002.0y  it follows that 

dcb 6.0  

 
2. Points controlled by steel yielding 
For bcc  , the steel will yield before the masonry reaches its maximum useful strain (0.003). 
Since the steel is yielding, it follows that ys   .  The designer needs to assume the neutral 
axis depth ( c ) value so that bcc  . The compression zone depth can then be calculated as 

cca 8.01     (this is valid for MPafm 20  according to S304-14 Cl.10.2.6). Combinations of 
axial force and moment values corresponding to an assumed neutral axis depth can be found 
from the following equations of equilibrium (see Figure C-8d)). 

rmr TCP   

where 

sysr AfT       (note that the stress in the steel is equal to yf  since the steel is yielding) 

 
Moment resistance depends on the shape of the masonry compression zone, that is, on 
whether the section is partially or solidly grouted. 
 For a solidly grouted section or a partially grouted section with the compression zone in the 
face shells only: 

)2(' adCM mr     
where 

  abfC mmm  '85.0   

 For a partially grouted section with the compression zone extending into the grouted cells: 
 adCM mr '    

where 
  mmmm AfC  '85.0   

 
3. Points controlled by masonry compression 
For bcc  , the steel will remain elastic, that is, ys    and ys ff  , while the masonry reaches 
its maximum strain of 0.003.  The designer needs to assume the neutral axis depth ( c ) value so 
that bcc  , and the strain in steel can then be determined from the following proportion (see 
Figure C-8c)): 

cdd
sm





 

thus 







 


c

cd
ms   

The stress in the steel can be determined from Hooke’s Law as follows 

sss Ef *    (note that steel stress ys ff  ) 

where sE  is the modulus of elasticity for steel. The equations of equilibrium are the same as 
used in part 2 above, except that 

sssr AfT   

The point corresponding to 2tc   is considered as a special case. At that point, the strain 
distribution is defined by the following values 

003.0m  and 0s  
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thus 
0rT  

 
4. Pure compression (zero eccentricity) 
In the case of pure axial compression (S304-14 Cl.10.4.1) the axial load resistance for untied 
sections can be determined as follows: 

emmr AfP  85.0  actual axial compression resistance 

and 

rr PP 8.0max   design axial compression resistance 

According to S304-14 Cl.10.4.2, when the steel bars are tied as specified in Cl.12.2, then the 
steel contribution can be considered for the compression resistance. The design equation for 
tied wall sections is as follows: 

syssemmr AfAAfP   )(85.0  

and 

rr PP 8.0max   

C.2 Wall Intersections and Flanged Shear Walls 
Flanged shear wall configurations are encountered when a main shear wall intersects a cross-
wall (or transverse wall). Examples of flanged walls in masonry buildings are very common, 
since the bearing wall systems often consist of walls laid in two orthogonal directions. Also, in 
medium-rise wood frame apartment buildings, elevator shafts are usually of masonry 
construction, and the intersecting masonry walls that form the core can be considered as 
flanged walls. 

C.2.1 Effective Flange Width 
 
10.6.2  

 
In flanged shear walls, a portion of the cross wall is considered to act as the flange, while the 
main shear wall acts at the web. Depending on the cross-wall configuration, flanged shear walls 
may be of I, T- or L-section. An I-section is characterized by the two end flanges, similar to that 
in Figure C-11 (left), a T-section is characterized with one flanged end and one rectangular/ 
non-flanged end, while a L-section is characterized by one flanged end (similar to that shown in 
Figure C-11 (right), and one rectangular-shaped (non-flanged) end. Design codes prescribe the 
maximum effective flange width that may be considered in the shear wall design. The CSA 
S304-14 requirements for overhanging flange widths for these wall sections are summarized in 
Table C-1 and Figure C-11. For masonry buildings with substantial flanges the height ratio limits 
will usually govern.  
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Table C-1. Overhanging Flange Width Restrictions for T- and L- Section Walls per CSA S304-
14 Cl.10.6.2 

T-sections ( Tb ) L-sections ( Lb ) where 

actualb  - actual overhang/flange width 

wa - clear distance between the 

adjacent cross walls 
t - actual flange thickness 

wh - wall height 

  Tb  the smallest of: 

a) actualb  

b) 2wa  

c) t6  
d) 12wh  

Lb  the smallest of: 

a) actualb  

b) 2wa  

c) t6  
d) 16wh  

 

 

Figure C-11. CSA S304-14 flange width requirements. 

C.2.2 Types of Intersections 
 
According to Cl. 7.11, the effective shear transfer across the web-to-flange connection in both 
unreinforced and reinforced masonry walls can be achieved through bonded or unbonded 
intersections, as follows (see Figure C-12):  

a) Bonded intersections – alternating courses with the units of one wall embedded at least 
90 mm into the other wall (Cl.7.11.1), 

b) Unbonded intersections (Cl.7.11.2) which can be achieved in the following ways: 
 Mechanical connection with steel connectors (e.g. anchor straps, rods, or bolts) 

at a maximum vertical spacing of 600 mm, and 
 Connection with a minimum of two 3.65 mm diameter steel wires from joint 

reinforcement spaced at a maximum of 400 mm vertically, or 
 Fully grouted bond beam intersections with reinforcing bars spaced at 1200 mm 

or less vertically. 
 Steel connectors, joint reinforcing and reinforcing bars should be detailed to 

develop the full yield strength on each side of the intersection. 
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Note that S304-14 Cl.10.11.2 does not permit the use of rigid anchors (approach b)) or joint 
reinforcement (approach c)) for portions of reinforced masonry shear walls in which the flanges 
contain tensile steel and are subject to axial tension, but reinforced bond beams (approach d)) 
may be used. 
 

