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FOREWORD

This is the second edition of the “Seismic Design Guide for Masonry Buildings”. It
supercedes the first edition published in 2009. This Guide is based on the 2015 edition
of the National Building Code of Canada (NBCC) and the 2014 edition of CSA S304,
“Design of Masonry Structures”. The major changes found in this second edition are
described by its authors in the Guide Preface.

The Guide describes the behaviour of masonry under seismic loading, explains and
rationalizes the basis of the seismic design requirements within the NBCC and S304,
and provides guidance and assistance to masonry designers on their interpretation and
use. It describes and details the appropriate methods for seismic design and analysis,
and demonstrates their use by many illustrative design examples. The Guide
necessarily recognizes the high standard of quality control present in modern masonry
structures and the advanced methods used in the structural design of masonry.

As with the first edition, the format and content of the second edition of the Guide have
been specifically developed to address the needs of the practicing structural engineer
designing low-, mid-, and high-rise masonry buildings and their elements. The first
edition also served as an excellent reference guide for academics and instructors.
Although it is written for the Canadian environment, the Seismic Design Guide has been
extremely popular with international designers. There is no similar or comparable guide
for the seismic design of masonry in Canada, and no more comprehensive guide for
masonry internationally.

The Canadian Concrete Masonry Producers Association (CCMPA) is pleased to sponsor
and publish the second edition of the Seismic Design Guide. It is co-authored by Drs.
Anderson and Brzev, two authorities in seismic behaviour and design of masonry, and
also the co-authors of the first edition of the Guide. The CCMPA gratefully
acknowledges the commitment by these authors, and their dedication to masonry
education and research. We recognize the past and on-going work by Dr. Anderson,
Professor Emeritus, University of British Columbia, who has spearheaded and
coordinated the requirements for masonry seismic design through his research, and by
his work on the many past editions of the National Building Code and CSA S304. Until
very recently, Dr. Anderson served as a member of the Standing Committee on
Earthquake Design (SCED). Dr. Anderson’s liaison between the Technical Committee
for CSA S304 and SCED (and its predecessor CANCEE) has been eminently important
for developing the seismic requirements in the S304 standard and for harmonizing its
requirements with those of the NBCC. Dr. Brzev is Adjunct Professor of the University of
British Columbia, and also Visiting Professor in The Faculty of Civil Engineering, Indian
Institute of Technology Gandhinagar. She brings to this Guide, her vast international
experience and understanding of behaviour and design of concrete and masonry
elements and structures, and earthquake engineering. Dr. Brzev undertakes research
and authors seismic research papers, practices professional engineering in British
Columbia, and is co-author of “Reinforced Concrete Design, A Practical Approach”. She
serves as a member of the Technical Committe on CSA S304. We are also grateful to
the editiorial work on this Guide by Mr. Bill McEwen, P.Eng., LEED, retired Executive
Director of the Masonry Institute of British Columbia.

The development of both editions of the Seismic Design Guide has been sponsored by
the Canadian Concrete Masonry Producers Association (CCMPA), a non-profit
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association. The CCMPA provides a united voice for the producers of concrete masonry
products Canada-wide. Our member firms are engaged in the manufacture of concrete
block and concrete brick masonry units used for loadbearing and nonloadbearing
applications, and as veneers. The CCMPA also represents Canadian interests within
the National Concrete Masonry Association, a U.S.-based international association of
concrete masonry producers.

The CCMPA supports the educational work of Canadian universities and other
educational institutions, and the education of the masonry design professional,
practitioner and student, both formally and informally. It sponsors masonry research at
many universities in Canada including British Columbia, Alberta, Calgary,
Saskatchewan, Manitoba, Waterloo, Windsor, McMaster, Carleton, McGill, Concordia,
and Dalhousie. The development and publication of this Guide is part of its continuing
commitment to education. The CCMPA is intimately involved in the development and
maintenance of CSA masonry and masonry-related standards. These standards serve
as the basis for manufacturing and specifying concrete masonry materials and products,
product and assembly testing, and the structural design and construction of masonry
elements. The CCMPA provides input to the development of the National Building Code
of Canada and the National Energy Code for Buildings. The CCMPA continually
develops and disseminates information and design tools needed by designers to deliver
state-of-the-art, safe and serviceable, durable, and cost-effective masonry elements and
structures.

This Guide was developed on the basis of the Limit States Design method of CSA
Standard S304-14. The references to this standard in this Guide neither duplicate nor
replace this standard. Therefore, it is recommended that the user of this Guide obtain a
copy of CSA S304-14, “ Design of Masonry Structures” developed and published by the
Canadian Standards Association (www.csa.ca).

This Guide has given rise to a new generation of masonry buildings and to their
proliferation.

Gary R. Sturgeon, B.Eng., MSc. P.Eng.
Technical Services Engineer
The Canadian Concrete Masonry Producers Association (CCMPA)
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PREFACE

This Guide is intended to assist practicing structural engineers in designing masonry
buildings for seismic load effects according to the National Building Code of Canada
2015 (NBC 2015) and the CSA S304-14 masonry design standard. The Guide includes
commentary comments that explain the underlying theoretical background and rationale
for these seismic provisions. Changes in the seismic design provisions contained in Part
4 of the NBC 2015 and CSA S304-14, and their impact on masonry design and
construction are discussed.

This is a second edition of the Guide. The first edition, published in 2009, has served as
a useful reference for engineers and academics in Canada. Major changes in the
second edition are summarized below:

o Chapter 1 has been revised to address changes in the NBC 2015 (NBC 2005 had
been referenced in the first edition). Section 1.4 from the first edition has been
moved to Appendix A.

e Chapter 2 has been substantially revised to address changes in the CSA S304-14
(CSA S304.1-04 had been referenced in the first edition). Sections 2.5 to 2.7 have
undergone major changes.

e Chapter 3 from the first edition has been removed.

New Chapter 3 (previously Chapter 4) contains design examples which have been
prepared according to NBC 2015 and CSA S304-14. Most examples existed in the
first edition, but have been updated. New Example 5c was developed to illustrate the
design of Ductile reinforced masonry shear walls with boundary elements.

o Appendix A has been changed. Previous content has been removed and it now
contains Section 1.4 from the first edition of the Guide.

e Appendices B, C, D, and E have been updated.

This is a comprehensive state-of-the-art guide on the seismic design and construction of
masonry structural elements for low- to mid-rise structures, such as warehouses,
industrial buildings, schools, commercial buildings, and residential/hotel structures. It is
restricted to masonry structures designed and constructed using concrete block units.
Consideration of the slenderness effects in tall masonry walls is beyond the scope of this
Guide.

The material is presented in a simple and user-friendly manner. It facilitates the
application of seismic design provisions and cross-referencing of code clauses for
designers. The Guide has been developed in a modular form, with the content divided
into three chapters, each of which can be used in a stand-alone manner. The
appendices contain useful resources such as design procedures and research
background for some of the design provisions. For easy reference, relevant code
clauses are identified by framed boxes wherever appropriate.

Chapter 1 provides a review of the general seismic design provisions contained in Part 4
of NBC 2015, including seismic hazard levels, and the equivalent static force procedure.
It discusses key design parameters such as irregularities, torsion, height limitations, and
the ductility and overstrength factors for masonry structures. Additionally, an introduction
to the dynamic analysis of structures to assist in understanding pertinent code provisions
has been included in Appendix A.
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Chapter 2 provides an overview of seismic design requirements for reinforced masonry
walls. Relevant CSA S304-14 design requirements are presented, along with related
commentary that provides detailed explanations of the code provisions. Topics include
reinforced masonry shear walls subjected to in-plane and out-of-plane seismic loads,
and a detailed discussion of the CSA S304-14 seismic design requirements. A few
special topics such as masonry infill walls, stack pattern walls, masonry veneers, and
construction-related issues are also included. Changes in CSA S304-14 seismic design
requirements from the previous CSAS304.1-04 (2004) edition are identified and
discussed, along with their design implications. Appendix B contains resources related to
the Chapter 2 content, including findings of research studies and foreign code provisions
related to the seismic design of masonry structures.

Chapter 3 provides illustrative design examples of the seismic load calculations and
distribution of forces to members according to NBC 2015, and the design of loadbearing
and nonloadbearing masonry elements according to CSA S304-14. The layout of
masonry buildings and the mechanical properties of their components in the examples
are chosen to reflect situations often encountered in design practice, particularly as they
relate to torsionally unsymmetric buildings. These examples are laid out in a step-by-
step manner, with ample explanations and appropriate illustrations provided to clarify the
design process. Appendix C provides relevant background information for the design
examples, including an extensive discussion of in-plane wall stiffness. Appendix D
contains design aids used in the Chapter 3 examples. Appendix E lists the notations
used in the document.

A list of key references, useful for supplementary reading for those interested in pursuing
the subject further, is also included.

Svetlana Brzev and Don Anoderson
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1 Seismic Design Provisions of the National Building Code
of Canada 2015

1.1 Introduction

This chapter provides a review of the seismic design provisions in the 2015 National Building
Code of Canada (NBC 2015) as they pertain to masonry. Reference will be made here to NBC
2005 where appropriate to point out changes. Appendix A contains an introduction to the
dynamic analysis of structures to assist in understanding the NBC provisions. The original
edition of this guideline (Anderson and Brzev, 2009) was produced to address the many
fundamental changes in how seismic risk was evaluated between NBC 2005 and CSA S304.1-
04, and their previous versions.

The seismic response of a building structure depends on several factors, such as the structural
system and its dynamic characteristics, the building materials and design details, and most
importantly, the expected earthquake ground motion at the site. The expected ground motion,
termed the seismic hazard, can be estimated using probabilistic methods, or be based on
deterministic means if there is an adequate history of large earthquakes on identifiable faults in
the region of the site.

Canada generally uses a probabilistic method to assess the seismic hazard, and over the years,
the probability has been decreasing, from roughly a 40% chance (probability) of being exceeded
in 50 years in the 1970s (corresponding to 1/100 per annum probability, also termed the 100-
year earthquake), to a 10% in 50-year probability in the 1980s (the 475-year earthquake), to
finally a 2% in 50-year probability (the 2475-year earthquake) used for NBC 2015. The change
was made so that the risk of building failure in eastern and western Canada would be roughly
the same (Adams and Atkinson, 2003), as well as to explicitly recognize that an acceptable
probability of severe building damage in North America from seismic activity is about 2% in 50
years. Despite the large changes over the years in the probability level for the seismic hazard
determination, the seismic design forces have not changed appreciably because other multiplier
factors in the NBC design equations have changed to compensate for these higher hazard
values. Thus, while the code seismic design hazard has been rising over the years, the average
seismic risk of failure of buildings designed according to the code has not changed greatly,
although there can be substantial changes for certain buildings in certain cases.

Seismic design of masonry structures became an issue following the 1933 Long Beach,
California earthquake in which school buildings suffered damage that would have been fatal to
students had the earthquake occurred during school hours. At that time, a seismic lateral load
equal to the product of a seismic coefficient and the structure weight had to be considered in
those areas of California known to be seismically active. Strong motion instruments that could
measure the peak ground acceleration or displacement were developed around that time, and in
fact, the first strong motion accelerogram was recorded during the 1933 Long Beach
earthquake. However, in this era the most widely used strong ground motion acceleration record
was measured at El Centro during the 1940 Imperial Valley earthquake in southern California.
The 1940 EIl Centro record became famous and is still used by many researchers studying the
effect of earthquakes on structures. However, today there are thousands of records to use, and
the choice of how many and which ones to consider, and whether to scale the records or modify
them somewhat to match the design spectrum is a major consideration in any seismic risk
analysis.

9/1/2018 1-2



With the availability of ground motion acceleration records (also known as acceleration time
history records), it was possible to determine the response of simple structures modelled as
single degree of freedom systems. After computers became available in the 1960s it was
possible to develop more complex models for analysing the response of larger structures. The
availability of computers has also had a huge impact on the ability to predict the ground motion
hazard at a site, and in particular, on probabilistic predictions of hazard on which the NBC
seismic hazard model is based. They also enhanced the ability of engineers to analyse
structures both for linear and nonlinear response.

1.2 Design and Performance Objectives

For many years, seismic design philosophy has been founded on the understanding that it
would be too expensive to design most structures to remain elastic under the forces that the
earthquake ground motion creates. Accordingly, most modern building codes allow structures to
be designed for forces lower than the elastic forces, with the result that such structures may
suffer inelastic strains and be damaged in an earthquake, but they should not collapse, and the
occupants should be able to safely evacuate the building. The past and present NBC editions
follow this philosophy, and allow for lateral design forces smaller than the elastic forces, but they
also impose detailing requirements so that the inelastic response remains ductile and a brittle
failure is prevented, even for larger than expected events.

Research studies have shown that for most structures the lateral displacements or drifts are
about the same, irrespective of whether the structure remains elastic or is allowed to yield and
experience inelastic (plastic) deformations. This is known as the equal displacement rule, and it
will be discussed later in this chapter as it forms the basis for many of the code provisions.

A comparison of building designs performed according to the NBC 2005 and the NBC 2015 will
show an increase in design level forces in some areas of Canada, and a decreased level in
others. However, it is expected that the overall difference between these designs is not
significant.

The NBC 2015 approach to seismic design follows that of previous editions, but its probability
seismic hazard has been determined at many more periods, including periods as long as 10
seconds. Previously the hazard for periods longer than 2 or 4 seconds was based on a
conservative empirical decay relation. Thus, the probability of severe damage or near collapse
remains about 1/2475 per annum, or about 2% in the predicted 50-year life span of the
structure, but hopefully with the NBC 2015 spectral values some designs will be more
economical.

Work on new model codes around the world is leading to what is described as “Performance
Based Design”, a concept that is already being applied by some designers working with private
or public owners who have concerns that building damage will have an adverse effect on their
ability to maintain their business or operations. NBC 2015 only addresses one performance
level, that of collapse prevention and life safety, and is essentially mute on serviceability after
smaller seismic events that are expected to occur more frequently. Performance based design
attempts to minimize the cost of earthquake losses by weighing the costs of repair and lost
business against an increased cost of construction. But this usually requires a nonlinear
analysis utilizing many earthquake records.

9/1/2018 1-3



1.3 Seismic Hazard

The NBC 2015 seismic hazard is based on a 2% in 50 years probability (corresponding to

1/2475 per annum), and it is represented by the 5% damped spectral response acceleration,
S (T), as was the NBC 2005, but the values have changed to reflect new information on the

hazard and on spectral values. The response spectrum for each period has the same probability
of exceedance, and as such is termed a Uniform Hazard Spectrum, or UHS.

For a specified location NBC 2015 gives the UHS values at nine periods and approximates with
straight lines to construct a spectrum, S_(T"), which is termed the hazard spectrum. For many
locations in the country, these values are specified in Table C-3, Appendix C to the NBC 2015,

along with the peak ground acceleration (PGA) and peak ground velocity (PGV). For other

Canadian locations, it is possible to find the values online at:

http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index-en.php

by entering the coordinates (latitude and longitude) of the location. The program does not

directly calculate the S (7") values, but instead, interpolates them from the known values at

several surrounding locations. For detailed information on the models used as the basis for the
NBC 2015 seismic hazard provisions, the reader is referred to Adams et al. (2015), Halchuk et
al. (2014), and Atkinson and Adams (2013).

As an example, Table 1-1 provides nine spectral acceleration values Sa(T), plus values for PGA

and PGV for a Vancouver site. The S; values and PGA, plotted as the S, value at T=0, are

shown in Figure 1-1.

Table 1-1. S, spectral values for Vancouver for the reference ground condition

Sa values for Vancouver (Coordinates 49.2463, -123.1162) Site Class C

T

0.05

0.10

0.20

0.30

0.50

1.00

2.00

5.00

10.00

PGA

PGV

Sa

0.453

0.688

0.851

0.855

0.758

0.427

0.258

0.081

0.029

0.369

0.555

Sa(T) is defined for Site Class C which consists of very dense soil or soft rock. For other site

conditions a Design Spectrum S(T) = F(T) Sa(T) is defined. F(T) is discussed more fully in the
next section.
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Figure 1-1. Uniform Hazard Spectrum Ss(T) for Vancouver (2% in 50 years probability, 5%
damping, Site Class C)

There are limits imposed on the design base shear as discussed in Section 1.6 (NBC 2015 CI.
4.1.8.11.(2)), which can be demonstrated by plotting S(T) and S4(T) for Site Class C, as shown
in Figure 1-2. These limits affect both the short and long period response and also depend on
the type of structure.
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Figure 1-2. Log plot of the UHS Sa(T) and the Design Spectrum S(T) spectrum for Vancouver
with limits in the short and long period regions.

The cut off at low periods may appear to be very conservative, but there are other reasons
related to the inelastic response of such short-period structures for the design loads to be
conservative in this region. Note that many low-rise masonry buildings may have a fundamental
period in the order of 0.2 to 0.3 sec.

1.4 Effect of Site Soil Conditions

In NBC 2015, the seismic hazard given by the S, (T") spectrum has been developed for a site
that consists of very dense soil or soft rock, referred to as Site class C by NBC 2015. If the
structure is to be located on soil that is softer than this, the ground motion may be amplified, or
in the case of rock or hard rock sites, the motion may be de-amplified. NBC 2015 introduces a
new site coefficient F(t) which is applied to the Site Class C S, (T") spectrum to account for the
local ground conditions. The coefficient depends on the building period and level of seismic
hazard, as well as on the site properties, which are described in terms of site classes.

The NBC 2015 site coefficient is more detailed than the foundation factors, F, and F,, provided
in previous code editions, but should better represent the effect of the local soil conditions on
the seismic response.

Table 1-2 excerpted from NBC 2015, describes five site classes, labelled from A to E, which
correspond to different soil profiles (note that a sixth class, F, is one that fits none of the first five
and would require a special investigation). The site classes are based on the properties of the
soil or rock in the top 30 m. Site Class C is the base class for which the site coefficients are
unity, i.e. it is the type of soil on which the seismic data used to generate the §, (T) spectrum is
based. The table identifies three soil properties that can be used to identify the site class; the
best one being the average shear wave velocity, V., which is a parameter that directly affects
the dynamic response. The other classes are Average Standard Penetration Resistance Ny,
and the Soil Undrained Shear Strength s..

NBC 2015 and Commentary J (NRC, 2006) do not discuss the level from which the 30 m should
be measured. For buildings on shallow foundations, the 30 m should be measured from the
bottom of the foundation. However, if the building has a very deep foundation where the ground
motion forces transferred to the building may come from both friction at the base and soil
pressures on the sides, the answer is not so clear and may require a site-specific investigation.
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Table 1-2. NBC 2015 Site Classification for Seismic Response (NBC 2015 Table 4.1.8.4.-A)

Average Properties in Top 30 m, as per NBC Note A-4.1.8.4(3) and
sit G d Profil Table 4.1.8.4.-A
Cllases rou"r:am;'o re Average Shear Wave Average Standard Soil Undrained
Velocity, Vs (m/s) Penetration Shear Strength, s,
Resistance, N go
A Hard rock™® Vs> 1500 Not applicable Not applicable
B Rock™ 760 < Vs< 1500 Not applicable Not applicable
Very dense soil - —
Cc and soft rock 360 <Vs<760 N o> 50 su > 100kPa
) Stiff soil 180 < Vs < 360 15 < N o< 50 50 < su < 100kPa
V<180 Neo< 15 su < 50kPa
. Any profile with more than 3 m of soil with the following characteristics:
E | Soft soil = plasticity index: Pl > 20
= moisture content: w > 40%; and
= undrained shear strength: sy < 25 kPa
F Other soils® Site-specific evaluation required

Reproduced with the permission of the National Research Council of Canada, copyright holder

Notes:

() Site Classes A and B, hard rock and rock, are not to be used if there is more than 3 m of softer
materials between the rock and the underside of footing or mat foundations. The appropriate Site Class
for such cases is determined on the basis of the average properties of the total thickness of the softer
materials (see Note A-4.1.8.4.(3) and Table 4.1.8.4.-A)

2 Where V s30 has been measured in-situ, the F(T) values for Site Class A derived from Tables

4.1.8.4.-B to 4.1.8.4.-G are permitted to be multiplied by the factor 0.04+(1500/ V s30)"2.
@) Other soils include:
a) liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils,
and other soils susceptible to failure or collapse under seismic loading,
b) peat and/or highly organic clays greater than 3 m in thickness,
c) highly plastic clays (PI>75) more than 8 m thick, and
d) soft to medium stiff clays more than 30 m thick.

NBC 2015 Tables 4.1.8.4.-B to -G define a function F(T) for each soil class and earthquake
strength in terms of PGA. Because of different shapes of the S;(T) spectrum, mainly between
eastern and western sites, the code uses PGA. rather than PGA in determining the F(T) values
(NBC Cl.4.1.8.4.4):

PGAs = 0.8'PGA when the ratio S,(0.2)/PGA < 2.0, otherwise PGAs =PGA.

Note that the foundation factors, F, and F,, which were used in NBC 2005 and are still needed
for some seismic design parameters, are related to the F(T) as follows (NBC Cl.4.1.8.4.7):

Fa=F(0.2) and F, = F(1.0)

Values of F(T) factor as a function of the site class and PGAs are given in the following tables
for T values of: 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 sec.

9/1/2018 1.7



Table 1-3. Values of F(0.2) as a Function of Site Class and PGA (NBC 2015 Table 4.1.8.4.-B)

F(0.2)
Site class | PGAwer< 0.1 | PGAw=0.2 | PGA«=0.3 | PGAe=0.4 | PGAe 0.5
A 0.69 0.69 0.69 0.69 0.69
B 0.77 0.77 0.77 0.77 0.77
C 1.00 1.00 1.00 1.00 1.00
D 1.24 1.09 1.00 0.94 0.90
E 1.64 1.24 1.05 0.93 0.85
F (1) (1) (1) (1) (1)

Table 1-4. Values of F(0.5) as a Function of Site Class and PGA.s (NBC 2015 Table 4.1.8.4.-C)

F(0.5)
Site class | PGAwt< 0.1 | PGAwi=0.2 | PGAw=0.3 | PGAw=04 | PGAw 20.5
A 0.57 0.57 0.57 0.57 0.57
B 0.65 0.65 0.65 0.65 0.65
C 1.0 1.0 1.0 1.0 1.0
D 1.47 1.30 1.20 1.14 1.10
E 2.47 1.80 1.48 1.30 117
F (1) (1) (1) (1) (1)

Table 1-5. Values of F(1.0) as a Function of Site Class and PGA.s (NBC 2015 Table 4.1.8.4.-D)

F(1.0)
Site class | PGAwr< 0.1 | PGAwr=0.2 | PGAw=0.3 | PGAei=0.4 | PGAwer 20.5
A 0.57 0.57 0.57 0.57 0.57
B 0.63 0.63 0.63 0.63 0.63
C 1.0 1.0 1.0 1.0 1.0
D 1.55 1.39 1.31 1.25 1.21
E 2.81 2.08 1.74 1.53 1.39
F (1) (1) (1) (1) (1)

Table 1-6. Values of F(2.0) as a Function of Site Class and PGA (NBC 2015 Table 4.1.8.4.-E)

F(2.0)
Site class | PGAwr< 0.1 | PGAwi=0.2 | PGAw=0.3 | PGAw=04 | PGA. 20.5
A 0.58 0.58 0.58 0.58 0.58
B 0.63 0.63 0.63 0.63 0.63
C 1.0 1.0 1.0 1.0 1.0
D 1.57 1.44 1.36 1.31 1.27
E 2.90 2.24 1.92 1.72 1.58
F (1) (1) (1) (1) (1)
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Table 1-7. Values of F(5.0) as a Function of Site Class and PGA (NBC 2015 Table 4.1.8.4.-F)

F(5.0)
Site class PGAs< 0.1 PGAr=0.2 | PGAr=0.3 | PGAer=0.4 | PGAer 20.5

A 0.61 0.61 0.61 0.61 0.61
B 0.64 0.64 0.64 0.64 0.64
C 1.00 1.00 1.00 1.00 1.00
D 1.58 1.48 1.41 1.37 1.34
E 2.93 2.40 2.14 1.96 1.84
F (1) (1 (1) (1) (1)

Table 1-8. Values of F(10.0) as a Function of Site Class and PGA.s (NBC 2015 Table 4.1.8.4.-

G)
F(10.0)
Site class PGA%i< 0.1 | PGAw=0.2 | PGAe=0.3 | PGA=04 | PGAw 20.5
A 0.67 0.67 0.67 0.67 0.67
B 0.69 0.69 0.69 0.69 0.69
C 1.00 1.00 1.00 1.00 1.00
D 1.49 1.41 1.37 1.34 1.31
E 2.52 2.18 2.00 1.88 1.79
F (1) (1) (1) (1) (1)

Table 1-9 and 1-10 present values of F(PGA) and F(PGV) as a function of the site class and

PGAref.

Table 1-9. Values of F(PGA) as a Function of Site Class and PGA.s (NBC 2015 Table 4.1.8.4.-

H)
F(PGA)
Site class | PGAe< 0.1 | PGAw=0.2 | PGAw=0.3 | PGAw=0.4 | PGAe 20.5

A 0.90 0.90 0.90 0.90 0.90

B 0.87 0.87 0.87 0.87 0.87

C 1.00 1.00 1.00 1.00 1.00

D 1.29 1.10 0.99 0.93 0.88

E 1.81 1.23 0.98 0.83 0.74

F () (1) (1) (1) (1)

(

Notes: () See Sentence 4.1.8.4.(6).
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Table 1-10. Values of F(PGV) as a Function of Site Class and PGA s (NBC 2015 Table 4.1.8.4.-

)
F(PGV)
Site class PGAe< 0.1 PGAer=0.2 | PGAr=0.3 | PGAwer=0.4 | PGAwer 20.5
A 0.62 0.62 0.62 0.62 0.62
B 0.67 0.67 0.67 0.67 0.67
C 1.00 1.00 1.00 1.00 1.00
D 1.47 1.30 1.20 1.14 1.10
E 2.47 1.80 1.48 1.30 1.17
F ) Q) (1) (1) (1

Notes: () See Sentence 4.1.8.4.(6).
Reproduced with the permission of the National Research Council of Canada, copyright holder

Note that the F(T), F(PGA), and F(PGV) values depend on the level of seismic hazard as well
as the site soil class. For soft soil sites (site classes D and E), motion from a high hazard event
would lead to higher shear strains in the soil, which gives rise to higher soil damping and results
in reduced site coefficients. The softer the soil, as given by a higher site classification, the larger
the site coefficients. For rock and hard rock, the site coefficients will generally be less than unity
and are not much affected by the seismic hazard level.

The calculation of S(T) values will be illustrated with an example and the resulting spectra for
site Classes C and E are given in Table 1-11.

Figure 1-3 shows the design seismic hazard spectrum, S;(T), for Vancouver for a firm ground
site, Class C, and a soft soil site, Class E. Since soil Class C is the reference soil class the F(T)
values are all unity and the S(T) values are the same as the S;(T) values. The F(T) values of
site Class E must be interpolated from Tables 4.1.8.4-B to -G.

The calculations to determine S;(T) for the Class E site in Vancouver are shown below (see
NBC Clause 4.1.8.4.9)):

For T<0.2 sec:

For T= 0.5 sec:
For T=1.0 sec:
For T= 2.0 sec:
For T= 5.0 sec:
For T210.0 sec:

9/1/2018

S(0.2) = F(0.2)*S4(0.2) or F(0.5)Sa(0.5), whichever is larger
S(0.5) = F(0.5)*S4(0.5)
S(1.0) = F(1.0)*S. (1.0)
S(2.0) = F(2.0)*S4(2.0)
S(5.0) = F(5.0)*S4(5.0)
S(10.0) = F(10.0)*S4(10.0)



Table 1-11. Design Spectral Values and F(T) Values for Site Class C and E in Vancouver

S=S, values for Vancouver (Coordinates 49.2463, -123.1162), Site Class C

T 0.05 | 0.10 | 0.20 | 0.30 | 0.50 | 1.00 | 2.00 | 5.00 | 10.00 | PGA | PGV

S=Sa | 0.453 | 0.688 | 0.851 | 0.855 | 0.758 | 0.427 | 0.258 | 0.081 | 0.029 | 0.369 | 0.555

F(T) values for Site Class E

T 0.05 | 0.10 | 0.20 | 0.30 | 0.50 | 1.00 | 2.00 | 5.00 | 10.00 | PGA | PGV

F(T) 0.967 1.356 | 1.591 | 1.782 | 2.016 | 1.917

S(T) values for Vancouver, Site Class E

S 0.823 1.028 | 0.681 | 0.460 | 0.163 | 0.056

The resulting S(T) design spectra for soil Classes C and E for Vancouver are plotted in Figure
1-3. Note that since F(0.2)*S(0.2) is less than F(0.5)*S(0.5), for Site Class E the S(T) spectra for
T<0.2 is the F(0.5)*S(0.5) value.

e e 2 o A e
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(111 SRR UTRS——————, S

O B

1 e e

Spectral Acceleration (g)

Period (sec)

Figure 1-3. NBC 2015 design spectra for Vancouver for site Classes C and E.
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1.5 Methods of Analysis

NBC 2015 prescribes two methods of calculating the design base shear for a structure. The
dynamic method is the default method, but the equivalent static method can be used if the
structure meets any of the following criteria:

(a) is located in a region of low seismic activity where [, F S (0.2) <0.35 (I, is the earthquake
importance factor of the structure as defined in Clause 4.1.8.5.(1)), or

(b) is a regular structure less than 60 m in height with period, T, , less than 2 seconds in either
direction (7, is defined as the fundamental lateral period of vibration of the structure in the
direction under consideration, as defined in Clause 4.1.8.11.(3)), or

(c) is an irregular structure, but does not have Type 7 or Type 9 irregularity, and is less than 20
m in height with period, 7, less than 0.5 seconds in either direction.

The equivalent static method will be described in this section because it likely can be used on
the majority of masonry buildings given the above criteria, and notwithstanding, if the dynamic
method is used, it must be calibrated back to the base shear determined from the equivalent
static analysis procedure. Basic concepts of the modal dynamic analysis method are presented
in Appendix A, and further discussion is offered in Section 1.14.

1.6 Base Shear Calculations- Equivalent Static Analysis Procedure

The lateral earthquake forces used for design are specified in the NBC 2015, and are based on
the maximum (design) base shear)’, of the structure as given by Clause 4.1.8.11, and is the
base shear if the structure were to remain elastic. Design base shear, 7, is equal to v, reduced
by the force reduction factors, R, and R, (related to ductility and overstrength, respectively;
discussed in Section 1.7), and increased by the importance factor I, (see Table 1-12 for a
description of parameters used in these relations), thus;

V — VeIE

Ra’R()
where V, = S(Ta )MVW , represents the elastic base shear, M is a multiplier that accounts for
higher mode shears, and W is the dead load attached to the SFRS, as defined in Table 1-12.

The relationship between 17, and ' is shown in Figure 1-4. Note that the actual strength of the
structure is greater than the design strength because of the overstrength factor Ro.

T, denotes the fundamental period of vibration of the building or structure in seconds in the
direction under consideration. The fundamental period of wall structures is given in the NBC
2015 by:

a) T,=0.05(k, )", where h, is the height of the building in metres (Cl.4.1.8.11.3.(c)), or
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b) other established methods of mechanics, except that 7, should not be greater than 2.0

times that determined in (a) above (Sub Cl.4.1.8.11.3.(d)(iii). Note the 4 second floor in Fig
1-3.

Base )
Shear

Vi

e

~

o~

I | ¢

V=R,R

o0

|
|
I
|
|
|
1

A, Displacement

Figure 1-4. Relation between design base shear,V , and elastic base shear, V.

The period given by the NBC 2015 in (a) is a conservative (short) estimate based on measured
values for existing buildings. Using method (b) will generally result in a longer period, with
resulting lower forces, and should be based on stiffness values reflecting possible cracked
sections and shear deformations. For the purpose of calculating deflections, there is no limit on
the calculated period as a longer period results in larger displacements (a conservative
estimate), but it should never be less than that period used to calculate the forces.

NBC 2015 Clause 4.1.8.11.(2) prescribes the following lower and upper bounds for the design
base shear, V;

a) Lower bound:
Because of uncertainties in the hazard spectrum, S, (T) for periods greater than 2 seconds, the
minimum design base shear for walls, coupled walls and wall frame systems
should not be taken less than:
S0, 1w
min R‘!RO
For moment resisting frames, braced frames, and other systems, the minimum base shear
should not be taken less than:
_S(ow 1, w
min RdRO

b) Upper bound:
Short period structures have small displacements, and there is not a huge body of evidence of
failures for very low period structures, provided the structure has some ductile capacity. Thus an

upper bound on the design base shear, provided R, > 1.5, need not be greater than the larger
of:
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max

Vm

(25(30.2))( éij and

W
. (5(0.5))[ R RJ

M is not included in the above equations as M =1 for short periods.

Table 1-12. NBC 2015 Seismic Design Parameters

Design parameter

NBC
reference

S(T)

the design spectral acceleration that includes the site soil
coefficient F(T)

For T<0.2sec: $S(0.2) = F(0.2)*S4(0.2) or F(0.5)Sa(0.5),
whichever is larger

For T=0.5sec: S(0.5) = F(0.5)*S4(0.5)

For T=1.0 sec: S(1.0) = F(1.0)*S; (1.0)

For T=2.0 sec: S(2.0) = F(2.0)*S4(2.0)

For T=5.0 sec: S(5.0) = F(5.0)*S4(5.0)

For T=10.0 sec: S(10.0) = F(10.0)*S4(10.0)

Cl.4.1.8.4(9)

higher mode factor (see Section 1.8)

Cl.4.1.8.11.(6)
Cl.4.1.8.11.(8)
Table 4.1.8.11

importance factor for the design of the structure:

1.5 for post-disaster buildings,

1.3 for high importance structures, including schools and places of
assembly that could be used as refuge in the event of an
earthquake,

1.0 for normal buildings, and

0.8 for low importance structures such as farm buildings where
people do not spend much time.

See Table 4.1.2.1 in NBC 2015 Part 4 for more complete definitions

of the importance categories. There are also requirements for the

serviceability limit states for the different categories.

Cl.4.1.8.5(1)
Table 4.1.8.5

dead load plus some portion of live load that would move laterally
with the structure (also known as seismic weight). Live loads
considered are 25% of the design snow load, 60% of storage loads
for areas used for storage, and the full contents of any tanks.

Cl.4.1.8.2

ductility related force modification factor that represents the
capability of a structure to dissipate energy through inelastic
behaviour (see Table 1-13 and Section 1.7); ranges from 1.0 for
unreinforced masonry to 3.0 for ductile masonry shear walls.

Table 4.1.8.9

overstrength related force modification factor that accounts for the
dependable portion of reserve strength in the structure (see Table
1-13 and Section 1.7); equal to 1.5 for all reinforced masonry walls.

Table 4.1.8.9
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Note that the design base shear force, I, corresponds to the design force at the ultimate limit
state, where the structure is assumed to be at the point of collapse. Consequently, seismic
loads are designed with a load factor value of 1.0 when used in combination with other loads
(e.g. dead and live loads; see Table 4.1.3.2.-A, NBC 2015). It is also useful to recall that while
7 represents the design base shear, individual members are designed using factored
resistances, ¢R , and since the nominal resistance, R, is greater than the factored resistance,
the actual base shear capacity will be approximately equal to V'R , as shown in Figure 1-4.

1.7 Force Reduction Factors R, and R,

Table 1-13 (NBC 2015 Table 4.1.8.9) gives the R, and R, values for the different types of

lateral load-resisting systems, which are termed the Seismic Force Resisting Systems,
SFRS(s), by NBC 2015 Cl.4.1.8.2. The SFRS is that part of the structural system that has been
considered in the design to provide the lateral resistance to the earthquake forces and effects.

In addition to providing the R, and R, values, the table lists height limits for the different
systems, depending on the level of seismic hazard and importance factor, /¢

Table 1-13. Masonry R, and R, Factors and General Restrictions" - Forming Part of Sentence
4.1.8.9(1)

Height Restrictions (m) @
Cases where IgF.S.(0.2 Cases
Type of SFRS Rd Ro >0.2 | 20.35 where
<0.2 to to | >0.75 | IeF.Sa(1.0)
<0.35 | <0.75 >0.3
Masonry Structures Designed and Detailed According to CSA S304-14
Ductile shear walls 3.0 1.5 NL NL 60 40 40
Moderately Ductile shear 20 1.5 NL NL 60 40 40
walls
Conventional construction - 1.5 1.5 NL 60 30 15 15
shear walls
Conventional construction - 1.5 1.5 NL 30 NP NP NP
moment resisting frames
Unreinforced masonry 1.0 1.0 30 15 NP NP NP
Other masonry SFRS(s) not 1.0 1.0 15 NP NP NP NP
listed above

Reproduced with the permission of the National Research Council of Canada, copyright holder
Notes: (1) See Article 4.1.8.10.
(2) NP = system is not permitted.
NL = system is permitted and not limited in height as an SFRS; height may be limited in other
parts of the NBC.
Numbers in this Table are maximum height limits above grade in m.
The most stringent requirement governs.
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| Commentary

NBC 2015 Table 4.1.8.9 identifies the following five SFRS(s) related to masonry construction:
Ductile shear walls (new SFRS introduced in NBC 2015)

Moderately Ductile shear walls

Conventional construction: shear walls and moment resisting frames

Unreinforced masonry

Other undefined masonry SFRS(s)

abrown~

Note that Ductile shear walls are assigned the highest R, value of 3.0, leading to the lowest
design forces for masonry structures. The detailing requirements, given in CSA S304 -14, are
the most restrictive of all the masonry shear wall types. However, the height limitations imposed
by the NBC 2015 are the most liberal, allowing structures up to 60 m in height (approximately 20
storeys) in moderately high seismic regions, and up to 40 m in higher seismic regions.

Moderately Ductile shear walls, R,= 2.0, have the same height restrictions as Ductile shear
walls. They have less restrictive detailing requirements, but have to be designed for larger
forces, generally resulting in a stiffer structure with less ductility demand. Moderately ductile
shear walls are required for masonry SFRS(s) used in post-disaster buildings, due to the NBC
requirement for an R, = 2.0 for these structures.

Moderately Ductile squat shear walls, those with a height-to-length ratio less than 1, are a
separate class of Moderately ductile shear wall. They are allowed higher shear resistance, and
less restrictive requirements on the height-to-thickness ratio, when compared to regular
Moderately Ductile shear walls.

Conventional construction shear walls and moment-resisting frames both have R4=1.5, with
more onerous height restrictions, but less stringent detailing requirements than Moderately
Ductile walls. Masonry moment-resisting frames are limited to low seismic regions and are not
discussed in CSA S304-14. Conventional construction is the most common type of shear wall
used in typical masonry structures.

Unreinforced masonry construction is only allowed where 1, F S, (0.2)< 0.35. Itis limited to a
height of 15 or 30 m depending on the level of seismic hazard. Unreinforced masonry does not
have a good record in past earthquakes, and is assigned R, = R =1.0 values, as there is
usually no ductility and brittle failures are a possibility.

The R, factor in NBC 2015 is an overstrength factor to account for the real resistance capacity
of the structure when compared to the factored design resistance. It is made up of 3
components: i) 1/¢ =1.18 = 1.2, ii) a factor that accounts for the expected yield strength of the
reinforcement being above the specified yield strength, and iii) a factor of about 1.1 that
recognizes that because of restrictions on possible core locations for the reinforcement in
modular masonry walls, the amount of reinforcement is in most cases larger than required. This
results in an R, =1.5 after some rounding of the factors (Mitchell et al., 2003).

A comparison of masonry wall classes contained in NBC 2015 and NBC 2005 is presented in

Table 1-14. The class Limited ductility shear walls no longer exists in NBC 2015, and a new
class (Ductile shear walls) has been introduced.
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Table 1-14. A comparison of NBC 2015 and NBC 2005 Classes of Masonry Walls Based on
Seismic Performance Requirements

NBC 2005 Table 4.1.8.9 NBC 2015 Table 4.1.8.9 Comments
and and
CSA S304.1-04 CSA S304-14
Unreinforced masonry Unreinforced masonry Slight difference in where
R,=1.0 R,=1.0 R,=1.0 R,=1.0 unreinforced masonry
could be used

Shear walls with Shear walls with Changes in seismic
conventional construction conventional reinforcement
R,=15 R, =15 construction requirements depending

‘ ! R,=15 R =15 on seismic hazard in

S304-14

Limited ductility shear
walls

R,=15 R =15

Does not exist

This class was removed
from S304-14

Moderately Ductile shear
walls

R,=2.0 R =15

Moderately Ductile shear
walls

R,=2.0 R =15

Seismic design
requirements relaxed for
low-rise walls in S304-14

Moderately Ductile squat
shear walls

Moderately Ductile squat
shear walls

No major changes in
seismic reinforcement

R,=2.0 R =15 R,=2.0 R =15 requirements in S304-14
Not included Ductile shear walls New class introduced in
R,=3.0 R,=15 NBC 2015 and S304-14

1.8 Higher Mode Effects (M, factor)

4.1.8.11.(6

In the determination of elastic base shear, I/, only the first mode spectral value S(T) is used. In
longer period structures, higher modes will also contribute to the base shear, and to account for
this the M factor is introduced. M  is dependent on the type of SFRS, the fundamental period
T, ,and the ratio S(0.2)/5(5.0), and its values are given in Table 1-15. Part of the base shear is
aSS|gned to the top modes to ensure that the shear forces in the top of the structure are
adequate. Applying larger loads to the top of the structure results in the moments along the
height being too large, and so a second factor, J , is introduced to reduce the calculated
moments in the lower portion of the structure.

A discussion about the base overturning reduction factor, J , (also shown in Table 1-15) is

provided in Section 1.10.
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Table 1-15. Higher Mode Factor, M,, and Base Overturning Reduction Factor, J"/?®®  for
Walls and Wall Frame Systems (an excerpt from NBC 2015 Table 4.1.8.11)

S$(0.2)/5(5.0) My for My for My for My for J for J for J for J for
T2<0.5 Ta=1.0 Ta=2.0 Ta25.0 T2<0.5 T2=1.0 Ta=2.0 T225.0
5 1 1 1 1.25() 1 0.97 0.85 0.55®
20 1 1 1.18 2.30 1 0.80 0.60 0.35®
40 1 1.19 1.75 3.700 1 0.63 0.46 0.28®
65 1 1.55 2.25 4.657 1 0.51 0.39 0.23®

Reproduced with the permission of the National Research Council of Canada, copyright holder

Notes:

(1) Forintermediate values of the spectral ratio S(0.2)/S(5.0), Mv and J shall be obtained by linear interpolation.

(2) Forintermediate values of the fundamental lateral period Ta, S(Ta)*Mv shall be obtained by linear interpolation
using the values of My obtained in accordance with Note (1).

(3) Forintermediate values of the fundamental lateral period Ta, J shall be obtained by linear interpolation using the
values of J obtained in accordance with Note (1).

(4) For a combination of different seismic force resisting systems (SFRS) not given in Table 4.1.8.11 that are in the
same direction under consideration, use the highest M, factor of all the SFRS and the corresponding value of J.

(7) For fundamental lateral periods, Ta, greater than 4.0 s, use the 4.0s values of S(T2)*My obtained by interpolation
between 2.0s and 5.0s using the value of My, obtained in accordance with Note (1). See 4.1.8.11.(2)(a).

(8) Forfundamental lateral periods, Ta, greater than 4.0 s, use the 4.0s values of J obtained by interpolation
between 2.0s and 5.0s using the value of J obtained in accordance with Note (1). See Clause 4.1.8.11.(2)(a).

| Commentary

For structures with periods 7', greater than 1.0 s (typically, buildings of 10 storeys or higher),
the contribution of higher modes to the base shear becomes increasingly important. In the
eastern part of Canada, where S,(0.2)/S,(5.0) tends to be larger than in the west, and where
the §, (T) spectrum decreases sharply with periods beyond 0.2 seconds, the spectral
acceleration for the second and third modes can be high compared to the first mode, hence
these modes make a substantial contribution to the base shear. In western Canada, the
spectrum does not decrease as sharply with increasing period, and the higher mode shears are
less important. The M factor is largest for wall structures, ranging in value up to 4.65. This is
relevant for high-rise masonry wall structures when compared to frames, because their modal
mass for the higher modes is larger and because the difference in periods between the modes
is larger.

For periods that fall between the published T, values it is important to note that interpolation
between the two periods should be done on the product S\T" )- M, and not on the individual
terms.

Beyond periods of 5 seconds, M is assumed const<ant.)although it theoretically could be larger.
4.0

However, since 7, is conservatively based on the S spectral value, it is appropriate to use
the 5 second value of M | .
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1.9 Vertical Distribution of Seismic Forces

4.1.8.11.(7

The total lateral seismic force, ) , is to be distributed such that a portion, F;, is assumed to be
concentrated at the top of the building; the remainder (/' — F, ) is to be distributed along the
height of the building, including the top level, in accordance with the following formula (see

Figure 1-5):

Fo= - F) e
W

i=1
where
F_— seismic force acting at level x
F, — a portion of the base shear to be applied, in addition to force F, , at the top of the building
h. — height from the base of the structure up to the level x (base of the structure denotes level
at which horizontal earthquake motions are considered to be imparted to the structure -
usually the top of the foundations)
W - a portion of seismic weight, W, that is assigned to level x; that is, the weight at level x

X

which includes the floor weight plus a portion of the wall weight above and below that level.

The seismic weight ¥ is the sum of the weights at each floor; normally this would be the weight
of the floors, walls and other rigidly attached masses that would move with the SFRS, hence
(Clause 4.1.8.11.(5))

w=Sw
1

| Commentary

The above formula for the force distribution is based on a linear first mode approximation for the
acceleration at each level. The purpose of applying force F, at the top of the structure is to
increase the storey shear forces in the upper part of longer period structures where the first
mode approximation is not correct. For periods less than 0.7 sec, shear is dominated by the first
mode and so F, =0. The F, force is determined as follows, see Clause 4.1.8.11.(7):

F =0 for T, <0.7 sec
F =0.07T,V for 0.7< T,6 <3.6 sec
F =025V for T, > 3.6 sec

The remaining force, V' — F, , is distributed assuming the floor accelerations vary linearly with
height from the base.
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Figure 1-5. Vertical force distribution.