 
 
Figure C-12. Masonry wall intersections: a) bonded intersections; b) mechanical connection;  
c) horizontal joint reinforcement; d) horizontal reinforcing bars (bond beam reinforcement). 
 
Seismic studies in the U.S. under the TCCMAR research program resulted in recommendations 
related to horizontal reinforcement at the web-to-flange intersections (Wallace, Klingner, and 
Schuller, 1998). To ensure the effective shear transfer, horizontal reinforcement in bond beams 
needs to be continued from one wall into other, for a distance of 600 mm (2 feet) or 40 bar 
diameters, whichever is greater. The grout must be continued across the intersection by 
removing the face shells of the masonry units in one of the walls, as illustrated in Figure C-13. 
Note that TMS 402/602-16 requires that bond beams in ductile walls be provided at a vertical 
spacing of 1200 mm (4 feet).  
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Figure C-13. Horizontal reinforcement at the web-to-flange intersection: TCCMAR 
recommendations. 

C.2.3 Shear Resistance at the Intersections 
 
7.11  

 
Vertical shear resistance of the intersections must be checked by one of the following methods: 
 For bonded intersections, vertical shear at the intersection shall not exceed the out-of-plane 
masonry shear resistance (Cl.7.10.2). 
 For flanged sections with the mechanical steel connectors (Figure C-12 approach b), the 
connectors must be capable of resisting the vertical shear at the intersection. The connector 
resistance should be determined according to CSA A370-14. 
 For flanged sections with the horizontal reinforcement (approaches c and d), the 
reinforcement must be capable of resisting the vertical shear at the intersection. 
 
Vertical shear resistance for bonded wall intersections 
 
7.11.1  

 
The factored vertical shear resistance at bonded intersections should not exceed the factored 
shear resistance of the masonry taken as 

emmr AfV  16.0  

where eA is effective mortared area of the bed joint for hollow and partially grouted walls. For 

fully grouted walls eA is gross cross-sectional area. 

Minimum horizontal reinforcement shall be provided across the vertical intersection. This 
reinforcement shall be equivalent in area to at least two 3.65 mm diameter steel wires spaced 
400 mm vertically. 
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Vertical shear resistance for unbonded wall intersections 
 
7.11.2  

 
Where wall intersections are not bonded in accordance with Cl.7.11.1, or where additional 
capacity is required, the factored shear resistance of the web-to-flange joint shall be based on 
the shear friction resistance taken as 

hmr CV        

where 
   = 1.0  coefficient of friction for the web-to-flange joint 

hC   = compressive force in the masonry acting normal to the head joint, normally taken as the 
factored tensile force at yield of the horizontal reinforcement that crosses the vertical section. 
The reinforcement must be detailed to enable it to develop its yield strength on both sides of the 
vertical masonry joint, which may be hard to achieve in practice. 
 
Commentary 

 
 
For flanged walls with horizontal reinforcement, resistance to vertical shear sliding is provided 
by the frictional forces between the sliding surfaces, that is, the web and the flange of the wall. 
The shear friction resistance rV  is proportional to the coefficient of friction  , and the clamping 

force hC  acting perpendicular to the joint of height h  (see Figure C-14a)).  

 
hC  is equal to the sum of the tensile yield forces developed in reinforcement of area sA  spaced 

at the distance s , that is, 

h s y sC f A h s  

In case of a flanged shear wall with openings, shear friction resistance rV  is provided by wall 
segments between the openings, as shown in Figure C-14b).  
 
Reinforcement providing the shear friction resistance should be distributed uniformly across the 
joint. The bars should be long enough so that their yield strength can be developed on both 
sides of the vertical joint, as shown in Figure C-15b). 
 
Cl.7.11.2 lists three approaches (a, b, and c) that can be used to ensure shear transfer at the 
web-to-flange interface for unbonded masonry. The U.S. masonry design standard TMS 
402/602-16 prescribes intersecting bond beams in intersecting walls at maximum spacing of 
1200 mm (4 ft) on centre. The bond beam reinforcement area shall not be less than 200 mm2 
per metre of wall height (0.1 in2/ft), and the reinforcement shall be detailed to develop the full 
yield stress at the intersection. 
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Figure C-14. Shear friction resistance at the web-to-flange intersection: a) resistance provided 
by the reinforcement; b) flanged shear wall with openings. 

 
When the shear resistance of the web-to-flange interface relies on masonry only (see Figure C-
15a)), the horizontal shear stress fv , due to shear force fV , can be given by: 

we

f
f lt

V
v   

where 

et - effective web width 

wl - wall length 

The designer should also find the vertical shear stress caused by the resultant compression 
force fbP : 

ww

fb
f hb

P
v

*
  

The larger of these two values governs. The factored shear stress should be less than the 
factored masonry shear resistance, mv , as follows 
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f mv v  

 
where  

0.16m m mv f   

If the above condition is not satisfied, horizontal reinforcement needs to be provided 
(see Figure C-15b)), and the following shear resistance check should be used 

r m sv v v   

and 

f rv v  

where sv  is the factored shear resistance provided by the steel reinforcement, which can be 
determined as follows: 

s s y
s

e

A f
v

s t





 

where sA  is area of horizontal steel reinforcement crossing the web-to-flange intersection at the 
spacing s . 
 