1.10 Overturning Moments (J factor)

)
)

4.1.8.11.(6
4.1.8.11.(8

While higher mode forces can make a significant contribution to the base shear, they make a
much smaller contribution to the storey moments. Thus, moments at each storey level
determined from the seismic floor forces, which include the higher mode shears in the form of
the F, factor, result in overturning moments that are too large. Previous editions of the NBC
have traditionally used a factor, termed the J factor, to reduce the moments. The value of the
J factor and how it is applied over the height of the structure is substantially the same in NBC
2015, but the values are now dependent on Ta.

The J factor values are given in Table 1-15 and illustrated in Figure 1-6. The overturning
moment at any level shall be multiplied by the factor J_where

J,=1.0 for h,>0.6h, and, J, =J+(1—J)h, /0.6h,) for h <0.6h,
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Figure 1-6. Distribution of the J _ factor over the building height.

| Commentary

How the J factor and reduced overturning moments are incorporated into a structural analysis
is not always straightforward, and it depends on the structural system.

For shear wall structures, the overturning moments can be calculated using the floor forces from
the lateral force distribution, and then reduced by the J factor at each level to give the design
overturning moments. Without applying the J factor, the wall moment capacity would be too
high, leading to higher shears when the structure yields, and could result in a shear failure.

For frames, the beam shears and moments and axial loads, resulting from applying the code
lateral seismic forces at each floor level, will be too large; but the column shears would not
increase. This would essentially result in higher axial loads in the columns, but not increase the
shear demand on the structure, and so would be conservative in that the columns would be
stronger than necessary, especially in the lower levels. The J factor for frames is usually small,
and it is believed that many designers ignore it as it is conservative to do so.

1.11 Torsion

1.11.1 Torsional effects

4.1.8.11.(9

Torsional effects, that are concurrent with the effects of the lateral forces, F_, and that are
caused by the following torsional moments need to be considered in the design of the structure:
a) torsional moments introduced by eccentricity between the centre of mass and the centre
of resistance, and their dynamic amplification, or
b) torsional moments due to accidental eccentricities.
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In determining the torsional forces on members, the stiffness of the diaphragms is important.
The discussion in Sections 1.11.1 to 1.11.3 considers rigid diaphragms only, while flexible
diaphragms are discussed in Section 1.11.4.

| Commentary

Torsional effects have been associated with many building failures during earthquakes.
Torsional moments, or torques, arise when the lateral inertial forces acting through the centre of
mass at each floor level do not coincide with the resisting structural forces acting through the

centres of resistance. The centre of mass, C,,, is a point through which the lateral seismic

inertia force can be assumed to act. The seismic shear is resisted by the vertical elements, and
if the resultant of the shear forces does not lie along the same line of action as the inertia force
acting through the centre of mass, then a torsional moment about a vertical axis will be created.

The centre of resistance, C,, , also known as the centre of stiffness, is a point through which the

resultant of all resisting forces act provided there is no torsional rotation of the structure. If the
centre of mass at a certain floor level does not coincide with its centre of resistance, the building

will twist in the horizontal plane about C, . Torsion generates significant additional forces and
displacements for the vertical elements (e.g. walls) furthest away from C, . Ideally, C, should

coincide with, or be close to CM, and sufficient torsional resistance should be available to keep

the rotations small. Figure 1-7 shows two different plan configurations, one of which has a non-
symmetric wall layout (a), and the other a symmetric layout (b). Both plans have approximately
the same amount of walls in each direction, but the symmetric building will perform better. The
location of the shear walls determines the torsional stiffness of the structure; widely spaced
walls provide high torsional stiffness and consequently small torsional rotations. Walls placed
around the perimeter of the building, such as shown in Figure 1-7b), have very high torsional
stiffness and are representative of low-rise or single-storey buildings. Taller buildings, which
often have several shear walls distributed across the footprint of the structure, can also give
satisfactory torsional resistance (see Section 1.11.2 for a discussion on torsional sensitivity).

a) b)

Figure 1-7. Building plan: a) non-symmetric wall layout (significant torsional effects), and
b) symmetric wall layout (minor torsional effects).

Figure 1-8a) shows a building plan (of a single storey building, or one floor of a multi-storey
building), for which the centre of mass, C,,, and the centre of resistance, C, , do not coincide.
The distance between C;, (at each floor) and the line of action of the lateral force (at each
floor), which passes through C,, is termed the natural floor eccentricity,e_ (note that the
eccentricity is measured perpendicular to the direction of lateral load). The effect of the lateral
seismic force, F,, which acts at point C,,, can be treated as the superposition of the following
two load cases: a force F, acting at point C, (no torsion, only translational displacements, see
Figure 1-8b), and pure torsion in the form of torsional moment, 7, about the point C,, as
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shown in Figure 1-8c). The torsional moment, 7, is calculated as the product of the floor force,
F_, and the eccentricity e .

In addition to the natural eccentricity, the NBC requires consideration of an additional
eccentricity, termed the accidental eccentricity, e,. Accidental eccentricity is considered
because of possible errors in determining the natural eccentricity, including errors in locating the
centres of mass as well as the centres of resistance, additional eccentricities that might come
from yielding of some elements, and perhaps from some torsional ground motion.

. Tx=Fx-ex

!

i |
n e G N
Cr Cym =| Ck +Cy + Ck  +Cu |

o ex . L - e, "‘"—-4'

a) b) c)
Figure 1-8. Torsional effects a), can be modelled as a combination of a seismic force, F_, at
point C, (causing translational displacements only) b), and a torsional moment, T. =F -e,

(causing rotation of building plan) about point C, c).

Finding the centre of resistance, C, , may be a complex task in some cases. For single-storey
structures it is possible to determine a centre of stiffness, which is the same as the CR .
However, in multi-storey structures, CR is not well defined. For a given set of lateral loads, it is
possible to find the location on each floor through which the lateral load must pass, so as to
produce zero rotation of the structure about a vertical axis. These points are often called the
centres of rigidity, rather than centres of stiffness or resistance, but they are a function of the
loading as well as the structure, and so centres of rigidity are not a unique structural property. A
different set of lateral loads will give different centres of rigidity. Earlier versions of the NBC
(before 2005) required the determination of the C, location so as to explicitly determine e, as
it was necessary to amplify e (by factors of 1.5 or 0.5) to determine the design torque at each
floor level. NBC 2015 does not require this amplification, so the effect of the torque from the
natural eccentricities can come directly from a 3-D lateral load analysis, without the additional
work of explicitly determining e . However, NBC 2015 requires a comparison of the torsional
stiffness to the lateral stiffness of the structure to evaluate the torsional sensitivity, and so
requires increased computational effort in this regard.

1.11.2 Torsional sensitivity

| 4.1.8.11.(10) |

NBC 2015 requires the determination of a torsional sensitivity parameter, B, which is used to
determine allowable analysis methods. To determine B, a set of lateral forces, £, is applied at
a distance of +0.1D, from the centre of mass C,,, where D,_ is the plan dimension of the
building perpendicular to the direction of the seismic loading being considered. The set of lateral
loads, £, to be applied can either be the static lateral loads or those determined from a
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dynamic analysis. A parameter, B, evaluated at each level, x, should be determined from the
following equation) (Figure 1-9):

“ 5[1\/6
where
0. - the maximum storey displacement at level x at one of the extreme corners, in the
direction of earthquake, and
o,,. - the average storey displacement, determined by averaging the maximum and minimum
displacements of the storey at level x.

e i |
aminir “7“‘-”-_ I ave “.‘ :I:Bmax

|
L

: ' Bave_ Smax"'amm

|
~

Y

Figure 1-9. Torsional displacements used in the determination of B .

The torsional sensitivity, B, is the maximum value of B for all storeys for both orthogonal
directions. Note that B_need not be considered for one-storey penthouses with a weight less
than 10% of the level below.

| Commentary

A structure is considered to be torsionally sensitive when the torsional flexibility compared to the
lateral flexibility is above a certain level, that is, when B >1.7. Torsionally sensitive buildings
are considered to be torsionally vulnerable, and NBC 2015 in some cases requires that the
effect of natural eccentricity be evaluated using a dynamic analysis, while the effect of
accidental eccentricity be evaluated statically.

Structures that are not torsionally sensitive, or located in a low seismic region where
1,F,S,(0.2)<0.35, can have the effects of torsion evaluated using only the equivalent static
analysis. If the structure is torsionally sensitive and located in a high seismic region, a dynamic
analysis must be used to determine the effect of the natural eccentricity, but the accidental
eccentricity effects must be evaluated statically, and the results then combined as discussed in
the next section. A static torsional analysis of the accidental eccentricity, on a torsionally flexible
building, will lead to large torsional displacements, and generally to large torsional forces in the
elements, and thus may require a change in the structural layout so that the structure is not so
torsionally sensitive.
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1.11.3 Determination of torsional forces

|4.1.8.11.(11) |

Torsional effects should be accounted for as follows:

a) if BS1.7 (or B>1.7 and I.F,S, (0.2)< 0.35), the equivalent static analysis procedure can
be used, and the torsional moments, 7', about a vertical axis at each level throughout the
building, should be considered separately for each of the following load cases:

i) T.=F_ (e +0.1D, ), and
iy 7.=F (e, —0.1D, ).

The analysis required to determine the element forces, for both the lateral load and the above
torques, is identical to that required to determine the B factor, where the lateral forces are
applied at a distance £ 0.1D, from the centre of mass, C,,, as shown by the dashed arrows in
Figure 1-10.

b) if B>1.7,and I,F,S,(0.2)>0.35, the dynamic analysis procedure must be used to
determine the effects of the natural eccentricities, e . The results from the dynamic analysis
must be combined with those from a static torsional analysis that considers only the
accidental torques given by

T.=+F(0.1D, ), or
Tx = _Fx (0 anx )

In this analysis, F, can come from either the equivalent static analysis or from a dynamic
analysis.

c) If B<1.7itis permitted to use a 3-D dynamic analysis with the centres of mass shifted
by a distance of £0.05D,, (see Clause 4.1.8.12.(4)(b).

= an ==

Cp o calculated Cy location
- Cu + possible Cy locations
{ t } t to account for
i E | E accidental torsion
l
| _ ex _
“:.—_‘-)'l

ex'U.anx " ':aj
€x+0.1D,,

Figure 1-10. Torsional eccentricity according to NBC 2015.
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| Commentary

When results from a dynamic analysis are combined with accidental torques that use the lateral
forces F, from the equivalent static procedure, the designer should ensure that the analysis is
done in a consistent manner, that is, by using either the elastic forces or the reduced design
forces (elastic forces modified by 7, /Rd R,). The final force results should be given in terms of
the reduced design forces, while the displacements should correspond to the elastic
displacements.

If the structure is torsionally sensitive, B > 1.7, and if/ . F, S, (0.2) >0.35, then the member
forces and displacements from the accidental eccentricity must be evaluated statically by
applying a set of torques to each floor of £ F (O.ID,LX). The set of lateral forces, F_, can come
from either a static or a dynamic analysis. NBC 2015 is mute on whether the set of lateral static
forces should be scaled to match the dynamic base shear (if the dynamic base shear is larger
than the static value), and whether the dynamic set should correspond to the set determined
with the floor rotations restrained or not restrained (see Section 1.14). It is suggested here that if
a set of static forces is used, they should (if necessary) be scaled up to match the base shear
from the rotationally restrained dynamic analysis.

The static approach to determine member forces and displacements from the accidental
eccentricity is illustrated in Figure 1-11.

If the static forces are to be used, then the following steps need to be followed:
1. The forces F, are determined using the equivalent static method.
2. Torsional moments at each level are found using the following equations
T.=+F(0.1D, ), or T, =—F (0.1D, ).

3. Displacements and forces due to torsional effects are determined, and combined with
the results from the dynamic analysis. Note that, in buildings with larger periods, F, will
cause large rotations and displacements, and the results will probably be conservative.

B [ —y >

F '—“ y § Q4>
=t | S

— o
Vy Ty,

Figure 1-11. Static approach to determine the accidental eccentricity effects (Anderson, 2006).

If a dynamic set of floor forces, F_, are to be used, they should be scaled, if necessary (as
discussed in Section 1.14), to be equal to the design base shear. For the determination of the
storey torques, the force F, at each floor can be determined from the dynamic analysis by taking
the difference in the total shear in the storeys above and below the floor in question. These floor
forces are not necessarily the correct floor forces (as discussed in Section A.4.3), however the
sum of these forces equals the design base shear and they provide a reasonable set of lateral
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forces to use for the accidental eccentricity calculations. The second and third steps discussed
in the previous paragraph are then the same.

If the structure is not torsionally sensitive ( B <1.7), and a dynamic analysis is being used, it is
permissible to account for both the lateral forces and the torsional eccentricity, including the
natural and accidental eccentricity, by using a 3-D dynamic analysis and moving the centre of
mass by the distance = 0.05D, . This would require four separate analyses, two in each
direction. In these dynamic analyses the accidental eccentricity is taken as +0.05D,_, while in
the static application it is taken as +0.10D . It is thought that the real accidental eccentricity is
about +0.05D,_, but it would likely be amplified during an earthquake; this is reflected in the
results of a dynamic analysis. Thus, £0.10D, _ is used in the static case to account for both
accidental eccentricity and possible dynamic amplification.

When using a 3-D dynamic analysis for torsional response, it is important to correctly model the
mass moment of inertia about a vertical axis. If the floor mass is entered as a point mass at the
mass centroid, it will not have the correct mass moment of inertia and the torsional period will be
too small. This will have the effect of making the structure appear to be torsionally stiffer than it
really is, and could lead to smaller torsional deflections.

When applying the lateral loads in one direction, torsional response gives rise to forces in the
elements in the orthogonal direction. For structures with lateral force resisting elements oriented
along the principal orthogonal axes, NBC 2015 Cl. 4.1.8.8.(1)(a) requires independent analyses
along each axis. For structures with elements oriented in non-orthogonal directions (as shown in
Section 1.12.1 for Type 8 Irregularity), an independent analysis about any two orthogonal axes
is sufficient in low seismic zones, but in higher zones, it is required that element forces from
loading in both directions be combined. The suggested method for combining forces from both
directions is the “100+30%” rule that requires the forces in any element that arise from 100% of
the loads in one direction be combined with 30% of the loads in the orthogonal direction, see
NBC 4.1.8.8.(1)c). Another method is to apply the ‘root-sum-square’ procedure to the forces in
each element from 100% of the loads applied in both directions. The two methods usually give
close agreement and are based on the knowledge that the probability of the maximum forces
from the two directions occurring at the same time is low. For some orthogonal systems, it is
possible that the orthogonal forces from the effects of torsion are substantial, and a prudent
design may consider combined forces from both directions as described above, especially in
high seismic regions.

Note that the NBC requirements are based on an estimate of the elastic properties of the
structure. When the structure yields, the eccentricity between the inertia forces acting through
the centres of mass and the resultant of the resisting forces based on the capacity of the
members, termed the plastic eccentricity, will be different than the elastic eccentricity. In most
cases, the plastic eccentricity will be less than the elastic eccentricity. However, there may be
cases where some elements are stronger than necessary and do not yield; this could increase
the eccentricity when other elements yield, and it should be avoided if possible.

1.11.4 Flexible diaphragms

Diaphragms are horizontal elements of the SFRS whose primary role is to transfer inertial forces
throughout the building to the vertical elements (shear walls in case of masonry buildings) that
resist these forces. A diaphragm can be treated in a manner analogous to a beam lying in a
horizontal plane where the floor or roof deck functions as the web to resist the shear forces, and
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the boundary elements (bond beams in case of masonry buildings) serve as the flanges in
resisting the bending moment. How the total shear force is distributed to the vertical elements of
the SFRS will depend on their rigidity compared to the rigidity of the diaphragm. For design
purposes, diaphragms are usually classified as rigid or flexible, but that very much depends on
the type of structure. Structures with many walls and small individual diaphragms between the
walls can be considered as having flexible diaphragms. In large plan structures, such as
warehouses or industrial buildings with the SFRS members located around the perimeter, it is
more common to assume the diaphragm as being rigid. However the flexibility of the diaphragm
may lead to a considerable increase in the period of the structure, and lead to deformations
considerably larger than the deformations of the SFRS, in which case a more complex analysis
would be required.

In rigid diaphragms, shear forces are distributed to vertical elements in proportion to their
stiffness. Torsional effects are considered following the approach outlined in Sections 1.11.1 to
1.11.3. Concrete diaphragms, or steel diaphragms with concrete infill, are usually considered
rigid.

In flexible diaphragmes, distribution of shear forces to vertical elements is independent of their
relative rigidity; these diaphragms act like a series of simple beams spanning between vertical
elements. A flexible diaphragm must have adequate strength to transfer the shear forces to the
SFRS members, but cannot distribute torsional forces to the SFRS members acting at right
angles to the direction of earthquake motion without undergoing unacceptable displacements.
Corrugated steel diaphragms without concrete fill, and wood diaphragms, are generally
considered flexible; however, steel and wood diaphragms with horizontal bracing could be
considered rigid.

Figure 1-12a) shows the plan view of a simple one storey structure with walls on three sides and
non-structural glazing on the fourth side. For an earthquake producing an inertia force, 7, the
walls provide resisting forces to the diaphragm as shown. The displacement of the diaphragm
would be as shown in Figure 1-12b), and it is the size of the displacements that determines
whether the diaphragm is considered flexible or rigid. If the displacements are too large to be
acceptable, the diaphragm would be classed as flexible, and cannot be used with such a layout
of the SFRS. In general, flexible diaphragms require that the SFRS has at least two walls in
each direction.

—

"

h

a) b)

Figure 1-12. Building plan: a) loads on diaphragm; b) displaced shape of a flexible diaphragm.

L\

In determining how the inertia forces are distributed to the SFRS, the flexible diaphragm should
be divided into sections, with each section bounded by two walls in the direction of the inertia
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forces; preferably these two walls will be located on the sides of the section. The inertia forces
from each section are then distributed to the SFRS on the basis of tributary areas. Equilibrium
must be satisfied, and the diaphragm must have sufficient strength in shear and bending to act
as a horizontal beam carrying the loads to the supports. Figure 1-13 shows a flexible roof
system supported by three walls in the N-S direction. The roof should be divided into two
sections as shown, with the inertia force from section 1 distributed to walls A and B. Section 2
must be considered as a beam with a cantilever end extending beyond wall C. Equilibrium of
section 2 then gives rise to a high force in Wall C, with the overhanging portion contributing to a
reduction in the force in wall B.

A B < 4

Figure 1-13. Plan view for analysis of flexible diaphragm.

NBC 2015 requires that accidental eccentricity be considered. With rigid diaphragms it is clear
how this can be accomplished, as described in the above sections, but trying to account for
accidental eccentricity in flexible diaphragms raises several questions about how it is to be
applied. NBC 2005 Commentary J, paragraph 179 (NRC, 2006) states that it is sufficient to
consider an eccentricity of £0.05D,x, where Dy is defined as the width of the building in the
direction perpendicular to the direction of the earthquake motion. If the structure consists of a
single roof section with supporting walls at each end separated by the distance D, moving the
centre of mass by 0.05D,x would increase the wall reactions by 10%, and the accidental
eccentricity requirement would be satisfied. For a structure with several walls in the direction of
the earthquake motion, shifting the centre of mass by +0.05Dx, which would require moving the
centre of mass of each section by this amount, could lead to unrealistic situations, as well as
requiring a considerable increase in computational effort. Even flexible diaphragms will have
some stiffness, and in many cases will transfer some of the torsional load to the walls
perpendicular to the direction of motion. This transfer is ignored when designing for flexible
diaphragms, but does provide extra torsional resistance. It is suggested that the wall forces
determined without any accidental eccentricity all be increased by 10% to account for the
accidental eccentricity. This minimizes the number of calculations required, and it is suggested
that it satisfies the intent of NBC 2015.
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1.12 Configuration Issues: Irregularities and Restrictions

1.12.1 Irregularities

Table 1-16 (same as NBC 2015 Table 4.1.8.6) lists the nine types of irregularity, and the notes
to the table refer to the relevant code clauses that consider the irregularity. If a structure has
none of the listed irregularities it is considered to be a regular structure. A trigger for the NBC
2015 irregularity provisions (Cl.4.1.8.6) is the presence of one of nine types of irregularity in
combination with the higher seismic hazard index, thatis, /,F, S, (0.2) >0.35.

In NBC 2015 there is a new structural irregularity, Type 9, on ‘gravity-induced lateral demand’
which covers cases where gravity loads could cause the building to yield in one direction only
and creates larger displacements than a regular building would undergo. Irregularities are used
to trigger restrictions and special requirements, some of which are more restrictive than those in
previous codes. See NBC Section 4.1.8.10 for additional restrictive clauses covering structural
irregularities.
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Table 1-16. Structural Irregularities” Forming Part of Sentence 4.1.8.6.(1) (NBC Table 4.1.8.6.)

Type Irregularity Type and Definition Notes
1 Vertical stiffness irregularity shall be considered to exist when the 2)
. . lateral stiffness of the SFRS in a storey is less than 70% of the 3
Vertical stiffness | stiftness of any adjacent storey, or less than 80% of the average ( 4)
irregularity stiffness of the three storeys above or below. (4)
2 Weight irregularity shall be considered to exist where the weight, Wi,
i of any storey is more than 150% of the weight of an adjacent
Weight (mass) storey. A roof that is lighter than the floor below need not be (2)
irregularity considered.
3 Vertical geometric irregularity shall be considered to exist where the | (2)
. . horizontal dimension of the SFRS in any storey is more than 130 (3)
Vertical geometric | hercent of that in an adjacent storey. (4)
irregularity (5)
4 An in-plane offset of a lateral-force-resisting element of the SFRS or
a reduction in lateral stiffness of the resisting element in the storey | (2)
In-plane below. ()
discontinuity in (4)
vertical lateral force- (5)
resisting element
5 Discontinuities in a lateral force path, such as out-of-plane offsets of | (2)
the vertical elements of the SFRS. (3)
Out-of-plane offsets (4)
5)
6 A weak storey is one in which the storey shear strength is less than
. L that in the storey above. The storey shear strength is the total 2)
Discontinuity in strength of all seismic-resisting elements of the SFRS sharing the 3)
capacity - weak storey shear for the direction under consideration.
storey
7 Torsional sensitivity shall be considered when diaphragms are not (2)
Torsional sensitivity | flexible, and when the ratio B>1.7 (see Sentence 4.1.8.11(10)). (3)
(4)
(6)
8 A non-orthogonal system irregularity shall be considered to exist (2)
Non-orthogonal when the SFRS is not oriented along a set of orthogonal axes. (4)
systems (7)
9 Gravity-induced lateral demand irregularity on the SFRS shall be 2)
Gravity-Induced considered to exist where the ratio, a, calculated in accordance with 3)
Lateral Irregularity | Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering 4)
characteristics and 0.03 for other systems. (7)

Reproduced with the permission of the National Research Council of Canada, copyright holder

Notes: (1) One-storey penthouses with a weight less than 10% of the level below need not be
considered in the application of this table.
2) See Article 4.1.8.7.
See Article 4.1.8.10.
See Note A-Table 4.1.8.6.

See Sentences 4.1.8.11.(10), (11), and 4.1.8.12.(4)

(

(3)

4)

(5) See Article 4.1.8.15.
(6)

(7)

See Article 4.1.8.8.
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| Commentary

The equivalent static analysis procedure is based on a regular distribution of stiffness and mass
in a structure. It becomes less accurate as the structure varies from this assumption.
Historically, regular buildings have performed better in earthquakes than have irregular
buildings. Layouts prone to damage are: torsionally eccentric ones, “in” and “out” of plane
offsets of the lateral system, and buildings with a weak storey (Tremblay and DeVall, 2006). For

more details on building configuration issues refer to Chapter 6 of Naeim (2001).

Figure 1-14 illustrates the NBC 2015 irregularity types. Note that Types 1 to 6 are vertical
(elevation) irregularities, while Types 7, 8 and 9 are horizontal (plan) irregularities.

According to NBC 2015 Clause 4.1.8.7, the structure is considered to be “regular” if it has none
of the nine types of irregularity, otherwise it is deemed to be “irregular”. The default method of
analysis is the dynamic method, but the equivalent static method may be used if any of the
following conditions are satisfied:
a) the seismic hazard index I, F S, (0.2)< 0.35, or
b) the structure is regular, less than 60 m in height, and has a period T < 0.5 seconds in
either direction, or
c) the structure is irregular, but does not have Type 7 or 9 irregularity, and is less than 20
m in height with period T < 0.5 seconds in either direction.

For single-storey structures such as warehouses and other low-rise masonry buildings, only
irregularity Types 7 and 8 might apply, and these would not likely prevent the use of the
equivalent static method.

Type 8 irregularity concerns SFRS(s) which are not oriented along a set of orthogonal axes. The
structures with this type of irregularity may require more complex seismic analysis in which
seismic loads in two orthogonal directions would need to be considered concurrently. According
to Clause 4.1.8.8.(1)(b), where the components of the SFRS are not oriented along a set of
orthogonal axes, and the structure is in a low seismic zone (1, F,S,(0.2) < 0.35), then
independent analysis about any two orthogonal axes is permitted. However, where the
components of the SFRS are not oriented along a set of orthogonal axes, and the structure is in
a medium or high seismic zone (/,F,S,(0.2)>0.35), then the analysis of the structure can be
done independently about any two orthogonal axes for 100% of the prescribed earthquake
loads in one direction concurrently with 30% of the prescribed earthquake loads acting in the
perpendicular direction (see Clause 4.1.8.8.(1)(c). This is so-called “100+30%” rule discussed in
Section 1.11.3.
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Figure 1-14. Types of irregularity according to NBC 2015 (based on Tremblay and DeVall,
2006).
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1.12.2 Restrictions

Restrictions in NBC 2015 are based on (i) the natural period or height of the building, (ii)
whether the building is in a “high” or “low” seismic zone, (iii) irregularities, and (iv) the
importance category of the building. These restrictions are outlined below:

1. Except as required by Clause 4.1.8.10.(2)(b), structures with Type 6 irregularity,
Discontinuity in Capacity — Weak Storey, are not permitted unless 1,F,S, (0.23/< 0.20
and the forces used for design of the SFRS are multiplied by R R .

2. Post-disaster buildings shall
a) not have any irregularities conforming to Types 1, 3, 4, 5, 7 and 9 as described in

Table 4.1.8.6, in cases where I, F,S, (0.2) >0.35,
b) not have a Type 6 irregularity as described in Table 4.1.8.6, and
c) have an SFRS withan R, >2.0.
d) have no storey with a lateral stiffness that is less than that of the storey above it.

3. For buildings having fundamental lateral periods 7, >1.0s, and where
I.FS,(1.0)>0.25, shear walls that are other than wood-based forming part of the
SFRS shall be continuous from their top to the foundation and shall not have
irregularities of Type 4 or 5 as described in Table 4.1.8.6.

4. Wood construction, see 4.1.8.9 and Note A-4.1.8.10.(4).

5.,6.,and 7. Only apply to Irregularity Type 9.

Refer to Section 1.12.1 and Table 1-16 for the list of irregularities identified by NBC 2015.

| Commentary

An important restriction for masonry construction concerns post-disaster structures. In other
than low seismic regions the structure cannot have irregularity Types 1, 3, 4, 5, or 7; and must
have an R, > 2.0 . Thus masonry post-disaster structures must be designed with Moderately
Ductile or Ductile shear walls, and except in low seismic regions (where I, F,S, (0.2) <0.35)
the above noted irregularity types should be avoided.

Irregularity Type 6, Discontinuity in Capacity-Weak Storey, is an important restriction for multi-
storey structures, and cannot be present at all in post-disaster structures. For structures with
this type of irregularity, the forces used in the design of the SFRS, except in very low seismic
areas, must be multiplied by R, R, which implies that the members must remain elastic. This
type of irregularity is considered very dangerous, as in past earthquakes many structures with
weak storeys have had a total collapse of that storey which has resulted in many deaths. This
type of seismic response has often been reported in reinforced concrete frame structures with
masonry infill walls which contain more infills in the storeys above the ground floor, leaving the
first storey as a weak storey.
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1.13 Deflections and Drift Limits

Lateral displacement (deflection) limits are prescribed in terms of maximum drift. Drift means the
lateral deflection of one floor (or roof) relative to the floor below. Drift ratio is the drift divided by
the storey height between the two floors, and is thus a measure of the distortion of the structure.

The NBC 2015 drift limits are based on the storey height 4, as follows:
= 0.01A, for post-disaster buildings
= 0. 02h for High Importance Category buildings (e.g. schools), and
= 0. 025h for all other buildings.

| Commentary

Since large deflections and drifts due to earthquakes contribute to (i) damage to the non-
structural components, (ii) damage to the elements which are not a part of the SFRS, and (iii) P-
Delta effects, NBC 2015 provisions have moved in the direction of tightening up the drift limits
from the previous versions. Specifically, tighter drift limits for post-disaster or school buildings
reflect the importance of these structures.

Drift and drift ratio can be explained on an example of a three-storey building shown in Figure
1-15. The drift in say the second storey is equal to A, —A,, where A, and A, denote lateral
deflections at the first and second floor level respectively. The corresponding drift ratio for that
storey is equal to (A, — A, )/h , where h = h, —h, (storey height). The average drift ratio for the
entire structure is (A} )/% .

Drifts are the elastic deflections and need not be increased by the importance factor 7, as that
has already been accounted for in the drift limits. If the equivalent static forces, which are the
elastic forces multiplied by 7 /R R, , are applied to the elastic structure to calculate
deflections, then these deﬂectlons must be multiplied by R, R /1 to get realistic values of the
deflections.
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Figure 1-15. Lateral deflections and drift.

In checking drift limits the drift should be taken at the location on the floor which has the
maximum deflection. Torsional effects can result in corner deflections being much larger than
the deflection at the centre of the floor plan.
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Since deflections increase with an increase in the period T, the stiffness used in calculating the
deflections should reflect a softening of the structure (before yielding occurs) that might come
from cracking of the masonry. The stiffness for squat shear walls should be determined taking
into account shear deformation. If the period T determined per NBC provisions (see Section
1.6) is used to determine the seismic forces, the stiffness of the structure used in calculating the
deflections should be such that the calculated period would not be less than the NBC period.
Many masonry structures are very stiff and the deflections will be well below the code limits, and
so displacement calculations will not be critical in many cases.

Drift limits are imposed so that members of the SFRS will not be subjected to large lateral
displacements that might degrade their ability to resist the seismic loads, but also to ensure that
members that are not part of the SFRS, such as columns that support gravity load only, should
not fail during the earthquake. The seismic portion of the code is mute on drift limits for
serviceability, however the designer can estimate the structural deflections at different hazard
levels, since displacements are roughly proportional to the level of hazard. For example, the drift
at an exceedance probability of 1/475 per annum would be about half of that for the 1/2475 per
annum design drift because the 1/475 per annum hazard is roughly half the 1/2475 per annum
hazard.

1.14 Dynamic Analysis Method

In NBC 2015 the default analysis method is the dynamic method. For many structures, even
though the equivalent static analysis method could be used according to NBC seismic
provisions, dynamic analysis may be used for other reasons. The purpose of this section is not
to explain how to use dynamic analysis software, but to give some guidance on scaling or
comparing the dynamic results with the results from the static method.

The base shear from a dynamic analysis, determined using the site design spectrum S(T), will
give the dynamic elastic base shear, V,. Since the static analysis method is allowed to reduce
the design base shear for short periods, see 4.1.8.11(2)(d), while the dynamic analysis method
uses the design spectrum S(7), it is permitted to reduce the dynamic analysis results by the
factors 25(0.2)/3S(Ta) or S(0.5)/S(Ta) whichever is larger but £1.0, to give Ve, for Site Classes A
to D (NBC 2015 Sec 4.1.8.12(6)).

NBC 2015 requires that for regular buildings if the base shear from the dynamic method is less
than 0.8 times the base shear from the static method, then the dynamic results should be scaled
to give 0.8 of the static base shear. If the structure is deemed to be irregular, then the dynamic
results should be scaled to 100% of the static results. In essence this means that the dynamic
results cannot be less than the static results (or 80% of the static results for regular structures),
but if they are larger they should not be reduced to the static values.

If the building is very eccentric, a 3-D dynamic analysis will produce a low total base shear. In
that case, it would be very conservative to require that these low base shears be scaled to the
static base shear, since the static method of determining the base shear V does not consider
torsional motion. To make a fair comparison between the static and dynamic results the
suggestion is to perform a dynamic analysis with the rotation of the structure restrained about a
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vertical axis, and then compare the resulting base shear to the static value to determine the
amount of scaling required, if any.

Scaling, if necessary, should be applied to the member forces determined from the full 3-D
dynamic analysis multiplied by 7, /Rd R, to give the design member forces. The design
displacements are the elastic displacements given by the dynamic analysis, and scaled if
necessary. To these design forces and displacements must be added the forces and
displacements from accidental torsion.

1.15 Soil-Structure Interaction

For large structures located on soft soil sites the deformation of the soil may have an
appreciable influence on the response of the structure. The most common type of soil-structure
interaction is based on the flexibility of the soil, which is usually represented by a lateral spring
between the foundation and the point where the seismic motion is input, and with a rotational
spring at the base of flexural walls. There is a second type of soil-structure interaction, termed
the kinematic interaction, which only applies to structures with a very large plan area or a deep
foundation, and which will not be discussed further here.

The effect of introducing springs between the point of input motion and the foundation is to
increase the period of the structure, which usually reduces the seismic forces but increases the
deflections. In the case of a wall structure, the increased deflections may not increase the
deformation of the wall since they would arise from displacements and rotations of the
foundation, but the rotations would increase the interstorey drifts which would have an influence
on other parts of the structure.

For masonry structures, soil-structure interaction will likely only have an influence for slender
wall structures with individual footings, where rotation of the footing would have a large effect on
the wall displacement. The determination of the soil stiffness should be left to an experienced
geotechnical engineer, but it should be recognized that the precision at which the soil stiffness
can be estimated is quite low. It is common to consider quite wide upper and lower bounds on
the estimated stiffness of the soil springs.
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1.16 A Comparison of NBC 2005 and NBC 2015 Seismic Design

Provisions

A comparison is presented in Table 1-17 as a reference for the readers who have previously

used NBC 2005.

Table 1-17. Comparison of NBC 2005 and NBC 2015 Seismic Design Provisions: Equivalent

Static Force Procedure

Provision NBC 2005 NBC 2015
Cl.4.1.8.7 Cl.4.1.8.7
Dynamic method is the default No changes
Analysis method | method; static method is
restricted to certain structures
and seismic hazard.
Cl.4.1.8.11 Cl.4.1.8.11

Seismic force

\'4 =S(T)Mv|ew / (RdRo)

V =S(T.)MJJW / (RaR,)

Cl.4.1.8.4

C1.4.1.8.4(9)

Base response
spectrum

S(T)=FaSa(T) or F,Sa(T)

Sa(T) based on UHS

S(T)=FS4(T)

Sa(T) based on UHS for T=0.2 sec, 0.5
sec, 1.0 sec, 2 sec, 5 sec, and 10 sec

Cl.4.1.8.4

C1.4.1.8.4(9)

Site conditions

F.orF,
Depends on T and S,

F(0.2), F(0.5), F(1.0), F(2.0)
Depends on site class and PGAret

Cl.4.1.8.5

Cl.4.1.8.5

Importance of

structure I No changes
, Cl.4.1.8.9 Cl.4.1.8.9
Inelastic
response N RaRo No changes
Explicit overstrength
Cl.4.1.8.11 Cl.4.1.8.11(6)
MDOF M, multiplier on base shear No changes
Forces from Depends on period, type of
higher modes structure and shape of S,(T)
MDOF Cl.4.1.8.11(6) Cl.4.1.8.11(7)
Distribution of F: No changes
forces Same as NBC 1995
MDOF Cl1.4.1.8.9(7) Cl1.4.1.8.9(6)
Overturning J No changes
forces Revised for consistency with My
Cl1.4.1.8.11(8), (9), and (10) Cl.4.1.8.11(9), (10), and (11)
. Tx=Fx(ex+0.1Dnx No changes
Eccentricity Must d(etermine t)orsional °
sensitivity
. Cl.4.1.8.6 Cl.4.1.8.6
Irregularities

There is a new irregularity (Type 9)
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2 SEISMIC DESIGN OF MASONRY WALLS TO CSA S304-14
2.1 Introduction

Chapter 1 provides background on the seismic response of structures and seismic analysis
methods and explains key NBC 2015 seismic provisions relevant to masonry design. This
chapter provides an overview of seismic design requirements for reinforced masonry (RM)
walls. Relevant CSA S304-14 design requirements are presented, along with related
commentary, to provide detailed explanations of the NBC provisions. Topics range from RM
shear walls subjected to in-plane and out-of-plane seismic loads, to a number of special topics
such as masonry infill walls, stack pattern walls, veneers, and construction-related issues.
Differences between CSA S304-14 seismic design requirements and those of the previous
(2004) edition are identified and discussed, along with their design implications. For easy
reference, relevant CSA S304-14 clauses are shown in a framed textbox where appropriate.
Appendix B contains research findings and international code provisions related to seismic
design of masonry structures. Appendix C contains relevant design background used in the
design examples included in Chapter 3.

2.2 Masonry Walls — Basic Concepts

Structural walls are the key structural components in a masonry building, and are used to resist

some or all of the following load effects:

e axial compression due to vertical gravity loads,

¢ out-of-plane bending (flexure) and shear due to transverse wind, earthquake or blast loads
and/or eccentric vertical loads, and

¢ in-plane bending and shear due to lateral wind and earthquake loads applied to a building
system in a direction parallel to the plane of the wall.

In a masonry building subjected to earthquake loads, horizontal seismic inertia forces develop in
the walls, and the floor and roof slabs. The floor and roof slabs are called diaphragms where
they transfer lateral loads to the lateral load resisting system. These inertia forces are
proportional to the mass of these structural components and the acceleration at their level. An
isometric view of a simple single-storey masonry building is shown in Figure 2-1a) (note that the
roof diaphragm has been omitted for clarity). For earthquake ground motion acting in the
direction shown in the figure, the roof diaphragm acts like a horizontal beam spanning between
walls A and B. The end reactions of this beam are transferred to the walls A and B. These walls,
subjected to lateral load along their longitudinal axis (also called in-plane loads), are called
shear walls. Along with the floor and roof diaphragms, shear walls are the components of the
building’s lateral load path that transfers the lateral load to the foundations. A well-designed and
well-built masonry building has a reliable load path, which transfers the forces over the full
height of the building from the roof to the foundation.

Note also that the earthquake ground motion causes vibration of the transverse walls C and D.
These walls are subjected to inertia forces proportional to their self-weight and are loaded out-
of-plane (or transverse to their longitudinal axis). A vertical section through wall D that is loaded

9/1/2018 2-2



in the out-of-plane direction is shown in Figure 2-1b), while an elevation of shear wall A and its
in-plane loading is shown in Figure 2-1c).

It is important to note that walls are subjected to shear forces in both the in-plane and out-of-
plane directions during an earthquake event. However, the main difference between shear walls
and other types of walls is that shear walls are key vertical components of a lateral load
resisting system for a building, referred to as the Seismic Force Resisting System or SFRS by
NBC 2015. Usually not all walls in the building are shear walls; some walls (loadbearing and/or
nonloadbearing) are not intended to resist in-plane loads and are not designed and detailed as
shear walls. In that case, they cannot be considered to form a part of the SFRS.

D
g : ¢ ' — — —
—'\ / /
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Figure 2-1 Simple masonry building: a) isometric view showing lateral loads; b) out-of-plane
loads; c¢) in-plane loads (resisted by shear walls).

A typical reinforced concrete block masonry wall is shown in Figure 2-2. Vertical reinforcing bars
are placed in the open cells of the masonry units (note that the term cores is also used in
masonry construction practice), and are usually provided at a uniform spacing along the wall
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length. The role of vertical reinforcement is to enhance the ability of the wall to resist forces due
to vertical loads, forces resulting from induced moments due to vertical eccentricities, and forces
due to out-of-plane loads. Horizontal wall reinforcement is usually provided in two forms: i)
ladder- or truss-type wire reinforcement placed in mortar bed joints (see Figure 2-2b)), and ii)
steel bars (similar to vertical reinforcement) placed in grouted bond beams at specified locations
over the wall height (see Figure 2-2c)). Horizontal wire and bar reinforcement restrict in-plane
movements due to temperature and moisture changes, resist in-plane shear forces and/or
forces due to moments caused by out-of-plane loads. Grout, similar to concrete but with higher
slump, is used to fill the cells of the masonry units that contain vertical and horizontal
reinforcement bars. Grout increases the loadbearing capacity of the masonry by increasing its
area, and serves to bond the reinforcement to the masonry unit so that the reinforcement and
unit act compositely.

Grade 400 steel (yield strength 400 MPa) is nearly always used for horizontal and vertical
reinforcing bars, while cold-drawn galvanized wire is used for joint reinforcement (also known as
American Standard Wire Gauge — ASWG). The yield strength for joint reinforcement varies, but
usually exceeds 480 MPa for G30.3 steel wire. In design practice, a 400 MPa yield strength is
used both for the reinforcement bars and the joint wire reinforcement. The properties of
concrete masonry units are summarized in Appendix D, while the mechanical properties of
masonry and steel materials are discussed by Drysdale and Hamid (2005) and Hatzinikolas,
Korany, and Brzev (2015). The material resistance factors for masonry and steel prescribed by
CSA S304-14 are as follows:

¢ = 0.6 resistance factor for masonry (Cl.4.3.2.1)

¢ = 0.85 resistance factor for steel reinforcement (Cl.4.3.2.2)
The following notation will be used to refer to wall dimensions (see Figure 2-2a)):
[,,- wall length

h, - total wall height
¢t - overall wall thickness

vertical I joint
reinforcement >l reinforcement
r . P

[\

grout

Wi
hw
v
’ o
NN

Figure 2-2. Typical reinforced concrete masonry block wall: a) vertical reinforcement; b) joint
reinforcement; c) bond beam reinforcement.
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Typical reinforced concrete masonry wall construction is shown in Figure 2-3. The lower section
of the wall has been grouted to the height of a bond beam course. Vertical bars extend above
the bond beam to serve as bar splices for the continuous vertical reinforcement placed in the
next wall section.

Figure 2-3 Masonry wall under construction (Credit: Masonry Institute of BC).

Walls in which only the reinforced cells are grouted are called partially grouted walls, while walls
in which all the cells are grouted are called fully grouted walls. Irrespective of the extent of
grouting (partial/full grouting), the cross-sectional area of the entire wall section (considering the
overall thickness ¢) is termed gross cross-sectional area, A, . In partially grouted or hollow
(ungrouted) walls, the term effective cross-sectional area, A, , denotes that area which includes
the mortar-bedded area and the area of grouted cells (S304-14 CI.10.3). Both the gross and
effective wall areas are shown in Figure 2-4 for a wall strip of unit length (usually equal to 1
metre). See Table D-1 for 4, values for various wall thicknesses and grout spacings. In
ungrouted and partially grouted masonry construction, the webs are generally not mortared,
except for the starting course. Typically, coarse grout will flow from the grouted cell to fill the gap
between the webs adjacent to the cell.

In exterior walls, the effective area can be significantly reduced if raked joints are specified
(where some of the mortar is removed from the front face of the joint for aesthetic reasons). The
designer should consider this effect in the calculation of the depth of the compression stress
block. This is not a concern with a standard concave tooled joint.
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Figure 2-4. Wall cross-sectional area: a) gross area; b) effective area.

Shear walls without openings (doors and/or windows) are referred to as solid walls (see Figure
2-5a)), while walls with door and/or window openings are referred to as perforated walls (see
Figure 2-5b)). The regions between the openings in a perforated wall are called piers (see piers
A, B, and C in Figure 2-5b)). Perforated shear walls in medium-rise masonry buildings with a
uniform distribution of vertically aligned openings over the wall height are called coupled walls.

a) b)
Figure 2-5. Masonry shear walls: a) solid, and b) perforated.

Depending on the wall geometry, in particular the height/length (hw/lw ) aspect ratio, shear walls

are classified into one of the following two categories:

o Flexural shear walls, with height/length aspect ratio of 1.0 or higher (see Figure 2-6a)), and

e Squat shear walls, with a height/length aspect ratio less than 1.0 shown in Figure 2-6b) (see
S304-14 Cl. 7.10.2.2; 10.2.8; 10.10.2.2 and 16.7).
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a) b)

Figure 2-6. Shear wall classification based on the aspect ratio: a) flexural walls; b) squat walls.

Depending on whether the walls resist the effects of gravity loads in addition to other loads,
masonry walls can be classified as loadbearing or nonloadbearing walls. Loadbearing walls
resist the effects of superimposed gravity loads (in addition to their selfweight) plus the effects of
lateral loads. Nonloadbearing walls resist only the effects of their selfweight, and possibly out-of-
plane wind and earthquake loads. Shear walls are loadbearing walls, irrespective of whether
they carry gravity loads or not.

In masonry design, the selection of locations where movement joints (also known as control
joints) should be provided is an important detailing decision. Some movement joints are
provided to facilitate design and construction, while others control cracking at undesirable
locations. In any case, wall length is determined by the location of movement joints, so this
detailing decision carries an implication for seismic design. For more details on movement joints
refer to MIBC (2017).

In general, shear walls are subjected to lateral loads at the floor and roof levels, as shown in
Figure 2-7. (Note the inverse triangular distribution of lateral loads simulating earthquake
effects.) The distribution of forces in a shear wall is similar to that of a vertical cantilevered beam
fixed at the base. Figure 2-7 also shows the internal reactive forces acting at the base of the
wall. Note that the wall section at the base is subjected to the shear force, V', equal to the sum
of the horizontal forces acting on the wall and the bending moment, M , due to all horizontal
forces acting at the effective height #,, as well as the axial force, P, equal to the sum of the
axial loads acting on the wall.

9/1/2018 2-7



o~
-
N~

: P=>P
V- T lPI r=>v
h A M=V-h,
e \

|
TV
}P‘M
Figure 2-7. Load distribution in shear walls.

2.3 Reinforced Masonry Shear Walls Under In-Plane Seismic Loading

2.3.1 Behaviour and Failure Mechanisms

The behaviour of a reinforced masonry (RM) shear wall subjected to the combined effect of

horizontal shear force, axial load and bending moment depends on several factors. These

include the level of axial compression stress, the amount of horizontal and vertical

reinforcement, the wall aspect ratio, and the mechanical properties of the masonry and steel.

The two main failure mechanisms for RM shear walls are:

o Flexural failure (including ductile flexural failure, lap splice slip, and flexure/out-of-plane
instability), and

e Shear failure (includes diagonal tension failure and sliding shear failure).

Each of these failure mechanisms is briefly described in this section. The focus is on the
behaviour of walls subjected to a cyclic lateral load simulating earthquake effects. Failure
mechanisms for RM walls are discussed in detail in FEMA 306 (1999).

2.3.1.1 Flexural failure mechanisms

Ductile flexural failure is found in reinforced walls and piers characterized by a height/length
aspect ratio (4, /1, ) of 1.0 or higher and a moderate level of axial stress (less than 0.1/}, ).
This failure mode is characterized by tensile yielding of vertical reinforcement at the ends of the
wall, and simultaneous cracking and possible spalling of masonry units and grout in the toe
areas (compression zone). In some cases, buckling of compression reinforcement accompanies
the cracking and spalling of the masonry units. Experimental studies have shown that the
vertical reinforcement is effective in resisting tensile stresses, and that it yields shortly after
cracking in the masonry takes place (Tomazevic, 1999). Damage is likely to include both
horizontal flexural cracks and small diagonal shear cracks concentrated in the plastic hinge
zone, as shown in Figure 2-8a). (The plastic hinge zone is the region of the member where
inelastic deformations occur and will be discussed in Section 2.6.2.) In general, this is the
preferred failure mode for RM shear walls, since the failure mechanism is ductile and effective in
dissipating earthquake-induced energy once the yielding of vertical reinforcement takes place.
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Flexure/lap splice slip failure may take place when starter reinforcing bars projecting from the
foundations have insufficient lap splice length, or when the rebar size is large relative to wall
thickness (e.g. 25M bars used in 200 mm walls), resulting in bond degradation and eventual
rocking of the wall at the foundation level. Initially, vertical cracks appear at the location of lap
splices followed by cracking and spalling at the toes of the wall (see Figure 2-8b)). This mode of
failure may be fairly ductile, but it results in severe strength degradation and does not provide
much energy dissipation.

Flexure/out-of-plane instability may take place at high ductility levels (see Figure 2-8c)). Ductility
is a measure of the capacity of a structure to undergo deformation beyond yield level while
maintaining most of its load-carrying capacity (ductile seismic response will be discussed in
Section 2.5.2). When large tensile strains develop in the tensile zone of the wall, that zone can
become unstable when the load direction reverses in the next cycle and compression takes
place. This type of failure has been observed in laboratory tests of well detailed, highly ductile
flexural walls (Paulay and Priestley, 1993), but it has not been observed in any post-earthquake
field surveys so far (FEMA 306, 1999). This failure mechanism can be prevented by ensuring
stability of the wall compression zone through seismic design (see Section 2.6.4 for more
details).
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Figure 2-8. Flexural failure mechanisms: a) ductile flexural failure; b) lap splice slip, and c) out-
of-plane instability (FEMA 306, 1999, reproduced by permission of the Federal Emergency
Management Agency).

2.3.1.2 Shear failure mechanisms

Shear failure is common in masonry walls subjected to seismic loads and has been observed in
many post-earthquake field surveys. Due to the dominant presence of diagonal cracks, this
mode is also known as diagonal tension failure (see Figure 2-9a)). It usually takes place in walls
and piers characterized by low aspect ratio (#,,//,, less than 0.8). These walls are usually
lightly reinforced with horizontal shear reinforcement, so the shear failure takes place before the
wall reaches its full flexural capacity.

This mode of failure is initiated when the principal tensile stresses due to combined horizontal
seismic loads and vertical gravity loads exceed the masonry tensile strength. When the amount
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and anchorage of horizontal reinforcement are not adequate to transfer the tensile forces across
the first set of diagonal cracks, the cracks continue to widen and result in a major X-shaped
diagonal crack pair, thus leading to a relatively sudden and brittle failure. Note that these
“diagonal cracks” may develop either through the blocks, or along the mortar joints.

In modern masonry construction designed according to code requirements, it is expected that
adequate horizontal reinforcement is provided, and that it is properly anchored within wall end
zones. Horizontal reinforcement can be effective in resisting tensile forces in the cracked wall
and in enhancing its load-carrying capacity. After the initial diagonal cracks have been formed,
several uniformly distributed cracks develop and gradually spread in the wall. Failure occurs
gradually as the strength of the masonry wall deteriorates under the cyclic loading. Voon (2007)
refers to this mechanism as “ductile shear failure”. It should be noted that ductile behaviour is
usually associated with the flexural failure mechanism, while shear failure mechanisms are
usually characterized as brittle. However, in very squat shear walls a ductile shear mechanism
may be the only ductile alternative.

Sliding shear failure may take place in masonry walls subjected to low gravity loads and rather
high seismic shear forces. This condition can be found at the base level in low-rise buildings or
at upper storeys in medium-rise buildings, where accelerations induced by the earthquake
ground motion are high, but it can also take place at other locations. Sliding shear failure takes
place when the shear force across a horizontal plane (usually the base in RM walls) exceeds
the frictional resistance of the masonry, and a horizontal crack is formed at the base of the wall,
as shown in Figure 2-9b). There may be very limited cracking or damage in the wall outside the
sliding joint. The frictional mechanism at the sliding interface is activated after the clamping
force developed by the vertical reinforcement decreases as it yields in tension. Even though this
mode of failure is often referred to as a shear failure mode, it may also take place in the walls
characterized by flexural behaviour. Pre-emptive sliding at the base limits the development of
the full flexural capacity in the wall.

N_ T 7 [ [ T 1
| N l [ : l l [ l [
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T T 1 O IR T ) S
N opical
a) b) ~-sliding plane

Figure 2-9. Shear failure mechanisms: a) diagonal tension’, and b) sliding shear.

2.3.2 Shear/Diagonal Tension Resistance

The shear resistance of RM shear walls depends on several parameters, including the masonry
compressive strength, grouting pattern, amount and distribution of horizontal reinforcement,
magnitude of axial stress, and height/length aspect ratio. Over the last two decades, significant
experimental research studies have been conducted in several countries, including the US,
Japan, and New Zealand. Although the findings of these studies have confirmed the influence of
the above parameters on the shear resistance of masonry walls, it appears to be difficult to
quantify the influence of each individual parameter. This is because of the complexity of shear

" Source: FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency
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resistance mechanisms and a lack of effective theoretical models. As a result, the shear
resistance equations included in the Canadian masonry design standard, S304-14, and those of
other countries, are based on statistical analyses of test data obtained from a variety of
experimental studies. The diagonal tension shear resistance equation for RM walls in CSA
S304-14 is based on research by Anderson and Priestley (1992), and other research based on
wall tests in the US and Japan. Refer to Section B.1 for a detailed research background on the
subject.

This section discusses the in-plane shear resistance provisions of CSA S304-14 for non-seismic
conditions, while the seismic requirements related to shear design are discussed in Section
2.6.6. The design of walls built using running bond is discussed in this section, while walls built
using a stack pattern are discussed in Section 2.7.3.

2.3.2.1 Flexural shear walls

Flexural shear walls are characterized by a height/length aspect ratio of 1.0 or higher (see
Figure 2-6a)). Consider a RM shear wall built in running bond which is subjected to the effect of
a factored shear force, V', and a factored bending moment, M , .

Factored in-plane shear resistance, V. , is determined as the sum of contributions from masonry,
V., and steel,V_, that s,

V.=V, +V, (1)
Masonry shear resistance,V, , is equal to:
Vm =¢m(vmbwdv +025Pd)7/g (2)

Wall dimensions (b, and d,):

b, =t overall wall thickness (mm) (referred to as “web width” in CSA S304-14); note that b,
does not include flanges in the intersection walls

d, = effective wall depth (mm)

d, >0.8/, for walls with flexural reinforcement distributed along the length

Wall cross-sectional dimensions (b, and d ) used for shear design calculations are illustrated in
Figure 2-10.

Figure 2-10. Wall cross-sectional dimensions used for in-plane shear design.
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Effect of axial load (P, ):

P, = axial compression load on the section under consideration, based on 0.9 times dead load,
P, , plus any axial load, N , arising from bending in coupling beams or piers (see Figure 2-11)

P, =0.9P,, for solid walls
P, =09P,, £ N for perforated/coupled walls
Note that the net effect of tension and compression forces + N on the total shear in the wall is

equal to 0.
l%L 1%L l%L

A A A

bbby V_pdideyiid

/-'<j M, =V

a) b)

Figure 2-11. Axial load in masonry walls: a) solid; b) perforated.

Effect of grouting (7, ):
Vo= factor to account for partially grouted walls that are constructed of hollow or semi-solid

units
7, =1.0 for fully grouted masonry, solid concrete block masonry, or solid brick masonry

Ve = A, for partially grouted walls, but y, <0.5
4

where (see Figure 2-4)
A, = effective cross-sectional area of the wall (mm?)
A, = gross cross-sectional area of the wall (mm?)
Masonry shear strength (v,, ):
v, represents shear strength attributed to the masonry in running bond, which is determined
according to the following equation:

M.
v, :0.16(2—“-; WS MPa units (3)
v

M, )

V.d,

Shear span ratio (
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The following limits apply to the shear span ratio:

Mf
0.25<—-<1.0
fdv

Reinforcement shear resistance, V_, is equal to:
dV

S

V,=0.69,4,1, (4)

where
A, = area of horizontal wall reinforcement (mm?)
s = vertical spacing of horizontal reinforcement (mm)

As discussed in this section, the factored in-plane shear resistance, V., is determined as the
sum of contributions from masonry, V', , and reinforcement, V', that is,

V.=V, +V, (5
where
V,=¢,v,b,d, +025P)y, (6)
and

dv

V,=0.64,4,1, (7)

S

CSA S304-14 prescribes the following upper limit for the factored in-plane shear resistance 7,
for flexural walls:

V. <maxV, =0.4¢,. f1b,dy, ®

| Commentary

Axial compression:

The equation for the factored shear resistance of masonry, V. , in accordance with CSA S304-
14 [equation (2)], takes into account the positive influence of axial compression. The term
0.25P, was established based on the statistical analyses of experimental test data carried out
by Anderson and Priestley (1992). The 0.25 factor is consistent with that used for concrete in
estimating the shear strength of columns.

Consider a masonry shear wall subjected to the combined effect of axial and shear forces
shown in Figure 2-12a). A two-dimensional state of stress develops in the wall: axial load, P,
causes the axial compression stress, o, while the shear force, V', causes the shear stress, v.
The presence of axial compression stress delays the onset of cracking in the wall since it
reduces the principal tensile stress due to the combined shear and compression. Shear cracks
develop in the wall once the principal tensile stress reaches the masonry tensile strength (which
is rather low). It should be noted, however, that the masonry shear resistance decreases in a
wall section subjected to high axial compression stresses (see the diagram shown in Figure
2-12b)). This is based on experimental studies — for more details refer to Drysdale and Hamid
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(2005). Note that shear walls in low-rise masonry buildings are subjected to low axial
compression stresses, as shown in Figure 2-12b).

Grouting pattern:

CSA S304-14 takes into account the effect of grouting on the masonry shear resistance through
the y_ factor, which assumes the value of 1.0 for fully grouted walls and 0.5 or less for partially
groufged walls. Research evidence indicates that fully grouted RM walls demonstrate higher
ductility and strength under cyclic lateral loads than otherwise similar partially grouted
specimens, as discussed in Section B.5.

=
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g < |
f O
Average compressive

stress at failure
a) b)

Figure 2-12. Effect of axial stress: a) a shear wall subjected to the combined shear and axial
load; b) relationship between the shear stress at failure and the compression stress.

Masonry shear strength (v,, ):

Masonry shear strength defined by equation (3) depends on masonry tensile strength
represented by the / f, term, as well as on the shear span ratio, M , /V,d, . Walls with shear
span ratios of less than 1.0 behave like squat walls, and are characterized by the highest
masonry shear resistance, as illustrated in Figure 2-13.

V / ,:f'
m V/m
A

0.16

> Mf/lé-dv

Figure 2-13. Effect of shear span ratio on the masonry shear strength.
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For shear walls, the ratio M, /V'; is equal to the effective height, 4, , at which the resultant
shear force V, acts, thereby causing the overturning moment M , =V xh, (see Figure 2-14).
The term d denotes the effective wall depth, which is equal to a fraction of the wall length, /.
Hence, M, /V,d, is equal to shear span ratio, h,/d, , which is related to the height-to-length
aspect ratio.

B
v, 4
P
V 2
{. > \/ > l
I .
ie Vi
M
WY
¥ —— e

Figure 2-14. Shear span ratio ze .

v

Reinforcement shear resistance (V' ):

Reinforcement shear resistance in RM shear walls in running bond is mainly provided by
horizontal steel bars and/or joint reinforcement. This model assumes that a hypothetical failure
plane is at a 45° angle to the horizontal axis, as shown in Figure 2-15a). When diagonal
cracking occurs, tension develops in the reinforcing steel crossing the crack. (Before the
cracking takes place, the entire shear resistance is provided by the masonry.)

The resistance provided by shear reinforcement is taken as the sum of tension forces
developed in steel reinforcement (area 4, ) which crosses the crack, as shown in Figure 2-15b).
The number of reinforcing bars crossing the crack can be approximately taken equal to d, /s .
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Figure 2-15. Steel shear resistance in flexural walls: a) wall elevation; b) free-body diagram
showing reinforcement crossing a diagonal crack.

It appears that the steel reinforcement is less effective in resisting shear in masonry walls than
in reinforced concrete walls. This may be due to the rather low masonry bond strength, so that
not all bars crossing the assumed failure plane are fully stressed, plus the failure plane may be
at an angle of less than 45° in this high moment region. Even in lightly reinforced masonry walls,
horizontal reinforcement is less effective than in otherwise similar reinforced concrete walls. It is
difficult to exactly estimate the contribution of the steel reinforcement to the shear resistance of
masonry walls. Anderson and Priestley (1992) came to the conclusion that the contribution of
steel shear reinforcement in a masonry wall is equal to 50% of the value expected in reinforced
concrete walls. As a result, they proposed the following equation for the nominal steel shear
resistance, V,, (note that ¢_is equalto 1):

CSA S304- 14 uses the same V, equation (4), except that the coefficient 0.6 is used instead of
0.5. Note also that, when 0.6 is multlplled by the ¢ value of 0.85, the resulting value is equal to
0.6x0.85=0.51=0.5.

The contribution of vertical reinforcement to shear resistance in masonry walls is not considered
to be significant and it is not accounted for by the CSA S304-14 shear design equation. The
analysis of experimental test data by Anderson and Priestley (1992) showed an absence of any
correlation between the wall shear resistance and the amount of vertical steel reinforcement.
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2.3.2.2 Squat shear walls

Squat shear walls are characterized by a low height/length aspect ratio, 4, /lw, less than unity.
The factored shear resistance of squat shear walls, V', should be determined from the same
equation as prescribed for flexural walls. To recognize the fact that the shear resistance of
masonry walls increases with a decrease in the height/length aspect ratio, CSA S304-14
prescribes an increased upper limit for the factored shear resistance as follows:

h h,
V. <max/V, :0.4¢m1/f,;bwdvyg(2—l—“’) l—“’é 1.0 9)
Cl.10.10.2.2 also prescribes that this maximum shear resistance can be used only when it is
ensured that the shear input to the wall is distributed along the entire length, and that a failure of
a portion of the wall is prevented. This is discussed further in the following Commentary.

| Commentary

The first term in equation (9) is equal to the maximum V. limit for flexural shear walls (equation
8). Equations (8) and (9) have the same value for a wall with the aspect ratio %, /I, =1.0. The
term (2 —~h, /lw)that accounts for the effect of wall aspect ratio has the minimum value of 1.0 for
the aspect ratio of 1.0, and its value increases for squat walls — it is equal to 1.5 for the aspect
ratio of 0.5.

Cl.10.10.2.2 prescribes that an increased maximum ¥ limit for squat shear walls applies only
when the designer can ensure that the shear input to the wall can be distributed along the entire
wall length. Earthquake-induced lateral load in a masonry building is transferred from the floor
or roof diaphragm into the shear walls. Floor and roof diaphragms in masonry buildings range
from flexible timber diaphragms to rigid reinforced concrete slab systems. The type of load
transfer at the wall-to-diaphragm connection depends on the diaphragm rigidity (see Section
1.5.9.4 for more details).

CSA S304-14 CI.10.15.1.4 requires that a bond beam be placed at the top of the wall, where the
wall is connected to roof and floor assemblies. The bond beam therefore acts as a “transfer
beam” that ensures a uniform shear transfer along the top of the wall, as shown in Figure 2-16a)
(this can be effectively achieved when the vertical reinforcement extends into the beam).

Shear forces are transferred from the top to the base of the wall by means of a compression
strut. It should be noted that a majority of experimental studies used specimens with a rigid
transfer beam cast on top of the wall, as discussed by Anderson and Priestley (1992). Provision
of the top transfer beam (or an alternative means to apply shear force uniformly along the wall
length) is required for the seismic design of Moderately Ductile Squat shear walls (Cl.16.7.3.1).

Where there is no transfer beam or bond beam at the top of the wall as shown in Figure 2-16b),
a partial shear failure of the wall is anticipated. In such cases, the designer cannot take
advantage of the increased maximum ¥ limit for squat shear walls; the limit pertaining to
flexural shear walls should be used instead.
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Figure 2-16. Shear failure mechanisms in squat shear walls: a) wall with the top transfer beam —
a desirable failure mechanism; b) partial failure of a squat wall without the top beam.

2.3.3 Sliding Shear Resistance

Sliding shear failure may occur before walls fail in the flexural mode. Experimental studies
(Shing et al., 1990) have shown that for squat walls, a sliding shear mechanism can control the
failure and prevent the development of their full flexural capacity. This section discusses the
sliding shear resistance provisions of CSA S304-14 for non-seismic conditions; seismic
requirements related to sliding shear resistance will be discussed in Section 2.6.7.

Sliding shear failure can occur in both squat and flexural walls; however, it is much more
common in squat walls having high shear resistance, V.. Sliding shear resistance is usually
checked at the foundation-to-wall interface (construction joint), but may need to be checked at
other sections as well (especially upper portions of multi-storey flexural walls).

Sliding shear resistance is generally taken as a frictional coefficient times the maximum
compressive force at the sliding plane. In accordance with CSA S304-14, the factored in-plane
sliding shear resistance, V., shall be taken as:

V.=¢,uC (10

where
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L is the coefficient of friction

= 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

= 0.7 for a masonry-to-smooth concrete or bare steel sliding plane

= other (where flashings reduce friction that resists sliding shear, a reduced coefficient of
friction accounting for the flashing material properties should be used)
C is the compressive force in the masonry acting normal to the sliding plane, normally taken as

C=F+T,
T, =¢.4,f, the factored tensile force at yield of the vertical reinforcement of area A, (yield

stress f)

P, = axial compressive load on the section under consideration, based on 0.9 times dead load,
P, , plus any axial load acting from bending in coupling beams

Note that the compressive force C was referred to as P2 in CSA S304.1-04. Also, 4, denotes the

total area of vertical reinforcement crossing the sliding plane for seismic design of Conventional
Construction shear walls and Moderately Ductile shear walls. However, 4, denotes the area of

reinforcement in the tension zone only for Ductile shear walls and shear walls with boundary
elements. For more details refer to Section 2.6.7.

| Commentary

When sliding begins, the sand grains in the mortar tend to ride up and over neighbouring
particles causing the mortar to expand in the vertical direction. This creates tension (and
ultimately yielding) in the vertical reinforcing bars at the interface (note that adequate anchorage
of reinforcement on both sides of the sliding plane is necessary to develop the yield stress). As
a result, a clamping force is formed between the support and the wall, normally taken equal to
¢, A, f,, as shown in Figure 2-17. The shear is then transferred through friction at the interface
along the compression zone of the wall.
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Figure 2-17. In-plane sliding shear resistance in masonry shear walls: a) Conventional
Construction and Moderately Ductile shear walls, and b) Ductile shear walls.
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In accordance with CSA S304-14, the maximum compression force, C, is usually considered to
be equal to the axial load plus the yield strength of the reinforcement/dowels crossing the sliding
plane. Since the reinforcement yields in tension, shear resistance of the dowels cannot be
included. This assumption is appropriate for walls that are not expected to demonstrate
significant ductility.

However, if a wall is subjected to its ultimate moment capacity, which causes yielding of the
compression reinforcement, there is a tendency for this reinforcement to remain in compression
to maintain the moment resistance, especially after the wall has been cycled into the yield range
once or twice. Thus, when the compression steel remains in compression, the normal force
resisting sliding will be limited to the resultant force in the tension steel, T, as shown in Figure
2-17b). This assumption is included in seismic design requirements for moderately ductile walls
(to be discussed in Section 2.6.7).

The presence of flashing at the base of the wall usually reduces the sliding shear resistance
when the frictional coefficient for the flashing-to-wall interface is low (Anderson and Priestley,
1992).

2.3.4 In-Plane Flexural Resistance Due to Combined Axial Load and
Bending
Seismic shear forces acting at floor and roof levels cause overturning bending moments in a
shear wall, which reach the maximum at the base level. The theory behind the design of
masonry wall sections subjected to the effects of flexure and axial load is well established, and
the design methodology is essentially the same as that related to reinforced concrete walls.
Note that CSA S304-14 CI.10.2.8 prescribes the use of reduced effective depth, d , for flexural
design of squat shear walls, that is:

d=0.671,<0.7h

This provision was introduced for the first time in the 2004 edition of CSA S304.1 to account for
the deep beam-like flexural response of squat shear walls. This provision can be rationalized for
non-seismic design, but it should not be used in seismic conditions, as all the tension steel is
expected to yield, as shown in Figure 2-17b). A wall design using this provision could result in a
flexural capacity that is larger than permitted according to the Capacity Design approach.

For a detailed flexural design procedure the reader is referred to Appendix C (Section C.1.1).
2.4 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading

2.4.1 Background

Seismic shaking in a direction normal to the wall causes out-of-plane wall forces that result in
bending and shear stresses and may, ultimately, cause out-of-plane collapse of the walls. Note
that the out-of-plane seismic response of masonry walls is more pronounced at higher floor
levels (due to larger accelerations) than in the lower portions of the buildings, as shown in
Figure 2-18. When walls are inadequately connected to the top and bottom supports provided
by floor and/or roof diaphragms, out-of-plane failure is very likely, and may also lead to a
diaphragm failure. For more details on wall-to-diaphragm connections, the reader is referred to
Section 2.7.6. The design of masonry walls for shear and flexure due to the effects of out-of-
plane seismic loads is discussed in this section.
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Figure 2-18. Out-of-plane vibration of walls (Tomazevic, 1999, reproduced by permission of the
Imperial College Press).

2.4.2 Out-of-Plane Shear Resistance

The factored out-of-plane shear resistance, V., shall be taken as:

LA

V.=¢ (v, -b-d+025P,) (11)
where

v, =0.16,f, MPaunits  (Cl.10.10.1.4)
with the following upper limit,

V, <maxV, = 0.4¢,f1(b-d) (12)

where

d is the distance from extreme compression fibre to the centroid of tension reinforcement,

b is the cumulative width of the cells and webs within a length not greater than four times the
actual wall thickness (4 xt)around each vertical bar (for running bond), as shown in Figure
2-19a). Note that the webs are the cross-walls connecting the face shells of a hollow or semi-
solid concrete masonry unit or a hollow clay block (S304-14 CI.10.10.3).

| Commentary

Note that the equation for masonry shear resistance, V', , is the same for shear walls subjected
to in-plane and out-of-plane seismic loading. There is no V', contribution because the horizontal
reinforcement is provided only in the longitudinal direction and it does not contribute to the out-

of-plane shear resistance.

In partially grouted walls, the out-of-plane shear design should be performed using a T-shaped
wall section, where b denotes the web width (see Figure 2-19a)).
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Figure 2-19. Effective width, b, for out-of-plane seismic effects: a) shear, and b) flexure.

2.4.3 Out-of-Plane Sliding Shear Resistance

The factored out-of-plane sliding shear resistance, V', is calculated from the following equation
using the shear friction concept:

V,=guC (13

where
1 = the coefficient of friction (same as for the in-plane sliding shear resistance)

C = compressive force in the masonry acting normal to the sliding plane, taken as
C=PF+T,

T, = the factored tensile force at yield of the vertical reinforcement detailed to develop yield
strength. In determining the out-of-plane sliding shear resistance, the entire vertical

reinforcement should be taken into account in determining the factored tensile yield force, Ty ,
irrespective of the wall class and the associated ductility level.

For more details refer to the discussion on the sliding shear resistance of shear walls under in-
plane seismic loading (Section 2.3.3).

2.4.4 Out-of-Plane Section Resistance Due to Combined Axial Load and
Bending

Masonry walls subjected to out-of-plane seismic loading need to be designed for the combined
effects of bending and axial gravity loads. For flexural design purposes, wall strips of
predefined width b (S304-14 CI.10.6.1) are treated as beams spanning between the lateral
supports. When the walls span in the vertical direction, floor and/or roof diaphragms provide
lateral supports. Walls can also span horizontally, in which case lateral supports need be
provided by cross walls or pilasters. For detailed design procedures, the reader is referred to
Section C.1.2 in Appendix C. It should be noted that, for the purpose of out-of-plane seismic
design, the maximum permitted compressive strain in the masonry is equal to 0.003 (note that
this is an arbitrary value set for the purpose of the analysis). CSA S304-14 does not require a
ductility check, because the mechanism of failure is different for the in-plane and out-of-plane
seismic resistance, and the wall is not expected to undergo significant rotations at the locations
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of maximum bending moments. Very large curvatures would be required to cause compression

failure of the masonry, corresponding to a high strain gradient over a very small length (equal to
the wall thickness). Consequently, there is no need to use the reduced compressive strain limit

of 0.0025 for this load condition.

For the case of out-of-plane bending, the effective compression zone width, b, used with each
vertical bar in the design of walls with vertical reinforcement shall be taken as the lesser of (see
Figure 2-19b))

a) spacing between vertical bars s, or

b) four times the actual wall thickness (4 xt)
Note that the discussion on out-of-plane stability issues is outside the scope of this document
and it is covered elsewhere (see Drysdale and Hamid, 2005).

2.5 General Seismic Design Provisions for Reinforced Masonry Shear
Walls

2.5.1 Capacity Design Approach

CSA S304-14 CI.16.3.1, references capacity design principles where inelastic deformations are
expected to occur in chosen energy-dissipating components of the SFRS, which are designed
and detailed accordingly. All other load-bearing components are designed and detailed to have
sufficient strength to ensure that the chosen means of energy-dissipation can be maintained.
The NBC 2015 requires that all elements not considered part of the SFRS have the capacity to
undergo the earthquake induced deformations, and that stiff elements, such as nonloadbearing
walls and partitions, behave elastically or are separated from the SFRS.

Every structure or structural component has several possible modes of failure, some of which
are ductile, while others are brittle. The satisfactory seismic response of structures requires that
brittle failure modes be avoided. This is accomplished through the application of a capacity
design approach, which has been used for seismic design of reinforced concrete structures
since the 1970’s (Park and Paulay, 1975). The objective of the capacity design approach is to
force the structure to yield in a ductile manner without failing at the expected displacements
(including other components of the structure, such as columns). At the same time, the rest of
the structure needs to remain strong enough, say in shear, or flexible enough not to fail under
gravity loads at these displacements.

This concept can be explained by using the example of a chain shown in Figure 2-20, which is
composed of both brittle and ductile links. When subjected to force, F, if the brittle link is the
weakest, the chain will fail suddenly without significant deformation (see Figure 2-20a)). If a
ductile link is the weakest, the chain will show significant deformation before failure, and may
not fail or break if the deformation is not too great (see Figure 2-20b)). The structural designer is
responsible for ensuring that the structure experiences a desirable ductile response when
exposed to the design earthquake, that is, an earthquake of the expected intensity for the
specific building site location.
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Figure 2-20. Chain analogy for capacity design: a) brittle failure; b) ductile failure.

The capacity design approach can be applied to the seismic design of RM shear walls. The key
failure modes in RM walls include flexural failure (which is ductile and therefore desirable in
seismic conditions) and shear failure (which is brittle and should be avoided in most cases). For
a detailed discussion of masonry failure modes refer to Section 2.3.1.

Note that the following three resistance “levels” are used in seismic design of masonry shear
walls:

e Factored resistances M, and V', , determined using appropriate material resistance
factors, that is, ¢m = 0.6 and ¢S = 0.85, and specified material strength;

e Nominal resistances M, and V,, determined without using material resistance factors,
that is, ¢m =1.0 and ¢¥ = 1.0, and specified material strength;

e Probable resistances M » and Vp, determined without using material resistance factors;
stress in the tension reinforcing is taken equal to1.25f , and the masonry compressive
strength is equal to £ .

For the probable resistance parameters discussed above, it should be noted that the flexural
resistance of a masonry shear wall is usually governed by the yield strength of the
reinforcement, [, while the masonry compressive strength, £\, has a much smaller influence.

Thus, the probable resistances are determined by taking the masonry strength equal to f and
the real yield strength of the reinforcement equal to 1.25 the specified strength, that is, 1. 25fy.

Consider a masonry shear wall subjected to an increasing lateral seismic force, V', and the
corresponding deflection shown in Figure 2-21a). The wall has been designed for a “design
shear force” shown by a horizontal line. However, the actual wall capacity typically exceeds the
design force, and the wall is expected to deform either in a flexural or shear mode at higher load
levels. Conceptual force-deflection curves corresponding to shear and flexural failure
mechanisms are also shown on the figure. These curves are significantly different: a shear
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failure mechanism is characterized by brittle failure at a small deflection, while a ductile flexural
mechanism is characterized by significant deflections before failure takes place.

An earthquake will cause significant lateral deflections, which are more or less independent of
the strength of the structure. If the governing failure mode corresponding to the lowest capacity
occurs at a smaller deflection, the wall will fail in that mode. For example, the wall shown in
Figure 2-21a) is expected to experience shear failure, since the maximum force corresponding
to shear failure is lower than the force corresponding to flexural failure.

Consider a wall that is designed to fail in shear when the shear resistance, V,, and
corresponding displacement A , have been reached, and to fail in flexure when the shear force,
V,, and corresponding displacement A, have been reached (see Figure 2-21b)). If the wall is
weaker in flexure than in shear, that is, V', <V, the shear failure will never take place. In this
case, a ductile link corresponding to the flexural failure is the weakest and governs the failure
mode. Such a wall will experience significant deflections before the failure (note that A, = A ,);
this is a desirable seismic performance.

However, suppose that the wall flexural resistance is higher (this is also known as “flexural
overstrength”) and now corresponds to moments associated with the shear force, V., as shown
in Figure 2-21c). Now the wall will fail in shear at the force, V, , and will never reach the forceV ..
This is not a desirable wall design, since shear failure is brittle and sudden and should be
avoided. Thus, it is important that the member shear strength be greater than its flexural
overstrength, as we will discuss later in this section.

9/1/2018 2-25



VA x Elastic shear force
/

1 A
P X Flexure S
L= V =
Shear ik
Design shear /
force
= CI)
A
Vi
Vi
A
i shear
/";“"‘:""]ailure VB
)
| "‘-\_- ) ﬂex*lral
! faih?re
: | == b)
A, Ag A
Vi e
S
/ V N\ flexural
A —
S._ shear failure
failure
= C)
A

Figure 2-21. Shear force-deflection curves for flexural and shear failure mechanisms:
a) a possible design scenario; b) flexural mechanism governs; ¢) shear mechanism governs
(adapted from Nathan).

The last example demonstrates that making the wall “stronger” can have unintended adverse
effects, and can change the failure mode from a ductile flexural mode (good) to a brittle shear
mode (bad). Thus a designer should not indiscriminately increase member moment capacity
without also increasing its shear capacity. According to the capacity design approach, ductile
flexural failure will be assured when the shear force corresponding to the upper bound of
moment resistance at the critical wall section is less than the shear force corresponding to the
lower bound shear resistance of the shear failure mechanism. This will be explained with an
example of the shear wall shown in Figure 2-22.

When the moment at the base is equal to the nominal moment resistance, M , (this is considered
to be an upper bound for the moment resistance value and it is explained below), the
corresponding shear force acting at the effective height is equal to

an :Mn/he
or
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Vip =M, *(V, [M,)

as shown in Figure 2-22a). V,, denotes the resultant shear force corresponding to the
development of nominal moment resistance, M ,, at the base of the wall. To ensure the
development of a ductile flexural failure mode, V,, must be less than the corresponding factored
shear resistance, V., as indicated in Figure 2-22b).

NE
[

he
Mn
= 47

nb

b<Vr

a) n b)

Figure 2-22. Comparison of shear forces at the base of the wall: a) shear force corresponding to
the nominal flexural resistance, and b) shear force equal to the shear resistance.

Although CSA S304-14 CI.16.3.1 requires that the capacity design approach should be applied
to ductile masonry walls, it is also recommended that this approach be applied to all RM shear

walls. As a minimum, the factored shear resistance, V', should not be less than the shear

corresponding to the factored moment resistance, M, of the wall system at its plastic hinge
location.

The minimum required factored shear resistance for various wall classes discussed in Section
2.6.5 is based on the Capacity Design concept discussed in this section.

2.5.2 Ductile Seismic Response

A prime consideration in seismic design is the need to have a structure capable of deforming in
a ductile manner when subjected to several cycles of lateral loading well into the inelastic range.
Ductility is a measure of the capacity of a structure or a member to undergo deformations
beyond yield level while maintaining most of its load-carrying capacity. Ductile structural
members are able to absorb and dissipate earthquake energy by inelastic (plastic)
deformations, which are usually associated with permanent structural damage.

The concept of ductility and ductile response is introduced in Section A-2. Key terms related to
the ductile seismic response of masonry shear walls, including ductility ratio, curvature, plastic
hinge, etc., are discussed in detail in Section B.2. It is very important for a structural designer to
have a good understanding of these concepts before proceeding with the seismic design and
detailing of ductile masonry walls in accordance with CSA S304-14.
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2.5.3 Structural Regularity

Combinations of SFRSs acting in the same direction may be used, provided that each system
continues over the full building height. When SFRSs are not continuous over the building height
or change type over the building height, when elements from two or more SFRS types are
combined to create a hybrid system, or when a significant irregularity exists, an inelastic
analysis such as a static pushover or dynamic analysis shall be performed to:

a) verify the compatibility of the systems;

b) confirm the assumed energy-dissipating mechanisms;

c) show that the inelastic rotational demands are less than the inelastic rotational capacities;
and

d) account for redistribution of forces.

Note: The inelastic analysis may be waived if the performance of the system has been
previously verified by experimental evidence or analysis. Systems requiring inelastic analysis
shall be treated as alternative solutions under the NBC.

| Commentary

This provision is intended to ensure a satisfactory seismic performance of structures with more
than one SFRS, also known as “hybrid systems”. In the case of masonry structures, this may
refer to different masonry SFRSs, e.g. RM walls characterized by different ductility levels (a mix
of Moderately Ductile and Ductile walls), or a combination of wall and frame systems. For
example, the design of open storefront buildings with walls on three sides and non-structural
glazing on the fourth side (see Figure 1-12) may require the use of framed SFRS on the open
side of the building. It is required to ensure compatibility of these SFRSs in terms of lateral
displacements/drifts (S304-14 CI.16.3.2). Also, internal forces in the frame and wall members
must be redistributed based on the calculations.

2.5.4 Analysis Assumptions — Effective Section Properties

In lieu of a more accurate method for determining effective cross-sectional properties, the
design seismic force and deformations of a SFRS may be calculated based on reduced section
properties to account for nonlinear behavior. These effective cross-sectional properties should
be used to determine forces and deflections in shear walls subjected to seismic effects.

The SFRS components’ gross cross-sectional properties shall be modified according to the
following:

1,=1,03+P /(4,1 ) where I, <1I,<1I,
A,=A4,03+P /(4,1 ) where 4, <4, <4,

where P is factored axial force due to dead and live loads determined at the base of the wall for
the seismic load combinations. For all shear walls in the main SFRS, an average value of
PS/(Agf'm) may be used. Note that Icr,le,lg denote the moments of inertia of cracked,

cr? Ae s Ag

denote the cross-sectional areas of cracked, effective, and gross cross-sections of a masonry
shear wall, respectively.

effective, and gross cross-sections of a masonry shear wall, respectively. Also, 4
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Since this provision applies to RM sections, transformed section properties should be
considered; this is similar to S304-14 provisions for deflection calculations for flexural members
(Cl.11.4.3).

| Commentary

The behaviour of masonry walls subjected to increasing lateral loading is initially elastic until
cracking takes place, at which point there is a substantial drop in stiffness. Figure 2-23 shows
the conceptual force versus deformation envelopes for RM walls subjected to lateral loading. It
can be seen that the initial elastic stiffness K; drops to a smaller value, corresponding to
effective stiffness Ke, due to cracking in walls with shear-dominant behaviour (Figure 2-23b)), or
yielding in walls with flexure-dominant behaviour (Figure 2-23 a)). S304-14 CI.16.3.3 introduced
equations for estimating the effective post-cracking stiffness of ductile RM shear walls. This
stiffness reduction is quantified through effective moment of inertia /. and effective cross-
sectional area A., as discussed above. The extent of the stiffness reduction depends on the
level of axial precompression (the stiffnesses higher in walls with higher axial stresses). This is
in line with the findings of research by Priestley and Hart (1989), and the provisions related to
reinforced concrete shear walls (CSA A23.3-04 Cl.21.2.5.2.2). It should be noted that masonry
shear walls are expected to experience a more significant drop in stiffness than RC shear walls.
In an hypothetical situation where a wall is not subjected to axial precompression, a reduction in
stiffness in a masonry wall is 70% according to S304-14 (compared to a 40% stiffness reduction
in a reinforced concrete shear wall according to CSA A23.3-04). Note that the equation for
effective stiffness of reinforced concrete shear walls has changed in CSA A23.3-14
(Cl.21.2.5.2): the effective stiffness no longer depends on axial compression stress, but
depends on the ductility level. The maximum stiffness reduction for RC shear walls ranges from
0 to 50%. Refer to Section C.3.5 for a more detailed discussion regarding the effect of cracking
on wall stiffness.
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Figure 2-23. Effective stiffness in reinforced masonry shear walls: a) flexure-dominant
behaviour, and b) shear-dominant behaviour (based on Shing et al. 1990, 1991).
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2.5.5 Redistribution of desigh moments from elastic analysis

The redistribution of design moments obtained from elastic analysis, using the effective cross-
sectional properties specified in Cl.16.3.3 (see Section 2.5.4), may be used where it can be
demonstrated that the ductility capacities of affected components are not exceeded.

Note: inelastic redistribution of moments may result in reduced maximum moment resistance
requirements.

2.5.6 Minor shear walls as a part of the SFRS

Masonry shear walls designed according to S304-14 seismic provisions should be designed to
provide the required ductility under the action of the specified factored loads (Cl.16.3.4.1).
Cl.16.3.4.2 addresses the requirements for minor shear walls in masonry buildings. It states that
when it can be shown through analysis that the stiffest masonry shear walls attract 90% or more
of the design seismic force on the building, such walls can be designated as the main SFRS
and shall then be designed for 100% of the design seismic force.

Walls not considered to be part of the main SFRS shall be designed to behave elastically or to
have sufficient non-linear capacity to support their gravity loads while undergoing deformations
compatible with those of the main SFRS.

Any masonry shear wall with sufficient stiffness to attract 2.5% or more of the design seismic
force or 50% of the average shear wall force in themain SFRS shall be included in the main
SFRS.

Minor shear walls may be included in the main SFRS.
2.6 CSA S304-14 Seismic Design Requirements

2.6.1 Classes of reinforced masonry shear walls

Table 4.1.8.9 of NBC 2015 identifies the following five classes of masonry walls based on their
expected seismic performance quantified by means of the ductility-related force modification
factor, R, (see also Section 1.7):

1. Unreinforced Masonry and other masonry structural systems not listed below (R, =1.0)
2. Conventional Construction shear walls (R, =1.5)

3. Moderately Ductile shear walls (R, =2.0)

4. Moderately Ductile Squat shear walls (R, =2.0)

5. Ductile shear walls (R, =3.0) — note that this is a new class.
Classes 3, 4, and 5 are referred to as “ductile shear walls”. The same value of overstrength
factor, R, of 1.5 is prescribed for all the above listed wall classes, except for unreinforced
masonry where R, is equal to 1.0.

CSA S304-14 Clause 16 outlines the seismic design provisions for masonry shear walls. Note
that these provisions have been substantially revised compared to the S304.1-04 provisions.

Note that class “limited ductility shear walls” (S304.1-04, CI.10.16.4) no longer exists.
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The seismic design and detailing requirements for various masonry Seismic Force Resisting
Systems (SFRSs) are summarized in Table 2-1. In accordance with NBC 2015 Sent.4.1.8.1.1,
seismic design must now be performed for all structures in Canada. The requirements are
somewhat relaxed in areas with a lower seismic hazard, when I, F S, (0.2) <0.16 and
1.F,S,(2.0)<0.03 (NBC 2015 Sent.4.1.8.1.2).

Table 2-1. Summary of Seismic Design and Detailing Requirements for Masonry SFRSs in CSA
S304-14

Type of SFRS | Common R R Expected Summary of CSA CSA S304-14
applications d ¢ | seismic S304-14 design reinforcing and
performance requirements detailing
requirements
Low-rise 1.0 | 1.0 | Potential to = Can be used only Reinforcement not
buildings form brittle at sites where required
located in low failure modes I5F,S, (0.2) <035
seismicity
Unreinforced regions = Walls must have
masonry factored shear and
flexural resistances
greater than or equal to
corresponding factored
loads
Used for most 1.5 | 1.5 | Designto = Walls must have Minimum seismic
building avoid soft factored shear and reinf. requirements
applications stories or flexural resistances (Cl.16.4.5) apply if
Conventional brittle failure greater than or equal to I5F,S, (0_2) >035
. modes corresponding factored )
Construction loads otherwise follow
shear walls - Capacity design m|n|mum r']on-
approach followed to seismic reinf.
determine min shear requirements
resistance (Cl.16.5.4) (C.10.15.1)
Used for post- | 2.0 | 1.5 | Dissipation of =  Walls to be Minimum seismic
disaster or earthquake designed using factored | reinforcement
high-risk energy by moment resistance requirements
buildings or ductile flexural | such that plastic hinges | (Cl.16.4.5) must be
where yielding in develop without shear satisfied, as well as
R, >20is specified failure and local seismic detailing
d locations; buckling requirements for
desired shear failureto | = A 25% reduction in | moderately ductile
be avoided masonry resistance for | walls (Cl.16.8.5)
Moderately V, calculations
Ductile shear = Sliding shear failure
walls at joints to be avoided
=  Wall height-to-
thickness ratio
restrictions in place to
avoid out-of-place
instability
=  Boundary elements
may be provided at wall
ends to increase
compressive strain limit
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Used for post-

3.0

1.5

Dissipation of

= Walls to be

Minimum seismic

disaster or earthquake designed using factored | reinforcement
high-risk energy by moment resistance requirements
buildings or ductile flexural | such that plastic hinges | (Cl.16.4.5) must be
where yielding in develop without shear satisfied, as well as
R, >20is specified failure and local seismic detailing

d locations; buckling requirements for
desired shear failure to | = A 50% reduction in | ductile walls

be avoided masonry resistance for (Cl.16.9.5)

V. calculations

=  Sliding shear failure
at joints to be avoided

= Wall height-to-
thickness ratio
restrictions in place to
avoid out-of-place
instability

= Boundary elements
may be provided at wall
ends to increase
compressive strain limit

Ductile shear
walls

According to NBC 2015 CI1.4.1.8.9.(1) (Table 4.1.8.9), unreinforced masonry walls can be
constructed at sites where /. F S, (0.2) < 0.35, but the building height cannot exceed 30 m.

Reinforced masonry must be used for loadbearing and lateral load-resisting masonry, and
masonry enclosing elevator shafts and stairways, where the seismic hazard index

I.FS, 0.2) >0.35 (S304-14, C1.16.2.1). Note that the minimum CSA S304-14 seismic
reinforcement requirements for masonry walls are summarized in Table 2-3.

Note that squat shear walls are common in typical low-rise masonry construction, including
warehouses, school buildings, and fire halls. Some of these buildings, for example fire halls, are
considered to be post-disaster facilities according to NBC. The restriction, first introduced in
NBC 2005 (Sent. 4.1.8.10.2), prescribes that post-disaster facilities require an SFRS with R, of
2.0 or higher. An implication of this provision is that squat shear walls in post-disaster buildings
be designed following the CSA S304-14 provisions for “moderately ductile squat shear walls”.