Note that the reinforcement that crosses the vertical section has to be detailed to develop yield 
strength on both sides of the vertical masonry joint (see Figure C-15b)). 

 
 

Figure C-15. Shear resistance of the web-to-flange interface: a) bonded masonry intersection; 
b) horizontal reinforcement at the intersection.  
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C.3 Wall Stiffness Calculations 
The determination of wall stiffness is one of the key topics in the seismic design of masonry 
walls. Although this topic has been covered in other references (e.g. Drysdale and Hamid, 2006, 
and Hatzinikolas, Korany and Brzev 2015), a few key concepts are discussed in this section. 
Section C.3.2 derives expressions for the in-plane lateral stiffness of walls under the assumption 
that the walls are uncracked. For seismic analysis it is expected that the walls will be pushed 
into the nonlinear range, and so cracking will occur and the reinforcement will yield. The 
stiffness to be used in seismic analysis should not be the linear elastic (uncracked) stiffness but 
some effective stiffness that reflects the effect of cracking up to the yield capacity of the wall. 
Section C.3.5 gives some suggestions for the effective stiffness of shear walls responding in 
shear-dominant and flexure-dominant modes.  

C.3.1 Lateral Load Distribution 
The distribution of lateral seismic loads to individual walls can be performed once the storey 
shear forces have been determined from the seismic analysis. The flexibility of floor and/or roof 
diaphragms is one of the key factors influencing the load distribution (for more details, see 
Example 3 in Chapter 3). In the case of a flexible diaphragm, the lateral storey forces are 
usually distributed to the individual walls based on the tributary area. In the case of a rigid 
diaphragm, these forces are distributed in proportion to the stiffness of each wall. In calculating 
the wall forces, torsional effects must be considered, as discussed in Section 1.11. The 
distribution of lateral loads (without torsional effects) in a single-storey building with a rigid 
diaphragm is shown in Figure C-16. 

 

Figure C-16. Distribution of lateral loads to individual walls. 

Wall stiffness is usually determined from the elastic analysis, and depends on wall height/length 
aspect ratio, thickness, mechanical properties, extent of cracking, size and location of openings, 
etc.  
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C.3.2 Wall Stiffness: Cantilever and Fixed-End Model 
Wall stiffness depends on the end support conditions, that is, whether a wall or pier is fixed or 
free to move and/or rotate at its ends. Two models for wall stiffness include the cantilever model 
and the fixed-end model, as shown in Figure C-17.  In the cantilever model, the wall is free to 
rotate and move at the top in the horizontal direction – this is usually an appropriate model for 
the walls in a single-storey masonry building.  
 
The stiffness can be defined as the lateral force required to produce a unit displacement, but it 
is determined by taking the inverse of the combined flexural and shear displacements produced 
by a unit load. It should be noted that flexural displacements will govern for walls with an aspect 
ratio of 2 or higher. For example, the contribution of shear deformation in a wall with a 
height/length aspect ratio of 2.0, is 16% for the cantilever model and 43% for the fixed-end 
model. The stiffness equations presented in this section take into account both shear and 
flexural deformations.  
 
The stiffness of a cantilever wall or a pier can be determined from the following equation (see 
Figure C-17 a)): 
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The stiffness of a wall or a pier with the fixed ends can be determined from the following 
equation (see Figure C-17 b)): 
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where 
h  - wall height (cantilever model) or clear pier height (fixed-end model) 
wl  - wall or pier length 

mm fE  850   modulus of elasticity for masonry 
The following assumptions have been taken in deriving the above equations: 

mm EG 4.0      modulus of rigidity for masonry (shear modulus) 

12

* 3
we lt

I   uncracked wall moment of inertia 

6

**5 we
v

lt
A        shear area (applies to rectangular wall sections only) 

where et = effective wall thickness. 



9/1/2018                    C-24

 

Figure C-17. Wall stiffness models: a) cantilever model, and b) fixed-end model. 

The wall stiffnesses for both models for a range of height/length aspect ratios are presented in 
Table D-3. Note that the derivation of stiffness equations has been omitted since it can be found 
in other references (see Hatzinikolas, Korany and Brzev 2015). 

C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls 
In most real-life design applications, walls are perforated with openings (doors and windows). 
The seismic shear force in a perforated wall can be distributed to the piers in proportion to their 
stiffnesses. This approach is feasible when the openings are very large and the stiffness of lintel 
beams is small relative to the pier stiffnesses, or if the lintel beam is very stiff so that connected 
piers act as fixed-ended walls. Figure C-18 illustrates the distribution of the wall shear force V  
to individual piers in direct proportion to their stiffness. Note that, according to this model, the 
wall shear force is equal to the sum of shear forces in the piers, that is,  

 iVV  

where 

iii KV  *  force in the pier i  

Thus 
)*( iiKV   

If the floor diaphragm is considered to be rigid, it can be assumed that the lateral displacement 
in all piers is equal to , that is, 

 CBA  
and so 

  *)( iKV  

Thus 




iK

V
 

where 

 iKK  

denotes the overall wall stiffness for the system. 
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Therefore, the force in each pier is proportional to its stiffness relative to the sum of all pier 
stiffnesses within the wall, as follows 




i

i

i
iiii K

K
V

K

V
KKV ***  

This means that stiffer piers are going to attract a larger portion of the overall shear force. This 
can be explained by the fact that a larger fraction of the total lateral force is required to produce 
the same deflection in a stiffer wall as in a more flexible one.  

 
 

Figure C-18. Shear force distribution in a wall with a rigid diaphragm: a) wall in the deformed 
shape: b) pier forces. 

An approximate approach for determining the stiffness of a solid shear wall in a multi-storey 
building is to consider the structure as an equivalent single-storey structure, as shown in Figure 
C-19. The entire shear force is applied at the effective height, eh , defined as the height at which 
the shear force fV   must be applied to produce the base moment fM , that is, 

f

f
e V

M
h   

The wall stiffness is found to be equal to the reciprocal of the deflection at the effective height 
e , as follows 
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e

K



1

 

This model, although not strictly correct, can be used to determine the elastic distribution of the 
torsional forces as well as the displacements, as illustrated in Example 2 in Chapter 4. 

 

Figure C-19. Vertical combination of wall segments with different stiffness properties. 

Several different elastic analysis approaches can be used to determine the stiffness of a wall 
with openings. A simplified approach suitable for the stiffness calculation of a perforated wall in 
a single-storey building can be explained with the help of an example of the wall X1 shown in 
Figure C-20 (see also Example 3 in Chapter 3). For a unit load applied at the top, the wall 
stiffness calculation involves the following steps: 
 First, calculate the deflection at the top for a cantilever wall, considering the wall to be solid 
( solid ). 
 Next, calculate the deflection for the strip containing openings ( strip ), considering the full 
wall length (i.e. ignore openings). 
 Finally, calculate the deflection for the piers A, B, C, and D ( ABCD ) assuming that all piers 
have the same deflection. 
Note that the deflections for individual components are calculated as the inverse of their 
stiffness values, and that the pier stiffnesses are determined assuming either the cantilever or 
fixed-end models. In most cases, the use of the cantilever model is more appropriate. 

 

Figure C-20. An example of a perforated wall. 

The overall wall deflection can be determined by combining the deflections for these 
components, as follows: 

ABCDstripsolid   
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Note that the strip deflection is subtracted from the solid wall deflections - this removes the 
entire portion of the wall containing all the openings, which is then replaced by the four 
segments. 
 
Finally, the wall stiffness is equal to the reciprocal of the deflection, as follows 




1
K  

C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls 
with Openings 

The approximate approach based on elastic analysis presented in Section C.3.3 is appropriate 
for determining the lateral force distribution in masonry walls. However, that method is not 
adequate for predicting the strengths in perforated reinforced masonry shear walls (walls with 
openings). Openings in a masonry shear wall alter its behaviour and add complexity to its 
analysis and design. When the openings are relatively small, their effect can be ignored, 
however in most walls the openings need to be considered. The following two design 
approaches can be used to design walls with openings: 

1) Plastic analysis method, and 
2) Strut-and-tie method.  

These two approaches have been evaluated by experimental studies and have shown very 
good agreement with the experimental results (Voon, 2007; Elshafie et al., 2002; Leiva and 
Klingner, 1994). The key concepts will be outlined in this section. 
 
C.3.4.1 Plastic analysis method 
The plastic analysis method, also known as limit analysis, can be used to determine the ultimate 
load-resisting capacity for statically indeterminate structures. A masonry wall with an opening as 
shown in Figure C-21a) can be modeled as a frame (see Figure C-21b)). The model is 
subjected to an increasing load until the flexural capacity of a specific section is reached and a 
plastic hinge is formed at that location. (The plastic hinge is a region in the member that is 
assumed to be able to undergo an infinite amount of deformation, and can therefore be treated 
as a hinge for further analysis.) With further load increases, plastic hinges will be formed at 
other sections as their flexural capacity is reached. This process continues until the system 
becomes statically determinate, at which point the formation of one more plastic hinge will result 
in a collapse under any additional load. This is called a collapse mechanism, and an example is 
shown in Figure C-21c). There is usually more than one possible collapse mechanism for a 
statically indeterminate structure, and the mechanism that gives the lowest capacity is closest to 
the ultimate capacity, as this is an upper bound method. 
 
For specific application to perforated masonry walls, the wall is idealized as an equivalent 
frame, where piers are modeled as fixed at the base, and either pinned or fixed at the top, while 
lintels are modeled as fixed at the ends. A failure state is reached when plastic hinges form at 
the member ends, and the collapse mechanism forms. The sequence of plastic hinge formation 
depends on the relative strength and stiffness of the elements. In this approach, structural 
members must be designed to behave mainly in a flexural mode, while a shear failure is 
avoided by applying the capacity design approach. 
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Figure C-21. An example of a plastic collapse mechanism for a frame system: a) perforated 
masonry wall; b) frame model; c) plastic collapse mechanism. 

The following two mechanisms are considered appropriate for the plastic analysis of reinforced 
masonry walls with openings, as shown in Figure C-22 (Leiva and Klingner, 1994; Leiva et al. 
1990): 
 

b) pier mechanism, and 
 
c) coupled wall mechanism. 