2.6.2 Plastic hinge region

16.6.2
16.8.4
16.9.4

A plastic hinge is defined by S304-14 Cl. 16.6.2 as “a region of a member where inelastic
flexural curvatures occur and additional seismic detailing is required”. The required extent
(height) of the plastic hinge region above the base of a shear wall in the vertical direction, #,, is

prescribed by CSA S304-14 as follows (see Figure 2-24):

1. Moderately Ductile shear walls (CIl.16.8.4):
h,=greaterof / /2or h,/6 and h, <1.5/, Ductile shear walls (CI.16.9.4):
h,=0.5l,+0.1z, and 0.8/ <h,6 <1.5,

2. Moderately Ductile and Ductile shear walls with boundary elements (Cl.16.10.3):
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h,=0.5l,+0.1n, and [ <h,6 <2.0],
Where [ is the length of the longest wall that is a part of the SFRS.

Y

hw

Figure 2-24. The extent of plastic hinge region h »

| Commentary

According to CSA S304-14 Cl.16.6.2, the plastic hinge is the region of the member where
inelastic flexural curvatures occur. In RM shear walls that are continuous along the building
height, this region is located at the wall base, as shown in Figure 2-24. The plastic hinge extent
(height) can be determined as a fraction of the wall height and/or length. In taller flexural walls
(three stories or higher), this region can be up to one storey high (usually located at the first
storey level). In low-rise buildings, this height is smaller, but it does exist, even in squat shear
walls when they are subjected to the combined effects of axial load and bending and show
flexure-dominated response.

The ability of a plastic hinge to sustain these plastic deformations will determine whether a
structural member is capable of performing at a certain ductility level. The extent of the plastic
hinge region is usually termed the plastic hinge height or plastic hinge length. The h , value
depends on the moment gradient, wall height, wall length, and level of axial load.

The CSA S304-14 plastic hinge length requirements for ductile shear walls are different from the
corresponding CSA S304.1-04 requirements. Note that the CSA S304-14 prescribed plastic
hinge length values are intended for detailing purposes, and that smaller 7, values should be
used for curvature and deflection calculations.

There are a few different equations for estimating the #_ value to be used in curvature

calculations. Banting (2013) summarized various equations for plastic hinge height in shear
walls (mostly related to RC structures).
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The findings of an experimental research study by Shing et al. (1990) showed that the plastic
hinge height in RM shear walls is in the order of %, /6. Banting and El-Dakhakhni (2014)
studied plastic hinge heights in RM shear walls with boundary elements, and concluded that 4
depends on a combination of parameters, including wall length and height, and height/length
h, /1, aspect ratio. The plastic hinge height ranged from 50 to 100% of the wall length /. The
results of the study showed that the plastic hinge height for the test specimens depended more
on the A, /[ ratio than on the wall length. For example, the specimen with the highest %, /1 of
3.23 had the largest plastic hinge height equal to /.

The CSA S304-14 plastic hinge height provisions are in line with the research findings and
codes in other countries. For example, in the New Zealand Masonry Standard NZS 4230:2004
(SANZ, 2004), Cl. 7.4.3 prescribes the plastic hinge height to be the greaterof / , 4, /6, or 600
mm.

The design and detailing of reinforcement within the plastic hinge regions of ductile masonry
shear walls is critical, and is discussed in the following sections. These regions are usually
heavily reinforced, and it is critical to ensure proper anchorage of reinforcement. Open-end
blocks or H-blocks may simplify reinforcing and grouting in these regions.

The plastic hinge regions of ductile masonry walls must be fully grouted. Observations from past
damaging earthquakes (e.g. 1994 Northridge, California earthquake and the 2011 Christchurch,
New Zealand earthquakes) that caused damage to RM walls have shown that the quality of
grout placement, and the bond of the grout to the masonry units and reinforcement have a
strong influence on the performance of RM structures. Reinforced block walls with large voids
around reinforcing bars suffered severe damage in the 1994 Northridge, California earthquake
(TMS, 1994). Many RM buildings were exposed to the 2011 Christchurch, New Zealand
earthquake. Most of them performed well, considering the shaking intensity and the damage to
other building typologies (including RC buildings). It was observed that RM walls with
incomplete grouting at the base suffered more extensive damage, see Centeno, Ventura, and
Ingham (2014); Dizhur et al. (2011).

Experimental studies have also confirmed the effect of grouting quality on the simulated seismic
response of RM shear walls. Incomplete grouting at the toes of a RM shear wall specimen
designed for ductile flexural response resulted in a reduced ductility capacity, and led to its
premature failure (compared to other similar specimens), based on the experimental study by
Robazza et al. (2015; 2017). Complete grouting in plastic hinge zones of ductile RM shear walls
is a must for their satisfactory seismic performance.

2.6.3 Ductility check

16.8.7
16.8.8
16.9.7

CSA S304-14 prescribes the following simplified ductility requirements for RM shear walls:
1. The neutral axis depth/wall length ratio, C/lw , should be within the following limits:

a) For Moderately Ductile shear walls (CI.16.8.7):
¢/l, <0.15 when h,/I, >5.0 and the drift ratio A ,R,R, <0.01(provided that

f, =400 MPa)
b) For Ductile shear walls (Cl.16.9.7):
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¢/l, <0.125 when £, /I, >5.0 and the drift ratio A ,R,R, <0.01 (provided that
f, =400 MPa)

2. When these requirements are not satisfied, a detailed ductility verification needs to be
performed according to Cl.16.8.

The objective of the ductility check is to confirm that the plastic hinge’s rotational capacity, 4,
exceeds inelastic rotational demand due to seismic loading, &4 (Cl.16.8.8.1).

O >0y (14)

The approach for ductility verification is illustrated in Figure 2-25, which shows the displacement
and curvature distribution in a ductile shear wall. The bending moment distribution is shown in
Figure 2-25b), with the curvature distribution shown in Figure 2-25c). Elastic curvature

corresponds to the onset of yielding in vertical reinforcement, ®, , While plastic curvature,

((/’u -0, ) corresponds to plastic deformations within the plastic hinge height, hp . Curvature

ductility for this wall is equal to the ratio of total curvature and the curvature at the onset of yield,
thatis, ¢, / @, - Note that S304-14 does not require calculation of curvature ductility, however

curvatures are used to determine the plastic hinge rotational capacity (&;). This is done by
integrating the plastic curvature over the plastic hinge height /, (assumed to be equal to /w/2)

(C1.16.8.8.3), that is,
0.=(p,-0,)h, or

0. = (%'IW—O.OOZ) <0.025 (15)
C

Note that the first term in the above equation denotes total rotation at the ultimate, while the
second term denotes yield rotation (which is taken as 0.004/1, ).
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Figure 2-25. Ductile shear wall at the ultimate: a) wall elevation; b) bending moment diagram;

¢) curvature diagram; d) deflections.

For the ductility check purposes, the maximum compressive strain ¢ is limited to of 0.0025.

The intent of this restriction is to limit deformations and the related damage in the highly
stressed zone of a wall section.

The inelastic rotational demand &4 depends on the inelastic lateral displacement A, at the top of
the wall due to seismic loading, as shown in Figure 2-25d). This displacement is equal to the
design displacement due to the factored seismic force Vs corresponding to the force modification
factor RsR., reduced by the elastic displacement at the top of the wall 4 (calculated using the
modified section properties (Cl.16.3.3) and factored seismic loads). 85 can be determined as
follows

g, < UnRR ), (16)
id f 7 min
h, ——*
2

where 6nin = 0.003 for Moderately Ductile walls (corresponding to ¢/l,< 0.25) and 0.004 for Ductile
walls (corresponding to ¢/l,< 0.2). These ¢/l limits were determined by substituting ni» values in
Eq.8-18, and can be useful for preliminary design to estimate a suitable wall length and amount of
vertical reinforcement.

The overstrength factor y, is equal to

yW:%21.3

A
In the above equation, M, denotes the nominal moment capacity.
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| Commentary

Whether a structural member is capable of sustaining inelastic deformations consistent with an
expected displacement ductility ratio, x, , will depend on the ability of its plastic hinge region to
sustain corresponding plastic rotations. Plastic hinge rotations will depend on the available
curvature ductility, ,, and the expected plastic hinge height. Refer to Section B.3 for a detailed

explanation of curvature ductility and the relationship between curvature ductility and the
displacement ductility ratio.

It is important for a structural designer to understand the effect of curvature ductility upon the
ductile seismic performance of flexural members. For example, the wall section shown in Figure
2-26a) is lightly reinforced and has a small axial compression (or tension) load. There will be a

small flexural compression zone due to the light reinforcement, thus the neutral axis depth, ¢,,

will be small relative to the wall length (note the corresponding strain distribution - line 1 in
Figure 2-26b). As a result, curvature, which is the slope of line 1, will be large and usually
adequate to accommodate the plastic hinge rotations imposed on a structure during a major
earthquake. However, when the wall is heavily reinforced and has a significant axial
compression load, a large flexural compression zone will be present, resulting in a relatively

large neutral axis depth, ¢, , as shown in Figure 2-26b) (note the corresponding strain
distribution - line 2 on the same diagram). For the same maximum masonry compressive strain
of 0.0025, the curvature ¢, (given by the slope of line 2) is much less than for lightly loaded wall
(curvature

¢, )- Thus the curvature ductility of the lightly loaded wall is much greater than the heavily
loaded wall. Note that the maximum compression strain is equal in both cases.

(@ | (’p |
[ ] [ o] 7,07 ik a)
l
"
£mu:0.0025
b)

Figure 2-26. Strain distribution in a reinforced masonry wall at the ultimate: a) wall section;
b) strain distribution.
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Therefore, the ratio of neutral axis depth, ¢, relative to the wall length, 7, that is, ¢//, ratio, is an
indicator of the curvature ductility in a structural component. The ¢//,, limits for ductile shear
walls prescribed by CSA S304-14 cover most cases, and save designers from performing time-
consuming ductility calculations.

The chart shown in Figure 2-27 can be used to estimate the amount of vertical reinforcement
such that the corresponding c/lw values satisfy the S304-14 ductility requirements. (Note that

this chart and the corresponding table are also presented in Appendix D.) A uniform distribution
of vertical reinforcement has been assumed according to the approach presented in Section

C1.1.2. The maximum ¢//,, limits (0.20 for R¢= 3 and 0.25 for Rs= 2) have been set based on
the minimum rotational demand.

The lines on the chart correspond to the constant normalized reinforcement ratio o , as defined
by the equation below. The o values range from 0 to 0.1, with a 0.02 interval.

9.1, P,
O=—"

¢mf m
where reinforcement ratio for vertical bars is

_ Avt
Py =
Normalized axial stress (determined from the equation below) is an input parameter.
P

f/f'm:f' f” where o =1.667f/ f'm

The horizontal axis contains ¢/l values, which correspond to the given normalized axial stress

and the selected o value. The user can determine the required reinforcement ratio
corresponding to the o value as follows:

— a)¢ﬂ1 f’ﬂ‘l

Py 5.7,

The following units are used for the calculations: P, (N); [,,t(mm); 4, (mm?);and (" (MPa).
An application of the chart is illustrated in Example 5b (Chapter 3).
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Figure 2-27. Chart for estimating c/ [, ratio for design purposes (assuming uniformly distributed
vertical reinforcement per Section C1.1.2).

When the c/lW limit is not satisfied for a specific design, the designer needs to undertake a
ductility check using detailed calculations to confirm that the ductility requirements have been
met. The CSA S304-14 ductility check for masonry shear walls is performed in a similar manner to
reinforced concrete shear walls designed per the CSA A23.3 standard. It should be noted that
CSA S304-14 assumes that the plastic hinge height for ductility check purposes is equal to

hp = ZW/2 . However, recent research evidence (NIST, 2017; NIST, 2010) shows that hp =0.2h,

reflects the results of experimental studies related to the ductile seismic response of RM shear
walls (note that /4, represents effective the wall height).

When the outcome of the ductility check is negative, the designer needs to revise the design to
meet this requirement. This can be achieved by reducing the amount of vertical reinforcement or
increasing the wall length. Also, S304-14 CI.16.10 includes new provisions for increasing the
compressive strain in ductile shear wall classes beyond the basic value &n,~= 0.0025. This can
be achieved by increasing confinement in end zones of the wall. Refer to Section 2.6.10 for a
discussion on reinforcement detailing in ductile RM shear walls with boundary elements.

Refer to Section B.2 for further guidance regarding the ductility concept, and Examples 5a, 5b,
and 5c in Chapter 3 for applications of the CSA S304-14 ductility requirements.
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2.6.4 Wall height-to-thickness ratio restrictions

16.7.4
16.8.3

16.9.3

CSA S304-14 prescribes the following height-to-thickness (h/ t) limits for the compression zone
in plastic hinge regions of ductile shear walls:

1.

Conventional construction
Slenderness limits and design procedures for masonry walls need to be followed

(C1.10.7.3.3) - it is possible to design walls with k#%/t ratio greater than 30

Moderately ductile shear walls (Cl.16.8.3):

h/(t +10) < 20 (unless it can be shown for lightly loaded walls that a more slender walll is
satisfactory for out-of-plane stability)

Moderately ductile squat shear walls (Cl.16.7.4):

h/(t +10) < 20(unless it can be shown for lightly loaded walls that a more slender wall is
satisfactory for out-of-plane stability).

Ductile shear walls (Cl1.16.9.3):

h/(t+10) <12

Note that /# denotes the unsupported wall height (between the adjacent horizontal supports),
kh denotes the effective buckling length, and ¢ denotes the actual wall thickness (e.g. 140 mm,
190 mm, 240 mm, etc.).

Relaxed 4/t ratios

S304-14 permits the use of relaxed h/t ratios for walls with thicker sections (flanges, boundary

elements) at the ends, and/or rectangular walls where the length of the compression zone is
within the prescribed limits.

1. Rectangular-shaped wall sections:

S304-14 C1.16.8.3.3 allows relaxed 4/t ratios (4/(¢ +10) < 30 ) for Moderately Ductile walls
and C1.16.9.3.3 allows relaxed 4/t ratios (4/(¢ +10) <16) for Ductile walls, provided that
¢/b, and ¢/l ratios are within certain limits. For shear walls of rectangular cross section
as shown in Figure 2-28a), the neutral axis depth needs to meet one of the following
requirements (see Figure 2-28b)):

c<4b,

or

c<03/,

2. Walls with flanged sections (both Moderately Ductile and Ductile walls):

CSA S304-14 allows relaxed A/t ratios (4/(¢ +10) < 30) for walls with flanged sections
provided that the neutral axis depth meets the following requirement (see Figure 2-28c)):
c<3b,

where 3b, is the distance from the inside of a wall return of minimum length 0.2/ . The
flange thickness needs to be at least 190 mm. Note that in the case of a flanged wall section
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such as that shown in Figure 2-28c), the non-flanged wall end is more critical for out-of-

plane instability.
P
f
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Figure 2-28. Compression zone restrictions related to wall slenderness: a) rectangular wall
section; b) corresponding strain distribution and compression zone restrictions, and c) limits for
the flanged wall sections.

Note that CSA S304-14 CI.16.8.6 restricts the maximum compressive strain in masonry ¢, in the
plastic hinge zone of Moderately Ductile and Ductile walls to 0.0025. However, CI.16.10.1 and
16.10.2 permit the use of higher compressive strain in walls with boundary elements or
confinement in the compression zone (see Section 2.6.8).

| Commentary

The purpose of these h/t provisions is to prevent instability due to out-of-plane buckling of shear

walls when subjected to the combined effects of in-plane axial loads and bending moments, as
shown in Figure 2-29. This phenomenon is associated not only with compression in the
masonry, but also with the compression stresses in the flexural reinforcement that has
previously experienced large inelastic tensile strains. According to Paulay (1986), this instability
occurs when the neutral axis depth, ¢, is large, as illustrated in Figure 2-26 (see depth ¢, ), and

the plastic hinge region at the base of the wall (height hp) is large (one storey high or more).
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Figure 2-29. Out-of-plane instability in a shear wall subjected to in-plane loads (adapted from
Paulay and Priestley, 1993, reproduced by permission of the American Concrete Institute).

A rational explanation for this phenomenon was first presented by Paulay (1986). When the wall
experiences large curvature ductility, large tensile strains will be imposed on vertical bars placed
at the extreme tension edge of the section. At this stage, uniformly spaced horizontal cracks of
considerable width develop over the plastic hinge height (see Figure 2-30a)). During the
subsequent unloading, the tensile stresses in these bars reduce to zero. A change in the lateral
load direction will eventually cause an increase in the compression stresses in these bars.
Unless the cracks close, the entire internal compression within the section must be resisted by
the vertical reinforcement, as shown in Figure 2-30b) and d). At that stage, out-of-plane
displacements may increase rapidly as the stiffness of the vertical steel to lateral deformation is
small, thereby causing the out-of-plane instability. However, if the cracks close before the entire
portion of the wall section previously subjected to tension becomes subjected to compression,
masonry compressive stresses will develop in the section, the stiffness to lateral deformation is
increased and the instability may be avoided (see Figure 2-30c) and e). Refer to Section B.4 for
a detailed discussion of the wall height-to-thickness ratio restrictions, and the analysis
procedure developed by Paulay and Priestley (1992 1993).

fa! WaW ofter fb) Large fe) Small fct) Stroins ot fe! Sfroms of

nelosic fronsverse transverse secfon X=X sechon Y=Y
fensile displocement dispiocement
excurson

Figure 2-30. Deformations and strain patterns in a buckled zone of a wall section (Paulay, 1986,
reproduced by permission of the Earthquake Engineering Research Institute).
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CSA S304-14 has relaxed A/t limits for ductile shear walls compared to the CSA S304.1-04
requirements. In particulr, it is possible to relax the limits for Moderately Ductile shear walls if it
can be shown for lightly loaded walls that a more slender wall is satisfactory for out-of-plane
stability. A possible solution for enhancing out-of-plane stability involves the provision of flanges
at wall ends. However, the out-of-plane stability of the compression zone, which includes the
flange and sometimes a portion of the web, must be adequate. This check is demonstrated in
Example 4c (Chapter 3), where a Moderately Ductile squat shear wall with the /¢ ratio of 33
and added flanges at its ends has been shown to satisfy the CSA S304-14 out-of-plane stability
requirement.

The following analysis presents one method of checking if the flanged wall provides sufficient
stiffness to prevent out-of-plane instability. For the purpose of this check, a wall can be

considered as lightly loaded when the compressive stress f, , due to the dead load
(corresponding to the axial load, P,, ), is less than 0.1/, , that is,

f. =%<O.1f,;.

w

Consider a wall section with flanges added at both ends to enhance the out-of-plane stability
shown in Figure 2-31a). The wall is subjected to the factored axial load P, , the bending
moment M ,, and is reinforced with both a concentrated reinforcement of area A4, , at each end,
and distributed reinforcement along the wall length (total area 4, ).

The effective flange width, bf, can be initially estimated, and then revised if the out-of-plane
stability is not satisfactory. A good initial minimum estimate would be

bf ~ 2t

where ¢ denotes the wall thickness (see Figure 2-31b)). Note that this is an iterative procedure
and the flange width may need to be increased to satisfy the stability requirements.

The buckling resistance of the compression zone should be checked according to the procedure
described below.

First, the area of the compression zone A4, can be determined from the equilibrium of vertical
forces shown in Figure 2-31a):

P +01+T,-C,-C,=0

where
I=Cy=¢,.f,4
T, = ¢sfyAd
C, =(0.85¢4, 1", )4,
thus

B P +¢.f,4,

L085¢, 1!

The area of the compression zone can be determined from the geometry shown in Figure
2-31b), that is,
A, =a*t+(b, —0)*t
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Thus, the depth of the compression zone a can be found from the above equation as follows
A, =b, *t+1
t

The distance from the centroid of the masonry compression zone to the extreme compression
fibre is equal to

o t*(a?/2)+ b, -0)(i*/2)

a=

AL
4~—+‘—‘. t =
I E Ac [+]]
i f” D *AC
DOEOEOEOEO=o) -
= - 1 a
Ad q—*‘.— "
o M, B bf
p=—
0.85 b frnfFFIT Ol 1 ,/""
. - flange
C’{=d)5f"'ACT I(, [ I d)“ﬁ'A‘: area ’—C‘Ii
' ’ = =]
LY Y.

a) b)
Figure 2-31. Flanged wall section: a) internal force distribution; b) flange geometry.

The compression zone of the wall may be either L-shaped or rectangular (non-flanged),
however only the flange area will be considered for the buckling resistance check (the flange
area is shown shaded in Figure 2-31b)). This is a conservative approximation and is considered
to be appropriate for this purpose. The gross moment of inertia of the flange section around the
axis parallel with the logitudinal wall axis can be determined from the following equation

t*b,’

xg 12
The use of gross moment of inertia, as opposed of a partially or fully cracked one, is considered
appropriate in this case, because the web portion of the compression zone and the effect of the
reinforcement have been ignored.

The buckling strength for the compression zone will be determined according to S304-14 CI.
10.7.4.3, as follows:

¢, E 1

T m

T (1+0.58, \kh)
where
¢,. =0.75 resistance factor for member stiffness
k =1.0 effective length factor for compression members (equal to 1.0 for pin-pin support
conditions — a conservative assumption which can be used for this application)
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B, =0 ratio of factored dead load moment to total factored moment (equal to 0 when 100% live
load is assumed)
E,, - modulus of elasticity for masonry

The resultant compression force, including the concrete and steel component, can be
determined as follows:

Pfh = Cm + ¢SfyAc
The out-of-plane buckling resistance is considered to be adequate when
P, <P

fb cr

This check gives conservative results, as shown in Example 5b in Chapter 3.

2.6.5 Minimum Required Factored Shear Resistance

16.5.4
16.7.3.2
16.8.9.2
16.9.8.3
16.10.4.3

The S304-14 minimum factored shear resistance requirements are based on the Capacity
Design approach, which was discussed in Section 2.5.1.

For the design of RM shear walls, the factored shear resistance, 1., should be greater than the

shear due to effects of factored loads, but not less than the smaller of
1. the shear corresponding to the development of moment resistance, as follows:
a. the shear corresponding to the development of factored moment resistance, um ., of

the wall system at its plastic hinge location for Conventional Construction (CIl.16.5.4)
or Moderately Ductile Squat (Cl.16.7.3.2) shear walls,

b. the shear corresponding to the development of nominal moment capacity, M ., for
Moderately Ductile shear walls (Cl.16.8.9.2),

c. the shear corresponding to the development of probable moment capacity, M > for

Ductile shear walls (Cl.16.9.8.3) and walls with boundary elements (Cl.16.10.4.3),
and
2. the shear corresponding to the lateral seismic load (base shear) where earthquake effects
were calculated using RsR,=1.3.

It is also important that other structural members which are not a part of the SFRS are able to
undergo the same lateral displacements as the SFRS members without experiencing brittle
failure.
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2.6.6 Shear/diagonal tension resistance — seismic design requirements

10.10.2
16.8.9.1
16.9.8.1
16.10.4.1

The CSA S304-14 general design provisions for shear (diagonal tension) resistance contained
in Cl.10.10.2 were discussed in Section 2.3.2. Special seismic design provisions for the plastic
hinge zone of the walls are as follows:

1. Conventional construction shear walls (CI.10.10.2):

V.=V, +V,

(the same equation used for the non-seismic design)
2. Moderately Ductile Squat shear walls (Cl.10.10.2):

V.=V, +V,

(the same equation used for the non-seismic design of squat shear walls)
3. Moderately Ductile shear walls (CI1.16.8.9.1):

V=075, +V,

(a 25% reduction in the masonry shear resistance)
4. Ductile shear walls (Cl.16.9.8.1):

V=05V +V.

(a 50% reduction in the masonry shear resistance)
5. Moderately ductile and ductile shear walls with boundary elements (CI.16.10.4.1):

V. =(00022¢,, )V, +V,

(the masonry and axial compressive load contributions to shear capacity are reduced to
account for the effects of damage expected at higher ductility)

For Moderately Ductile Squat shear walls, Cl.16.7.3.1 requires that the shear force be applied
along the entire wall length, and not concentrated near one end. The purpose of this provision is
to ensure that a top transfer beam, or an alternative provision (bond beam provided at the top of
the wall), will enable the development of the desirable shear failure mechanism shown in Figure
2-16a), and prevent the partial shear failure shown in Figure 2-16b). Shear failure mechanisms
for squat shear walls are discussed in Section 2.3.2.2.

| Commentary

Tests have shown that shear walls that fail in shear have a very poor cyclic response and
demonstrate a sudden loss of strength. Also, walls that initially yield in flexure may fail in shear
after several large inelastic cycles, with a resulting rapid strength degradation. Therefore, the
shear steel (horizontal reinforcement) is usually designed to carry the entire shear load in the
plastic hinge region of a wall (Anderson and Priestley, 1992). Seismic design provisions for
ductile reinforced concrete shear walls (CSA A23.3 Cl.21.6.9) completely neglect the concrete
contribution to the wall shear resistance in the plastic hinge zone.

CSA S304-14 provisions permit the use of the entire masonry shear resistance for all wall
classes, except for moderately ductile and ductile wall classes, where 75 and 50% of the
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masonry shear resistance, ¥,,, can be considered, respectively. CSA S304.1-04 contained a
50% reduction in the masonry shear resistance contribution for moderately ductile shear walls.

The overall shear strength is assumed to decrease in a linear fashion as the displacement
ductility ratio increases, as discussed by Priestley, Verma, and Xiao (1994). This concept is
illustrated in Figure 2-32 (note that displacement ductility ratio 4 corresponds to the ductility-

related force modification factor Rd). A ductile flexural response is ensured if the lateral force
V sicuuas- A brittle

residua

corresponding to the flexural strength is less than the residual shear strength,
shear failure takes place when the lateral force corresponding to flexural strength is greater than
the initial shear strength, meaz- When the lateral force corresponding to flexural strength is
between the initial and residual shear strength, then shear failure occurs at a ductility
corresponding to the intersection of the lateral force and shear force-displacement ductility plot.

Anderson and Priestley (1992) recommended to allow 100% of the masonry shear strength up
to ductility ratio of 2, and then to linearly decrease the masonry component of the shear strength

to zero at the ductility ratio of 4. Note that CSA $S304-14 allows 100 % of ¥, up to R, =15,
4

which corresponds roughly to a displacement ductility ratio of 1.5, but reduces the V,,

contribution to 50 % at R, =3.0.
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Figure 2-32. Interaction between the shear resistance and the displacement ductility ratio
(adapted from Priestley, Verma, and Xiao, 1994, reproduced by permission of the ASCE’).

" This material may be downloaded for personal use only. Any other use requires prior permission of t
American Society of Civil Engineers. This material may be found at
http://cedb.asce.org/cgi/WWWdisplay.cgi?9403737
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2.6.7 Sliding shear resistance — seismic design requirements

10.10.5
16.9.8.2
16.10.4.2

CSA S304-14 general design provisions for sliding shear resistance in Cl.10.10.5 were
discussed in Section 2.3.3. The special seismic design provisions for sliding shear resistance
are as follows:

1. Ductile shear walls (Cl.16.9.8.2) and shear walls with boundary elements (Cl.16.10.4.2):

V.=¢uC

Only the reinforcement in the tension zone should be used to determine the C value.
The compressive reinforcement is assumed to have yielded in tension in a previous
loading cycle and is now exerting a compressive force across the shear plane as it yields
in compression.

2. All other wall classes:
The same equation as used for non-seismic design (CI1.10.10.5).

| Commentary

The mechanism of sliding shear resistance was discussed in detail in the Commentary portion
of Section 2.3.3. The sliding shear resistance mechanism for ductile walls subjected to seismic
loading is illustrated in Figure 2-17, and is unchanged from CSA S304.1-04.

It should be noted that sliding shear often governs the shear strength of RM walls, particularly
for squat shear walls in low-rise masonry buildings. To satisfy the sliding shear requirement, an
increase in the vertical reinforcement area is often needed. However, this increases the moment
capacity and the corresponding shear force required to yield the ductile flexural system, so the
sliding shear requirement is not satisfied. Dowels at the wall-foundation interface can improve
sliding shear capacity, but they may also increase the bending capacity if they are too long.
Note that, for squat shear walls it is impossible to prevent sliding shear if the shear
reinforcement is designed to meet the capacity design requirements. In that case, shear keys
could be used to increase the sliding shear resistance.

To minimize the chances of sliding shear failure, TCCMAR’s findings recommended roughening
the concrete foundation surface at the base of the wall, with the roughness ranging from 1.6 mm
(1/16in) to 3.2 mm (1/8 in). A more effective solution is to provide shear keys at the base of the
wall that are as wide as the hollow cores and 38 mm (1.5 in) deep, with sides tapered 20
degrees. Tests have shown that these shear keys eliminate wall slippage under severe loading
(Wallace, Klingner, and Schuller, 1998).

The chance of excessive sliding shear displacements in RM shear walls subjected to seismic
loading may be a concern for designers, particularly for buildings with several wall segments
connected by means of lintel beams and/or floor diaphragms. Current masonry design code
provisions for sliding shear resistance are force-based, and do not offer approaches for
estimating sliding displacements in RM shear walls. Centeno (2015) developed the Sliding
Shear Behavior (SSB) method for calculating the base sliding displacements in RM shear walls.
This method enables the designer to estimate the wall’s yield mechanism and the
corresponding sliding displacements. The sliding displacements can be determined in a step-by-
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step manner. Refer to Appendix B and Centeno at al. (2015) for more details on the SSB |‘
method.

2.6.8 Boundary elements in Moderately Ductile and Ductile shear walls

2.6.8.1 Background

Boundary elements are thickened and specially reinforced sections provided at the ends of
shear walls. The presence of boundary elements in tall shear walls subjected to significant
bending moments at their base results in an enhanced curvature capacity compared to walls
with distributed reinforcement, because longitudinal reinforcement in boundary elements resists
more of the flexural compressive force for the wall section. This is illustrated in Figure 2-33. The
concentrated reinforcement in the boundary elements also increases the local reinforcement
ratio, and promotes better distribution of flexural cracks, greater height of the plastic hinge zone,
and an enhanced ductility potential. To sustain high flexural and normal stresses, vertical
reinforcement in the boundary elements must be well confined using properly anchored
transverse reinforcement. This applies particularly to the plastic hinge regions of shear walls.

~—1€mu

)| e mn =) [ o o] [ ] [T |

a) b)

Figure 2-33. Curvature and cracking pattern in RM shear walls: a) a wall with boundary
elements, and b) a rectangular wall without boundary elements.

Boundary elements were initially applied in the seismic design of RC shear walls, where they
proved to be effective in enhancing ductility in flexure-dominated walls by providing confinement
and higher strain in the compression zone. Their effectiveness was verified through
experimental and analytical research (Moehle, 2015). Pertinent seismic design provisions for
boundary elements in ductile RC shear walls are included in CSA A23.3-14.
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In the last decade, experimental research studies on RM shear walls with boundary elements
were conducted in Canada by Shedid, EI-Dakhakhni, and Drysdale (2010, 2010a), Banting
(2013), and Banting and El-Dakhakhni (2012; 2013; 2014). The test specimens had enlarged
boundary elements similar to pilasters. These boundary elements were made of hollow masonry
units. The specimens were subjected to reversed cyclic loading and the results showed that the
presence of boundary elements significantly increased ductility in RM walls.

Boundary elements also provide stability against lateral out-of-plane buckling in thin wall
sections. S304-14 has provided special provisions for h/t restrictions in walls with boundary
elements (thickened wall sections), see Section 2.6.4.

A typical RM shear wall with boundary elements is shown in Figure 2-34.
Footing design for RM shear walls with boundary elements can be performed according to CSA

A23.3-14, e.g. Cl.21.10.4.3 and 21.10.4.4 related to footings for RC shear walls. It is critical to
ensure proper anchorage of vertical and transverse reinforcement into the footing.

AN
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Figure 2-34. A RM shear wall with boundary elements: a) wall elevation; b) wall cross-section
showing boundary elements, and c) strain distribution.

It is of interest to note that the U.S. masonry design standard TMS 402/602-16 (Clauses
9.3.6.6.1 to 9.3.6.6.5) contains provisions for boundary elements in RM shear walls. However,
Cl.9.3.6.6.1 states that it is expected that boundary elements will not be required in lightly
loaded walls (e.g. Pf <0. lAgf'mfor symmetrical wall sections), in walls that are either short
(squat) or moderate in height (aspect ratio Mf/Vflw <1.0), or in walls subjected to moderate
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shear stresses. It is expected that most masonry shear walls in low- to medium-rise buildings
would not develop high enough compressive strains to warrant special confinement.

According to the TMS 402/602-16 standard, boundary elements may be required in RM shear
walls with flexure-dominant behaviour when the 671W ratio exceeds a certain limit. The purpose
of this check is to limit the ultimate curvature in the plastic hinge region of the wall (similar to the
S304-14 ductility check procedure discussed in Section 2.6.3). TMS 402 also proviges a stress-
based check for boundary elements, i.e. it provides compressive stress limit (0.2f ) beyond
which boundary elements need to be provided in the compression zone. According to the same
check, the boundary element may be discontinued when the calculated compressive stress is
less than 0.15f - When special boundary elements are used, TMS 402 requires that testing
be done to verify that the provided detailing is capable of developing the required compressive
strain capacity.

As an alternative to boundary elements, the New Zealand masonry standard NZS 4230:2004
Cl.7.4.6.5 prescribes the use of horizontal confining plates in ductile RM walls. These thin
perforated metal plates (made either of stainless steel or galvanized steel) are placed in mortar
bed joints in the compression zone of rectangular walls. The confining plates are effective in
increasing the maximum masonry compressive strain in plastic hinge regions up to 0.008 (this
value is same as prescribed by CSA S304-14 for shear walls with boundary elements). The
provision of confining plates in the New Zealand masonry standard is based on research by
Priestley (1981) and Priestley and Elder (1983).

2.6.8.2 When are boundary elements required

16.6.4
16.10

S304-14 CI1.16.10.1 prescribes the use of boundary elements in RM shear walls for the first
time. Boundary elements should be provided when the ductility requirements of Cl. 16.8.8 or

16.9.7 are not satisfied assuming a masonry compression strain limit &, of 0.0025. When
boundary elements are used, the maximum compressive strain &,,, can be higher than 0.0025,
but it should not exceed 0.008. S304-14 CI.16.6.4 states that tests should be performed to verify

the ductility and strain capacities of the wall when the compressive strain limit £, of 0.0025 is
exceeded.

| Commentary

S304-14 does not provide guidance on how to calculate the maximum compressive strain in
boundary elements. For seismic design purposes, the maximum required compressive strain

&, 1n boundary elements can be calculated from the S304-14 ductility requirements

(Cl1.16.8.8). The calculated strain value should be used for detailing transverse reinforcement in
boundary elements, according to the equations presented in Section 2.6.8.5.

Priestley (1981) proposed stress-strain equations for unconfined and confined block masonry

based on his research study that focused on the use of steel confining plates for enhancing
maximum compressive strain in RM walls. The proposed equations take into account the
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volumetric ratio of transverse reinforcement, and could be applied to RM walls with boundary
elements confined by steel ties.

2.6.8.3 Minimum cross-sectional dimensions of boundary elements
16.11.2

The minimum length of a boundary element, l,, , is governed by the compression zone depth in

a RM shear wall (see Figure 2-33). S304-14 Cl.16.11.2 specifies that l,, should not be less than
the largest of the following three values:

I, >(c—=0.1 ,c/2,c(, —0.0023/¢, )

16.8.3.2
16.9.3.2

The minimum required thickness of a boundary element, f, , is governed by the wall
height/thickness (h/t) restrictions which were discussed in Section 2.6.4. S304-14 contains the
following provisions for walls with thicker sections at the ends (e.g. boundary elements), see
Figure 2-35:

a) Moderately Ductile walls (Cl.16.8.3.2) —the 1 /¢ restriction (4/(t +10) < 20 ) applies to the
zone from the compression face to one-half of the compression zone depth; the remaining
length of the wall's compression zone should meet a relaxed requirement /(¢ +10) < 30 .

b) Ductile walls (C1.16.9.3.2) - the 1 /+ restriction (#/(t + 10) < 12 ) applies to the zone from the

compression face to one-half of the compression zone depth; the remaining length of the
wall’'s compression zone should meet a relaxed requirement
h/(t+10) <16 .

| 16.11.11 |

Boundary elements should have the same cross-sectional dimensions over the wall height,
unless it can be shown by rational analysis that the changes in strength and stiffness have been
accounted for in the design and detailing requirements.
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Figure 2-35.CSA S304-14 1 /t requirements for Moderately Ductile and Ductile walls with
boundary elements.

2.6.8.4 Shear flow resistance at the interface between a boundary element and the
wall web

Shear flow resistance at the boundary element and web interface for a shear wall should be
calculated using the shear friction formula below

Vi = (17)

where
Kc, = shear flow resistance, N/mm

MU = coefficient of friction, taken as 1.0 for masonry to masonry sliding plane where all voids at
the intersection are filled solid, and

F; = factored tensile force at yield of horizontal reinforcement that is detailed to develop the
yield strength on both sides along the interface, N/mm.
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| Commentary

The shear friction concept has been applied to ensure an adequate shear flow resistance at the
interface between a boundary element and the wall web. It is assumed that the shear flow
resistance is provided by horizontal reinforcing bars extending from the wall web into the
boundary elements (Figure 2-36a)). Adequate anchorage of horizontal reinforcement is critical
for the shear flow resistance. The shear flow resistance across the interface will depend on the
bar cross-sectional area A, (for example, 2-15M horizontal bars) and the vertical spacing s
(Figure 2-36b)). The above equation assumes that masonry does not contribute to the shear

flow resistance. The factored tensile force resistance per unit length can be determined as
follows:

b4

S

F,

N

Refer to Section C.2 for a discussion regarding shear resistance along interfaces such as wall
intersections and flanges.

P boundary

\ element
[{IS—interface
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Figure 2-36. Shear flow at the interface between a boundary element and the wall web: a) a

cross-section showing the intersection, and b) an elevation showing horizontal forces providing
the vertical shear flow resistance.
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2.6.8.5 Reinforcement detailing requirements for boundary elements and
compression reinforcement in Moderately Ductile and Ductile walls

16.6.5
16.11.5
16.11.6

S304-14 CI.16.11 outlines the provisions for seismic detailing of reinforcement in boundary
elements, but S304-14 CI.16.6.5 stipulates that the same reinforcement detailing requirements
should be followed while detailing compression reinforcement zones in Moderately Ductile and
Ductile shear walls.

Boundary elements are reinforced with vertical reinforcing bars and transverse reinforcement in
the form of ties (hoops), as shown in Figure 2-37a). The ties are in the form of regular ties
(outside the plastic hinge zone) and buckling prevention ties (within the plastic hinge zone), see
Figure 2-37b). Buckling prevention ties are intended to prevent buckling of the longitudinal
reinforcement under reversed cyclic loading. In order to ensure proper confinement,
intermediate vertical reinforcing bars should be provided not more than 150 mm spacing away
from a laterally supported bar.

Seismic cross ties may be also provided to support vertical reinforcing bars, if required. A
seismic cross tie (S304-14 CI.16.11.5) is a reinforcing bar with a 90° hook at one end and a
135° hook at the other end (Figure 2-37b)). The seismic cross ties shall engage vertical
reinforcing bars at each end, and where successive ties engage the same vertical reinforcing
bar the 90° hook shall be alternated end for end. These ties are not required in boundary
elements with 4 vertical bars because each bar is already supported by means of closed ties.
Detailing of seismic cross ties requires that a 90° hook has min 6 bar diameter extension at one
end, and a 135° hook should be anchored into the confined core with minimum extension of the
lesser of 6 bar diameters or 100 mm at the other end.
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Figure 2-37. Reinforcement arrangement in a boundary element: a) cross-section showing
vertical and transverse reinforcement; b) seismic cross ties, and c) wall elevation showing
distribution of ties over the height of a boundary element.

S304-14 Cl.16.11.6 prescribes the minimum area of transverse reinforcement A (including

buckling prevention ties and seismic cross ties) within the spacing s and perpendicular to hc,
that is, dimension of the confined core.

S304-14 permits the use of rectangular or spiral hoops (ties). For the rectangular hoop
reinforcement, the minimum area Asn in each principal direction should not be less than the
larger of the following:
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A, =02k k,, AT

ch yh

c

or
A, =009 g
vh

Where

Ag =1, 'l,, is gross cross-sectional area of the boundary element,

Acn is cross-sectional area of core of the boundary element,

and kn is the factor accounting for the effectiveness of transverse reinforcement in in a
boundary element, that is,

k, =
" on, -2

And 71;is the number of bars around the perimeter of the boundary element core that are
supported by legs of hoops or cross ties.

Factor kplis the factor accounting for the maximum compressive strain level in a boundary
element, as follows

k, =0.1+30z,,

The specified yield strength for the hoop reinforcement, fyh , should not be taken greater than
500 MPa. Key parameters used in the above equations are illustrated in Figure 2-38.

For the circular hoop reinforcement, the minimum volumetric ratio should not be less than

A Al
= 0.4k, L

‘S.hc fyh

p, =
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Figure 2-38. Notation related to transverse reinforcement requirements for boundary elements.

Note that S304-14 reinforcement area requirements for boundary elements are very similar to
CSA A23.3-04 Cl.21.4.4.2 related to transverse reinforcement for RC columns in ductile

moment resisting frames. However, these RC design provisions have changed in CSA A23.3-14

(see C1.21.2.8.2).

Table 2-2. CSA S304-14 Reinforcement Detailing Requirements for Boundary Elements

Within the Plastic
Hinge Zone

Outside the Plastic Hinge
Zone

Vertical
reinforcement:
amount
(at least 4 bars)

Clause 16.11.8

Clause 16.11.8

Total area of vertical
reinforcement:

A4, 000075,/

A4, 00005/

Vertical
reinforcement:

Splicing

Clause 16.11.9

At any section within the
plastic hinge region, no
more than 50 percent of the
area of vertical
reinforcement may be
lapped in boundary
elements of Ductile shear

walls.

Not prescribed.
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Vertical reinforcement within
plastic hinge regions of
boundary elements should
not be offset bent.

Regular ties
(hoops) and
buckling
prevention
ties:

Spacing

Clause 16.11.4

Clause 12.2.1

Spacing of buckling

prevention ties and seismic

cross ties should not exceed

the lesser of

a) 6 times the diameter of
the longitudinal bars;

b) 24 tie diameters, or

c) One-half of the least
dimension of the
member.

Regular lateral ties not less than

3.65 mm diameter, and the tie

spacing should be the least of

a) 16 times the diameter of the
longitudinal bars;

b) 48 tie diameters, or

c) The least dimension of the
boundary member.

Buckling
prevention
and seismic
cross-ties:

Detailing

Clause 16.11.7

Bucking prevention ties to
be provided by single or
overlapping hoops.

Where seismic cross ties
are required, they shall be of

Not required.

the same bar size and
spacing as the buckling
prevention tie.

Clause 16.11.5

The seismic cross ties are
reinforcing bars with a 90
degree hook at one end and
a 135 degree hook at the
other end. These cross ties
should engage vertical
reinforcing bars at each end.

Seismic
cross-ties

Not required.

2.6.9 Seismic reinforcement requirements for masonry shear walls

CSA S304-14 includes several requirements pertaining to the amount and distribution of
horizontal and vertical wall reinforcement. It should be noted that Conventional Construction
shear walls do not require special seismic detailing like Moderately Ductile and Ductile walls.
Conventional Construction walls need to be designed to resist the effect of factored loads (like
for any other non-seismic design), and to satisfy the minimum S304-14 seismic reinforcement
requirements presented in this section.

According to NBC 2015 Cl.4.1.8.9,(1) (Table 4.1.8.9), unreinforced masonry SFRS can be
constructed at sites where I.FS, (0.2) <0.35, but the building height cannot exceed 30 m.

The compressive stress due to the factored axial load must be less than O-If;zin Conventional
Construction walls at sites where 1,F,S, (0.2)>0.35(S304-14 CI.16.5.3).
Reinforcement requirements for loadbearing walls and shear walls, including the minimum

seismic reinforcement, are summarized in Table 2-3, with references made to pertinent CSA
S304-14 clauses.

9/1/2018 2-59



Table 2-3. CSA S304-14 Wall Reinforcement Requirements: Loadbearing Walls and Shear

Walls

Minimum area:
vertical &
horizontal

reinforcement

Non-seismic design
requirements

Minimum seismic requirements
for 1,F.S,(02)>035

Clause 10.15.1.1

Clause 16.4.5.1

Minimum vertical reinforcement for

loadbearing walls subjected to
axial load plus bending shall be

A, min = 0.00125Ag for s<4t

%)
A,min = 0.00125(4[ for s>4

S304-14 does not contain
provisions regarding the minimum
horizontal reinforcement area.

Loadbearing walls (including shear walls)
shall be reinforced with horizontal and
vertical steel reinforcement having a

minimum total area of 4 Z:O.OOQAg

stota
distributed with a minimum area in one
L min = 0.00067Ag

(approximately one-third of the total area).

direction of at least 4

Reinforcement equivalent to at least one
15M bar shall be provided around each
masonry panel, and around each opening
exceeding 1000 mm in width or height.
Such reinforcement shall be detailed to
develop the yield strength of the bars at
corners and splices.

Maximum area:
vertical &
horizontal

reinforcement

Clause 10.15.2

Maximum horizontal or vertical reinforcement area

Asmax = 002Ag for s<4¢

Ag g = 0.02(4t2 )for >4
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Spacing:
vertical
reinforcement

Non-seismic design
requirements

Minimum seismic requirements
for 1,F.S.(02)>035

Clause 10.15.1.2

Clause 16.4.5.3&16.5.2

Where vertical reinforcement is
required to resist flexural tensile
stresses, it shall be

continuous between lateral
supports;

spaced at not more than 2400
mm along the wall;

provided at each side of
openings over 1200 mm long;
provided at each side of
movement joints, and
provided at corners,
intersections and ends of
walls.

Vertical seismic reinforcement shall be
uniformly distributed over the length of
the wall.

For all ductile wall classes and walls with
conventional construction at sites where

I.ES,(02)>0.75(c1.16.4.5.3):

the spacing shall not exceed the lesser of
a) 6(t+10)mm

b) 1200mm

Except for walls with conventional
construction for sites where

1 EFSSa(O.Z) <0.75(cl1.16.5.2):

the spacing shall not exceed the lesser of
c) 12(++10)mm

d) 240Cmm

Clause 10.15.1.4

Clause 16.4.5.4

Spacing:
horizontal
reinforcement

Where horizontal reinforcement is
required to resist effects of shear
forces, it shall be:

a)

b)

continuous between lateral
supports;
spaced not more than lesser

of 2400 mm or ZW/Z o/c for

bond beam reinforcement;
spaced at not more than 600
mm for joint reinforcement for
50% running bond and 400
mm for other patterns;
provided above and below
each opening over 1200 mm
high; and

provided at the top of the wall
and where the wall is
connected to roof and floor
assemblies.

Horizontal seismic reinforcement shall be
continuous between lateral supports. Its
spacing shall not exceed

a) 400 mm where only joint reinforcement
is used;

b) 1200 mm where only bond beams are
used; or

¢) 2400 mm for bond beams and 400 mm
for joint reinforcement where both are
used.

Notes:

A, =10007 denotes gross cross-sectional area corresponding to 1 m wall length (for vertical
reinforcement), or 1 m height (for horizontal reinforcement)

s = bar spacing

t = actual wall thickness

1, = wall length

9/1/2018

2-61




CSA S304-14 contains new and/or revised provisions related to the detailing of reinforcement
for moderately ductile and ductile shear walls, which are summarized in Table 2-4.

Table 2-4. CSA S304-14 Additional Reinforcement Detailing Requirements for Plastic Hinge
Regions of Moderately Ductile and Ductile Shear Walls

Moderately Ductile Shear Ductile Shear Walls
Walls
Clauses 16.6.2&16.8.5.2 Clause 16.6.2
Masonry within the plastic hinge Masonry within the plastic
region shall be fully grouted hinge region shall be fully
(Cl.16.6.2). grouted.
However, partial grouting is permitted
(Cl.16.8.5.2) when
_ 1< ]’lw/lw <2 and either
Grouting
a)I,F.S,(02)<0350r
o) 1.F.S.(02)>0.35
but compressive stress due to
factored axial load is less than O-lf,;
Spacing Clause 16.8.5.3&16.4.5.3 Clause 16.9.5.3&16.4.5.3
The lesser of /, /4 and the value The lesser of/,, /4 and the
prescribed by Cl.16.4.5.3, but it need | value prescribed by
not be less than 600 mm. Cl.16.4.5.3, but it need not be
less than 400 mm.
The area of concentrated
reinforcement at each wall end The area of concentrated
should not exceed 25% of the reinforcement at each wall end
distributed reinforcement should not exceed 25% of the
Vertical (Cl.16.8.5.3). distributed reinforcement
reinforcement (C1.16.9.5.3).
Detailing | Clause 16.8.5.1 Clause 16.9.5.2
. - At any section within the
Lap splice length minimum 1'51‘1 plastic hinge region, no more
within plastic hinge region than 50 percent of the area of
(Cl.16.8.5.5). vertical reinforcement may be
lapped.
Lap splice length minimum
I-SZdwithin plastic hinge region
(Cl.16.9.5.5).
Horizontal Spacing Clause 16.8.5.4 Clause 16.9.5.4
reinforcement Reinforcing bars are to be used in Reinforcing bars are to be
the plastic hinge region, at a spacing | used in the plastic hinge
not more than 1200 mmor /,, /2. region, at a spacing not more
than 600 mmor /,, /2.
Detailing | Clause 16.8.5.4&16.8.5.5 Clause 16.9.5.4&16.9.5.5
Horizontal reinforcement shall not be | Horizontal reinforcement shall
lapped within not be lapped within
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a) 600 mm or

by 1,/5

w

whichever is greater, from the wall
ends.

The bars should have at least 90°
hooks at the ends of the wall.

Lap splice length minimum l-Sld

within plastic hinge region
(Cl.16.8.5.5)

a) 600 mm or
b) £,/5

whichever is greater, from the
wall ends.

The bars should have 180°
hooks around the vertical
reinforcing bars at the ends of
the wall.

Lap splice length minimum
I-SZdwithin plastic hinge region
(Cl.16.9.5.5)

CSA S304-14 minimum seismic reinforcement requirements for all classes of RM shear walls
are illustrated in Figure 2-39. To ensure the desirable seismic performance of ductile shear
walls, CSA S304-14 prescribes additional reinforcement requirements which are illustrated in

Figure 2-40 and Figure 2-41.
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Figure 2-39. Reinforced masonry shear walls: CSA S304-14 minimum seismic reinforcement
requirements.
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S,<1,/4 (CL16.8.5.3)
< 6(t+10)

< 1200 mm

need not be less

than 600mm

b.b.
bar reinforcement
no restrictions in bond beams
rega{'ding required as
lapp.mg of horizontal steel in
vertical | plastic hinge region
reinforcement (CL16.8.5.4)
|
B - B
[ | A /|
i l | | I | | I | /I .
A f T [ | I I il
plastic \| A | | | | | | | | | | | | | | | AIS,,SIZOOmm
’"”ge\:l:l:l:l:l:l:l: - <l
region s ‘
. ClL16.8.5.4
(fully [ s e |l_ : d
grouted)
(C116.6.2) bw =|
except when .
L<h,/l,<2 Elevation
(CL16.8.5.2) /,./90°hook (CL16.8.5.4)
/]
L ==l == ESIESliE
< e |
>1,/5 tension
2600mm  splice 21.51, (CL.16.8.5.5)
(C1.16.8.5.4)
Section A-A ASWG
Jjoint reinforcement

{.r.)

Section B-B

Figure 2-40. Moderately ductile reinforced masonry shear walls: additional CSA S304-14

seismic reinforcement requirements.
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Figure 2-41. Ductile reinforced masonry shear walls: additional CSA S304-14 seismic
reinforcement requirements.
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| Commentary

S304-14 CI1.16.8.5.4 and 16.9.5.4 require that horizontal reinforcement laps not be within the
greater of
= 600.mm or
W
from the end of a Moderately Ductile or Ductile wall, as shown in Figure 2-40 and 2-41. This
requirement guards against lap splice failure in the end sections that may have either large
masonry strains in the vertical direction, or masonry damage from previous cycles.

Cl.16.9.5.4 prescribes the requirements for anchorage of horizontal reinforcement in Ductile
shear walls. Adequate anchorage needs to be provided at each end of a potential diagonal
crack. 180° hooks are required around the vertical reinforcing bars at the ends of the wall (see
Figure 2-42a)). Although this type of anchorage is most efficient, it may cause congestion at the
end zone for narrow blocks. For that reason, anchorage requirements are somewhat relaxed for
Moderately Ductile shear walls (Cl.16.8.5.4), where 90° hooks bent downwards into the end
core are required. This is in line with the New Zealand masonry design standard (NZS
4230:2004) C 10.3.2.9, which recommends the use of 90° hooks as an alternative solution for
ductile shear walls (see Figure 2-42b)).

Vertical reinforcement should be uniformly distributed over the wall length. Shear walls with
distributed reinforcement have almost the same moment resistance as shear walls with
reinforcement concentrated at the end zones, but the distributed reinforcement has beneficial
effects by controlling cracking and maintaining shear strength.

According to Cl.16.9.5.2, at any section within the plastic hinge region of Ductile shear walls, no
more than half of the area of vertical reinforcement may be lapped, that is, laps should be
staggered. This provision guards against failure of an entire lap splice, helps increase the hinge
length, and thereby decreases the masonry strain.
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Figure 2-42. Anchorage of horizontal reinforcement: a) 180° hooks; b) 90° hooks (reproduced
from NZS 4230:2004 with the permission of Standards New Zealand under Licence 000725).
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CSA S304.1-04 and S304-14 seismic reinforcement requirements — a comparison

Most of the S304-14 seismic requirements for shear wall reinforcement existed in the 2004

edition of the standard (S304.1-04). A comparison is summarized below.

1. S304.1-04 contained the minimum seismic requirements related to reinforcement area in
RM shear walls. These requirements remain mostly unchanged in S304-14, however,
reinforcement spacing requirements have been somewhat expanded. General spacing

%lre ts for vertical reinforcement are stated in Cl.16.4.5.3. However, where,

(n lj|<075 Cl.16.5.2 allows the vertical reinforcement spacing for Conventional
Constructlon shear walls, to be relaxed to 12(t+10) mm or 2400 mm. This amounts to twice
the spacing permitted for ductile classes and walls with conventional construction at sites
with higher seismic hazard index values.

2. S304.1-04 Cl.10.16.5.4.2 required 180° end hooks for horizontal reinforcement bars in the
plastic hinge region of Moderately Ductile shear walls. However, S304-14 CI|.16.8.5.4
permits the use of 90° end hooks for horizontal reinforcement in Moderately Ductile shear
walls; this is a relaxed provision. However, 180° end hooks are required for horizontal
reinforcement in the new Ductile shear wall category (S304-14 CI.16.9.5.4).

3. S304.1-04 10.16.4.1.3 required full grouting in Moderately Ductile shear wall plastic hinge
zones. S304-14 CI.16.8.5.2 permits partial grouting in Moderately Ductile shear walls with a

low aspect ratio ( 1<h /l < 2 , either where [, FS (0 2) <0.35, or where
1 EF;Sa (0-2) >0.35, but the compressive stress due to the factored axial load is less than

0.11".

4. S304.1-04 CI.10.16.5.4.1 restricted the lapping of vertical reinforcement in plastic hinge
zones of Moderately Ductile shear walls; this restriction is not included in S304-14, but the
same restriction now applies to Ductile shear walls (S304-14 CI.16.9.5.2).

2.6.10 Minimum reinforcement requirements for Moderately Ductile
Squat shear walls

16.7.5

CSA S304-14 prescribes the following requirements for the minimum amount of reinforcement
in Moderately Ductile Squat shear walls:

e Horizontal reinforcement ratio 0,:

Pz Vf/(¢vbwhwfy)

¢ Relationship between horizontal ( 0,) and vertical ( 0,) reinforcement ratios:

Py 2Py _Ps/(¢sbwlwf;/)

| Commentary

The seismic design requirements for Moderately Ductile Squat shear walls were introduced in
the 2004 edition of S304.1. In general, the squat wall requirements are more relaxed than those
pertaining to Moderately Ductile flexural shear walls, because shear failure in squat shear walls
is not as critical as in taller flexural walls, and can provide some ductility. Thus the design and
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detailing requirements related to the flexural failure mechanism (e.g. ductility check) are not
required for squat walls.

The reinforcement requirements in Cl.16.7.5 have been derived from the mechanism of a squat
shear wall failing in the shear-critical mode shown in Figure 2-43a). Consider a squat shear wall
subjected to the combined effect of factored shear force, Vf and the seismic axial force, R (due
to gravity and live loads using earthquake load factors). The effect of these forces can be
presented in the form of distributed shear stress, V., and distributed axial stress, p;, as follows

v
v, bl (18)
and

P
Py (19

The wall is reinforced with horizontal and vertical reinforcement, where the reinforcement ratios
P, for horizontal reinforcement, and O, for vertical reinforcement, are given by

A . A,
b, -1 P
where

bw =1 overall wall thickness (referred to as “web width” in CSA S304-14)

Py

IW = wall length

h,,= wall height

If the yield stress of the reinforcement is given byf , the factored unit capacity of the
reinforcement in the two directions is ¢,0,f, and éspvfy (see Figure 2-43c) and d)).

Once the shear force in the wall reaches a certain level, inclined shear cracks develop in the
wall at a 45° angle to the horizontal axis, as shown in Figure 2-43b) (note that this is an
idealized model and that the angle may be different from 45°). The areas of masonry between
these inclined cracks act as compression struts. Consider a typical unit length strut shown in
Figure 2-43c). This strut remains in equilibrium only if there is enough force in the vertical
reinforcement to satisfy moment equilibrium about the base. Note that the force in both the
vertical and horizontal bars that pass through the strut do not create any net force on the strut.

The equilibrium of forces in the strut requires that
pf +¢s10vf‘y :vf

When the P, and V, expressions are substituted into the above equation, the resulting
relationship between the horizontal and vertical reinforcement (same as Cl. 16.7.5) is as follows

P
= P~ (20
p v p h ¢S bw lw fy ( )
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The equilibrium in the horizontal direction requires that the tensile capacity of the horizontal
reinforcement, @, 0, f,,, be (see Figure 2-43d))

¢sphf;/bwhw = Vf
This equation can be presented in an alternative form which is included in Cl.16.7.5.

v
=——— (21)
bw 'hw '¢s 'fy
It is worth noting that the required ratios of horizontal and vertical reinforcement are equal for
walls with low axial load, that is, P, =0. This scenario applies to the common case of low-rise
masonry buildings with a light roof[weight.

Ph

Note that the vertical and horizontal reinforcement design should be based on the applied
flexural and shear forces, but the designer should confirm that the minimum reinforcement
requirements discussed in this section are also satisfied.

P
y l

g L Y
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= IW -
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c) d)

Figure 2-43. Shear failure mechanism for a squat shear wall: a) wall subjected to shear and
axial load; b) crack pattern; c) compression strut; d) free-body diagram.
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2.6.11

Summary of Seismic Design Requirements for Reinforced

Masonry Walls

Table 2-5. Summary of the CSA S304-14 Seismic Design Requirements for Reinforced
Masonry Walls

Provision (guide | Conventional Moderately Ductile shear Moderately

reference section | Construction Ductile shear walls Ductile squat

shown in the shear walls walls shear walls

brackets) ( hw / lw < 1)

Ductility factor R=15 R,=2.0 R,=3.0 R,;=2.0
CIl16.8.4 Cl.16.9.4

Plastic hinge
region (2.6.2)

Not applicable

hp = greater of
1,y /20 hy, 16
and l’lp SI.SZW

h,=0.51,+0.14,
and

0.8, <h <15,

Cl.16.6.2 and
16.8.5.2

Cl.16.6.2

Masonry within the
plastic hinge region
shall be fully
grouted (Cl1.16.6.2),
however partial

Masonry within the
plastic hinge region
shall be fully
grouted.

Ductility check
(2.6.3)

Wall height-to-
thickness ratio
restrictions
(2.6.4)

grouting is No special

permitted in some provisions

cases (Cl.16.8.5.2)

Cl.16.8.7&16.8.8 Cl.16.9.7&16.8.8

1. &gy = 0.0022 1. &pyyy = 0.0023

2. ¢/l,<0.15 2. ¢/l,<0.125

Not applicable | when /,/1,>5.0 | when A, /I, >5.0

&A,R.R <001 |8A,R,R <001

Alternatively, a Alternatively, a

ductility check ductility check

required (CIl.16.8.8) | required (CIl.16.8.8)
Cl.10.7.3.3 Cl.16.8.3 Cl.16.9.3 Cl.16.7.4
Must meet non- h/(t+10) < 20 h/(t+10)<12 h/(t+10) < 20
seismic Unless it can be Unless it can
Slen{iemess shown for lightly be shown for
requirements and | |oaded walls that a lightly loaded
design procedures | more slender wall walls that a

is satisfactory for

more slender

out-of-plane wall is

stability satisfactory for
out-of-plane
stability

Relaxed h/t limits possible for rectangular and thickened

wall sections with limited ¢/B, and /I, ratios
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reinforcement
area
(2.6.9)

(Cl.16.4.5)
apply when

1 5FpS,4(02)2035

otherwise apply
minimum non-
seismic reinf.
requirements
(C1.10.15.1)

for all classes of ductile masonry walls (see Table 2-3)

Provision Conventional Moderately Ductile shear Moderately
(quide Construction Ductile shear walls ductile squat
reference shear walls walls shear walls
section shown (hy /1, <1)
in the brackets)
C1.10.10.2 Cl.16.8.9.1 Cl.16.9.8.1 C1.10.10.2
V =V +V Vr =0.75 Vm + VS Vr = O.SVm + VS Same as
] rm § 25% reduction in 50% reduction in | Conventional
Shear/diagonal  Same as non- the masonry shear | the masonry Construction
tension seismic design resistance shear resistance | walls
resistance Cl.16.7.3.1
(2.6.6) Shear force
applied
uniformly along
the wall length
Sliding shear Cl.10.10.5 Cl.10.10.5 Cl.16.9.8.2 Cl.10.10.5
resistance — V.,=4¢,1C V,=¢,#uC Same as
(2.6.7) V’ ¢’”’uc Same as non- Only Conventional
Same as non- seismic design reinforcement in | Construction
seismic design the tension zone | walls
to be taken into
account for C
calculation.
Minimum Minimum seismic Cl.16.4.5
seismic reinf. requirements | Minimum seismic reinforcement area requirements apply

Cl.16.7.5

Additional
reinforcement
requirements
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2.6.12 Comparison of the Seismic Design and Detailing Requirements

for Reinforced Masonry Walls in CSA S304-14 and CSA S304.1-04

Table 2-6. Comparison of CSA S304-14 and S304.1-04 Seismic Reinforcement Requirements

for Shear Walls
CSA S304.1-04 CSA S304-14
Applicability Clause 4.6.1 Clause 16.2.1
of minimum At sites where the seismic At sites where the seismic hazard index
seismic hazard index .
reinforcement | 1 - (O 2) 5035 I.ES, (0.2) >0.35, reinforcement
requirements EZ a=a\"" )= conforming to Clause 16.4.5 shall be
reinforcement conforming to provided for masonry construction in
Clause 10.15.2 shall be loadbearing and lateral load-resisting
provided for masonry masonry
construction in loadbearing
and lateral load-resisting
masonry
Minimum Clause 10.15.2.2 Clause 16.4.5.1

area: vertical
& horizontal
Reinforcement

Loadbearing walls (including
shear walls) shall be
reinforced horizontally and
vertically with steel having a
minimum total area of

Astotal = 0002Ag
distributed with a minimum
area in one direction of at
least

A, =0.000674,

(approximately one-third of
the total area)

Remained unchanged
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CSA S304.1-04

CSA S304-14

reinforcement shall be
continuous between lateral
supports. Its spacing shall not
exceed

a) 400 mm where only joint
reinforcement is used;

b) 1200 mm where only bond
beams are used; or

¢) 2400 mm for bond beams
and 400 mm for joint
reinforcement where both are
used.

Within plastic hinge regions
(Cl. 10.16.4.3.3):

Reinforcing bars are to be
used in the plastic hinge
region, at a spacing not more
than

a) 1200 mm or
o) 1,/2

Spacing: Clause 10.16.4.3.2 Clause 16.4.5.3&16.5.2
vertical Vertical seismic reinforcement | For all ductile wall classes and walls
reinforcement | shall be uniformly distributed with conventional construction at sites
over the length of the wall. Its >
spacing shall not exceed the where ]EF;Sa(O'z) 20.75
lesser of (Cl.16.4.5.3):
a) 6(t+10)mm the spacing shall not exceed the lesser
of
b) 1200 mm a) 6(z+10)mm
¢) 1,/4 (for limited ductility o | ) 1200mm
moderately ductile walls Except for walls with conventional
only) construction for sites where
ggglm&a}ed not be less than ]EFS'Sa(O.Z) < 0.75(C|.16.5.2):
the spacing shall not exceed the lesser
of
c) 12(t+10)mm
d) 240Cmm
Spacing: Outside plastic hinge regions Outside plastic hinge regions
horizontal (Cl.10.15.2.6): (Cl.16.4.5.4):
reinforcement | Horizontal seismic Horizontal seismic reinforcement shall

be continuous between lateral supports.
Its spacing shall not exceed

a) 400 mm where only joint
reinforcement is used;

b) 1200 mm where only bond beams are
used; or

¢) 2400 mm for bond beams and 400
mm for joint reinforcement where both
are used

Within plastic hinge regions (Cl.16.8.5.4
and 16.9.5.4):

Reinforcing bars are to be used in the
plastic hinge region, at a spacing not
more than 1200 mm (Moderately Ductile
walls) or 600 mm (Ductile walls) or 7, /2
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2.7 Special Topics

2.7.1 Unreinforced Masonry Shear Walls

According to NBC 2015 CI.4.1.8.9.(1) (Table 4.1.8.9) and S304-14 CI. 16.2.1, unreinforced
masonry SFRS can be constructed at sites where /, EF;SQ(OQ) <0.35.

According to S304-14 Cl.16.2.2, unreinforced shear walls shall not be combined with shear
walls designed as reinforced shear walls in a SFRS where shear walls share the lateral load as
a function of wall rigidity.

S304-14 seismic design provisions for unreinforced masonry shear walls are presented in this
section.

2.7.1.1 Shear/diagonal tension resistance (in-plane and out-of-plane)

7.10.1
7.10.2
7.10.3

The design provisions for factored in-plane and out-of-plane diagonal tension shear resistance,
v, for unreinforced masonry shear walls are the same as those for RM walls, except that there
is no steel contribution term (VS = 0). The background for these provisions is discussed in
detail in Sections 2.3.2 and 2.4.2.

| Commentary

Diagonal tension is a brittle failure mode, characterized by the development of a major diagonal
crack that forms when the masonry tensile resistance has been reached (see Section 2.3.1.2).
This is an undesirable failure mechanism and should be avoided, preferably by providing
horizontal reinforcement in masonry walls loaded in-plane and located in regions where
I1,F,S,(0.2)>035.

2.7.1.2 Sliding shear resistance (in-plane and out-of-plane)

7.10.5.1
7.10.5.2

Design provisions for in-plane and out-of-plane sliding shear resistance for unreinforced
masonry walls are somewhat different from those for RM, in that both bed-joint sliding masonry
resistance and the frictional resistance are considered. Note that in RM walls only frictional
resistance is considered, as discussed in Section 2.3.3.

The in-plane sliding shear resistance, 1, , along bed joints between courses of masonry, also
known as bed-joint sliding resistance, is given in Cl.7.10.5.1 as

Vr = 016¢m fn,1 Auc +¢mll’lR

where
M = the coefficient of friction

= 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
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= 0.7 for a masonry-to-smooth concrete or bare steel sliding plane
= other (when flashings reduce friction that resists sliding shear, a reduced coefficient of
friction accounting for the flashing material properties should be used)

P, =the compressive force in masonry acting normal to the sliding plane, normally taken as B,
(equal to 0.9 times the dead load). For infill shear walls, an additional component, equal to
90% of the factored vertical component of the compressive force resulting from the diagonal
strut action, should be added (see Figure 2-44c)).

Auc = uncracked portion of the effective cross-sectional area of the wall that provides shear
bond capacity (note that both out-of-plane loads and in-plane loads can cause cracking of
the masonry wall)

For the in-plane sliding shear resistance, Auc should be determined as follows

14146‘ :te .dV

where

I, = effective wall thickness; f, is equal to the sum of two face shell thicknesses for hollow
walls, and to the actual wall thickness ¢ for fully grouted walls

dv = effective wall depth, equal to O-SZW

lw = wall length

For the out-of-plane sliding shear resistance, Auc should be determined as follows

A =t -1
C e w

The sliding shear resistance at the base of the wall (along the bed joint between the support and
the first course of masonry) is equal to (see Figure 2-44b))

V.=¢,uC

where C _is compressive force in the masonry acting normal to the sliding plane, normally
taken as £ (equal to 0.9 times the dead load), since Ty =0, that is,

C=F+T,

Design equations for the out-of-plane sliding resistance stated in CI.7.10.5.2 are the same as
the equations for the in-plane sliding shear resistance presented above.

| Commentary

The two forms of the sliding shear failure mechanism (bed-joint sliding and base sliding), are
presented in Figure 2-44a) and b). Sliding shear failure is likely to govern the design of masonry
shear walls in low-rise buildings, due to the low axial load acting on these walls (see
Commentary in Section 2.6.7). In unreinforced masonry walls, dowels can provide the required
sliding shear resistance at the base, but it should be noted that a sliding shear failure can still
take place at the section at the top of the dowels, which is undesirable. However, it should be
noted that the sliding shear failure mechanism is a ductile one, and has been characterized by
significant lateral deformations along the failure plane in major earthquakes.

Note that in the equation for bed-joint sliding resistance, the first term represents the shear bond
resistance of masonry mortar, while the second term represents the sliding shear resistance
based on the Coulomb friction model. In determining the sliding shear resistance for the bed-
joint sliding mechanism for seismic design of unreinforced masonry walls, the first term in the
equation should be ignored if the wall cracks due to either in-plane or out-of-plane bending. If
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the wall remains uncracked, the second term (shear friction resistance) should not be included.
The smaller of the two values should be used in the design.

For the sliding resistance at the base of the wall, sliding shear resistance is provided by the
weight of the wall above and yielding of steel dowels. Note that the dowel contribution is
possible only after a small shear slip at the base takes place and a horizontal crack forms at the
wall-to-foundation interface.
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Figure 2-44. Sliding shear failure mechanism: a) bed-joint sliding; b) sliding at the base of the
wall; c) sliding shear in infilled masonry walls.

The bed-joint sliding failure mechanism is also characteristic of infilled masonry walls, as shown
in Figure 2-44c). Seismic design considerations for masonry infill walls are discussed in Section
2.7.2.

9/1/2018 2-77



2.7.1.3 Flexural resistance due to combined axial load and bending

A masonry wall of length, [ , and thickness, ?, subjected to factored axial load, f} and
factored bending moment, Mf, has an eccentricity, €, equal to

According to CI.7.2.3, unreinforced masonry walls should be designed to remain uncracked
when

e>0.33, for in-plane bending, or

e>0.33¢t for out-of-plane bending, ,
but the maximum stresses must not exceed ¢,,ft for tension and 0.6¢m fm for compression
(CL.7.2.4), where f, is the flexural tensile strength of masonry (see Table 5 of CSA S304-14).

The maximum stresses at the wall ends can be calculated as follows:

fo= Tt <064, ,
max =——T—xVU.
[ A S mJ m

and

’ Pf Mf >4 f
max f = ———>2>—

t Ae Se mJt
where

P, and M, are the factored axial load and the factored bending moment acting on the wall
section
Ae =1, 'lw effective cross-sectional area of masonry

I, = effective wall thickness equal to the sum of two face shell thicknesses for hollow walls, and
to the actual wall thickness ¢ for fully grouted walls

2
t . l ) . . .
S, =-5 6” section modulus of effective wall cross-sectional area

An unreinforced masonry wall should be designed assuming cracked sections (CIl.7.2.1) when
eccentricity about either major or minor wall axis is less than ¢, where
e, = 0.33 times the dimension of the section perpendicular to the axis about which moments
are being computed for rectangular walls and columns, or

0.5 times the distance from the centroid of the section to the extreme compression fibre
in the direction of bending for non-rectangular walls and columns.

An equivalent rectangular stress block per Cl.10.2.6 should be used for the design.
The centroid of the compression zone must coincide with the load eccentricity, €, as shown in

Figure 2-45b), and the compression capacity, p, , can then be determined from the following
equation:

P =(08574,1,) 1, '(%_e] N

note that P, must be greater than F.
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Figure 2-45. Stresses due to combined axial load and bending in an unreinforced masonry wall:
a) uncracked wall; b) cracked wall.

| Commentary

It is realistic to assume that unreinforced masonry wall sections will experience cracking under
seismic conditions. Reports from the past earthquakes have shown that unreinforced masonry
suffers extensive damage in earthquakes, e.g. 1994 Northridge, California earthquake
(magnitude 6.7); for more details refer to TMS (1994). Despite the extensive damage, it should
be noted that the building stock of unreinforced masonry block walls in California is very limited,
since the provision for reinforcement in masonry structures started after the 1933 Long Beach
earthquake. This cannot be said for most seismic zones in Canada.
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2.7.2 Masonry Infill Walls

7.13
10.12

Infill walls are masonry wall panels enclosed by reinforced concrete or steel frame members on
all four sides. Infill walls are not listed as a wall class in NBC 2015, and therefore fall under the
classification of “other masonry SFRS(s)”. They are only allowed in low seismic regions where

1,ES,(02)<02(, and have R, =R, =1.0 and a height limitation of 15 m.

CSA S304-14 design provisions for masonry infill walls, introduced for the first time in the 2004
edition of the code, are summarized below.

General design requirements

1. Masonry infill walls are treated as shear walls and should be designed to resist all in-
plane and out-of-plane loads (CI.7.13.1).

2. Masonry infill walls should be designed to resist any vertical loads transferred to them by
the frame (CI.7.13.2.4).

3. The increased stiffness of lateral load-resisting elements that consist of masonry infill
shear walls working with the surrounding frame, should be taken into account when
distributing the applied loads to these elements (CI.7.13.2.5).

4. When a diagonal strut is used to model the infill shear wall according to Cl.7.13.3, an
infill frame can be designed using a truss model (see the note to Cl.7.13.2.5).

Design approaches for masonry infill walls
CSA S304-14 offers three possible design and construction approaches for infill walls:

1. Participating infill (diagonal strut approach) — when there are no openings or gaps
between the masonry infill and the surrounding frame, but the infill is not tied or bonded
to the frame, the infill should be modelled as a diagonal strut according to CI.7.13.3.
Where openings or gaps exist, the designer must show through experimental testing or
special investigations that the diagonal strut action can be formed and all other structural
requirements for the infill shear walls can be developed (CI.7.13.2.3).

2. Frame and infill composite action — when the infill shear wall is tied and bonded to the
frame to create a composite shear wall, where the infill forms the web and the columns
of the frame form the flanges of the shear wall (Cl.7.13.2.2).

3. Isolated infill - it is also possible to design an isolated infill panel (a note to CI.7.13.1 and
Cl.7.13.2.3), which is separated from the frame structure by a gap created by vertical
movement joints along the ends and a horizontal movement joint under the floor above
or beam. In that case, masonry infill is a nonloadbearing wall and cannot be treated as a
shear wall. Restraints must be provided at the top of the wall to ensure stability for out-
of-plane seismic forces.

Diagonal strut model
For structural design purposes, infill walls should be modelled as diagonal struts, as shown in
Figure 2-46 (CI.7.13.2.1). The key properties of the diagonal strut model are summarized below.

Diagonal strut width W should be determined as follows (CIl.7.13.3.3):

[ 2 2
w=4a, ta;

where
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a, =— .
2\ E,t,sin20
and
4E, 1] Y
a, =

T ——
E t,sin26

7,( 4E,Lh Y5

&, = vertical contact length between the frame and the diagonal strut
a, = horizontal contact length between the frame and the diagonal strut
E:ﬂ, E,- = moduli of elasticity of the masonry wall and frame material, respectively
h, | = height and length of the infill wall, respectively
I, =~k +1* length of the diagonal
I, = sum of the thickness of the two face shells for hollow or semi-solid block units and the
thickness of the wall for solid or fully grouted hollow or semi-solid block units
., I, = moments of inertia of the column and the beam of the frame respectively
6 = angle of diagonal strut measured from the horizontal, where
h
tan 0 = —
/

Effective diagonal strut width, W, to be used for the strength calculations should be taken as
(CL.7.13.3.4)

w, =w?2
or
w, <1, /4

whichever is the least.

The design length of the diagonal strut, ls , should be equal to (CI.7.13.3.5)
Zs :ld _W/2
Depending on the strut end conditions (fixed or pinned), an effective length can be calculated by

multiplying the design length by the effective length factor for compression members, k (see
Annex B to CSA S304-14).

The design length for the diagonal strut in reinforced infill walls should be determined as the
smallest of the following (CI.10.12.3):

e design length ls as defined above, or

o infill wall height /4 or length /, when minimum reinforcement and lateral anchorage are
provided for the span in that direction.

In-plane resistance of masonry infill walls

According to CSA S304-14, masonry infills should be designed considering the following failure
mechanisms:

e Compression or buckling failure in diagonal strut, and

e In-plane shear failure of the masonry infill.

Diagonal strut — compression resistance (Cl.7.13.3.4.3)
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The compression strength of the diagonal strut, Pr , is equal to the compression strength of the
masonry times the effective cross-sectional area, that is,

P =(085¢4,1,)- 4

where

A@ = WE *te

Note that the masonry compressive strength should be reduced by y = 0.5 (corresponding to
the masonry strength for compression normal to the head joints). The concept of effective cross-

sectional area is addressed by S304-14 CI.7.3 (unreinforced masonry walls) and CI.10.3 (RM
walls).

Diagonal strut — buckling resistance

In determining the compression resistance, P, , slenderness effects should be included in
accordance with CI.7.7.5.

The designer should ensure that the horizontal component of the diagonal strut compression
resistance, B, is larger than the factored shear load, Vf acting on the infill (see Figure 2-46c)).

Bed-joint sliding shear resistance of infill walls (CI.7.13.3.1 for unreinforced infills and CI.10.12.4
for reinforced infills)

Bed-joint sliding resistance is the key in-plane shear resistance mechanism characteristic, both
for unreinforced and reinforced infill walls (Cl.7.10.4). See Section 2.7.1.2 for a discussion on
the bed-joint sliding mechanism.

Infill shear walls should be designed so that a bed-joint sliding shear failure is prevented
(CL.7.13.3.1). This failure mechanism can lead to a knee-braced condition that could cause a
premature failure of the column in the surrounding frame, as shown in Figure 2-49a).

CSA S304-14 CI.10.12.4 states that the RM infills need to be designed to resist all applied shear
loads in accordance with CI.10.10.1, as they relate to the diagonal tension shear resistance
discussed in Section 2.3.2 of this guide. However, it should be noted that the shear resistance
corresponding to the diagonal tension cracking does not represent the limited or ultimate load
condition for infill walls (see the discussion in the commentary part of this section).

Sliding shear resistance of infill walls (CI.7.13.3.2 for unreinforced infills and CI.10.12.5 for
reinforced infills)

Infill shear walls should be designed for sliding shear according to Section 2.3.3, but the vertical

component of the diagonal strut compression resistance, PV must be considered in determining
the sliding shear resistance, as shown in Figure 2-44c).

Effective diagonal strut stiffness
S304-14 contains a new provision regarding the effective stiffness of diagonal strut. The
effective stiffness should be calculated as

_ ¢Sl We/f teEm

eff l

s

K
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Where ls is the strut length and ¢Sf is the factor to account for the reduction in stiffness, taken as
0.5.

Reinforcement
Reinforcement is required to resist tensile and shear stresses in infills (C.10.12.2). The
minimum reinforcement requirements stated in Cl.10.15 should be followed.

Effect of masonry infill on frame members (CI.7.13.3.2)
Adjacent frame members and their connections should be designed to resist additional shear
forces resulting from the diagonal strut action (see Note 3 to CI.7.13.3.2).

| Commentary

The infilling of frames is associated with the construction of medium- and high-rise steel and
reinforced concrete (RC) buildings, where the frames carry gravity and lateral loads, and the
infills provide the building envelope and internal partitions. Historically, the frames have been
engineered according to the state of the knowledge of the time, with the infill panels considered
to be “nonstructural” elements (FEMA 306, 1999). However, recent damaging earthquakes in
several countries (e.g. the 1999 Kocaeli earthquake in Turkey, the 2001 Bhuj earthquake in
India, the 2001 Chi earthquake in Taiwan, the 2003 Boumerdes earthquake in Algeria, etc.)
revealed significant deficiencies and poor seismic performance of RC frame buildings with
masonry infills, thereby causing significant human and economic losses (Murty, Brzev, et al.
2006).

The introduction of infills into frames changes the lateral-load transfer mechanism of the
structure from a predominantly frame action to a predominantly truss action, as shown on Figure
2-37 (Kaushik, Rai, and Jain, 2006). Masonry infills in RC or steel frame buildings are usually
modelled as diagonal compression struts, so an infilled frame can be modelled as a braced
frame with pin connections at beam-column joints.

It should be recognized that the seismic response of infilled frames is very complex. At a low
level of seismic loads, the infill panels are uncracked and often cause a significant increase in
the stiffness of the entire structure. In some cases, the stiffness of a RC frame with infills may
be in the order of 20 times larger than that of the bare frame. At that stage, infills usually attract
most of the lateral forces, but as the load increases, the infills crack and their stiffness drops. As
a result, the stiffness of an infilled frame progressively decreases in each subsequent loading
cycle, and more of the load is transferred to the frame. For that reason, the frames must have
sufficient strength to avoid the collapse of the structure (Kaushik, Rai, and Jain, 2006). CSA
S304-14 requires that masonry infills should be able to resist the lateral seismic loads without
any assistance from the frames (CI1.7.13.3.1).

To safeguard frames from being designed for very low seismic forces, some building codes
require that the frame alone be designed to independently resist at least 25% of the design
seismic forces, in addition to the forces caused by gravity loads. CSA S304-14 CI.7.13.3.2 (Note
3) states that the frame members and their connections should be designed to resist additional
shear forces introduced by the diagonal strut action. For example, the columns will have to
resist a shear force equal to the horizontal component of the diagonal strut compression
resistance, B, (see Figure 2-46c¢)).
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The following two analytical models can be considered in the design of infilled frames (see
Figure 2-47):

i) uncracked braced frame with diagonal struts; this model results in a high stiffness
(corresponding to a short period) and small lateral deflections, and
ii) bare frame with cracked frame members (assuming failed infills); this model results

in a low stiffness (corresponding to a long period) and large deflections.
It should be noted that the first model will give the maximum design forces, while the second
one will give the maximum lateral deflections. The designer needs to consider both models in
the analysis and use the most critical values for the design.

Problems associated with seismic performance of infilled frame structures arise from
discontinuities of infills along the building height, and the resulting vertical stiffness discontinuity
(see the discussion on irregularities in Section 1.12.1). In such infilled frames, there is a high
level of forces to be resisted by the frame components. In some cases, discontinuity of infills at
the ground floor level results in a soft storey mechanism, which has caused the collapse of
several buildings in past earthquakes (see Figure 2-48). In developing countries, construction
quality combined with inadequate detailing of RC frame components may occur, which leads to
a non-ductile seismic response of these structures.
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Figure 2-46. Diagonal strut model: a) actual strut width; b) effective strut width; c) analytical
model.
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Figure 2-47. Masonry infills alter the seismic response of a frame structure: a) bare frame;
b) diagonal strut mechanism (Source: Murty, Brzev, et al. 2006").

co—
—
—

Figure 2-48. Soft storey mechanism: a) vertical discontinuity in masonry infills? ; b) building
damage in the 2003 Boumerdes, Algeria earthquake®.

Infill walls may fail due to the effects of in-plane or out-of-plane seismic forces. The in-plane
seismic response of masonry infills is generally governed by shear failure mechanisms. The
response depends on several factors, including the relative stiffness of the infill and frame, the
material properties, and the contact between the infill and frame. The following behaviour
modes are characteristic of masonry infills subjected to in-plane seismic loads (Tomazevic
1999; FEMA 306, 1999):

1. Bed-joint sliding failure: this mechanism takes place along horizontal mortar joints and
results in the separation of infill into two or more parts (see Figure 2-49a) and b)). The
separated parts of the masonry infill cause free column deformations, ultimately resulting
in plastic hinging in the columns. This is a ductile, displacement-controlled mechanism,
since the earthquake energy is dissipated through the friction along the bed joints. This
mechanism is likely to occur when the frame is strong and flexible. If the plane of

' Reproduced by permission of the Earthquake Engineering Research Institute (EERI)
2 Source: Murty, Brzev, et al., 2006, reproduced by permission of the EERI
3 Source: S. Brzev

9/1/2018 2-86



weakness forms near the column mid-height, there is a chance for a short-column effect
in the frame that can lead to a shear failure (see Figure 2-49a)). Note that when an infill
panel experiences a bed-joint sliding failure, an equivalent diagonal strut may not form,
so that sliding becomes the governing failure mechanism.

2. Diagonal strut mechanism with corner compression failure: this mechanism takes place
due to the high concentration of compression stresses in the diagonal strut. The
formation of a diagonal strut is preceded by diagonal tension cracking in the infill shown
in Figure 2-49c). These cracks start in the centre of the infill and run parallel to the
compression strut. As the load increases, the cracks propagate until they extend to the
corners of the panel. When the capacity of the diagonal strut has been reached, the
crushing takes place over a relatively small region (see Figure 2-49d)). The onset of
diagonal shear cracking should not be considered as the limiting or ultimate load
condition for infill walls, because the ultimate load is governed by either the capacity of
the diagonal strut or the bed-joint sliding shear resistance.
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Figure 2-49. Masonry infill behaviour modes: a) and b) bed-joint sliding’; c) diagonal tension?;
d) corner compression?.

The diagonal strut mechanism can account for the additional stiffness provided by infill panels. It
has been adopted by some design codes and guidelines for over 30 years, based on the
pioneering research done in the1960s. It is the basis for the diagonal strut model which was
initially included in CSA S304.1-04 (Stafford-Smith,1966), and its background has been further
described in a more recent publication (Stafford-Smith and Coull, 1991). In this model, the
effective strut width, W,, is a function of the relative flexural stiffness of the column/beam and the
infill, the height/length aspect ratio of the infill panel, the stress-strain relationship of the infill

"Tomazevic, 1999, reproduced by permission of the Imperial College Press
2 FEMA 306, 1999, reproduced by permission of the Federal Emergency Management Agency
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material, and the magnitude of diagonal load acting on the infill. Diagonal strut properties
prescribed by international codes vary significantly (Kaushik, Rai, and Jain, 2006). For example,
the New Zealand Masonry Code NZS 4230:2004 prescribes that W, should be taken as 25% of
the length of the diagonal. Eurocode 8 (1988) prescribes that W, should be taken as 15% of the
diagonal length of the infill. Appendix B of TMS 402/602-16 contains diagonal strut provisions,
which were discussed by Henderson, Bennett, and Tucker (2007).

A key design parameter related to the diagonal strut model is the length of bearing (or contact)
between the adjacent column and the infill (this parameter is denoted as &, and ¢, in CSA
S304-14 CI.7.13.3.3, for the column-infill or beam-infill contact length respectively).

Experimental studies have shown that the bearing length is governed by the flexural stiffness of
the column relative to the in-plane bearing stiffness of the infill. The stiffer the column, the longer
the length of bearing, and the lower the compressive stresses at the interface (Stafford-Smith
and Coull, 1991). This phenomenon is reflected in the CSA S304-14 equations used to
determine &), and «, values. Note that these S304-14 provisions are unique, in that they
prescribe two contact lengths — other codes and design recommendations use only the column
contact length (corresponding to ¢, in CSA S304-14).

Out-of-plane failure takes place due to ground shaking transverse to the plane of the wall. This
mode of failure is more likely to occur at upper stories of a building, due to amplified
accelerations, but it can also happen at lower stories due to concurrent in-plane loading that
may damage the masonry. Arching is the prevalent mechanism in resisting out-of-plane seismic
loads, because considerable out-of-plane strength can be developed even in cracked infills.
This has been confirmed by several experimental studies (Dawe and Seah, 1989, and Abrams,
Angel, and Uzarski, 1996). Note that the arching action is possible only for infills in direct
contact with the frame (i.e. without a gap at the top). Out-of-plane strength estimates based on
the flexural model of the infill acting as a vertical beam subjected to uniform load due to out-of-
plane seismic load are rather conservative. Note that CSA S304-14 does not contain provisions
related to out-of-plane resistance of masonry infills. TMS 402/602-16 contains an empirical
design equation for the out-of-plane resistance of masonry infills based on the arching action, as
proposed by Dawe and Seah (1989).

Isolated infill: when an infill panel is isolated from the frame, the gap (often called seismic gap),
must be filled with a very flexible soundproof and fireproof material, e.g. boards of soft rubber or
special caulking. The gap size (usually in the order of 20 to 40 mm) depends on the stiffness of
the structure, the deformation sensitivity of the partition walls, and the desired seismic
performance (Bachmann 2003). In addition to the gap on the sides and top of the panel, a
restraint for out-of-plane resistance is required. This is typically provided in the form of clip
angles or dowels at the top and/or sides that restrain out-of-plane motion only. These anchors
should coincide with vertical and horizontal wall reinforcing (see CSA A370-04 for restraint
information).

The above discussion pertains mainly to solid infills. Perforations within infill panels are the most
significant parameter affecting the seismic behaviour of infilled systems. Openings located in the
centre portion of the wall can lead to weak infill behaviour. On the other hand, partial height
infills can be relatively strong. The frames are often relatively weak in column shear, and partial
height infills could potentially lead to a short-column mechanism (FEMA 306, 1999).

2.7.3 Stack Pattern Walls

Stack pattern is the arrangement of masonry units in which the head joints are vertically aligned
(CSA S304-14 Cl.2.2). Stack pattern is not recommended for walls resisting seismic loads
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because, unlike a running bond pattern, the wall integrity provided by overlapping units is not
available. The term stack pattern is now used, rather than stack bond, to highlight the lack of
bond provided by this configuration of units. Stack pattern walls can be found in existing
masonry buildings throughout Canada (see Figure 2-50a)), and some older walls of this type are
being demolished, as shown in Figure 2-50b). These walls act as a series of individual vertical
columns, and the provision of horizontal reinforcement is essential to tie them together.

Figure 2-50. Stack pattern walls: a) stack pattern wall in an existing masonry building’;
b) demolished stack pattern wall>.

CSA S304-14 provisions regarding stack pattern walls of relevance for the seismic design are
summarized in this section.

1 Credit: Svetlana Brzev
2 Credit: Bill McEwen
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2.7.3.1 Reinforcement requirements

| CSA A371-04 CI.8.1.3 |

Joint reinforcement or other horizontal reinforcement is required when structural or veneer
masonry is laid in stack pattern, defined as less than a 50 mm overlap of masonry units.

Horizontal reinforcement for in-plane shear resistance in stack pattern walls shall be spaced at
a) maximum 800 mm for bond beam reinforcing, and
b) maximum 400 mm for wire joint reinforcing.