 
      
 
 
 
 
 

     a) 
 

 
 
                                   b)          

 
 
                                c) 

Figure C-22. Plastic analysis models for perforated walls: a) actual wall; b) pier model;               
c) coupled wall model (Leiva and Klingner, 1994, reproduced by permission of The 
Masonry Society). 
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A pier mechanism is a collapse mechanism with flexural hinges at the tops and bottoms of the 
piers. A pier-based design philosophy visualizes a perforated wall as a ductile frame. Horizontal 
reinforcement above and below the openings is needed to transfer the pier shears into the rest 
of the wall. A drawback of the pier mechanism is that the formation of plastic hinges at the top 
and bottom of all piers at a story level can lead to significant damage to the piers, which are the 
main vertical load-carrying elements.  
 
A coupled wall mechanism is a collapse mechanism in which flexural hinges are formed at the 
base of the wall and at the ends of the coupling lintels. A perforated wall is modeled as a series 
of ductile coupled walls; this concept is similar to that used for seismic design of reinforced 
concrete shear walls.  The vertical reinforcement in each pier must be designed so that the 
flexural capacity of the piers exceeds the flexural capacity of the coupling beams. To achieve 
this, additional longitudinal reinforcement is placed in the piers, but cut off before it reaches the 
wall base. The shear reinforcement in the coupling beams is designed based on the flexural and 
shear capacity of the piers. Since masonry walls are usually long in plan, the formation of plastic 
hinges at their bases produces large strains in the wall longitudinal reinforcement. Plastic hinges 
must have adequate rotational capacity to allow the complete mechanism to form; this can be 
achieved in wall structures with low axial load. To ensure the successful application of the 
plastic analysis method, the wall reinforcement must be detailed to develop the necessary 
strength and inelastic deformation capacity. 
 
Figure C-23 shows a simple single-storey wall that is analyzed for the two mechanisms.  
Ultimate shear forces corresponding to the pier and coupled wall mechanisms can be 
determined from the equations of equilibrium assuming that the moments at the plastic hinge 
locations are known. These equations are summarized in Figure C-23 (Elshafaie et al., 2002). 
 
The plastic analysis method has a few advantages: stiffness calculations are not required, and 
the designer can choose the failure mechanism, which ensures a desirable ductile response. 
The designer needs to have a general background in plastic analysis, which is covered in 
several references, e.g. Bruneau, Uang, and Whittaker (1998) and Ferguson, Breen, and Jirsa 
(1988). This method is also used for the seismic analysis of concrete and steel structures, and 
is referred to as nonlinear static analysis or pushover analysis. 
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    a) 

 
    b) 

Figure C-23. Ultimate wall forces according to the plastic analysis method: a) pier mechanism; 
b) coupled wall mechanism (Elshafaie et al., 2002, reproduced by permission of the Masonry 
Society). 

 
C.3.4.2 Strut-and-Tie Method 
The strut-and-tie method essentially follows the truss analogy approach used for shear design 
of concrete and masonry structures. Pin-connected trusses consist of steel tension members 
(ties), and masonry compression members (struts). The masonry compression struts develop 
between parallel inclined cracks in the regions of high shear. The essential feature of this 
approach is that the designer needs to find a system of internal forces that is in equilibrium with 
the externally applied loads and support conditions. A further essential feature is that the 
designer must ensure that the steel and masonry tie members provided adequately resist the 
forces obtained from the truss analysis. 
 
The design of tension ties is particularly important. If a ductile response is to be assured, the 
designer should choose particular tension chords in which yielding can best be accommodated.  
Other ties can be designed so that no yielding will occur by using the capacity design approach. 
The magnitudes of the forces in critical tension ties can be determined from statics, 
corresponding to the overturning moment capacity of the wall using the nominal material 
properties (rather than the factored ones). The remaining forces are then determined from the 
equilibrium of nodes (conventional truss analysis). Compression forces developed in masonry 
struts are usually small due to the small compression strains and do not govern the design. 
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Careful detailing of the wall reinforcement is necessary to ensure that the actual structural 
response will correspond to that predicted by the analytical model.  
 
The designer needs to use judgement to simplify the force paths that are chosen to represent 
the real structure – these differ considerably depending on individual judgement.  
 
An example of a strut-and-tie model for a two-storey perforated masonry wall subjected to 
seismic lateral load is shown in Figure C-24 (note that gravity load also needs to be considered 
in the analysis, however it is omitted from the figure). It can be seen that two different models 
are required to account for the alternate direction of seismic load. The examples show the 
seismic load being applied as a compressive load to the building; however, these loads should 
be applied to the floor levels, depending on the diaphragm-to-wall connection. The designated 
tie members in one model will become struts in the other model (when the seismic load changes 
direction). An advantage of the reversible nature of seismic forces is that a significant fraction of 
the inelastic tensile strains imposed on the end strut members is recoverable due to force 
reversal, thereby providing hysteretic energy dissipation. A detailed solution for this example is 
presented in the User’s Guide by NZCMA (2004). 
 

 

Figure C-24. Strut-and-tie models for a masonry wall corresponding to different directions of 
seismic loading (NZCMA, 2004, reproduced by the permission of the New Zealand Concrete 
Masonry Association Inc.). 