10.15.1
16.4.5

Reinforced stack pattern walls need to meet the minimum horizontal and vertical reinforcement
requirements for non-seismic condition contained in Cl. 10.15.1, and the additional minimum
seismic requirements of Cl.16.4.5 (see Section 2.6.11 and Table 2-3).

| Commentary

Provision of horizontal reinforcement is critical for enhancing continuity in stack pattern walls.
CSA S304-14 permits the use of joint reinforcement spaced at 400 mm or less, in addition to the
bond beam reinforcement provided at a maximum spacing of 2400 mm (CI.10.15.1.3). Codes in
other countries, e.g. the U.S. masonry code TMS 402/602-16 Cl.4.5 states that the horizontal
reinforcement in masonry not laid in running bond shall be placed at a maximum spacing of 48
in. (1219 mm) on centre in horizontal mortar joints or in bond beams, and the minimum area of
horizontal reinforcement shall be 0.00028 multiplied by the gross vertical cross-sectional area of
the wall using specified dimensions. For 190 mm units, the 0.00028 value can be met by 9-
gauge joint reinforcement spaced at 400 mm, but bond beams are probably more effective in
providing the desired continuity.

Note that gross cross-sectional area Ag for minimum area of vertical reinforcement according to

Cl.10.15.1.1, should be calculated based on the effective compression zone width b discussed
in Section 2.7.3.3.

2.7.3.2 In-plane shear resistance

The maximum factored vertical in-plane shear resistance in reinforced stack pattern walls shall
not exceed that corresponding to the shear friction resistance of the continuous horizontal
reinforcing used to tie the wall together at the continuous head joints (see Section 2.7.3.1 for
horizontal reinforcement requirements).

Shear friction resistance shall be taken as

V. =¢,4C,

where
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M = 0.7 shear friction coefficient

Q, = compressive force in the masonry acting normal to the head joint. It is normally taken as

the factored tensile force at yield of the horizontal reinforcement crossing the joint. This
reinforcement must be detailed to develop its yield strength on both sides of the vertical joint.

CSA S304-14 does not contain any provisions related to unreinforced stack pattern walls.
Cl1.7.10.4 for unreinforced walls is identical to Cl.10.10.4 for the in-plane seismic resistance of
reinforced stack pattern walls.

| Commentary

In-plane shear resistance of stack pattern walls is less than that of walls built in running bond.
There is no masonry contribution to the shear resistance, so the resistance depends exclusively
on the reinforcement crossing the vertical head joint. This is similar to the treatment of shear
resistance at wall intersections prescribed in Cl.7.11 (see Section C.2).

Shear friction resistance, v, , is proportional to the coefficient of friction, £ , and the clamping
force, Q, acting perpendicular to the wall height, /4 (see Figure 2-51). é/is equal to the sum of
tensile yield forces developed in reinforcement bars of area Ab spaced at the distance S, that is:

C, = ¢sfyAb h/s

Reinforcing bars providing the shear friction resistance should be distributed uniformly across
the vertical joint. The bars should be long enough so that their yield strength can be developed
on both sides of the joint. Note that, in theory, a sliding shear plane can form along any vertical
joint in a stack pattern wall.

V A
/ > + . Z' \d)sfyAb
bond -_| SJ "
beam . V;
reinf. I—> rC,
h
—
K

Sh‘earfriction plane

Figure 2-51. In-plane shear resistance of stack pattern walls.
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2.7.3.3 Out-of-plane shear resistance

The out-of-plane shear resistance of stack pattern walls is determined according to the same
provisions for walls built in running bond (see Section 2.4.3). Note that for the purpose of shear
resistance calculations, b includes the width of the cell and webs at a vertical bar within the
length of the reinforced unit.

| Commentary

Unless horizontal reinforcement is provided in sufficient amount (size and spacing), the out-of-
plane shear resistance of stack pattern walls is similar to that of a series of isolated vertical
columns. In Figure 2-52 some stacks are not reinforced with vertical bars and so it is important
to have adequate horizontal reinforcement to tie the stacks together.

2.7.3.4 Design for the combined axial load and flexure

The design approach for reinforced stack pattern walls for combined axial load and flexure is
similar to that presented in Sections 2.3.4 and 2.4.4 for running bond. In determining the out-of-
plane flexural resistance, the flexural tensile strength ft should be taken equal to zero for
tensile resistance parallel to bed joints (S304-14 CI.5.2.1). Also, the effective compression zone
width b should be taken according to CI.10.6.1.

For the case of out-of-plane loading (or “minor axis bending” as referred to in S304-14), the
effective compression zone width, b, used with each vertical bar in the design of stack pattern
walls with vertical reinforcement shall be taken as the lesser of

a) spacing between vertical bars, S, or

b) the length of the reinforced unit.

Figure 2-52 shows a portion of a reinforced stack pattern wall. In this example, the length of the
reinforced units is less than the spacing between bars and so the compression zone width, b, to
be used with such bar is equal to the block length.

Figure 2-52. Effective compression zone width b for out-of-plane seismic effects in stack pattern
walls.
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| Commentary

The seismic performance of stack pattern walls without closely spaced horizontal reinforcement
has been much less satisfactory than for walls constructed in running bond. The presence of
horizontal reinforcement is critical for tying together vertical columns formed by stacked blocks
(NZS 4230:2004).

Unreinforced stack pattern walls located in regions with moderate to high seismic risk are
considered to be vulnerable to seismic effects and should be either retrofitted or demolished. It
is suggested that unreinforced stack pattern walls not be used in seismic regions.

2.7.4 Nonloadbearing Walls

Nonloadbearing walls resist the effects of their own dead load and any out-of-plane wind and
earthquake loads. This includes partitions and exterior walls that do not support floors and roofs
(S304-14 Cl.2.2). However, walls that do not support floors and roofs, but resist the in-plane
forces from wind and earthquake loads are considered loadbearing shear walls (see Section
2.5.4.7 for a detailed discussion on seismic reinforcement requirements for shear walls).

16.2.1
16.2.3
With the exception noted below, nonloadbearing walls, |nclud| son enclosing elevator
shafts and stairways must be reinforced at sites where /.F, a&)mf 5 (Cl.16.2.1).

Although not recom ended t%y the authors, unreinforced masonry partitions can be designed for
sites where I F) a r> <0.75, provided that they a) have a mass less than or equal to 200
kg/m?, b) have a helght less than or equal to 3 m, and c) are laterally supported at the top and
bottom. Unreinforced masonry partitions that do not exceed 3 m in height and are not laterally
supported at the top may be designed to span horizontally between vertical elements providing
lateral support.

Minimum seismic reinforcement requirements for nonloadbearing walls are summarized below:
1. 1f 1,F,S,(02)<035
Minimum seismic reinforcement is not required per CSA S304-14.

2. 1f 035<1,F.S (02)<0.75 (C1.16.4.5.2a)

Nonloadbearing walls shall be reinforced in one or more directions with reinforcing steel
having a minimum total area of

Ay =0.00054,

stotal
The area should be taken perpendicular to the direction of the reinforcement considered.
The reinforcement may be placed in one direction, provided that it is located to
reinforce the wall adequately against lateral loads and that it spans between lateral
supports.

3. 1f 1,F.S,(02)>0.75 (Cl.16.4.5.2b)

Nonloadbearing walls shall be reinforced horizontally and vertically with steel having a
minimum total area of

A

stotal

= 0.00lAg distributed with a minimum area in one direction of at least
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Apin = 0-0003314g (approximately one-third of the total area).

Ag denotes gross cross-sectional area corresponding to unit wall length (for vertical
reinforcement), or unit height (for horizontal reinforcement).

16.5.2

For all nonloadbearing and partition walls at sites where ]EF;Sa(OQ) >(0.75the spacing shall

not exceed the lesser of
a) 6(t+10) mm

b) 1200mm

Except for sites where 0.35<1,.F.S, (0.2) <0.75the spacing shall not exceed the lesser of
c) 12(t +10)mm
d) 2400mm

16.4.5.4

Horizontal seismic reinforcement must be continuous between lateral supports in both
loadbearing and nonloadbearing walls. Its spacing cannot exceed

(a) 400 mm where only joint reinforcement is used;

(b) 1200 mm where only bond beams are used; or

(c) 2400 mm for bond beams and 400 mm for joint reinforcement where both are used.

In terms of seismic design, the effect of out-of-plane seismic loads is likely going to govern the
design of nonloadbearing walls. The approach for out-of-plane flexural design is similar to that
presented in Section 2.4.4 for RM walls. For unreinforced nonloadbearing walls, the design
procedure presented in Section 2.7.1.3 should be followed.

2.7.5 Flanged shear walls

Flanged shear walls are discussed in Section C.2. A typical L-shaped flanged wall section is
shown in Figure 2-53. CSA S304-14 does not contain any specific seismic provisions related to
flanged shear walls. Flanged shear walls are required to resist earthquake forces in both
principal directions.

by
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Figure 2-53. Reinforced masonry shear wall with flanges.
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Paulay and Priestley (1992) proposed effective overhanging flange widths for reinforced
concrete and RM shear walls. For tension flanges, it is assumed that vertical forces due to
shear stresses introduced by the web of the wall into the flange spread out at a slope of 1:2. For
reinforced concrete flanged shear walls, the flexural strength of wall section with the flange in
compression is insensitive to the effective flange width as the neutral axis is probably in the
flange. After significant tension yield excursion in the flange, the compression contact area
becomes rather small after load reversal, with outer bars toward the tips of the flange still in
tensile strain.

As a result, the overhanging flange width 5, to be used in seismic design for the flanges under
tension and compression are as follows:

e Tension flange: 0.54,

« Compression flange: 0.1,

where 7, denotes the wall height. Note that these 5, values are different than the overhanging
flange widths prescribed by CSA S304-14 for non-seismic design (see Table C-1 and Figure C-
10 in Appendix C).

Shear walls with unsymmetrical flanges will have different flexural resistances, depending on
whether flange acts in tension or in compression. Research studies on T-section walls have
shown that such walls can exhibit larger ductility when the flanges are in compression.
However, T- and L-section walls may have limited ductility when flanges are in tension (Paulay
and Priestley, 1992; Priestley and Limin, 1995). Their experiments have shown that wall failure
was sudden and brittle, and was initiated by a compression failure of the non-flange end of the
wall, as shown in Figure 2-54b). This was principally due to the large compression force needed
to balance the large tension capacity of the reinforcement in the flange section.

In walls with unsymmetrical flanges, such as the T-section wall shown in Figure 2-54, the
designer should be careful when applying the capacity design approach to determine flexural
and shear capacity. The flexural capacity of the wall section is reached when the flange is in
compression and the axial load is at minimum, mein,as shown in Figure 2-54a). However, the
maximum shear occurs when the flange is in tension and the axial load is at maximum, meax,
as shown in Figure 2-54b) (this will result in a significantly higher flexural strength). A similar
approach should be taken when the capacity design approach is applied to shear walls with
pilasters.
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Figure 2-54. T-section flanged shear wall: a) flexural design scenario: web in tension; b) shear
design scenario: web in compression.

S304-14 design provisions related to shear transfer at wall intersections (including flanged
walls) are discussed in Section C.2.

2.7.6 Wall-to-Diaphragm Anchorage

| CSA A370-14 |

Masonry shear walls must be adequately anchored to floor and roof diaphragms in accordance
with CSA S304-14. (CSA A370-14 Cl. 7.2.2)

Anchors connecting masonry walls in general to their lateral supports must be designed to resist
specified loads. The maximum anchor spacing between walls and horizontal lateral supports
typically should not exceed ten times the nominal wall thickness (t+10 mm) (CI.7.2.1). Anchors
must be fully embedded in reinforced bond beams or reinforced vertical cells.

When the unfactored load applied normal to a wall is greater than 0.24 kPa, the ultimate
strength of a wall anchor must not be less than 1,600 N (CI.8.2.1).

| Commentary

Anchorage is one of the most important and, in many cases, the most vulnerable component of
existing masonry buildings exposed to earthquake effects. Many failures of masonry buildings
result from a wall-diaphragm failure, that allows an out-of-plane wall failure, followed by a
diaphragm failure.
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Wall anchors must be effective in resisting the horizontal design forces from in-plane and out-of-
plane seismic loads. According to the capacity design approach, anchors should be designed to
remain elastic in a seismic event (no yielding). This can be achieved by designing the anchor
capacity based on the wall capacity, or on the elastic wall forces (corresponding to RdRO of
1.0).

The anchors need to resist tension and shear forces, as shown in Figure 2-55.
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Figure 2-55. Tension and shear anchors at the wall-to-diaphragm connection.

Seismic load provisions for nonstructural components and their connections (including anchors)
are provided in NBC 2015 Cl.4.1.8.18.

2.7.7 Masonry Veneers and their Connections

2.7.7.1 Background

In some applications and exposure conditions, the need for better control over rain penetration
led to the incorporation of an air space or cavity in traditional masonry walls to provide a
capillary break between two wythes. This type of two-stage wall can be referred to as a
rainscreen wall, when the air space behind the outermost element is drained and vented to the
exterior, and an effective air barrier is included in the backup assembly. Masonry veneer, an
important component of a modern rainscreen wall, is a nonloadbearing masonry facing attached
to, and supported laterally by a structural backing. The structural backing may be structural
masonry, concrete, metal stud or wood stud. A section of a typical rainscreen wall is shown in
Figure 2-56.

While masonry veneers of brick, block or stone are nonloadbearing components, there are
structural issues to be addressed if they are to perform satisfactorily. Veneers must be
connected adequately to a structural backing by means of metal ties to ensure effective transfer
of lateral loads due to wind and earthquakes. Steel angles are usually used to support veneers
across openings (lintels), and to provide horizontal movement joints (shelf angles). For more
information related to masonry veneers refer to the Technical Manual of the Masonry Institute of
BC (2017).

Veneer design is addressed by CSA S304-14 CI.9.
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Figure 2-56. Key components of a masonry veneer (Reproduced by permission of the Masonry
Institute of BC).

2.7.7.2 Ties

Brick ties are the key components that connect a masonry veneer to a structural backing to
ensure effective lateral load transfer. Tie requirements are outlined in CSA A370-14 Connectors
for Masonry. The older kinds of ties, such as strip ties and Z-ties (now referred to as
“Prescriptive Ties"), are seldom used in modern commercial construction, and cannot be used

where the seismic hazard index, IEESQ(O.2)>O-3 5. The modern, 2-piece, adjustable,

engineered ties that are now in common use are simply referred to as “Ties”. CSA A370-14
contains strict design requirements for the corrosion resistance, strength, deflection and free
play of ties. It also contains requirements for fasteners (screws), and anchors for connecting
masonry walls and for attaching stone.

CSA A370-14 requires stainless steel ties for masonry over 13 m high for areas subject to high
wind-driven rain. Hot dipped galvanized coatings are the acceptable minimum corrosion
protection for most walls 13 m or lower in these areas, and for all walls in drier areas. To define
these areas, the standard provides wind-driven rain data for locations across Canada in Annex
E, in terms of their Annual Driving Rain Index (aDRI).

The maximum tie spacing is prescribed by S304-14 CI.9.1.3 and A370-14 CI.7.1 as follows

¢ 600 mm vertically, and

e 820 mm horizontally

Note that S304-14 and A370-14 prescribe different maximum values for horizontal tie spacing
(820 and 800 mm respectively). The value of 820 mm in S304-14 is shown here because it
provides for typical stud spacings in imperial units, and because S304-14 is the higher-level
standard.

While this maximum spacing combination is often feasible for stiff backups like block and

concrete, in most cases they cannot be achieved under the calculation method specified for
flexible stud backups. In these cases, spacings of 600 mm vertically and 410 horizontally are
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common. In addition to the general tie spacing, ties must also be located within 300 mm of
jambs and tops of walls, and within 400 mm of the base of walls. The wind load lateral deflection
limit for flexible stud backups supporting masonry veneer is span/360.

The factored resistance of a tie ( p, ) is addressed by A370-14 Cl.9.4.2.1.2, and can be
determined as a function of the ultimate tie strength Pu,t from the following equation

F=¢*F,
where ¢ is the the resistance factor, which can assume the following values
¢ = 0.9 for tie material strength
¢ = 0.6 for embedment failure, failure of fasteners, or buckling failure of the connection.

2.7.7.3 Seismic load provisions for ties
Seismic load provisions for ties apply in areas in which the seismic hazard index
1,.F S (02)>0.33, and for all post-disaster buildings (NBC 2015 Cl.4.1.8.18.2).

Ties are designed to resist the lateral wind and seismic loads acting perpendicular to the veneer
surface, based on the tributary tie area. Note that in many cases, wind loads may govern, even
in higher seismic areas. Seismic lateral loads on ties are determined from the provisions for
elements and components of buildings and their connections (NBC 2015 Cl. 4.1.8.18). The

seismic tie load Vp is determined from the following equation:

V. =03F,S,(02)1,S W,

where
Sa(0-2)= 5 % damped spectral response acceleration for a 0.2 sec period (depends on the
site location; values for various locations in Canada from NBC 2015 Appendix C)
E,= foundation factor, which is a function of site class (soil type) and Sa (0-2) (NBC 2015

4.1.8.4(7))
I, = building importance factor equal to1.0, except 1.3 for schools and community centres,

and 1.5 for post-disaster buildings (NBC 2015 4.1.8.5)

Sp= horizontal force factor for part or portion of a building and its anchorage (see NBC
2015, Table 4.1.8.18, Case 8)
S,=C,AA /R, (where 0.7<S,<4.0)

q, = seismic coefficient for a particular nonstructural component (equal to 1.0 for ties)

A, = response amplification factor to account for the type of attachment (equal to 1.0 for
tle 1+ 24, /h, amplification factor to account for variation of response with the height of the
building (maximum 3.0 for the worst case at top of wall for ties). Note that A,( =3 is the
worst case for a tall building that may have higher mode contribution to accelerations in the
top part of the building; thus 4 =3 would be used for the entire top floor. For a single-

storey building this doesn’t make much sense. However, the accelerations will be higher at
the top of a wall where the capacity is reduced because of low vertical load on the bricks, so
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Ax =3 may be reasonable for the top row of ties. This could be reduced in the lower part of

the wall, but for construction simplicity it would generally be better to maintain one spacing
on most projects. This could depend on the relative amounts of masonry veneer on the
upper and lower portions of the walls.

Rp = element or component response modification factor that accounts for ductility (equal to
1.5 for ties).
So, the S, value for tie design is

S, =1.0-1.0-3.0/1.5=2.0

Wp = tributary weight for a specific tie, equal to the unit weight of the veneer masonry

(typically taken as 1.8 kN/m? for brick and cored block) times the tributary area (equal to the
product of tie spacing for each direction).

The tie design load depends on the type of veneer backup (rigid/flexible), as per S304-14
Cl.9.1.3.3:

o Forrigid backups (e.g. concrete block walls), the tie force is equal to the seismic load Vp
corresponding to the tributary area weight Wp :

o For flexible backups (e.g. steel or wood stud walls), a tie must resist 40% of the tributary
lateral load on a vertical line of ties. However, a tie must also be able to resist the load from
double the tributary area on the tie.

Factored tie capacities 17, are normally provided by test data from the manufacturers. The tie
capacity is considered to be adequate provided that

V<V,

If this is not a case, the tributary area and resulting tie spacing can be reduced until the above
requirement is satisfied, or a stronger tie can be considered. In many cases, the design will
begin with a given tie strength, with the resulting spacing calculated and assessed (see design
Example 7 in Chapter 3).

2.7.8 Constructability Issues

Most of the information provided in this section has been adapted from the Technical Manual
prepared by the Masonry Institute of BC (2017). The requirements for masonry construction are
contained in CSA A371-14 Masonry Construction for Buildings. This standard provides direction
to masonry contractors and masonry designers on the proper procedures for the erection of
masonry walls

2.7.8.1 Reinforcement

RM is basically another form of reinforced concrete construction. However, reinforcing and
grouting details should consider the cell configuration of the masonry units. Care should be
taken to disperse the rebar throughout the wall, and to avoid congestion in individual vertical
cells. The cell size of the masonry units will dictate the size and number of bars that can be
effectively grouted. A reinforcement arrangement, such as the one shown in Figure 2-57, is
unsuitable and should be avoided. Typical RM makes use of 15M or 20M bars. Units of 150 and
200 mm nominal width should not contain more than one vertical bar per cell (2 bars at splices).
25M bars are occasionally used, but are more difficult to handle and require long laps. Vertical
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bars are typically placed in one layer in the centre of the wall. Site coordination is required to
ensure that rebar foundation dowels are installed to coincide with RM cell locations.

Horizontal rebar is placed in bond beam courses using special bond beam blocks that have
depressed or knock-out webs. Bond beams are typically spaced at 2400 mm vertically, but may
also be positioned to coincide with lintel courses over openings. Bond beams may also be
required at closer spacings for certain shear wall situations. Joint reinforcement is often used in
combination with bond beam bars. It is a ladder of 9-gauge (3.7 mm) galvanized wire installed in
the mortar bed (horizontal) joint, which positions a wire in the centre of each block face shell. It
must be spaced at a maximum of 600 mm for 2 running bond masonry, but at 400 mm for other
patterns, or when used as seismic reinforcement. Joint reinforcement resists wall cracking and
may contribute to the horizontal steel area in the wall. If joint reinforcement is not used, the
maximum spacing of bond beams is 1200 mm for seismic detailing, except for stack pattern
masonry where the limit is 800 mm for all reinforced walls (CSA S304-14 10.10.4).

Figure 2-57. Masonry reinforcing: a) inappropriate reinforcement arrangement: 2 bars vertically
and 2 bars horizontally in a 20 cm wall are almost impossible to grout, particularly at splices
where the steel is doubled; b) wire joint reinforcement laid in bedjoints (Reproduced by
permission of the Masonry Institute of BC).

Vertical reinforcing is required at each side of control joints, and at the corners, ends and
intersections of walls. Horizontal reinforcing is required at the tops of walls, and where walls are
connected to a roof or floor assembly. In addition to seismic reinforcing requirements for flexure,
shear and minimum steel area, loadbearing walls require reinforcement equal to at least one
15M around all masonry panels, and any openings over 1,000 mm in length or height. Although
not recommended by the authors, CSA S304-14 (Clause 4.6.1) allows unreinforced masonry
partitions if they( ar Ie%s’}gan 200 kg/m? in mass and 3 m in height, but only for seismic hazard

indices 1,FS,(0.2)<0.75.

Unless they are designed to span horizontally, nonloadbearing masonry partitions must have
adequate top anchorage to avoid out-of-plane collapse. Dowels or angle clips must align with
cells containing vertical bars (see Section 2.7.6 and CSA A370-14 for anchorage details). Bond
beams at the tops of walls constructed under slabs or beams should be located in the second
course below the top support to allow access for the effective grouting of that bond beam. Cells
in the top course above the bond beam that contain vertical bars can be dry packed with grout
as they are laid with open-end units.

2.7.8.2 Masonry grout

Masonry grout, or “blockfill”’, must flow for long distances through relatively small cells to anchor
wall reinforcement. It is therefore placed at a much higher slump than regular concrete — in the
range of 200 to 250 mm. While this water content would be problematic for cast-in-place
concrete, in masonry the extra water necessary for placement is absorbed into the masonry
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units, which reduces the in-place water/cement ratio, thereby providing adequate strength in the
wall. Standard compressive strength tests using non-absorbent cylinders provide misleading
data, as the extra water is trapped within the cylinder. Testing has shown the actual grout
strength to be at least 50% higher than cylinder results. This situation is recognized in CSA
S304-14 by basing masonry strength requirements on grout strengths of only 12.5 MPa by
cylinder test. In some cases, a higher cement content grout (20 MPa) may be preferred for
pumping reasons.

The most commonly used type of grout is Course Grout, which has a maximum aggregate size
of 12 mm. Fine Grout uses coarse sand for aggregate and is usually only used in small core
units such as reinforced brick. Grout is supplied either by ready-mix truck or mixed on site, with
quality control data available from the supplier or field test cylinders respectively.

While grouting, care must be taken to completely fill the reinforced cores and to ensure that all
bars, bolts and anchors are fully embedded. Vibration is usually not practical, but bars can be
shaken to “puddle” the grout. Grout is often pumped in 2.4 m pours from bond beam to bond
beam. The maximum pour height for typical “high-lift grouting” in CSA A371 -14 is 4.5 m, but
this should only be considered for H-block or 250 and 300 mm units. For total grout pours of 3 m
or more, the grout must be placed in lifts of 2 m or less.

Sample base specification:

=  Grout to meet CSA A179-14 requirements

= Minimum compressive strength 12.5 MPa at 28 days by cylinder test under the property
specification

= Maximum aggregate size 12 mm diameter

= Grout slump 200 to 250 mm

2.7.8.3 Masonry mortar

Unlike reinforcing and grout, there are few issues in the specification, preparation and
installation of mortar for structural masonry. CSA A179-14 Mortar & Grout for Unit Masonry,
covers mortar types and mixing. Type S mortar is almost always used for structural masonry
because it provides the balance of mortar strength and bond that is required for good seismic
performance. Unlike most cement-based products, compressive strength is not the dominant
material criteria. Good bond is critical, and results from mortar properties such as workability,
adhesion, cohesion and water retention. Adequate bond binds the units together to provide
structural integrity, tensile and shear capacity, and moisture resistance. In a mortar mix,
Portland cement provides compressive strength and durability, while mortar cement, masonry
cement or lime provides the properties that lead to good bond.

Most mortar is mixed on-site, and can be checked against the material proportions specified in
CSA A179-14. Inspection of site-mixed mortar is generally not a significant concern for
designers, because the bricklayer and the specifier are both looking for workable, well-
proportioned mixes that provide installation efficiency for the mason, and good long-term
performance for the designer. There are also pre-manufactured dry and wet mortars. The
compressive strength required in CSA A179-14 for these products can be confirmed by plant or
site cube test data.

Mortar joints must be well filled and properly tooled for good performance. Concave tooled joints

are the best shape for both structural purposes and weather resistance. Mortar joints
accommodate minor dimensional variations in the masonry units, and provide coursing
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adjustment that may be necessary to meet required dimensions. Mortar joints also contribute to
the architectural quality of the masonry assembly through colour and modularity.

2.7.8.4 Unit sizes and layout
Concrete masonry units are made in various sizes and shapes to fit different construction
needs. Each size and shape is also available in various profiles and surface treatments.

Concrete unit sizes are usually referred to by their nominal dimensions. Thus, a unit known as
20 cm or 200x200x400 mm, will actually measure 190x190x390 mm to allow for 10 mm joints
(see Figure 2-58). Standard nominal widths are 100, 150, 200, 250 and 300 mm, with 200 mm
being the most common size for structural walls.

Working to a 200 mm module will minimize cutting, and maintain the alignment of vertical cells
for rebar, as illustrated in Figure 2-59. Where possible, piers, walls and openings should be

dimensioned in multiples of 200 mm (half units). Foundation dowels must also be laid out and
installed to match the module of vertically reinforced cells.

Webs
LN P
19

l
Face shells
ace shells flared for mortar bed

Shells tapered for mould removal

32 Minimum face shell

Figure 2-58. A typical 200 mm block unit (Hatzinikolas, Korany and Brzev, 2015, reproduced by

the authors’ permission).

=
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Good layout with
no cut units

Many cut units reduce
productivity, increase waste and
may interfere with vertical rebar

Figure 2-59. Examples of good and poor masonry layout (Reproduced by permission of the

Masonry Institute of BC).
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2.7.8.5 Other construction issues

In “high-lift grouting” (over 1.5 m), clean-out/inspection holes at the base of the reinforced cells
may facilitate the removal of excessive mortar droppings and, more importantly, can confirm
that grout has reached the bottom of the core. Clause 8.2.3.2.2 of CSA A371-14 allows the
common practice of waiving the requirement for clean-out/inspection holes by the designer,
when the masonry contractor has demonstrated acceptable performance, or where the walls are
not structurally critical. In some cases, the designer may require the initial walls to have clean-
outs, pending demonstrated performance, and then waive them for the remaining walls.

Vertical movement joints in RM walls are required to accommodate thermal and moisture

movements, and possible foundation settlement. They are typically specified at a maximum
spacing of 15 m.
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3 Design Examples

EXAMPLE 1: Seismic load calculation for a low-rise masonry building to NBC 2015

Consider a single-storey warehouse building located in Niagara Falls, Ontario. The building plan
dimensions are 64 m length by 27 m width, as shown on the figure below. The roof structure
consists of steel beams, open web steel joists, and a composite steel and concrete deck with 70
mm concrete topping. The roof is supported by 190 mm reinforced block masonry walls at the
perimeter and interior steel columns. The roof elevation is 6.6 m above the foundation. The soil
at the building site is classed as a Site Class D per NBC 2015.

Calculate the seismic base shear force for this building to NBC 2015 seismic requirements
(considering the masonry walls to be detailed as “conventional construction”). Next, determine
the seismic shear forces in the walls, including the effect of accidental torsional eccentricity.

Assume that the roof acts like a rigid diaphragm.
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SOLUTION:

1. Calculate the seismic weight /7 (NBC 2015 C1.4.1.8.2)
a) Roof loads:
- Snow load (Niagara Falls, ON) W =0.25%(1.8"0.8+0.4)= 0.46 kPa

N

(25% of the total snow load is used for the seismic weight)

- Roof self-weight (including beams, trusses, steel deck, roofing, insulation, and 65 mm concrete

topping) W, =3.30 kPa

Total roof seismic weight W...r = (0.46kPa+3.30kPa)(64.0m*27.0m)= 6497 kN
b) Wall weight:

Assume solid grouted walls w= 4.0 kN/m?

(this is a conservative assumption and could be changed later if it is determined that partially
grouted walls would be adequate)
The usual assumption is that the weight of all the walls above wall midheight is part of the
seismic weight (mass) that responds to the ground motion and contributes to the total base
shear.
Tributary wall surface area:

- North face elevation = 0.5*7*3.0m*6.6m + (64m-7*3m)*(6.6m-4.0m)= 181.1 m?

- South face elevation (same as north face elevation) =181.1 m?

- East face elevation =0.5*2*8.0m*6.6m + (27m-2*8m)*(6.6m-4.0m) = 81.4 m?

- West face elevation (same as east face elevation) = 81.4m?
Total tributary wall area Area =525.0 m?
Total wall seismic weight W =w*Area= 4.07525.0= 2100 kN

The total seismic weight is equal to the sum of roof weight and the wall weight, that is,
w=w.,,+W,,=6497+2100= 8597 kN ~ 8600 kN

roof’ w

2. Determine the seismic hazard for the site (see Section 1.4).
e Location: Niagara Falls, ON (see NBC 2015 Appendix C)
S,(0.2)=0.321
S,(0.5)=0.157
S,(1.0)=0.072
§,(2.0)=0.032
S,(5.0)=0.0076
PGAref = 0207
¢ Foundation factor — Site Class D and PGAs = 0.207 (see Tables 1-3 to 1-7)
F(0.2)=1.09
F(0.5)=1.30
F(1.0)=1.39
F(2.0)=1.44
F(5.0)=1.48
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e Site design spectrum S(T) (see Section 1.4)

For 7=0.2 sec: §(0.2)=F(0.2)S,(0.2)=1.09*0.321=0.35  |5(0.2)=0.35
orS(0.5) = F(0.5)+S,(0.5)=1.3*0.157=0.20 (larger value governs)

For T'=0.5sec: S§(0.5)=F(0.5)S,(0.5)=1.3*0.157=0.20 5(0.5)=0.20

For T=1.0sec §(1.0)=F(1.0)-S,(1.0)=1.39*0.072=0.10 5(1.0)=0.10

For T=2.0sec §(2.0)=F(2.0)S,(2.0)=1.44*0.032=0.046  [S(2.0)=0.05

For T=5.0sec §(5.0)=F(5.0)-S,(5.0)=1.48*0.0076=0.011 [5(5.0)=0.01

The site design spectrum S(T) is shown below.

S(T),
0.4 S(T)=0.35
03 T |
0.2+ |
|
0.1+
! T=0.21sec s
0.2 040506 08 1.0

“0 T_f{sec)

e Building period (7 ) calculation (see Section 1.6 and NBC 2015 CI.4.1.8.11(3).c) for wall
structures)

h,=6.6 m building height
T =0.05(h, )*=0.21 sec

Then interpolate between S(0.2) and S(0.5)to determine the design spectral acceleration:
S(1)=5(0.21)=0.35

3. Compute the seismic base shear (see Section 1.6)

The base shear is given by the expression (NBC 2015 Cl.4.1.8.11)
RdRo

where

1,=1.0 (building importance factor, equal to 1.0 for normal importance, 1.3 for high

importance, and 1.5 for post-disaster buildings)

M = 1.0 (higher mode factor, equal to 1.0 for 7' < 1.0 sec, that is, most low-rise masonry

buildings)

Building SFRS description: masonry structure — conventional construction (see Table 1-13 or

NBC 2015 Table 4.1.8.9), hence R,=15and R =1.5

The design base shear I is given by:
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S(T)M I, = 035%1.0*1.0
R,R, 1.5*1.5
but should not be less than

W =0.16W

_S(40)M, 1w _ 0.023*1.0*1.0

min W = 0001W
R,R 1.5*1.5
Note that S(4.0) value (0.023) was obtained by interpolation from the site design spectrum
chartS(T).

The design base shear J need not be taken more than greater of the following two values:

25(0.2 *
V. o= (0-2) (1 :(2 035)( 1.0 jW:O.lOW, provided R, >1.5.
3 R,R, 3 1.5*%1.5

And
Vi =5(0.5) il =o.20( L0 jW =0.09%
R,R, 1.5*%1.5
The upper limit on the design seismic base shear governs and therefore

V'=0.10W =0.10*8600 =860 kN

Note that the upper limit on the base shear is often going to govern for low-rise masonry
structures which have low fundamental periods. The lower bound value would generally only
apply to very tall buildings.

4. Determine if the equivalent static procedure can be used (see Section 1.6 and NBC
2015 Cl. 4.1.8.7).

According to the NBC 2015, the dynamic method is the default method of determining member
forces and deflections, but the equivalent static method can be used if the structure meets any
of the following criteria:

(a) is located in a region of low seismic activity where the seismic hazard index
1.F,S,(0.2)<0.35.

In this case, the seismic hazard indexis [.F,S, (0.2)=1 .0*1.09*0.321=0.35 since

F =F(0.2)=1.09.

(b) is a reqular structure less than 60 m in height with period T < 2 seconds in either
direction.

This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above).
A structure is considered to be regular if it has none of the irregularities discussed in Table 1-16
of Section 1.12.1. A single storey structure by definition will not have any irregularities of Type 1
to 6. It does not have a Type 8 irregularity (non-orthogonal system) but could have a Type 7
irregularity (torsional sensitivity), and so this criterion may or may not be satisfied, depending on
the torsional sensitivity.

(c) has any type of irreqularity, other than Type 7 and Type 9, and is less than 20 m in
height with period T < 0.5 seconds in either direction.

This structure satisfies the height and period criteria.

Since the criterion ¢) has been satisfied, the design can proceed by using the equivalent static

analysis procedure. It will be shown later that, even when using a conservative assumption, the
torsional sensitivity parameter B=1.2<1.7. Thus criterion b) would also be satisfied. For
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structures with the lateral resisting 0.5 Vl lﬂ-S ¥

elements distributed around the
perimeter walls the B value will almost

always be less than 1.7. Vvl

5. Distribute the base shear force to +E:'*T=E}f
the individual walls. V

In this example, the structure is w

symmetric in each direction and so the

centre of mass, C,,, and the centre of TV

resistance, C,, coincide at the '

geometric centre of the structure. One might argue that in this simple system with walls at only
each side of the building, the system is statically determinate in each direction and the total
shear on each side can be determined using statics. However, how much shear goes to each of
the walls on a side depends on the relative stiffness of the walls, although once yielding occurs
the force on each wall depends on the yield strength of the wall.

a) Seismic forces in the N-S direction - no torsional effects (seismic force is assumed to
act through the centre of resistance)

Since it is assumed that the roof diaphragm is rigid, the forces are distributed to the walls in
proportion to wall stiffness. All walls in the N-S direction have the same geometry (height,
length, thickness) and mechanical properties and it can be concluded that these walls have the
same stiffness.

As a result, equal shear force will be developed at each side. The force per side is equal to (see
the figure):

0.5V =0.5*860 =430 kN

So, shear force in each of the two walls in the N-S direction is equal to:

v, =—0'5V :ﬂ: 215 kN
2 2

b) Seismic forces in the N-S direction taking into account the effect of accidental torsion
The building is symmetrical in plan and so the centre of mass C,, coincides with the centre of
resistance C, (see Section 1.11 for more details on torsional effects). Therefore, there are no
actual torsional effects in this building. However, NBC 2015 Cl.4.1.8.11.(9) requires that
torsional moments (torques) due to accidental eccentricities must be taken into account in the
design. The forces due to accidental torsion can be determined by applying the seismic force at
a point offset from the C, by an accidental eccentricity e, = 0.1D,_, thereby causing the
torsional moments equal to

T.=+V(0.1D, ) = 860 * (0.1* 64.0) = £5504 kNm
Note that D, = 64.0 m (equal to the total length of the structure in the East/West direction).

As a result of the accidental torsion, seismic shear forces resisted by each side of the building
are different. These forces can be calculated by taking the sum of moments around the C,
(torsional moment created by force must be equal to the sum of moments created by the side
forces). The resulting end forces are equal to 0.6/ and 0.4}, thereby indicating an increase in
the end forces by 0.1V due to accidental torsion.
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It should be noted that, in this example, accidental torsion would cause forces in the E-W walls
as well because of the rigid diaphragm. But a conservative approach is to ignore the
contribution of E-W wallls and take all the torsional forces on the N-S walls.

The shear force in each N-S wall from accidental torsion is equal to:
T/D,. 5504/64
VT = 2 =

=43 kN

Thus, the maximum shear force in each of the two walls is the sum of the lateral component
plus the torsional force,

V, =V, +V, =215+43 =258 kN fJ.f:iVl lﬂ‘ﬁv

Note that the same result could be obtained by
applying the lateral load through a point equal to Eﬂ:l
the accidental eccentricity to one side of the Cy Cg
centre of rigidity and then solving for the wall + 4
forces using statics (see the figure). This would wl T

V

show that
: Ea:ﬁij Dyx

Vy :K*0.6 :@*0.6 =258 kN

2 2
Therefore, even though this building is e Dy =64m =]
symmetrical in plan, the accidental torsion causes
increased seismic shear force in each wall of 43
kN, corresponding to a 20% increase compared to the design without torsion. However, this is
based on the assumption that the N-S walls resist all the torsion. Walls in the E-W direction
would also resist the torsional forces, and in this example the contribution to total torsional
stiffness would be roughly the same for the E-W and N-S walls. Thus, one could reduce the
torsional forces on the N-S walls by roughly one half.

c¢) Seismic forces in the E-W walls
Seismic forces in the E-W walls can be determined in a similar manner. Since all walls in the E-
W direction have the same geometry (height, length, thickness) and mechanical properties and
consequently the same stiffness, the shear force will be equal at the East and West side. The
force per side is equal to
0.5V =0.5*860 =430 kN
e Seismic forces in the E-W walls — torsional effects ignored
Shear force in each E-W wall is equal to (there are seven walls per side):

0.5V 430

v, —— =61 kN

7 7
e Seismic forces in the E-W walls — torsional effects considered:
Vi :%*0.6=¥*0.6: 74 kN

6. Check whether the structure is torsionally sensitive (see Section 1.11.2).

NBC 2015 CI. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be determined
by comparing the maximum horizontal displacement anywhere on a storey, to the average
displacement of that storey. Torsional sensitivity is determined in a similar manner as the effect
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of accidental torsion, that is, by applying a set of a set of lateral forces at a distance of +0.1D,_
from the centre of mass C,, . In case of a rigid diaphragm, displacements are proportional to the
forces developed in the walls. Therefore, B can be determined by comparing the forces at the
sides of the building with/without the effect of accidental torsion.

The maximum displacement would be proportional to 0.6V, while the displacement on the other
side would be proportional to 0.4V. Thus, the average displacement is proportional to 0.5V.
Thus

B 0.6V

0.5V
Since B < 1.7, this building is not torsionally sensitive and the equivalent static analysis would
have also been allowed under criterion b) as discussed in step 4 above.

1.2

7. Discussion

It was assumed at the beginning of this example that the roof structure can be modeled like a
rigid diaphragm. If this roof was modeled like a flexible diaphragm, the shear forces in each N-S
wall would be equal to 0.5V. From a reliability point of view, it does not seem quite right that the
forces are smaller for a flexible diaphragm than a rigid one - it should be the other way around.
On the other hand, the flexible diaphragm may have a longer period and the forces would be
smaller (see Example 3 for a detailed discussion on rigid and flexible diaphragm models).
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EXAMPLE 2: Seismic load calculation for a medium-rise masonry building to NBC 2015

A typical floor plan and vertical elevation are shown below for a four-storey mixed use
(commercial/residential) building located at Abbotsford, BC. The ground floor is commercial with
a reinforced concrete slab separating it from the residential floors, which have lighter floor
system consisting of steel joists supporting a composite steel and concrete deck. The front of
the building is mostly glazing, which has no structural application.

First, determine the seismic force for this building according to the NBC 2015 equivalent static
force procedure, and a vertical force distribution in the E-W direction. Find the base shear and
overturning moment in the E-W walls. Assume that the floors act as rigid diaphragms and that
the strong N-S walls can resist the torsion.

Next, consider the torsional effects in all walls and find the forces in the E-W walls. Compare the
seismic forces obtained with and without torsional effects.

For the purpose of weight calculations, use 200 mm blocks for N-S walls and 300 mm blocks for
E-W walls. All walls are solid grouted (this is a conservative assumption appropriate for a
preliminary design) and the compressive strength £, is 10.0 MPa. Grade 400 steel has been
used for the reinforcement. The building is of normal importance and is supported on Class C
soil. Consider Conventional Construction reinforced masonry shear walls.

Movement joints are not to be considered in this example. Note that movement joints in the N-S
walls would have caused slight changes in the stiffness values of these walls.

Specified loads (note that roof and floor loads include a 1 kPa allowance for partition walls and
glazing):

4" floor (roof level) = 3 kPa Note: 1 kPa = 1 kN/m?

2" and 3" floor = 4 kPa

1%t floor (concrete floor) = 6 kPa

25% snow load = 0.4 kPa

glazing

S M 3 *
N -
"Ié e LU ) 10m - ; E 3

) RC columns &
8 2
B / H M'.,.
o A 7

Yy Y; g
=
o i i =
3@667=20m 7 9lazing i 20m K
Plan Elevation
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SOLUTION:

1. Design assumptions
Rigid diaphragm
All walls are solid grouted

2. Calculate the seismic weight 7/ (see NBC 2015 Cl.4.1.8.2)

Wall weight:
N-S walls - 200 mm thick w=4.18 kPa
E-W walls — 300 mm thick w=6.38 kPa

Note that, for the purpose of seismic weight calculations, the length of a N-S wall is 20 m, while
the length of an E-W wall is 10.0 m.

Seismic weight 7, :

W, = [% + %}(4.18/&1 %2 %20m + 6.38kPa *2%10.0m) + (6.0kPa )\ 20m * 20m) = 3579kN

Seismic weight W, :
W, = (% + %)(4. 18kPa*2*20m + 6.38kPa * 2*10.0m)+ (4.0kPa )(20m * 20m) = 2484kN

Seismic weight W, (same as W,) :
W, =2484kN
Seismic weight 7, :

W, = (%J@.lskpa *2%20m + 6.38kPa * 2%10.0m) + (3.0kPa + 0.4kPa ) 20m * 20m) = 1802kN

Note that the seismic weight for each floor level is the sum of the wall weights and the floor
weight. 25% snow load was included in the roof weight calculation. One-half of the wall height
(below and above a certain floor level) was considered in the wall area calculations.

The total seismic weight is equal to

W=W +W,+W,+W, =3579 + 2484 + 2484 + 1802 = 10350kN

3. Calculate the seismic base shear force (see Section 1.6).

a) Find seismic design parameters used to determine seismic base shear.
e Location: Abbotsford, BC (see NBC 2015 Appendix C)
$,(0.2)=0.701

S_(0.5)= 0.597
S_(1.0)= 0.350
S (2.0)= 0.215
S (5.0)= 0.071

PGAref = 0306
e Foundation factor — Site Class C and PGA = 0.306 (see Tables 1-3 to 1-7)
F(0.2)=F(0.5)=F(1.0)=F(2.0)= F(5.00=1.0

o Site design spectrum S(T') (see Section 1.4)
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For 7'=0.2sec: §(0.2)=F(0.2)+S,(0.2)=1.0°0.701=0.70  |5(0.2)=0.70

orS(0.5) = F(0.5)+S,(0.5)=1.00.597=0.60 (larger value governs)
For T'=0.5sec: S§(0.5)=F(0.5)S,(0.5)=1.0*0.597=0.60 5(0.5)=0.60
For T=1.0sec S§(1.0)=F(1.0)-S, (1.0)=1.0*0.35=0.35 5(1.0)=0.35
For T=2.0sec §(2.0)=F(2.0)-5,(2.0)=1.0*0.215=0.22  |5(2.0)=0.22
For T=5.0sec §(5.0)=F(5.0)-S,(5.0)=1.0*0.071=0.07  |§(5.0)=0.07

¢ Building period (T') calculation (NBC 2015 Cl.4.1.8.11.3(c)) — wall structures
h,=14.0 m building height

T =0.05(h, )'*=0.36 sec

Building period T = 0.36 sec, so interpolate between $(0.2) and S(0.5), hence [S(T')= 0.65

S(T)J |

081
0.70

0.7 S(1)=0.65
- | 0.60
0.5+ :
047 | 0.35
0.3 |

| 0.22
0.2+ |
0.1+ |

| T=0.36sec

02 03 04 0506 08 10 0 .
T (sec)

e /,=1.0 (normal importance building)
e M =1.0 (higher mode factor, equal to 1.0 for 7" <1.0 sec)

e Building SFRS description: masonry structure — Conventional Construction shear walls can
be used for building height of 14 m (see Table 1-13 and NBC 2015 Table 4.1.8.9).

In this case 1,F,S,(0.2)=1.01.0*0.70=0.70, hence 0.35 < I,F,S,(0.2)<0.75 thus the

maximum building height is 30 m. Hence
R,=15and R =15

b) Compute the design base shear (NBC 2015 Cl.4.1.8.11).
The design base shear J is determined according to the following equation:
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S(T)M I, = 0.70%1.0*1.0
R,R, 1.5*1.5
but should not be less than

wW=031W

_S(40)M, 1. W _0.12%1.0*1.0

min W = OOSW
R,R, 1.5*1.5
Note that S(4.0) value (0.15) was obtained by interpolation from the site design spectrum
chartS(T).

The design base shear J need not be taken more than greater of the following two values:

25(0.2 *
V. o= (0-2) (1 :(2 0'7())( 1.0 jW:O.ZlW, provided R, >1.5.
3 R,R, 3 1.5*%1.5

and
I/vmax = S(OS)(

W
R,R

[

=0.60 1.0 W =0.27W - this value governs
1.5*%1.5

Therefore, the design seismic base shear is equal to
V=027 =0.27*10350 = 2900 kN

4. Determine whether the equivalent static procedure can be used (see Section 1.5 and
NBC 2015 ClI. 4.1.8.7).

According to the NBC 2015, the dynamic method is the default method, but the equivalent static
method can be used if the structure meets any of the following criteria:

(a) is located in a region of low seismic activity where [ .F S, (0.2) <0.35,

In this case, the seismic hazard index is 1,.F,S,(0.2)=1.0*1.0*0.70=0.70 > 0.35 and so this
criterion is not satisfied. Note that F/ = F(0.2) =1.0.

(b) is a regular structure less than 60 m in height with period T < 2 seconds in either
direction,

This building is clearly less than 60 m in height and the period T < 2 sec (as discussed above).
To confirm that this structure is regular, the designer needs to review the irregularities discussed
in Section 1.12.1. It can be concluded that this building does not have any of the irregularity
types identified by NBC 2015 and so this criterion is satisfied.

(c) has any type of irreqularity (other than Type 7 or Type 9 that requires the dynamic
method if B >1.7), but is less than 20 m in height with period T < 0.5 seconds in either
direction

This is an irregular structure, but it is less than 20 m in height and the period is less than 0.5
sec. The torsional sensitivity B should be checked to confirm that B < 1.7 (see Section 1.11.2).

Since the criterion b) has been satisfied, the design can proceed by using the equivalent static
analysis procedure.

5. Seismic force distribution over the building height (see Section 1.9).

According to NBC 2015 CI. 4.1.8.11.(7), the total lateral seismic force, V", is to be distributed
over the building height in accordance with the following formula (see Figure 1-5):
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where

F_— seismic force acting at level x

F, —a portion of the base shear to be applied in addition to force F, at the top of the building.

In this case, F,= 0 since the fundamental period is less than 0.7 sec.
Interstorey shear force at level x can be calculated as follows:

V.=F+YF,

Bending moment at level x can be calculated as follows:

Mx :iF'z(hz _hx)

i=x

These calculations are presented in Table 1.

Table 1. Distribution of Seismic Forces over the Wall Height

Level | /, . W, | L V. M,
(m) (kN) (kN) J(KN) | (kNm)
4 140 1802 25228 |810 |810 |0
3 [11.0 |2484 [27324 |877 1687 | 2430
2 |80 2484 119872 [638 | 2325 |7492
1_]50 3579 | 17895 [575 |2900 | 14468
D 10349 (90319 | 2900 28968

Distribution of seismic forces over the building height and the corresponding shear and moment
diagrams are shown on the figure below.
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W,¢ 5+ ——Fs=s10
=
e
Ww,;¢ + ———| F=s877 810 2430
0
W, + ——|F-638 1687 7492
w,e + —|F=ss 2325 14468
=
i
¥ - 2900 28968
7 V; (kN) M (kNm)

It is important to confirm that the sum of seismic forces /. over the building height is equal to
the base shear

V, =V = 2900 kN

The bending moment at the base of the building, also called the base bending moment, is equal
to

M, = 28968 ~ 29000 kNm.

6. Find the seismic forces in the E-W walls — torsional effects ignored.

Due to asymmetric layout of the E-W walls, the centre of Ve =V /-
mass C,, in the building under consideration does not x=V/2
coincide with the centre of resistance C,, hence there are X

torsional effects in all walls. However, since the N-S walls are
significantly more rigid compared to the E-W walls, it can be

assumed that the N-S walls will resist the torsional effects X e—
(see step 8 for a detailed discussion). As a consequence, it 4 . V/2

can be assumed that the base shear force in the E-W
direction is equally divided between the two E-W walls (see
the figure), that is,

— 2 =2 1450 kN

X0

Similarly, the base bending moment in each wall is equal to

M, = % = @ =14500 kNm
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7. Find the seismic forces in the E-W walls — torsional effects considered (see Section

1.11).
To determine the wall forces from the
torsional forces a 3-D analysis should
be made. Even though the walls are
considered uniform over the entire
height, the contribution of shear
deformation relative to bending
deformation is different over the height.
An approximate method that does not
require a 3-D analysis is to consider the
structure as an equivalent single-storey
structure. The entire shear is applied at
the effective height, #,, defined as the
height at which the shear force V',
must be applied to produce the base
moment M ., that is,

M
p =t 22000446

TV, 2900

T f—
_I,/\_"‘ . _L;.._-'T-‘_—:’;r*zue
h fe—
he f— he
¥y ¥ 1 vy |

This model, although not strictly correct, will be used to determine the elastic distribution of the
torsional forces as well as the displacements. The top displacement of the wall is assumed to be
1.5 times the displacement at the 7/, height (see step 8 for displacement calculations).

Torsional moment (torque) is a product of the seismic force and the eccentricity between the
centre of resistance (C, ) and the centre of mass ( C,, ), which will be calculated in the following

tables.

First, the centre of mass will be determined, as shown on the figure. The calculations are

summarized in Table 2.

Table 2. Calculation of the Centre of Mass (C,,)

* *
Wall w; X; Vi w; T X, W, m Vi
(kN) (m) (m)
Xl 733.7 10.00 20.00 7337 14674
X2 733.7 10.00 13.33 7337 9780
Yl 961.4 0 10.00 0 9614
Yz 961.4 20.00 10.00 19228 9614
Floors 6960 10.00 10.00 69600 69600
Z 10350 103502 113282

The C,, coordinates can be determined as follows:

ZWZ. *X,
103502

Xey =— = =10.00 m
3w, 10350
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Next, the centre of resistance (C, ) will be determined, and the calculations are presented in
Table 3, although because there are only two equal walls in each direction the C, will lie
between the walls.

Table 3. Calculation of the Centre of Resistance (Cj)

Wall (tm) Wi,* | K/(E,- )= | K,x103 | K, x10® | x, |y | K, -x | K,
(kN/m) (kN/m) (m) | (m) f*10° *10°
| 0.29 1.0 0.143 352.5 20. 7050.0
00
Xz 0.29 1.0 0.143 352.5 13. 4699.0
33
Yl 0.19 0.5 0.5 807.5 0 0
Y. 0.19 0.5 0.5 807.5 20. 16150.0
2 00
Z 705.0 1615.0 16150.0 | 11750.0

Notes:
*- h=h,=10.0 m effective wall height

** - see Table D-3

Note that the elastic uncracked wall
stiffnesses K for individual walls have been
determined from Table D-3, by entering
appropriate height-to-length ratios. In this
design, all walls and piers have been
modelled as cantilevers (fixed at the base
and free at the top) — see Section C.3 for
more details regarding wall stiffness
calculations. The modulus of elasticity for
masonry is E, =8.5*10° kPa
(corresponding to £, of 10 MPa).

yme:jﬁ.ﬁ?m

The C, coordinates can be determined as
follows (see the figure):
ZK X 3
o o ! _16150*10°
CR — - 3
> K,  1615*10

i

ZKxi*y[ 3
K _1750%10°
Y TTSR T 055100

Next, the eccentricity needs to be determined. Since we are looking for the forces in the E-W
walls, we need to determine the actual eccentricity in the y direction (e, ), that is,

e, =Yg — Yo =16.67-10.94=5.73 m

In addition, the accidental eccentricity needs to be considered, that is,
e, =10.1D,, =£0.1*20 =42.0 m

The total maximum eccentricity in the y-direction is equal to
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e, =e,+e, =573+2.0=7.73 m

or
e,,=e,—¢,=573-20=373m
Note that the latter value does not govern and will not be considered in further calculations.

Torsional moment is determined as a product of the shear force and the eccentricity, that is,
T=V "‘ety1 =2900*7.73 =22417 kNm
Torsional effects are illustrated on the figure below.

Seismic force in each wall has two components: translational (no torsional effects) and torsional,
that is,

V=V, +V,

where

K,
V., =V *=—— translational component

2K
and

v - T*c
J
J=YK, ¢, +Y K, -c, =169%10° torsional stiffness (see Table 4)

¢,; - distance of the wall centroid from the centre of resistance (C, ) (see the figure below)

xi? g

L* K, torsional component

c

Translational and torsional force components for the individual walls are shown below.
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Translational Force Torsional Force
Components Components

Calculation of translational and torsional forces is presented in Table 4.

Table 4. Seismic Shear Forces in the Walls due to Seismic Load in the E-W Direction

Kx *10° Ky "10° ci Z Ki ) ci2 108 Kx on th Vtota[
Wall | (kN/m) (kN/m) (m) Z K, | &N) (kN) (kN)
X, 352.5 -3.33 3.84 0.5 1450 -154 1296
X 352.5 3.33 3.84 0.5 1450 154 1604
2
Y, 807.5 -10.00 80.80 -1070 -1070
Y, 807.5 10.00 80.80 1070 1070
705.0 1615.0 169.0

™

It can be concluded from the above table that the maximum force in the E-W direction is equal
to 1604 kN. This is an increase of only 11% as compared to the total force of 1450 kN obtained
ignoring torsional effects.

It can be noted that the contribution of E-W walls to the overall torsional moment 7' of 22417
kNm is not significant (see Table 4).

T, ,, =154kN *3.3m +154kN *3.3m =1017kNm

because
y - /T =1017/22417 =0.045 = 5%

this shows that the E-W walls contribute only 5% to the overall torsional moment.

The contribution of N-S walls to the overall torsional moment is as follows:
T, ¢ =1070kN *10m +1070kN *10m = 21400kNm

and
T, /T =21400/22417 = 95%

and
T=T,, +T, =1017+21400 = 22417kNm (this is also a check for the torsional forces)
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Therefore, the assumption that the torsional effects are resisted by N-S walls only is reasonable,
since these walls contribute approximately 95% to the overall torsional resistance.

8. Calculate the displacements at the roof level (consider torsional effects).

Approximate deflections in the E-W walls can be determined according to the procedure
outlined below. It should be noted that the force distribution calculations have been performed
using elastic wall stiffnesses obtained from Table D-3. It is expected that the walls are going to
crack during earthquake ground shaking; this will cause a drop in the wall stiffnesses. For the
purpose of deflection calculations, we are going to use a reduction in the elastic stiffness ( K')
value to account for the effect of cracking.

a) The reduced stiffness to account for the effect of cracking (see Section 2.5.4)
The reduced stiffness for walls X, and X, will be determined according to Section 2.5.4
(S304-14 CI.16.3.3), that is,

1,=1,003+P/(4,7,)

Here,
P =(2%6.67*6.67)(3.0+2*4.0+6.0) =1513 kN (axial force due to dead load in wall X, )

4, = (290 *10%)*10.0 = 290 *10* mm? (gross cross-sectional area for 290 mm block wall, solid

grouted, length 10.0 m; see Table D-1 for A4, values for the unit wall length)
f.1=10.0 MPa

Since

03+P/(4,f",)=03+1513*10°/(10.0%290*10*) = 0.35

It appears that

£=0.35
1

4
thus
1
K, = (I—e)K(, =0.35K,
4
where K, is elastic uncracked stiffness. In this case, stiffness is taken as proportional to the

ratio of moment of inertia values because the wall is expected to behave in flexure-dominant
manner (otherwise a ratio of cross-sectional areas could be used — see Example 3).

b) The translational displacement in the walls X, and X, can be calculated as follows

top
AXZO = VXZU = 1450kN3 =11.8mm ﬂx.?
0.35K,, 0.35*352.5*10°kN/m

According to NBC 2015 CI. 4.1.8.13, these deflections need to :
be multiplied by the R,R, /I, ratio (see Section 1.13). In this Vi ", .-'_"‘nxz.
case, /,=1.0, and so

A s =(11.8mm)R,R, =11.8%1.5%1.5 = 26.6mm
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Since the previous analysis assumed that the seismic force
acts at the effective height #,, the displacement at the top
of the wall will be larger (see the figure). The top
displacement can be calculated by deriving the
displacement value at the tip of the cantilever; alternatively,
an approximate factor of 1.5 can be used as follows:

Ay =1.5%A , =1.5%26.6mm = 40.0mm

Since this is a rigid diaphragm, it can be assumed that the
translational displacements are equal at a certain floor
level — let us use point A at the South-East corner as a
reference (see the figure).

liis

c) The torsional displacements can be calculated as follows:
Torsional rotation of the building & can be determined as
follows, considering the reduced torsional stiffness to account
for cracking (same as discussed in step a) above):

T 22417kNi
T 2281TKNm 3 29410 rad

J 0.35*%169*10

where (see the step 7 calculations)

T =22417 KNm  torsional moment

J =169*10° elastic torsional stiffness

The maximum torsional displacement at the South-East corner

in the X direction (see point A on the figure):

A =0*Y, =379 *107**16.67m = 6.3mm

Similarly, as above, these displacements need to be multiplied
by R,R,/I, and also by 1.5 to determine the displacement at
the top of the roof, and so

A =1.5%63%R R, ~22mm

d) Finally, the total maximum displacement at the roof level (at point A) is equal to:
A=A AT =40+22=62mm

9. Check whether the building is torsionally sensitive.

NBC 2015 CI. 4.1.8.11(10) requires that the torsional sensitivity B of the structure be
determined by comparing the maximum horizontal displacement anywhere on a storey to the
average displacement of that storey (see Section 1.11.2). This should be done for every storey,
but in this case will only be done for the one storey as the remaining storeys will have similar B
values because of the vertical uniformity of the walls. Torsional sensitivity is determined in a
similar manner like the effect of accidental torsion, that is, by applying a set of lateral forces at a
distance of £0.1D,_ from the centre of mass C,, . Since the purpose of this evaluation is to
compare deflections at certain locations relative to one another, it is not critical to use cracked
wall stiffnesses.

In this case, the total maximum displacement at point A was determined in step 8 above, that is,
A =62mm

We need to determine the displacement at other corner (point B), that is, the minimum
displacement. This can be done as follows:
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Translational component:

AP =A " =40mm

Torsional component:

A, =0%c,, =3.79*10" *3.3m ~ 1.3mm

These displacements need to be multiplied by R,R, /I,

and also by 1.5 to determine the displacement at the top
of the roof, and so

ABt =13*1.5*R,R ~5mm

Since the direction of torsional displacements is opposite
from the translational displacements, it follows that

ABmm = ABU —AB, =40-5=35mm

The average displacement at the roof level in the E-W

direction (see the figure showing the displacement
components):

AA B .
e — max +A min _ 62+35 — 49mm
2 2 .
AA
:h:@:1_27 ey
A 49.0

Since B <1.7, this building is not considered to be torsionally sensitive. In general buildings with
the main force resisting elements located around the exterior of the building will not be
torsionally sensitive.

10. Discussion
A couple of important issues related to this design example will be discussed in this section.

a) Why should the N-S walls be considered to resist entire torsional effects?
The distribution of forces to the various elements in the structure is generally based on the
relative elastic stiffnesses of the elements, unless the diaphragms are considered to be flexible
and then the forces are distributed on the basis of contributory masses. The present example
structure with four floors of concrete construction can be considered as having rigid diaphragms,
and an elastic analysis was performed to determine the wall forces due to the torsional effects.
Because the N-S walls are so much longer and stiffer than the E-W walls, and more widely
separated, it is expected that they will resist most of the torque from the eccentricity. However,
since we are designing the structures to respond inelastically, the distribution of forces from an
elastic analysis should always be questioned. An argument is presented below to show that if
the forces in the E-W wallls are designed to be equal, they will not contribute to the torsional
resistance.

Vv
The elastic torsional analysis for the
forces in the E-W direction result in
additional forces of 154 kN in the E-W
walls and £1070 kN in the N-S walls
(see Table 4). If all the torque is
resisted by the N-S walls, the force in
these walls would be £1120 kN (an
increase of only 50 kN).
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For the earthquake load in the E-W direction the E-W walls must resist the total base shear in
this direction and so they will have reached their yield strength and progressed along the flat
portion of the shear/displacement curve as shown in the figure (assuming they have equal
strength). The torsional load will have caused a small rotation of the diaphragms and so wall

X, will have a slightly larger displacement than wall X, , as shown on the figure. Had the walls
remained elastic, the shear in wall X', would then be greater than wall X, and this would
contribute to the torsional resistance. However, in the nonlinear case, they both have the same
shear resistance and so do not contribute to the torsional resistance. Thus, in this example, all
the torsion should be resisted by the longer N-S walls. The N-S walls are designed to resist the
loads in the N-S direction but also to provide the torsional resistance from the loads in the E-W
direction. However, it is highly unlikely that the maximum forces in the N-S walls from the two
directions would occur at the same time, and practice has been to consider only 30% of the
loads in one direction when combining with the loads in the other direction. Thus, the forces in
the N-S walls at the time of the maximum torsional forces from the N-S direction could reach the
yield level on one side, but the torsional displacement on the other side would be in the opposite
direction, so the wall force would be much reduced in the other direction. The two N-S forces
then provide a torque to resist the torsional motion. Although this resisting torque may not be as
large as the elastic analysis would predict, the result would not be failure, but only slightly larger
torsional displacements.

b) Application of the “100%+30%” rule

In the calculation of total wall seismic forces including the torsional effects (see step 7 above),
the effect of seismic loads in E-W direction only was taken into consideration when calculating
the forces in E-W walls. However, it is a good practice to consider the “100+30%” rule that
requires the forces in any element that arise from 100% of the loads in one direction be
combined with 30% of the loads in the orthogonal direction (for more details refer to NBC
4.1.8.8.(1)c and the commentary portion in Section 1.11.3).

Let us determine the forces in one of the E-W walls, e.g. wall X, , by applying the “100+30%”
rule. If only 100% of the force in the E-W direction is considered, the total force in the wall is
equal to (see Table 4):

Vi ™ =Visy + Vo = 1450 +154 = 1604kN

If the seismic load is applied in the N-S direction, the torsional moment would be determined
based on the accidental eccentricity e, (since the building is symmetrical in that direction), and
so the torsional force in the wall X', can be prorated by the ratio of torsional eccentricities in the
E-W and N-S directions as follows,

y NS:VXZI*G_a:154*72.0m

o =39.8 ~ 40kN

g 73m

The total seismic force in the wall X, due to 100% of the load in E-W direction and 30% of the
load in the N-S direction can be determined as

Vi =V ' 403V, =1604+0.3%40 = 1616kN

It can be concluded that the difference between the force of 1616 kN (when the “100+30%” rule
is applied) and the force of 1604 kN (when the rule is ignored) is insignificant.

However, it can be shown that the “100+30%” rule would significantly influence the forces in the
N-S walls. When the seismic force acts in the E-W direction, the force in the N-S wall (e.g. wall
Y, ) due to torsional effects is equal to (see Table 4)

v,,"" =1070kN
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When the seismic force acts in the N-S direction, the total force in the wall ¥, (including the
effect of accidental torsion) can be determined as (see Example 1 for a detailed discussion on
accidental torsion)

V. "% 20.6%V =0.6%2900 = 1740kN

Y1

So, if we apply the “100+30%” rule to 100% of the force in the N-S direction and 30% of the
force in the E-W direction the resulting total force is equal to

Vy =V,," 7 +03V,5" =1740+0.3%1070 = 206 1kN
In this case, it can be concluded that the difference between the force of 2061 kN (when the

“100+30%” rule is applied) and the force of 1740 kN (when the rule is ignored) is significant
(around 18%). This is illustrated on the figure below.

For those cases where there is a large eccentricity in one direction and the torsional forces are
mainly resisted by elements in the other direction, the contribution from the “100+30%” rule can
be significant.

AR

W

0.3V},

20% sefsmic force 100%; seismic force
Sfar E-W direction for N-5 direction
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EXAMPLE 3: Seismic load distribution in a masonry building considering both rigid and
flexible diaphragm alternatives

Consider a single-storey commercial building located in Nanaimo, BC on a Class C site. The
building plan and relevant elevations are shown on the figure below. The building has an open
north-west fagade consisting mostly of glazing. The roof elevation is at 4.8 m above the
foundation. The roof structure is supported by 240 mm reinforced block masonry walls and steel
columns on the north-west side. Masonry properties should be determined based on 20 MPa
block strength and Type S mortar (use f, of 10.0 MPa). Grade 400 steel has been used for the
reinforcement.

Masonry walls should be treated as “conventional construction” according to NBC 2015 and
CSA S304-14. A preliminary seismic design has shown that the total seismic base shear force
for the building is equal to V' =700 kN. This force was determined based on the total seismic
weight I of 2340 kN and the seismic coefficient equal to 0.3, thatis, V' = 0.3 .

This example will determine the seismic forces in the N-S walls (Y, to Y;) due to seismic force
acting in the N-S direction for the following two cases:

a) Rigid roof diaphragm (consider torsional effects), and

b) Flexible roof diaphragm.

Finally, the wall forces obtained in parts a) and b) will be compared and the differences will be
discussed.

Note that both flexible and rigid diaphragms are considered to have the same weight, although
this would be unlikely in a real design application. Also, the columns located on the north-west
side are neglected in the seismic design calculations.

Specified loads:

roof = 3.5 kPa

25% snow load = 0.6 kPa

wall weight = 5.38 kPa (240 mm blocks solid grouted; this is a conservative assumption)

E - | s
o = IaZEI "
- ] q
+ E + =
' b5
> Yif = s -
X; I

C62m _EEm_ a2m _@28m 52m _@28m 3m
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SOLUTION:

a) Rigid diaphragm

Torsional moment (torque) is a product of the seismic force and the eccentricity between the
centre of resistance (C;, ) and the centre of mass (C,, ). The coordinates of the centre of mass
will be determined taking into account the influence of wall masses, the upper half of which are
supported laterally by the roof. The calculations are summarized in Table 1 below. Note that the
centroid of the roof area is determined by dividing the roof plan into two rectangular sections.

Table 1. Calculation of the Centre of Mass (C,,)

Wall W, X, Yo | WX WY,
(kN) (m) (m)

x1__ | 387 1500 [0.00 [5810 |0

x2__|116 2550 | 18.00 2963 | 2092

Y1 | 232 21.00 |9.00 |4880 [2092

Y2 |52 30.00 | 2.00 1548 [ 103

Y3 | 116 30.00  |1350 |3486 | 1569
Roof 1_| 1107 15.00 [ 4.50 16605 | 4982
Roof 2 | 332 2550|1350 | 8466 | 4482

2343 43759 | 15319
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The C,, coordinates have been determined from the table as follows (see the figure below):

Xew =

W, *Y,
_Z‘ | 15324.38
Yo T TSy T 234386

Next, the coordinates of the
centre of resistance (C, ) will
be determined. Wall X, has
several openings and the
overall wall stiffness is
determined using the method
explained in Section C.3.3 by
considering the deflections of
the following components for a
unit load (see the figure
below):

e solid wall with 4.8 m height
and 30 m length — cantilever
(Asolid )

e an interior strip with 1.6 m
height (equal to the opening
height) and 30 m length —
cantilever (A

*
ZW X 43757.02
MW, 234386

18.68 m

=6.54 m

18m

X~

= 21.0m :l: 9.0 m ::l

Stri )
o piers A, B,l & and D — cantilevered (A ,,,) (the stiffness of the piers A, B, C, and D is

summed and the inverse taken as A ;)

The stiffness of each component is based on the following equation for the cantilever model by
using appropriate height-to-length ratios (see Section C.3.2), that is,

\ 15
‘ﬂ"u'l.
napg
strip{ | _A _D><[ B _DX] € DX D] I~

_ 62 _(#%, 62 %%, 62 48,30 53-'

= [ =2 d o e el

- 30m ”

Wall Xr
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The overall wall deflection is determined from the combined pier deflections, as follows:

AXl

= Asolid - A

strip

+A ABCD

Note that the strip deflection is subtracted from the solid wall deflections - this removes the
entire portion of the wall containing all the openings, which is then replaced with the deflection
of the four piers.

Finally, the stiffness of the wall X, is equal to the reciprocal of the deflection (see Table 2), as

follows

1
KXI :A_:l71

X1

Table 2. Wall X, Stiffness Calculations

t h /

el m) | m) | (m) conltsi?t(ijons hl K/(E*t) | Displacement K it [(E*1)
Solid 024 |48 30.0 | cant 0.160 2.015 0.496
Opening
strip 024 |16 30.0 | cant 0.053 6.226 -0.161
X1A 0.24 1.6 6.2 cant 0.258 1.186
X1B 0.24 1.6 6.2 cant 0.258 1.186
X1C 0.24 1.6 6.2 cant 0.258 1.186
X1D 0.24 1.6 3.0 cant 0.533 0.453

Y. (ABCD) [ 4015 0.249

0.585 1.709

The stiffness of wall ¥, is determined in the same manner (see the figure below). The
calculations are summarized in Table 3.

%
) S — T — S
strip < E [i‘ F | Y
. 80 qpp 90 | !
for = 8 m =
Wall 'Y,
9/1/2018
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Table 3. Wall Y, Stiffness Calculations

Wall t h l End h/l K/(E*t) | Displacement [ k. /(E*7)
(m) (m) (m) | conditions ’

Solid 0.24 4.8 18 cant 0.267 1.142 0.876
Opening
strip 0.24 2.4 18 cant 0.133 2.442 -0.409
Pier E 0.24 2.4 8 cant 0.300 0.992
Pier F 0.24 2.4 9 cant 0.267 1.142

sum(EF) | 2.134 0.469

0.935 1.070

Next, the centre of resistance (C, ) will be determined, and the calculations are presented in

Table 4.

Table 4. Calculation of the Centre of Resistance (C,)

Wall t h [ End h/l K K. K, X, Y, K, *X, K_*Y,
(m) | (m) | (m) | cond. E*t | kNm) | qnm) | (m) | (m)

X1 0.24 1.709* | 3.49E+06 | O 15 0 0.00E+00

X2 024148 |9 cant 0.53 | 0.453 9.24E+05 | O 255 | 18 1.66E+07

Y1 0.24 1.070** ] 0 2.18E+06 | 21 0 4.58E+07

Y2 024148 |4 cant 1.20 | 0.095 0 1.94E+05 | 30 0 5.82E+06

Y3 024148 |9 cant 0.53 | 0.453 0 9.24E+05 | 30 0 2.77TE+07
4.41E+06 | 3.30E+06 7.94E+07 | 1.66E+07

Notes:

* - see Table 2
** - see Table 3

Note that all walls and piers in this example were modelled as cantilevers (fixed at the base and
free at the top). For more discussion related to modelling of masonry walls and piers for seismic
loads see Section C.3. The modulus of elasticity for masonry is taken as E, =8.5*10° kPa

(corresponding to £, of 10 MPa).

The C, coordinates can be determined as follows (see the figure on the next page):

ZKy[ *x[

7.94%10

1
x =
CR
z Kyi
i

K. *y,
2K, Y 166107

©3.30%10°

Y T TSR T 4417108

24.05m

=377 m

Next, the eccentricity needs to be determined. Since we are considering the seismic load effects
in the N-S direction, we need to determine the actual eccentricity in the x-direction (e, ), that is,

€, = Xop —Xpy =24.05-18.68=5.37 m

9/1/2018

X

3-28




In addition, an accidental eccentricity needs to be considered, as follows:
e, =10.1D, =40.1*30=43.0 m

The total maximum eccentricity in
the x-direction assumes the
following two values depending on ¥;
the sign of the accidental Y;
eccentricity, that is,

e,=e +e,=537+3.0=837T m
e,=e —e,=537-3.0=237Tm - ch =
T

i ¥
The torsional moment is determined = 1 3(

as a product of the shear force and 2 A

the eccentricity, that is, . L =

T, =V*e, =700%8.37 ~ 5860 kNm : Xz ol
T, =V *e_, =700%2.37 ~ 1660 kNm

The seismic force in each wall can be determined as the sum of the two components:
translational (no torsional effects) and torsional, that is,

Vo=V, +V,

where

i

V., = V*Z—K translational component
T*c, _
V., = ¥, * K, torsional component

t

J=YK, ¢ +Y K, ¢, =297*%10° torsional rigidity (see Table 5)

¢, ¢, -distance of the wall

centroid from the centre of 174
resistance (C}) X2t
q—

The calculation of translational XZ Lj"sa
and torsional forces is presented Y. \
in Table 5. Translational and Y 2
torsional force components due 1 V
to the eccentricity e , and the Y3t
torsional moment 7, are shown C
on the figure. Note that the o= b
o
| |
| |
| |
|
| |
|
I

torque 7, causes rotation in the
same direction like the force V
(showed by the dashed line) X,
around point C, (this is .
illustrated on Figure 1-8). The V
wall forces shown on the a, 5
diagram are in the directions to e X3 -_-_,‘
resist the shear V and torque T, +

TV

thus on wall Y1 the translational
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force and torsional force act in the same direction, while in walls Y2 and Y3 these forces act in
the opposite direction. The calculation of the forces is presented in Table 5 where the sign
convention has horizontal wall forces positive to the left and vertical forces positive down,
resulting in negative values for the torsional forces in walls X1, Y2 and Y3.

Table 5. Seismic Shear Forces in the Walls due to Seismic Load in the N-S Direction

Wall 2
a Ki ci K,- * ci Ky /Z Ky Vo Vlt Vltotal V2t V2mtal Vgovem
(kN/m) (m) (kN) | (kN) | (kN) | (kN) | (kN) (kN)
(1) (2) ) (4) ®) ® | @ (8) (9) | (10) (11)
X1 3.49E+06 | -3.77 4.96E+07 -260 | -260 -74 | -74 260
X2 9.24E+05 | 14.23 1.87E+08 260 260 74 74 260
z KX 4.41E+06
Y1 2.18E+06 | 3.05 2.03E+07 | 0.66 463 131 594 37 500 594
Y2 1.94E+05 | -5.95 6.87E+06 | 0.06 1 -23 18 -6 35 35
Y3 9.24E+05 | -5.95 3.27E+07 | 0.28 196 -109 | 87 -31 165 165
Z Ky 3.30E+06 1.00 700
% 2
2K *e | porevon

It should be noted that there are two total seismic forces for each wall in the N-S direction
(corresponding to torsional moments 7, and 7, ) — see columns (8) and (10) in Table 5. The
governing force to be used for design is equal to the larger of these two forces, as shown in
column (11) of Table 5. Note that, in some cases, torsional forces have a negative sign and
cause a reduction in the total seismic force, like in the case of walls Y2 and Y3.

b) Flexible diaphragm

It is assumed in this example that flexible diaphragms are not capable of transferring significant
torsional forces to the walls perpendicular to the direction of the inertia forces. Therefore, the
wall forces are determined as diaphragm reactions, assuming that diaphragms D1 and D2 act
as beams spanning between the walls, as shown on the figure below. The diaphragm loads
include the inertia loads of the walls supported laterally by the diaphragm. The SFRS wall inertia
forces are added to the forces supporting the diaphragms to get the total wall load. The seismic
coefficient of 0.3 will be used in these calculations (as defined at the beginning of this example).

Shear forces in the walls Y|, and Y, (diaphragm D1):
Seismic force in the diaphragm D1 is due to the roof seismic weight and the wall X inertia
load:

Vi = 0.3%[(9m*30m) * (3.5kPa + 0.6kPa) + 2.4m * 30m * 5.38kPa | = 448kN

The diaphragm is considered as a beam with the reactions at the locations of walls Y,, and Y,,
that is,

Ry,, = 448kN *15m/9m = TATkN

and
R,, =V, —R,,, =448—-747 = -299kN (opposite direction from R,,, is required to satisfy

equilibrium)

The total force in each wall is obtained when the wall inertia load is added to the diaphragm
reaction, that is,
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Vie =Rya vV, =747+ 0.3%2.4m*9m * 5.38kPa = 782kN
Vo =Ry, +V, =-299+0.3*%2.4m*4m* 5.38kPa = -284kN (note: this force has opposite
direction from force V)
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Shear forces in the walls Y, and Y, (diaphragm D2):

Seismic force in the diaphragm D2 is due to the roof seismic weight and the wall X, inertia
load:

Vy, =0.3%[(9m*9m)* (3.5kPa + 0.6kPa) + 2.4m * 9m * 5.38kPa| = 134.5kN

The diaphragm is considered as a beam with the reactions at the locations of walls Y,, and Y,
that is,
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Ry, =R,; =134.5/2=673kN
The total force in each wall is obtained when the wall inertia load is added to the diaphragm

reaction, that is,
Vi =Ry +V, =67+0.3*2.4m*9m *5.38kPa =102kN

V,, =R, +V, = 67+03%2.4m*9m*538kPa = 102kN

Total shear force in wall ¥;:
The total seismic force in the wall Y, is equal to
Vi =V + V1 = 782 +102 = 884kN

Shear forces in walls ¥, and ¥;:
The total shear force in the combined walls Y, and Y, is equal to

Visy =Vyy +Vyy =—2844102 = —182kN

This force will then be distributed to these walls in proportion to the wall stiffness, as follows (the
wall stiffnesses are presented in Table 4):

Ky, 1.94*10°

V,, = -
K, +K, TP 1.94%10° +9.24%10°
Vs =Vyp —Vy, = —182—(=32) = —150kN

*(—182) = 0.17* (—182) = —32kN

The comparison
Shear forces in the walls Y, to Y, obtained in parts a) and b) of this example are summarized

on the figure below. A comparison of the shear forces is presented in Table 6.

Y? ll‘ﬁﬁ Y'% T
165

1594_ 19?2

Y; v, 135 Y, v, T35

a) Rigid diaphragm b) Flexible diaphragm

Table 6. Shear Forces in the Walls Y, to Y, for Rigid and Flexible Diaphragms

Shear forces (kN)
Wall | Rigid diaphragm | Flexible diaphragm
(part a) (part b)
Y, | 594 972 (884)
Y, |35 35 (32)
Y, |165 165 (150)
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Note that, for the flexible diaphragm case, values in the brackets are actual forces. These
values are increased by 10 % to account for accidental eccentricity.

It can be observed from the table that the flexible diaphragm assumption results in the same
seismic forces for the walls Y, and Y,, and an increase in the wall Y, force.

Deflection calculations

A fundamental question related to diaphragm design is: when should a diaphragm be modeled
as a rigid or a flexible one? This is discussed in Section 1.11.4. A possible way for comparing
the extent of diaphragm flexibility is through deflections. The deflection calculations for the rigid
and flexible diaphragm case are presented below.

e Rigid diaphragm (see Example 2, step 8 for a similar calculation)

The deflection will be calculated for point A as this should be the maximum. First, a reduction in
the wall stiffness to account for the effect of cracking will be determined following the approach
presented in Section 2.5.4 (S304-14 CI.16.3.3), that is,

4,=4,003+P)(4,1",)]

Here,

P, =9.0%(9.0/2)*3.5=142 kN (axial force due to dead load in wall X,)

A, = (240 * 103) *9.0=216*10* mm? (effective cross-sectional area for 240 mm block wall,
solid grouted, length 9.0 m; see Table D-1 for 4, values for the unit wall length)
f.1=10.0 MPa

Since

03+P/(4,1",)=03+142%10°/(10.0%216*10*) =031

It appears that

4, =0.31

4

Because the behaviour of low-rise shear walls is expected to be shear dominant and so
stiffness is proportional to cross-sectional area; thus

K, =( je )K, =031K,

g
where K, is elastic uncracked stiffness

Next, the translational displacement at point A can be calculated as follows:
V 700kN

0 = = 3 = O68mm

031> K, 031*3.3*10°kN /m
Subsequently, the torsional displacement at point A will be determined. Torsional rotation of the
building € can be found from the following equation:

T 5860kN;

S N —6.36*10"rad

J 0.31*%297*10
where (see the torsional calculations performed in part a) of this example)
T =5860 kNm torsional moment

A
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J =297*10° elastic torsional stiffness (this value is reduced by 0.5 to take into account
the cracking in the walls)
The torsional displacement at point A:

A =0%x,=636*10"*24.05m =1.53mm
The total displacement at point A is can be found as follows (note that the displacements need
to be multiplied by R, R, /I, ratio, where I,=1.0):

A =(A"+ A" )*R,R, =(0.68+1.53)*1.5%1.5=5.0mm

r————1

A . j o e
s W éi ______ A ! i ."- .-'I
A 3 .‘ﬁ: :"'I-' s 3 ! _.'I

Translational Displacement Torsional Displacement

o Flexible diaphragm

As a first approximation the calculation will consider a 21 m long diaphragm portion as a
cantilever beam, as shown in the figure on the next page. This is an approximate model since
the diaphragm is not fully fixed at that point, but the model is simple and useful for checking
magnitude of deformations in a flexible diaphragm for this structure. The total shear force is
equal to:

V,, = 0.3%[(9m* 21m) * (3.5kPa + 0.6kPa) + 2.4m* 21m * 5.38kPa| = 314kN

and the equivalent uniform load is equal to

v, =V, /L=15.0 kN/m

where

L =21.0 m diaphragm length for the cantilevered portion

The real deflection will be larger since the diaphragm acting as a cantilever is not fully fixed at

the wall ¥;, and walls Y|, Y,, and Y, also deflect; both effects provide some rotation at the fixed
end of the cantilever.

Consider a plywood diaphragm with the following properties:
E =1500 MPa plywood modulus of elasticity

G =600 MPa plywood shear modulus

t, =254 mm (1" plywood thickness)

A=b*t, =9.0m*0.0254m = 0.23 m?

Let us assume that the two courses of grouted bond beam block act as a chord member, as
shown on the figure on the next page. The roof-to-wall connection is achieved by means of nails
driven into the anchor plate and hooked steel anchors welded to the plate embedded into the
masonry. The corresponding moment of inertia around the centroid of the diaphragm can be
found as follows:

9/1/2018 3-34



2 2
I=2*AC*[§j =2*0.096*[?J =389 m*

where
A, =2%(0.24m*0.2m) = 0.096 m? chord area (two grouted 240 mm blocks)

E, =8.5%10°kPa masonry modulus of elasticity based on f, = 10.0 MPa (solid grouted 20
MPa blocks and Type S mortar)

A ~

. 22} | B =

b=t .

[

Section 1-1
!_._ L=21m

EEESEEENEER 'Y

:ﬁ.A_I_ e . p
AEEEEEEEEEEN

|_: L=21m

==

The total displacement at point A is equal to the combination of flexural and shear component,
that is,

N * L LW *L 15.0*(21.0)* L 12%314%210

8E*I 2*A4*G 8*8.5%10°*3.89 2%*0.23*600*10°
The total displacement at point A is can be found by multiplying the above displacement by
R,R, /1, ratio, thatis,

A'max = A" *R,R, =40%1.5%1.5 = 90mm

=(11.0+29.0)*¥107° =40* 107> m = 40mm

A quick check of the additional deflection caused by rotation at the fixed end of the cantilever
indicates that an additional 50 mm could be expected at point A. Thus, the total displacement
would be about 140 mm.

By comparing the displacements for the rigid and flexible diaphragm model, it can be observed
that the difference is significant:

A'_ =5mm rigid diaphragm model

A =90mm  flexible diaphragm model

Had the flexible diaphragm been used, the lateral drift ratio at point A would be equal to:

pR="Lm _ 90 0019219 %
ho 4800

9/1/2018 3-35



The drift is within the NBC 2015 limit of 2.5% (see Section 1.13); however, a flexible diaphragm
would not be an ideal solution for this design — a rigid diaphragm would be the preferred
solution.

Discussion

In this example, seismic forces were determined for the N-S walls due to seismic load acting in
the N-S direction. It should be noted, however, that there is a significant eccentricity causing
torsional effects in the E-W walls due to seismic load acting in the E-W direction — these
calculations were not included in this example.
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EXAMPLE 4a: Minimum seismic reinforcement for a squat shear wall

Determine minimum seismic reinforcement according to CSA S304-14 for a loadbearing
masonry shear wall located in an area with a seismic hazard index /.F,S, (0.2) of 0.80. The
wall is subjected to axial dead load (including its own weight) of 230 kN.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength fy = 400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

F} =230kN

Wall dimensions:
[,,=8000 mm length

h,,= 6600 mm height
t= 190 mm thickness

6,600 mm

8,000 mm

SOLUTION:

The purpose of this example is to demonstrate how the minimum seismic reinforcement area
should be determined and distributed in horizontal and vertical direction. Once the
reinforcement has been selected in terms of its area and distribution, the flexural and shear
resistance of the wall will be determined and the capacity design issues discussed, as well as
the seismic safety implications of vertical and horizontal reinforcement distribution.

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

f,=400MPa ¢ =0.85
Note that the cold-drawn galvanized wire has higher yield strength than Grade 400 steel, but it

will be ignored for the small area included.
Masonry:

¢,=0.6

Assume partially grouted masonry. For 15MPa blocks and Type S mortar, it follows from Table
4 of S304-14 that

f,=9.8 MPa

Based on Note 3 to Table 4, this /| value is normally used for hollow block masonry but can
also be used for partially grouted masonry if the grouted area is not considered.
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2. Find the minimum seismic reinforcement area and spacing (see Section 2.6.9 and
Table 2-3).

Since I.F. S, (0.2)=0.80 > 0.35, minimum seismic reinforcement must be provided (S304-14
Cl.16.4.5.1).

Seismic reinforcement area

Loadbearing walls, including shear walls, shall be reinforced horizontally and vertically with steel
having a minimum area of

A, in =0.0024, =0.002%(190*10° mm2/m) = 380 mm2/m

for 190 mm block walls, where

4, =(1000mm)*(190mm)=190*10° mm?/m gross cross-sectional area for a unit wall length of 1

m
Minimum area in each direction (one-third of the total area):
A,

Apypin = A} i =0.00067 4, =%=¥=127 mm2/m

Thus the minimum total vertical reinforcement area
A o =127*1 = (127 mm?m)(8 m) = 1016 mm?

In distributing seismic reinforcement, the designer may be faced with the dilemma: should more
reinforcement be placed in the vertical or in the horizontal direction? In theory, 1/3" of the total
amount of reinforcement can be placed in one direction and the remainder in the other direction.
In this example, less reinforcement will be placed in the vertical direction, and more in the
horizontal direction. The rationale for this decision will be explained later in this example.

Vertical reinforcement (area and distribution) (see Table 2-3):

Since [, F. S, (0.2)=0.80 > (0.75, according to S304-14 CI.16.4.5.3 spacing of vertical reinforcing
bars shall not exceed the lesser of:

e 6(t+10)=6(190+10)=1200 mm

e 1200mm

Therefore, the maximum permitted spacing of vertical reinforcement is equal to
s =1200 mm.

Since the maximum permitted bar spacing is 1200 mm, a minimum of 8 bars are required (note
that the total wall length is 8000 mm). Therefore, let us use 8-15M bars, so

A, = 8*200 =1600 mm?
(note that the resulting reinforcement spacing is going to be less than 1200 mm, which is the
upper limit prescribed by S304-14).

The corresponding vertical reinforcement area per metre length is

4, = ‘14” *1000 = 200 mm2/m > A’

vmin

=127 mm?2/m OK

w

It should be noted that the requirements for spacing of vertical reinforcement have been relaxed
for Conventional Construction masonry walls at sites where 0.35</,.F S, (0.2)<0.75 (see Table

2-3).
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Horizontal reinforcement (area and distribution) (see Table 2-3):

Let us consider a combination of joint reinforcement and bond beam reinforcement. According
to S304-14 CI.16.4.5.4, where both types of reinforcement are used, the maximum spacing of

bond beams is 2400 mm and of joint reinforcement is 400 mm, so the following reinforcement

arrangement is considered:

o 9 Ga. ladder reinforcement @ 400 mm spacing, and

e 2-15M bond beam reinforcement @ 2200 mm (1/3" of the overall wall height). The area of
ladder reinforcement (2 wires) is equal to 22.4mm?, and the area of a 15M bar is 200 mm?. So,
the total area of horizontal reinforcement per metre of wall height is

, [22.4 400
+

" 17200 © 2200

J* 1000 =238 mm?m > 4, . =127 mm*m  OK

So, the total area of horizontal and vertical reinforcement is
A=A+ A4, =200+238=438 mm?’/m >A4, . =380 mmm OK

Note that the total area (438 mm?/m) exceeds the S304-14 minimum requirements (380 mm?/m)
by about 10%. It is difficult to select reinforcement that exactly meets the requirements, and also
a reserve in reinforcement area provides additional safety for seismic effects.

3. Check whether the vertical reinforcement meets the minimum requirements for
loadbearing walls (S304-14 C1.10.15.1.1 — see Table 2-3).

Since this is a shear wall, but also a loadbearing wall, pertinent reinforcement requirements
would need to be checked, however the check is omitted from this example since it does not
govern in seismic zones.