Strut-and-tie models are used for the design of masonry walls in New Zealand, and this 
approach is explained in more detail by Paulay and Priestley (1992). The New Zealand Masonry 
Standard NZS 4230:2004 (SANZ, 2004) recommends the use of strut-and-tie models for the 
design of perforated reinforced masonry shear walls. In Canada, strut-and-tie models are used 
to design discontinuous regions of reinforced concrete structures according to the Standard 
CSA A23.3-04 Design of Concrete Structures. The design concepts and applications of strut-
and-tie models for concrete structures in Canada are covered by McGregor and Bartlett (2000).   
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C.3.5 The Effect of Cracking on Wall Stiffness 
The behaviour of masonry walls under seismic load conditions is rather complex and depends 
on the failure mechanism (shear-dominant or flexure-dominant), as discussed in Section 2.3.1. 
Figure C-25 shows the hysteretic response of shear-dominant and flexure-dominant walls. The 
effective stiffness discussed in this section reflects the secant stiffness up to first crack in brittle 
shear-dominant walls, and the stiffness for an elastic-perfectly-plastic model that would 
approximate the strength envelope of the hysteretic plot in ductile flexure-dominant walls.  
 
For the shear-dominant mechanism, the response is initially elastic until cracking takes place, at 
which point there is a substantial drop in stiffness. This is particularly pronounced after the 
development of diagonal shear cracks. After a few major cracks develop, the load resistance is 
taken over by the diagonal strut mechanism, and the shear stiffness can be estimated by an 
appropriate strut model. However, the stiffness drops significantly shortly after the strut 
mechanism is formed and can be considered to be zero for most practical purposes (see Figure 
C-25b)). It is expected that an increase in the quantity of vertical and horizontal steel and/or the 
magnitude of axial compressive stress causes a reduced crack size and an increase in the 
shear stiffness (Shing et al., 1990).  

 
 

Figure C-25. Cracking pattern and load-displacement curves for damaged masonry wall 
specimens tested by Shing et al. (1990, 1991): a) flexure-dominant response, and b) shear-
dominant response (Kingsley, Shing, and Gangel, 2014). 



9/1/2018                    C-33

For the flexure-dominant mechanism, a drop in the stiffness immediately after the onset of 
cracking is not very significant. As can be seen from Figure C-25a), the stiffness drops after the 
yielding of vertical reinforcement takes place, and continues to drop with increasing inelastic 
lateral deformations (this depends on the ductility capacity of the wall under consideration). The 
specimen for which the results are shown in Figure C-25a) showed yielding of vertical 
reinforcement and compressive crushing of masonry at the wall toes (Shing et al., 1989). 
 
Note that the height of wall test specimens shown in Figure C-23 was 1.8 m (6 feet), thus a 
2.5% drift ratio permitted by the NBC 2015 for regular buildings corresponds to 45 mm (1.8 inch 
) displacement. It can be seen that the displacements and drifts in these specimens are very 
low, particularly so for the shear-dominant specimen shown in Figure C-25b). 
      
Evidence from studies that focus on quantifying the changes in in-plane wall stiffness under 
increasing lateral loading are limited, so CSA S304-14 and other masonry codes do not provide 
guidance related to this issue. Shing et al. (1990) tested a series of 22 cantilever block masonry 
wall specimens that were laterally loaded at the top, with a height/length aspect ratio of 1.0. 
Based on the experimental test data, they have recommended the following empirical equation 
for the lateral stiffness of a wall with a shear-dominant response 

elshearce KKfK  )1073.02.0(      ( 15)                     
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 is the shear stiffness of a wall/pier 

h = wall height 

wl = wall length 

et = effective wall thickness 

cf  = axial compressive stress (MPa) 

The above equation is based on the force/displacement measurements taken just after the first 
diagonal crack developed, in specimens with a height/length ratio of 1.0. For seismic 
applications where the walls are expected to yield in flexure before failing in shear, and the 
lateral stiffness is used to estimate the fundamental period of the structure and to determine the 
seismic displacements, it is more appropriate to determine the effective stiffness from a cracked 
section analysis at first yield of the tension reinforcement.  
 
A study by Priestley and Hart (1989), based on the cracked transformed section stiffness at first 
yield of the tension reinforcement, recommends that the effective moment of inertia, eI , of a wall 
can be approximated by: 
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where 

yf = steel yield strength (MPa) 

fP  = factored axial load 

eA  = effective cross-sectional area for the wall 

mf   = masonry compressive strength, and 
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I   is the gross moment of inertia of the wall.  

Note that the first term in the bracket, yf100 , is equal to 0.25 for 400yf  MPa (Grade 400 
steel). The second term is a ratio of axial compressive stress in the wall, equal to ef AP , and 
the masonry compressive strength, mf  .  
 
The above relation is based solely on consideration of flexural stiffness, and is a best fit 
relationship for several different values of height/length ratio ( wlh ), steel strength, vertical 
reinforcement ratio and axial load. Other considerations are whether the vertical reinforcement 
is uniformly distributed across the wall length or concentrated at the ends, and the effect of 
tension stiffening. The vertical reinforcement ratio is not included in the above expression, and 
as a result, the wall stiffness is overestimated for lightly reinforced walls and underestimated for 
heavily reinforced walls. 
 
If it is assumed that wall cracking causes the same proportional decrease in the effective shear 
area as it does for the moment of inertia, then the stiffnesses can be combined to give the 
following equation for the reduced wall stiffness, ceK ,  
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is the combined stiffness of an uncracked cantilever wall or pier, considering both the flexural 
and shear deformation components (refer to Section C.3.2 for the wall stiffness equations). 
 
The terms in the large right-hand bracket of the cK  equation give the comparative value of 
flexural deformation to shear deformation. At a wlh  ratio of 1.0, flexure contributes 4/7 of the 
total deformation and shear 3/7, while at a wlh  ratio of 0.5, shear contributes ¾ of the total 
defection. 
 
The Priestley and Hart equation was obtained using experimental data related to cantilever wall 
specimens, however it may also be used for fixed-end walls. The stiffness equation for these 
walls, feK ,  is the same as for the cantilever walls, that is, 
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A comparison of the proposed equations for a masonry block wall under axial compressive 
stress is presented in Figure C-26. The following values were used in the calculations: 

400yf  MPa, ef AP  = 1 MPa, and mf   = 10 MPa.  
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Note that the Shing equation is only shown for wlh  up to 1.5 as it is based entirely on shear 
deformation. Since the Shing equation represents stiffness at first diagonal cracking, it is 
expected to give higher stiffness values than the Priestley-Hart equation. Use of the Priestley-
Hart stiffness equation is recommended since it is valid for all wlh  ratios. 
 
The elastic uncracked stiffness could be used to distribute lateral seismic load to individual walls 
and piers, but the reduced cracked stiffness should be used for period estimation and deflection 
calculations.  
 
The wall design deflections can be found from the following equation: 

E

od
eldesign I

RR *
*  

where 
el = elastic deflections calculated using the reduced wall stiffness ( ceK  or feK ) and the 

factored design forces, and 

E

od

I

RR *
= deflection multiplier to account for the effects of ductility, overstrength, and the 

building importance factor (see Section 1.13) 
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Figure C-26. A comparison of the stiffness values obtained using the Shing and Priestley-Hart 
equations. 
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D Design Aids  
Table D-1.  Properties of Concrete Masonry Walls (per metre or foot length)1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
1 Source: Masonry Technical Manual (MIBC, 2017, reproduced by permission of the Masonry Institute of 
BC) 
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Table D-2.  wlc ratio, yf  = 400 MPa 
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Figure D-1: wlc ratio, yf  = 400 MPa 
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Table D-3. Wall Stiffness Values  tEK m *  
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E    Notation 
 

maxa  = maximum acceleration 

a  = depth of the compression zone (equivalent rectangular stress block) 

wa  = clear distance between the adjacent cross walls 

bA  = area of reinforcement bar 

cA  = area of concentrated reinforcement at each end of the wall 

chA  = cross-sectional area of core of the boundary element 

dA  = area of distributed reinforcement along the wall length  

eA = effective cross-sectional area of masonry  

gA = gross cross-sectional area of masonry 

LA  = area of the compression zone (flanged wall section) 

rA  = response amplification factor to account for the type of attachment of equipment or veneer ties 

sA  = area of steel reinforcement 

shA  = total area of rectangular hoop reinforcement (buckling prevention ties) in each horizontal direction 

of the boundary element   

ucA  = uncracked area of the cross-section 

vA  = area of horizontal wall reinforcement 

vtA  = total area of the distributed vertical reinforcement 

vA = shear area of the wall section 

xA  = amplification factor at level x to account for variation of response with the height of the building 

(veneer tie design) 

b  = effective width of the compression zone 

actualb  = actual flange width 

cb  = critical wall thickness  

Tb = overhanging flange width  

wb  = overall web width (shear design) 

B  = torsional sensitivity factor 

c  = neutral axis depth (distance from the extreme compression fibre to the neutral axis) 

C   = compressive force in the masonry acting normal to the sliding plane 
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mC  = the resultant compression force in masonry 

hC  = compressive force in the masonry acting normal to the head joint 

pC  = seismic coefficient for a nonstructural component (veneer tie design) 

d  =  effective depth (distance from the extreme compression fibre to centroid of tension reinforcement) 

vd  = effective wall depth for shear calculations 

d   = distance from the extreme compression fibre to the centroid of the concentrated compression 

reinforcement 

nxD = plan dimension of the building at level x  perpendicular to the direction of seismic loading being 

considered 

e  = load eccentricity  

ae  = accidental torsional eccentricity 

xe  = torsional eccentricity (distance measured perpendicular to the direction of earthquake loading 

between the centre of mass and the centre of rigidity at the level being considered) 

fE  = modulus of elasticity of the frame material (infill walls) 

mE  = modulus of elasticity of masonry 

tf  = flexural tensile strength of masonry (see Table 5 of CSA S304-14) 

mf   = compressive strength of masonry normal to bed joints at 28 days (see Table 4 of CSA S304-14) 

yf  = yield strength of reinforcement 

yhf  = specified yield strength of hoop reinforcement in a boundary element 

F   = force  

( )F T   = site coefficient (NBC 2015 Cl.4.1.8.4) 

tF  = a portion of the base shear V  applied at the top of the building  

elF  = elastic force  

sF  = factored tensile force at yield of horizontal reinforcement 

aF  = acceleration-based site coefficient 

vF  = velocity-based site coefficient 

xF  = seismic force applied to level x   

yF  = yield force 

G = modulus of rigidity for masonry (shear modulus) 
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h  = unsupported wall height/height of the infill wall 

ch  = dimension of core of rectangular section measured perpendicular to the direction of the hoop bars 

(boundary elements) 

nh  = building height 

ph  = extent of the plastic hinge region above the critical section of the shear wall (previously pl ) 

sh  = storey height 

wh  = total wall height 

xh  = height from the base of the structure up to the level x  

bI  = moment of inertia of the beam 

cI = moment of inertia of the column 

EI  = earthquake importance factor of the structure 

J  = numerical reduction coefficient for base overturning moment 

k  = effective length factor for compression member 

nk  = factor accounting for the effectiveness of transverse reinforcement in a boundary element 

1pk  = factor accounting for the compressive strain level in a boundary element 

K  = stiffness 

l  = length of the infill wall 

dl  = length of the diagonal (infill wall) 

sl  = design length of the diagonal strut (infill wall) 

wl  = wall length 

nL  = clear vertical distance between lines of effective horizontal support or clear horizontal distance 

between lines of effective vertical support 

M   = mass 

fM = factored bending moment  

rM = factored moment resistance  

nM = nominal moment resistance  

pM = probable moment resistance  

vM  = factor to account for higher mode effect on base shear 
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ln  = total number of longitudinal bars in the boundary element cross-section that are laterally supported 

by the corner of hoops or by hooks of seismic cross-ties 

N  = axial load arising from bending in coupling beams or piers 

fp = distributed axial stress  

refPGA = reference Peak Ground Acceleration (PGA) for determining ( )F T  

dP  = axial compressive load on the section under consideration 

crP  = critical axial compressive load 

DLP  = dead load  

fbP  = the resultant compression force (flanged walls) 

rP  = factored axial load resistance 

1P  = compressive force in the unreinforced masonry acting normal to the sliding plane 

hP  = horizontal component of the diagonal strut compression resistance (infill walls) 

vP = the vertical component of the diagonal strut compression resistance (infill walls) 

ultP  = ultimate tie strength 

dR  = ductility-related force modification factor 

oR  = overstrength-related force modification factor 

pR  = element or component response modification factor (veneer tie design) 

s  = reinforcement spacing 

 TS  = design spectral acceleration 

)(TSa  = 5% damped spectral response acceleration 

eS  = section modulus of effective wall cross-sectional area 

pS = horizontal force factor for part or portion of a building and its anchorage (veneer tie design) 

t  = overall wall thickness 

et  = effective wall thickness 

ft  = face shell thickness 

T  = fundamental period of vibration of the building 

xT  = torsional moment at level  x  

rT  = the resultant force in steel reinforcement 

yT  = factored tensile force at yield of the vertical reinforcement 
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fv  = distributed shear stress 

mv  = masonry shear strength 

maxv  = maximum velocity  

V  = lateral earthquake design force at the base of the structure  

eV  = lateral earthquake elastic force at the base of the structure 

fV  = factored shear force  

frV  = shear flow resistance  

nbV  = the resultant shear force corresponding to the development of nominal moment resistance nM  at 

the base of the wall 

mV  = masonry shear resistance  

rV  = factored shear resistance  

sV  = average shear wave velocity in the top 30 m of soil or rock 

sV  = factored shear resistance of steel reinforcement 

w  = diagonal  strut width (infill walls) 

ew  = effective diagonal strut width (infill walls) 

W  = seismic weight, equal to the dead weight plus some portion of live load that would move laterally 

with the structure 

pW  = weight of a part or a portion of a structure (veneer tie design) 

xW  = a portion of seismic weight W  that is assigned to level x  

h  = vertical contact length between the frame and the diagonal strut (infill walls) 

L  = horizontal contact length between the frame and the diagonal strut (infill walls) 

  = damping ratio 

d  = ratio of the factored dead load moment to the total factored moment 

1  = ratio of depth of rectangular compression block to depth of the neutral axis 

g = factor to account for partially grouted or ungrouted walls that are constructed of hollow or semi-solid 

units 

max = the maximum storey displacement at level x  at one of the extreme corners in the direction of 

earthquake 
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ave  = the average storey displacement determined by averaging the maximum and minimum 

displacements of the storey at level x  

  = lateral displacement  

p  = plastic displacement  

y  = displacement at the onset of yielding 

el  = elastic displacement 

max  = maximum displacement 

u  = inelastic (plastic) displacement  

m  = the maximum compressive strain in masonry 

s  = strain in steel reinforcement 

y  = yield strain in steel reinforcement 

  = factor used to account for direction of compressive stress in a masonry member relative to the 

direction used for determination of mf   

  = curvature  

u  = ultimate curvature  

y  = yield curvature corresponds to the onset of yielding  

er  = resistance factor for member stiffness 

m
 = resistance factor for masonry 

s
 = resistance factor for steel reinforcement 

  = resistance factor 

h  = horizontal reinforcement ratio 

s  = volumetric ratio of circular hoop reinforcement for buckling prevention ties 

v  = vertical reinforcement ratio   

   = coefficient of friction 

  = displacement ductility ratio 

  = curvature ductility ratio  

  = displacement ductility ratio  

  = angle of diagonal strut measured from the horizontal 
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e = elastic rotation  

ic = inelastic rotational capacity  

id = inelastic rotational demand  

p  = plastic rotation 

  = natural frequency 

 