4. Desigh summary
The reinforcement arrangement for the wall under consideration is summarized below.
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vertical reinf. =
8-15M grouted 3
]
9 (v, ladder — = =
@ 400 N2
—}'—
2-15M @ 2200 —1f =
hond beam o
grouted
100, _100

I 1
00

1598 mm concrete block
) 15 MPa strength
Design Summary Type § mortar
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EXAMPLE 4b: Seismic design of a |Conventional Construction| squat shear wall

Design a single-storey squat concrete block shear wall shown in the figure below according to
NBC 2015 and CSA S304-14 seismic requirements for Conventional Construction reinforced
masonry walls. The building site is located at the site supported by Site Class C soil, and the
seismic hazard index /,.F,S, (0.2) is 0.66. The wall is subjected to a total dead load of 230 kN
(including the wall self-weight) and an in-plane seismic force of 630 kN. Consider the wall to be
solid grouted. Neglect the out-of-plane effects in this design.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength f =400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

Pr=230kN
Vi=630kN 1

F |Illll|I|I|I|||||I|I|I|I|I|I|I|I|I|I|I| &
e Wall dimensions:
e e B 1,=8000 mm length
e e eeicicies B h, = 6600 mm height
e e e t= 190 mm thickness
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII m
e )
L 8,000 mm
I -

SOLUTION:

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa
Masonry:
¢m = 06

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Load analysis
The wall needs to be designed for the following load effects:

. Pf = 230 kN axial load
. Vf = 630 kN seismic shear force

e M,=V,*h=630"6.6 ~4160 kNm overturning moment at the base of the wall

Note that, according to NBC 2015 Table 4.1.3.2, load combination for the dead load and seismic
effects is 1.0*D + 1.0*E.
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3. Minimum CSA S$304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3)
Since [, F. S, (0.2)= 0.66 > 0.35, minimum seismic reinforcement is required (S304-14
Cl.16.4.5.1). See Example 4a for a detailed calculation of the S304-14 minimum seismic
reinforcement.

4. Design for the combined axial load and flexure

A design for the combined effects of axial load and flexure will be performed using two different
procedures: i) by considering uniformly distributed vertical reinforcement, and ii) by considering
concentrated and distributed reinforcement.

Distributed wall reinforcement (see Section C.1.1.2)

This procedure assumes uniformly distributed vertical reinforcement over the wall length. The
total vertical reinforcement area can be estimated, and the estimate can be revised until the
moment resistance value is sufficiently large. After a few trial estimates, the total area of vertical
reinforcement was determined as

A4,,= 3200 mm? > 1016 mm? (minimum seismic reinforcement) - OK

Try 16-15M bars for vertical reinforcement.
The wall is subjected to axial load

P,=230 kN
The approximate moment resistance for the wall section is given by:
a, =0.85 B, =0.8

¢S, A 0.85%400%*3200
o= = =0.159

¢,/ 1t 0.6*7.5%8000*190

P * 3

a=—t = 203

¢,/ 1t 0.6*7.5%8000*190

wt+a 0.159+0.034 (8000) = 1547 mm

Cc = =
20+a,B, " 2%0.159+0.85%0.8

1544

P
M, =058, f, A0, [ 1+—L— | 1-= |=0.5%0.85*——*3200
6 f,A ! 1000

sJ y“ivt

+
1000 0.85*400*3200

w

M, =4253 kNm> M, =4160 kNm OK

Distributed and concentrated wall reinforcement (see Section C.1.1.1)

This procedure assumes the same total reinforcement area, but the concentrated reinforcement
is provided at the wall ends, and the remaining reinforcement is distributed over the wall length.

A,,= 3200 mm?
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Concentrated reinforcement area at

each wall end (3-15M bars in total, A Ay A
1-15Min last 3 cells): TR Bl = = — = = e
A, =600 mm?
Distributed reinforcement A 2.15M

C 3=
A, =3200-2*600=2000 mm? —t—

Distance from the wall end to the

centroid of concentrated

reinforcement s
d' =300 mm ]

100 200 200
et rtods]

==

The compression zone depth a:
_Po+gf, A4, 230%10° +0.85*400* 2000

a= =1252 mm
0.85¢, 1" t 0.85*0.6*7.5*190

The masonry compression resultant C, :
C, =(0.854, 1, t-a)=(0.85%0.6*7.5)(190 *1252) =910 kN

The factored moment resistance A, will be determined by summing up the moments around
the centroid of the wall section as follows jsee equation (3) in Section C.1.1.1)

M, =[C, (1, -a)2+2( 4., /2-d)]10°
= [910%10° * (8000 — 1252)/2 + 2% (0.85* 400 * 600)(8000/2 — 300)|* 10 M, = 4580 kNm

The second procedure was used as a reference (to confirm the results of the first procedure).
Both procedure give similar A, values (4253 kNm and 4580 kNm by the first and second
procedure respectively).

5. Find the minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.5.4)

Cl.16.5.4 requires that the factored shear resistance, ¥V, for a Conventional Construction shear
wall should be greater than the shear due to effects of factored loads, but not less than i) the
shear corresponding to the development of factored moment capacity, M, or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Conventional Construction shear walls, the shear capacity should exceed the shear
corresponding to the nominal moment capacity, as follows

M, =4253 kNm

The shear force V,, corresponding to the overturning moment M, is equal to
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M 42
V,=—" =—53= 645 kN
h 6.6
The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to
_V,*R;-R, 630-1.5-1.5

fe
1.3 1.3
The smaller of these two values should be used, hence

=1090kN

V., =645kN

6. Find the diagonal tension shear resistance (see Section 2.3.2 and S304-14
C1.10.10.2.1).

Masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, =08/ =6400 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,=207 kN

M.

v, =0.16(2——2L),/f! = 0.44 MPa
V,d,

M, 4160

= =1.03~1.0
V,d, 630%6.4

V,=4,v,b,d, +025P,)y, =0.6(0.44*190*6400+0.25*207*10%*1.0 = 352 kN
Steel shear resistance V', (2-15M bond beam reinforcement at 1200 mm spacing):
d
V. =0.69A4 f —~=0.6%0.85 *ﬂ*400 » 0400 435 kN
T 1000 1200

Total shear resistance

V.=V +V =352+435="787 kN

The factored shear resistance exceeds the minimum required factored shear resistance, that is,
V. =T78TkN>V , =645kN OK

h
This is a squat shear wall because l—” = % =0.825<1.0. Maximum shear allowed on the

section is (S304-14 CI.10.10.2.1)
h
maxV, =0.4¢ . f! b,d,y,(2 _l_w) =939 kN

Since
V. <maxV, OK

Note that a solid grouted walll is required, thatis, y, =1.0. A partially grouted wall would have
7, = 0.5, so its shear capacity would not be adequate for this design.
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7. Sliding shear resistance (see Section 2.3.3)
The factored in-plane sliding shear resistance V, is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 3200 mm? total area of vertical wall reinforcement
T,=¢.A,f, =0.8573200*400 = 1088 kN

P, =207 kN

P, =P, +T,6 =207+1088 = 1295 kN

V. =¢,uP,=0.6%1.01295=777 kN

V.=TITkN>V =645kN  OK

8. Design summary

The reinforcement arrangement for the wall under consideration is shown in the figure below.
Note that the wall is solidly grouted. A bond beam (transfer beam) is provided atop the wall to
ensure uniform shear transfer along the entire length (see Section 2.3.2.2).
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9. Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. There are three shear forces:

a) V, =645 kN minimum required factored shear resistance

b) V. =787 kN diagonal tension shear resistance
c) V. =777 kN sliding shear resistance

Since the minimum required factored shear resistance is smallest of the three values, it can be
concluded that the flexural failure mechanism is critical in this case, which is desirable for
seismic design.

Note that S304-14 CI.10.2.8 prescribes the use of a reduced effective depth d for the flexural
design of squat shear walls. This example deals with seismic design, and the wall reinforcement
is expected to yield in tension, this provision was not followed since it would lead to a non-
conservative design; instead, the actual effective depth was used for flexural design.
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EXAMPLE 4c: Seismic design of a [Moderately Ductile| squat shear wall

Design a single-storey squat concrete block shear wall shown on the figure below according to
NBC 2015 and CSA S304-14 seismic requirements for moderately ductile squat shear walls
(note that the same shear wall was designed in Example 4b as a conventional construction).
The building site is located in Ottawa, ON and the seismic hazard index I, F,S, (0.2) is 0.66.
The wall is subjected to the total dead load of 230 kN (including the wall self-weight) and the in-
plane seismic force of 470 kN; this reflects the higher R, value of 2.0 that can be used for walls
with Moderate Ductility. Consider the wall to be solid grouted. Neglect the out-of-plane effects in
this design.

Use 200 mm hollow concrete blocks of 15 MPa unit strength and Type S mortar. Grade 400
steel reinforcing bars (yield strength fy = 400 MPa) and cold-drawn galvanized wire (ASWG)
joint reinforcement are used for this design.

FJ’F=23{JRN
V,=470kN l
P IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ey | Wall dimensions:
Lo LI O T D L L LT L] E [,=8000 mm length
T ) b, = 6600 mm height
e e e =190 mm thickness
e Note that the h/t ratio exceeds
8.000 mm the $304.1 limit of 20 for
= J = moderately ductile squat shear
walls (CI.10.16.6.3).
SOLUTION:
Since
h_W:@:()_82531_()
[ 8000

this is a squat shear wall. The wall is to be designed as a moderately ductile squat shear wall,
and NBC 2015 Table 4.1.8.9 specifies the following R, and R, values (see Table 1-13):
R,=20and R =15

The seismic shear force of 470 kN for a wall with moderate ductility (R, = 2.0) was obtained by
prorating the force of 630 kN from Example 4b which corresponded to a shear wall with
conventional construction (R, =1.5), as follows

V, =630% 12 ~ 470 kN
- 2.0

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa
Masonry:
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¢,=0.6
From S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Load analysis
The wall needs to be designed for the following load effects:

. Pf = 230 kN axial load
. Vf = 470 kN seismic shear force

e M,=V,*h=470"6.6 ~ 3100 kNm overturning moment at the base of the wall

Note that, according to NBC 2015 Table 4.1.3.2, the load combination for the dead load and
seismic effects is 1.0*D + 1.0*E.

3. Minimum S304-14 seismic reinforcement (see Section 2.6.9 and Table 2-3)
Since 1,F,S,(0.2)= 0.66 > 0.35, minimum seismic reinforcement is required (C.16.4.5.1). See

Example 4a for a detailed calculation of the S304-14 minimum seismic reinforcement.

4. Design for the combined axial load and flexure (see Section C.1.1.2).

A design for the combined effects of axial load and flexure will be performed by assuming
uniformly distributed vertical reinforcement over the wall length. After a few trial estimates, the
total area of vertical reinforcement was determined as

A,,= 2200 mm? > 1016 mm? (minimum seismic reinforcement) - OK

and so 11-15M reinforcing bars can be used for vertical reinforcement in this design (total area
of 2200 mm?).

The wall is subjected to axial load P,= 230 kN. Note that the load factor for the load
combination with earthquake load is equal to 1.0.

The moment resistance for the wall section can be determined from the following equations (see
Example 4b):
a, =085 B,=08 ©=0.109 a=0.034 c=1273 mm

P *103
Mr=0.5¢sfyAwlw 1+ ! 1—i :O.S*O.SS*ﬂ*zzoo*gooo 1+ 230710 (1—1273j
P, fyAv, / 1000 1000 0.85*400*2200 8000

w

M, =3290 kNm> M, =3100 kNm OK

5. Height/thickness ratio check (see Section 2.6.4)
S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
moderately ductile squat shear walls (Cl.16.7.4):

h/(t+10) < 20, unless it can be shown for lightly loaded walls that a more slender wall is
satisfactory for out-of-plane stability.

For this example,

h = 6600 mm (unsupported wall height)
t= 190 mm actual wall thickness
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So,
h/(t +10) = 6600/(190 +10) = 33 > 20

The height-to-thickness ratio for this wall exceeds the S304-14 limits by a significant margin.
However, S304-14 permits the height-to-thickness restrictions for moderately ductile squat
shear walls to be relaxed, provided that the designer can show that the out-of-plane wall stability
is satisfactory.

This is a lightly loaded wall in a single-storey building. The total dead load is 230 kN, which
corresponds to the compressive stress of
* 3

f. = _f _ 2307107 _ =0.15 MPa

[t 8000*190
This stress corresponds to only 2% of the masonry compressive strength £ which is equal to
7.5 MPa. In general, a compressive stress below 0.1 1 (equal to 0.75 MPa in this case) is
considered to be very low.

The recommendations included in the commentary to Section 2.6.4 will be followed here. A
possible solution involves the provision of flanges at the wall ends. The out-of-plane stability of
the compression zone must be confirmed for this case.

Try an effective flange width 5, =390mm. The wall section and the internal force distribution is
shown on the figure below.

%—“AL
bf @:—f El'f; Izl 111'1;:
| [ ] i [ ] (23] [ [ ] (R
- e R d'__
K

i

085 i (TTTTTT | l
CE :(')sfy A T E Ti
e W

This procedure assumes the same total reinforcement area 4,, as determined in step 4, but the
concentrated reinforcement is provided at the wall ends, while the remaining reinforcement is
distributed over the wall length.

A,,= 2200 mm?
Concentrated reinforcement area (2-15M bars at each wall end):
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A4,= 400 mm?
Distributed reinforcement area:
A, =2200-2*400=1400 mm?
Distance from the wall end to the centroid of concentrated reinforcement A, :

d'=100 mm
¢ Check the buckling resistance of the compression zone.
The area of the compression zone 4, :

_Po+¢ [, 4, 230%10° +0.85*400* 1400
Lo085g 1 0.85%0.6%7.5
The depth of the compression zone a:
Ay =b *t+1"  1.846%10° —(390*190) +190>
t - 190
The neutral axis depth:

c=-%-965 mm
0.8

=1.846*10° mm?

=772 mm

a=

The centroid of the masonry compression zone:
t*(a2/2)+ b, -0li*/2)

X = 4

In this case, the compression zone is L-shaped, however only the flange area will be considered

for the buckling resistance check (see the shaded area shown on the figure below). This is a

conservative approximation and it is considered to be appropriate for this purpose, since the
gross moment of inertia is used.

=326 mm

Gross moment of inertia for the flange only:
_t*b” 190%390°
xg 12 12

=9.39*10% mm*

The buckling strength for the compression zone will be
determined according to S304-14 CI.10.7.4.3, as follows:

p o TPEL 017
T (1+0.58,) (kh)

where

4. =0.75

k =1.0 pin-pin support conditions
B, =0 assume 100% seismic live load

h=6600 mm unsupported wall height
E =850f' =6375 MPa modulus of elasticity for masonry

¢ Find the resultant compression force (including the concrete and steel component).
P,=C,+¢.f,A =706 *10° +0.85%400 * 400 = 842 kN

where

C, =(0.85¢, f', )4, =(0.85%0.6*7.5)(1.846 ¥10°) = 706 kN
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¢ Confirm that the out-of-plane buckling resistance is adequate.
Since

P, =842kN< P, =1017 kN

it 'can be concluded that the out-of-plane buckling resistance is adequate and so the flanged
section can be used for this design. This is in compliance with S304-14 CI|.16.7.4, despite the
fact that the h/t ratio for this wall is 33, which exceeds the S304-14-prescribed limit of 20.

4a. Design the flanged section for the combined axial load and flexure — consider
distributed and concentrated wall reinforcement (see Section C.1.1.1).

The key design parameters for this calculation were determined in step 5 above. The factored
moment resistance M. will be determined by summing up the moments around the centroid of
the wall section as follows

M, =C,(1,/2-x)+2(4, [ A, X1, /2—d’) =706*10° *(8000/2 — 326) + 2 * (0.85* 400 * 400)* (8000/2 — 100)

M, =3655%10° Nmm = 3655 kNm
Since
M, =3655 kNm> M, =3100 kNm  OK

6. Find the minimum required factored shear resistance (see Section 2.6.5 and $304-14
Cl1.16.7.3.2)

Cl.16.7.3.2 requires that the factored shear resistance, V., for a Moderately Ductile squat shear
wall should be greater than the shear due to effects of factored loads, but not less than i) the
shear corresponding to the development of factored moment resistance, M, , or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear
corresponding to the factored moment resistance. In this case, the factored moment resistance
is equal to

M, =3655 kNm

The shear force at the top of the wall that would cause an overturning moment equal to A is

p, =M. 3055 _ sppn
h, 6.6

W

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to

_V;*R,'R, 470-20-15

er =1085kN

: 1.3 1.3
The smaller of these two values should be used, hence
V., =554 kN

7. The diagonal tension shear resistance (see Section 2.3.2 and S304-14 C1.10.10.2.1)
Masonry shear resistance (V)):

b, =190 mm overall wall thickness
d, =08/ =6400 mm effective wall depth
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7, =1.0 solid grouted wall
P, =0.9P,=207 kN

M.
v, =0.16(2——L),/f! = 0.44 MPa
V,d,
M, 3100
V.d, 470%6.4

=1.03=1.0

V, =4,0,b,d, +0.25P,)y, =0.6(0.44*190*6400+0.25*207*10%)*1.0 = 352 kN

Steel shear resistance V.
Assume 2-15M bond beam reinforcement at 1200 mm spacing, so

A, =400 mm?

s =1200 mm

Horizontal reinforcement area per metre:
" A 400

A, =—-*1000 =——*1000 =333 mm?m
s 1200

V0644 f, % —0.6%0.85% 200 x 4005 8400
Y 1000 1200

=435 kN

Total diagonal shear resistance

V.=V +V =352+435="787 kN

The factored shear resistance exceeds the minimum required factored shear resistance, that is,
V. =787 kN>V =554 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.2)
h
maxV, =0.4¢, ./ f, b,d,y,(2 _Z_W) =939 kN

Since
V. <maxV, OK

Note that S304-14 CI.16.7.3.1 requires that the method by which the shear force is applied to
the wall shall be capable of applying shear force uniformly over the wall length. This can be
achieved by providing a continuous bond beam at the top of the wall, as discussed in Section
2.3.2.2 (see Figure 2-16).

8. Sliding shear resistance (see Section 2.3.3)
The factored in-plane sliding shear resistance V' is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 2200 mm? total area of vertical wall reinforcement
T,=¢.4,f, =0.8572200"400 = 748 kN

P, =207 kN

P, =P, +T, =207+748 = 955 kN

V. =¢,uP, =0.6%1.07955 = 573 kN
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V. =573 kN> V =554 kN OK
Note that V/, =573 kN < V. =787 kN for diagonal tension (this indicates that the sliding shear
resistance governs over the diagonal tension shear resistance).

9. Minimum reinforcement requirements for Moderately Ductile squat shear walls (see
Section 2.6.10)

S304-14 CI.16.7.5 prescribes the following requirements for the amount of reinforcement in
Moderately Ductile squat shear walls:

Horizontal reinforcement ratio p,

p, should be greater than the minimum value set by S304-14 CI.16.7.5:
V, B 470*10°

b, h,-4-f 190*6600%0.85*400

and the value determined in accordance with Cl.10.10.2 based on the shear resistance

requirements
phshear = Ah = 2131 :170*1073
b,*h, 190*6600
where 4, is the total area of horizontal reinforcement along the wall height, that is,
A, = A4, +d, =33346.4=2131mm?

where

!

A, =333 mm?/m (see step 6)
In this case,
£, =1.10M03 < p, . =1.70%10%

This indicates that the S304-14 shear resistance requirement governs. The amount of horizontal
reinforcement (2-15M bond beam reinforcement bar at 1200 mm spacing) is adequate.

=1.10*10"

phmin =

Vertical reinforcement ratio p,
Minimum p . value set by S304-14 CI|.16.7.5:

P B 5 230*10° B
8 -b,1-f ©0.85%190%8000%400

where P, = P, =230kN. Actual vertical reinforcement ratio p,,, based on the flexural design

1.10*10 0.65*107

pvmin 2 phmin -

requirements (see step 4):
A, 2200

= =1.447%107
I,*t 8000*190

p\gﬂex =
Since
Pojiex = 1447103 > p . =0.65*103

It appears that the amount of vertical reinforcement determined based on the flexural design
requirements (11-15M) governs. It can be concluded that the minimum S304-14 reinforcement
requirements for Moderately Ductile shear walls have been satisfied.
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10. Shear resistance at the web-to-flange interface (see Section C.2 and CI1.7.11).

The factored shear stress at the web-to-flange interface is equal to the larger of horizontal and
vertical shear stress, as shown below.

Horizontal shear:

sV _ 554%10°
7tl, 190*8000
where ¢, = 190 mm (effective wall thickness)

=0.36 MPa

Vertical shear (caused by the resultant compression force P, calculated in Step 5):

- Py _ 842*10°
7 b, *h,  190*6600

Factored shear strength for bonded interfaces (S304-14 CIL.7.11.1):

v, =0.16¢,/f] =0.26 MPa

Since

v, =0.67MPa> v, =0.26 MPa

shear reinforcement at the web-to-flange interface is required. Since the horizontal
reinforcement consists of 2-15M bars @ 1200 mm spacing, both bars can be extended into the
flange (90° hook), and so

, = 2AS, _ 0.85%2%200*400
’ s-t, 1200*190

The total shear resistance

v =v +v =0.26+0.60 =0.86 MPa

Since

v, =0.67MPa < v, =0.86 MPa

the shear resistance at the web-to-flange interface is satisfactory.

=0.67 MPa governs

=0.60 MPa

11. Design summary
The reinforcement arrangement for the wall under consideration is shown in the figure below.
Note that the wall is solid grouted.
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11. Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. There are three shear forces:

a) ¥V, =554 kN minimum required factored shear resistance
b) V. =787 kN diagonal tension shear resistance

c) V. =573 kN sliding shear resistance

Since the minimum required factored shear resistance is smallest of the three values, it can be
concluded that the flexural failure mechanism is critical in this case, which is desirable for
seismic design.
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Note that S304-14 CI.10.2.8 prescribes the use of reduced effective depth d for flexural design
of squat shear walls. Since this example deals with seismic design and essentially all the wall
reinforcement is expected to yield in tension, this provision was not used as it is expected to
result in additional vertical reinforcement, which would increase the moment capacity and
possibly lead to a more brittle diagonal shear failure.

Note that the S304-14 ductility check is not prescribed for Moderately Ductile squat shear walls.

This example shows that an addition of flanges can be effective in preventing the out-of-plane
buckling of Moderately Ductile squat shear walls. This is in compliance with S304-14 CI.16.7 .4,
despite the fact that the 4/t ratio for this wall is 33, which exceeds the S304-14-prescribed limit
of 20.

The last two examples provide an opportunity for comparing the total amount of vertical
reinforcement required for a squat shear wall of conventional construction (Example 4b) and a
moderately ductile squat shear wall (this example). It is noted that the moderately ductile wall
has less vertical reinforcement (11-15M bars) than a similar wall of conventional construction
(16-15M bars); this reduction amounts to approximately 30%.
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EXAMPLE 5a: Seismic design of a Moderately Ductile| flexural (non-squat) shear wall
Perform the seismic design of a shear wall shown in the figure below. The wall is a part of a
four-storey building located in Montreal, QC (City Hall) where the seismic hazard index,

I.FS, (0.2), is 0.60. The design needs to meet the requirements for Moderately Ductile Shear
Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1,800 kN (including the wall self-weight), an in-plane seismic shear force of 1090 kN, and an
overturning moment of 10,900 kNm. The elastic lateral displacement at the top of the wall is 15
mm. Select the wall dimensions (length and thickness) and the reinforcement, such that the
CSA S304-14 seismic design requirements for Moderately Ductile shear walls are satisfied. Due
to architectural constraints, the wall length should not exceed 10 m, and 190 mm standard
blocks should preferably be used.

Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Grade 400 steel
reinforcement (yield strength f, = 400 MPa) is used for this design.

im .

¥
E
¥,
L
g X
¥
M,=10900kNm  F7=1800kN |
L:'r:rpeamcw I
!___. 1l m =
SOLUTION:

1. Material properties and wall dimensions
Material properties for steel (both reinforcing bars and joint reinforcement):
¢ =085 f, =400 MPa

and masonry:
From S304-14 Table 4, for 20 MPa concrete blocks and Type S mortar:

/., =10.0 MPa (assume solid grouted masonry)
¢,=0.6

Wall dimensions:
Overall height 2, =14 m
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Length /[ =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:

° Pf= 1800 kN axial load
° Vf = 1090 kN seismic shear force

e M, =10900 kNm overturning moment

This is a Moderately Ductile shear wall, and NBC 2015 Table 4.1.8.9 specifies the following R,
and R, values:

R,=20and R,= 1.5

3. Height/thickness ratio check (S304-14 C1.16.8.3, see Section 2.6.4)
S304-14 prescribes the following height-to-thickness (h/ t) limit for the compression zone in
Moderately Ductile shear walls:

h/(t+10) < 20

For this example,

h= 5000 mm (the largest unsupported wall height)

So,

t>h/20-10 =240 mm

This means that a rectangular wall section with 240 mm thickness could be used. However,
S304-14 CI.16.8.3 permits the use of a more slender wall if the wall is lightly loaded (axial stress
less than 0.1/ ), and it can be proven that out-of-plane stability can be maintained under

seismic effects.

Let us consider 1 =190 mm (standard concrete blocks) — this will result in //(¢ +10) = 25 > 20.

In this case, the axial stress level is
P 1800%*10°

= =0.095<0.1
I *t* £ 10000*190*10

The Commentary to Section 2.6.4 proposes an approach for verifying the out-of-plane stability
of masonry shear walls with flanged ends. Let us assume a 1000 mm wide flange at each wall
end, because S304-14 Cl.16.8.3.4 states that the minimum flange width of 0.2/ (= 1000 mm for
a 5m unsupported wall height at the first storey level) is required to ensure out-of-plane stability
in ductile shear walls.

The effective flange width
b, =1000 mm

The wall section and the internal force distribution is shown in the figure below.
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This procedure assumes that the concentrated reinforcement (area A, ) is provided at the wall

ends (flanges), while the remaining reinforcement (area 4, ) is distributed over the wall length.

After a few trial estimates, the total area of vertical reinforcement 4, was determined as follows

4,,= 2800 mm?

Concentrated reinforcement area (3-15M bars at each flange):

A, =600 mm?

Distributed reinforcement area:
A, =2800-2*600= 1600 mm?

Distance from the wall end to the centroid of concentrated reinforcement 4, :

d =95 mm

e Check the buckling resistance of the compression zone.
The area of the compression zone 4, :

P +¢.f, 4, 1800%10° +0.85%400*1600

=4.6*10° mm?

L0850 11

0.85*0.6*10.0

Check whether the neutral axis falls in the web. Since the flange area is

A, =b, *1=1.9%10> mm?

It is obvious that the area of compression zone is greater than the flange area, hence the

neutral axis falls in the web. The depth of the compression zone a is:
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A, b, *t+1*  46*10° —(1000*190) +190

i B s
=1610 e
t 190

mm i

a =

The neutral axis depth:

[*]
t]
c=&=2011mm bf =]
]
B

The centroid of the masonry compression zone:

L (a2/2)+;b_f -0(/2) <67 |

<5

In this case, the compression zone is T-shaped, however .Ei:.{
only the flange area will be considered for the buckling
resistance check (see the shaded area shown in the figure). This is a conservative
approximation, and it is considered to be appropriate for this purpose, since the gross moment
of inertia is used.
Gross moment of inertia for the flange only:

x7 3 * 3

o= 70 190710007 Sguig0 mpme

12 12
The buckling strength for the compression zone will be determined according to S304-14 CI.
10.7.4.3, as follows:

p oo THeEuly oo
T (1+0.58,)(kh)

where

¢, =0.75

k =1.0 pin-pin support conditions

B, =0 assume 100% seismic live load

h =5000 mm unsupported wall height

E, =850f' =8500 MPa modulus of elasticity for masonry

e Find the resultant compression force (including the concrete and steel component).
P,=C,+¢.f,A =2346 *10° 4+ 0.85*400 * 600 = 2550 kN
where

C, = (O.85¢m 1 )AL =(0.85%0.6*%10.0)(4.6*10) = 2346 kN

e Confirm that the out-of-plane buckling resistance is adequate.

Since

P, =2550kN < P, =26566 kN

cr

it can be concluded that the out-of-plane buckling resistance is adequate. The flanged section
can be used for this design.

Note that S304-14 CI.16.8.3.4 prescribes a relaxed (h/t <30) limit for flanged shear walls

provided that the neutral axis depth meets the following simplified requirement (see Figure 2-
28):
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¢ <3t=3%190 =570 mm

Note that 3¢ denotes the distance from the inside of a wall flange to the point of zero strain. So
the total neutral axis depth (distance from the extreme compression fibre to the point of zero
strain) is equal to

c=c +t=570+190 = 760 mm

The neutral axis depth determined above is as follows

c=2011 mm > 760 mm

It can be concluded that the S304-14 simplified (h/t) check performed above is not satisfied,
and that a detailed verification is required (as presented above), to confirm the wall stability.

4. Design the flanged section for the combined axial load and flexure — consider
distributed and concentrated wall reinforcement (see Section C.1.1.1).

The key design parameters for this calculation were determined in step 3 above. The factored
moment resistance M, will be determined by summing up the moments around the centroid of
the wall section as follows

M, =C,(1,/2-x)+2(4, 1A X2, /2-d") = 2346*10° *(10000/2 — 567) + 2*(0.85* 400*600)* (10000, 2 95)
M, =12392 kNm> M, =10900 kNm  OK

5. Perform the S304-14 ductility check (see Section 2.6.3).

To satisfy the S304-14 ductility requirements for Moderately Ductile shear walls (CI.16.8.7), the
neutral axis depth ratio (c//, ) should be less than the following limit:

¢/l, <0.15 when h, /I, >5

In this case,

h

- =14<5

IW

Also, the neutral axis depth
c=2011 mm

and so

¢/l =2011/10000 =0.2 > 0.15

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand &,;, and the rotational capacity 8,., and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as
A, =15 mm

The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:

M
n 14034 oo 13 v, =13

M, 10900
In this case, the nominal moment capacity is equal to M,= 14034 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢, = ¢ =1.0 were used.

Vw =
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The S304-14 minimum rotational demand is »» = 0.003 for Moderately Ductile shear walls
(Cl.16.8.8.2). The actual value is determined from the following equation:

i (4,,R,R, —Aﬂyw): (15-20-1.5-15-130) _, oy o

id g
— (14.0—10'0)103
2 2

This is less than @n» = 0.003, hence
0,=6., =3.0-107°

1 m

The rotational capacity can be calculated as follows (and should not exceed 0.025)

& |

0, = (Z2°-0.002) = (w
C

-0.002 |=4.22-10"°
2.2011

Since the rotational capacity 6y is greater than rotational demand &y, it can be concluded that
the S304-14 ductility requirements have been satisfied.

6. Minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.8.9.2)

Cl.16.8.9.2 requires that the factored shear resistance, V_, for a Moderately Ductile shear wall
should be greater than the shear due to the effects of factored loads, but not less than i) the
shear corresponding to the development of the nominal moment capacity, M, , or ii) shear

corresponding to the lateral seismic load (base shear), where earthquake effects were
calculated using RsR.=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Moderately Ductile shear walls, the shear capacity should exceed the shear
corresponding to the nominal moment capacity, as follows

M, =14034 kNm
The shear force resultant acts at the effective height #,, the distance from the base of the wall

to the resultant of all the seismic forces acting at the floor levels. Note that 4, can be determined
as follows

Mf
h =——=10.0 m

e

V
!
The shear force V,, corresponding to the overturning moment M, is equal to
M, 14034
', =——=——= 1403 kN
h 10.0

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to
Vo R;°R, 1090-2.0-1.5
s 1.3 1.3
The smaller of these two values should be used, hence

=2510kN
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V., =1403kN

7. The diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and S304-14
C1.10.10.2.1 and 16.8.9.1)

Masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, ~0.8/, =8000 mm effective wall depth
7, =1.0 solid grouted wall

Although the seismic hazard index /. F,S, (0.2) =0.6 > 0.35, partial grouting in the plastic hinge
zone of Moderately Ductile shear walls is permitted by S304-14 CIl.16.8.5.2, because the wall

h
has an aspect ratio - =1.4 < 2, and is subjected to low axial stress (less than 0.1 ).
However, this design requires full grouting within the plastic hinge zone due to the significant
shear demand.

P, =0.9P, = 1620 kN

M, M
Since r 10900 =1.25>1.0 use —-—=1.0in the equation for masonry shear

V,d, 1090*8.0 V.d,
resistance below

M,
v, =0.16Q2——2L)./f" =0.51 MPa
Vd,

v, =¢,,b,d, +025P,)y, =0.6(0.51*190*8000+0.25*1620*10%)*1.0 = 704 kN

To find the steel shear resistance V, assume 2-15M bond beam reinforcing bars at 600 mm

spacing (this should provide some allowance in the shear strength to satisfy capacity design),
thus

A, =400 mm?

s =600 mm

V,=0.64,4,f, o _06%0.85%200 4 400+8090 _ 1088 kN
‘ ‘ s 1000 600

According to Cl.16.8.9.1, there is a 25% reduction in the masonry shear resistance contribution
for Moderately Ductile shear walls, and so

V. =075V, +V, =0.75%704+1088 =1616 kN > ¥/, =1403 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
maxV, =0.4¢,./ f,b,d,y, =1154kN <V,

It can be concluded that the above maximum shear resistance requirement has not been
satisfied. It would be required to increase either wall thickness or length to satisfy this
requirement. It is recommended to perform this check at an early stage of the design.
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8. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 C1.10.10.5.1)
The factored in-plane sliding shear resistance V' is determined as follows:
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, = 2800 mm? total area of vertical wall reinforcement

For Moderately Ductile shear walls, all vertical reinforcement should be accounted for in the Ty
calculations (CI.10.10.5.1), (also see Figure 2-17)

T, =¢.4,f, =085%2800*400 =952 kN

P, =1620 kN

C=P, +T, =1620+952 = 2572 kN

V. =¢ uC =0.6%1.02572 = 1543 kN

V. =1543 kN> V , =1403 kN OK

9. Shear resistance at the web-to-flange interface (see Section C.2 and $304-14 CI.7.11).
The factored shear stress at the web-to-flange interface is equal to the larger of the horizontal
and vertical shear stress, as shown below.

Horizontal shear can be determined as follows:

s oV _ 1403*10°
Tl 190%10000
where ¢, = 190 mm (effective wall thickness)

Vertical shear over the entire wall height (caused by the resultant compression force be
calculated in Step 3):

- Py _ 2550*10°
7 b, *h, 190*14000

Factored masonry shear strength for bonded interfaces (S304-14 CI.7.11.1):

v, =0.16¢,[f7 =0.30 MPa

Since

v, =0.96 MPa> v, =0.30 MPa

it is required to provide additional shear reinforcement at the web-to-flange interface. The

horizontal reinforcement consists of 2-15M bars @ 600 mm spacing (bond beam reinforcement)

and both bars can be extended into the flange (90° hook). These bars will provide shear

resistance at the interface. Therefore,

, _ AT, 0.85%2*200*400
’ S-t, 600 *190

The total shear resistance

v,=v,+v,=030+1.19=1.49 MPa> v, =0.96 MPa OK

=0.74 MPa

=0.96 MPa governs

=1.19 MPa

10. S304-14 seismic detailing requirements for Moderately Ductile shear walls — plastic
hinge region

According to Cl.16.8.4, the required height of the plastic hinge region for Moderately Ductile
shear walls must be greater than (see Table 2-5)

h, =12/2=5.0 m

or
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h,=h,/6=140/6=23 m
(note that 4, denotes the total wall height)
So, hp =5.0 m governs

The reinforcement detailing requirements for the plastic hinge region of Moderately Ductile
shear walls are as follows (see Table 2-4 and Figure 2-40):
1. The wall in the plastic hinge region must be solid grouted (CI.16.6.2) (the relaxation
under Cl.16.8.5.2 does not apply in this case).
2. Horizontal reinforcement requirements
a) Reinforcement spacing should not exceed the following limits (CI.16.8.5.4):
s <1200 mm or

s <1,/2=10000/2 = 5000 mm

Since the lesser value governs, the maximum permitted spacing is

s <1200 mm

According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements

Horizontal reinforcement shall not be lapped within (Cl.16.8.5.4)

600 mm or

[,/5=2000 mm

whichever is greater, from the ends of the wall. In this case, the reinforcement should not
be lapped within the distance 2000 mm from the end of the wall. The horizontal
reinforcement can be lapped at the wall half-length. Lap splice lengths within the plastic

hinge region are required to be at least 1.5/, (Cl. 16.8.5.5).

Horizontal reinforcement shall be (Cl.16.8.5.4):

i) provided by reinforcing bars only (no joint reinforcement!);

i) continuous over the length of the wall (can be lapped in the centre), and

i) have at least 90° hooks at the ends of the wall.

All these requirements will be complied with, as shown on the design summary drawing.
3. Vertical reinforcement requirements (CI.16.8.5.1)
Unlike Ductile shear walls there are no specific lapping restrictions for vertical reinforcement in
the plastic hinge zone of Moderately Ductile shear walls. Lap splice lengths within the plastic

hinge region are required to be at least 1.5/, (C1.16.8.5.5).

11. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that Moderately Ductile shear walls must be solid grouted in the plastic hinge
region, except for certain specific cases. But they may be partially grouted outside the plastic
hinge region (this depends on the design forces).

9/1/2018 3-65



hond beam
lapped at the
half length

Lt 2-15M @ 600

| NN
T T
| T
ju = SR e == e |IIHmH|II
? T
ﬁ el
| A
ﬁ i
; I R SRS SR IS R T
| H HFIFHHHE R

ﬂ IR RR SRR I

i ap SN RSN S 5

! A
i isl:islisEisl izl izl s i ishiils
- I I I

pagnoab Ajinf |

ww 000S !

10000

Elevation

8-15M
10000
Section A-A

- 2-15M bond
beam reinf.

-

Section B-B

12. Discussion

It is important to consider all possible behaviour modes, and to identify the one that governs in

this design. The following shear resistance values need to be considered:

3-66
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1. ¥V, =1616 kN diagonal tension shear resistance
2. V, =1543 kN sliding shear resistance
3. V, =1403 kN minimum required shear resistance to achieve ductile flexural behaviour

It can be concluded that the minimum required shear force corresponding to the flexural failure
mechanism is the smallest, so the flexural failure mechanism governs in this case, which is a
requirement for the Capacity Design approach for Moderately Ductile shear walls.
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EXAMPLE 5b: Seismic design of a shear wall with a rectangular cross-section
Perform the seismic design of a shear wall shown in the figure below. The wall is five-stories
high, with a total height of 15 m. It is part of a building located in Vancouver, BC (City Hall),
where the seismic hazard index, /. F,S, (0.2), is 0.85. The design needs to meet the
requirements for a Ductile Shear Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1800 kN, an in-plane seismic shear force of 943 kN, and an overturning moment of 9430 kNm.
The elastic lateral displacement at the top of the wall is 13 mm. Select the wall dimensions
(length and thickness), and the reinforcement so that the CSA S304-14 seismic design
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall
length should not exceed 10 m, and a standard rectangular wall section should be used.

Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as
solid grouted. Grade 400 steel reinforcement (yield strength f} = 400 MPa) is used for this
design.

s
oy
£
o
v
| &
o
_.."I_
=
oy
o
M =9430kNm I =1800kN s
/ i MVioazkn | ||
_ <10m _
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SOLUTION:

1. Material properties and wall dimensions

Material properties for steel (both reinforcing bars and joint reinforcement):
¢ =085 f, =400MPa

and masonry:

From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar:
f, =13.5 MPa (assume solid grouted masonry)

¢,=06
Wall dimensions:
Overall height 2, =15 m

Wall length considered for initial calculations: / =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:

. Pf= 1800 kN axial load
. Vf= 943 kN seismic shear force

e M, =9430 kNm overturning moment

For Ductile shear walls (NBC 2015 Table 4.1.8.9 — see Section 1.7) it is required that Ry= 3.0
and Ro=1.5.

According to S304-14 Cl.16.9.2, the height/length aspect ratio for Ductile walls needs to be
greater than 1.0. In this case,

h, 15000

w

I, 10000

w

=15>1.0 OK

3. Determine the required wall thickness based on the S304-14 height-to-thickness
requirements (C1.16.9.3, see Section 2.6.4)

S304-14 prescribes the following height-to-thickness (h/ t) limit for the compression zone in
Ductile shear walls:

h(t+10) <12

For this example, 2= 3000 mm (unsupported wall height)

So,

t> h/12—10 =240 mm

Therefore, in this case the minimum acceptable wall thickness is
t =240 mm

Note that it would be possible to use a smaller wall thickness (190 mm) if ¢ <4b, or
¢ <0.3/,(CI.16.9.3.3 relaxing provision 4/(¢ +10) <16). The requirement

c<4b, =4-190 = 760 mm would require a very small neutral axis depth which would be difficult
to achieve in this case. Therefore a 240 mm wall thickness will be used in this design.
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4. Determine the wall length based on the shear design requirements.

Designers may be requested to determine the wall dimensions (length and thickness) based on
the design loads. In this case, the thickness is governed by the height-to-thickness ratio
requirements, and the length can be determined from the maximum shear resistance for the
wall section. The shear resistance for flexural walls cannot exceed the following limit (S304-14
Cl.10.10.2.1):

V, <maxV, =0.4¢,.f,b,d 7,
7, =1.0 solid grouted wall (required for plastic hinge zone)
b, =240 mm overall wall thickness

d,=0.8] =8000 mm effective wall depth
Set

V,=V,=943 kN

and so

* 3
= 943710 =5570 mm

V.
[ > /
" 0.4¢,11b,(0.8)y, 04%0.6%/13.5%240*%0.8*1.0

Therefore, based on the shear design requirements the designer could select a wall length of
5.7 m. However, a preliminary capacity design check indicated that a minimum wall length of
nearly 10 m was required, thus try

[,, =10000 mm
which gives
max/V, =1690 kN

5. Minimum S304-14 seismic reinforcement requirements (see Table 2-3). Since
1,F,S,(0.2)=0.85> 0.35, it is required to provide minimum seismic reinforcement (S304-14

Cl.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic
reinforcement requirements.

6. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2).
Design for the combined effects of axial load and flexure by assuming uniformly distributed
vertical reinforcement over the wall length.

The amount of vertical reinforcement can be estimated from the ductility requirements for
Ductile shear walls (S304-14 CI.16.8.8). The goal for the S304-14 detailed ductility check is to
confirm that the rotational capacity exceeds the rotational demand in the plastic hinge zone.

Based on the minimum rotational demand requirements (6min = 0.004), the ¢/, ratio should not

exceed 0.2 for Ductile Shear Walls (see Section 2.6.3). An approach for estimating the
maximum amount of vertical reinforcement required for predefined C/lw ratio for walls with

distributed reinforcement is presented in Section 2.6.3, and its application will be illustrated next.

The main input parameter is the level of axial compression stress relative to compressive
strength ", , thatis,
f P 1800-10°

= 7. =0.055
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From Fig. 2-27 (see below), for the given axial stress level of 0.055 (vertical axis), and assuming
c/lW =0.2 (horizontal axis) it is possible to determine the corresponding o value;

w=0.06

The required vertical reinforcement ratio can be determined from o as follows:
_w¢,f', 0.06-0.6-13.5

P, =0.00143
9.1, 0.85-400
Since the vertical reinforcement ratio is equal to
_ Avt
Py =

The maximum required area of vertical reinforcement can be determined as follows

A, =p,-t-1,=0.00143-240-10000 = 3432 mm?

Since this is the maximum amount from the ductility perspective, the goal is to select an amount
of reinforcement less than the maximum and confirm that the amount is sufficient to satisfy the
strength requirement (flexural capacity must be larger than the applied bending moment).

0.2
Q
0.18 i
o 2
iy o |
0.16 T T |
2 3!
E o014 g > !
P a o | ®
a B
E 0.12 g I ——(
i S 1
5 i 1 (.02
% 0. ] 0.04
k-] I
8 : 0.06
Eﬂ —-0.08
o ——0.1
=

The proposed area of vertical reinforcement is as follows:
A,,= 2800 mm?

In total, 14 vertical reinforcing bars are used in this design: 4-15 M reinforcing bars as
concentrated reinforcement (2-15M bars at each end) plus 10-15M bars as distributed
reinforcement, and the average spacing is equal to

10000 —200
§<——— =753 mm

13
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Since 2-15M bars are concentrated at each end, the amount of concentrated reinforcement is
A, =400 mm?

And the amount of distributed reinforcement is

A, =4, —2A4, =2000 mm?

For Ductile shear walls, S304-14 Cl.16.9.5.3 notes that the amount of concentrated
reinforcement at each wall end should not exceed 25% of the distributed reinforcement. Since
AC/Ad =400/2000 = 0.2 < 0.25 OK

It is also required to check the maximum reinforcement area per S304-14 CI.10.15.2 (see Table
2-3).

SinZ:e s=753mm < 4t =4%240=960 mm

A e =0.024, =0.02(240 *10°) = 4800 mm?/m

This is significantly larger than the estimated area of vertical reinforcement.

The wall is subjected to axial load P,= 1800 kN. The moment resistance for the wall section
can be determined from the following equations (see Section C.1.1.2):

a, =085 £, =08 w=005 a=0.09 c=1820 mm

P % 3
M, =054 f, A0 | 1L | 1= | =0.5%0.85+ 220 %800« 12000, 1800710 (1_ 1820)
| 6fA, 1 1000 1000 | 0.85%400%2800 A 10000

M, =11300 kNm> M, =9430 kNm  OK

Note that
c/lw = 1820/10000 =0.18<0.2

Therefore, the S304-14 minimum rotational demand requirement for Ductile shear walls is
satisfied.

7. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis
depth ratio (c/lw ), should be less than the following limit:

¢/l, <0.125 when &, /I, >5
In this case,

w

—~ =1.5 < 5Also, the neutral axis depth

¢=1820 mm
and so
c/lw = 1820/10000 =0.18>0.125

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand 6., and the rotational capacity &,. , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which

is given as
4, =13 mm

9/1/2018 3-72



The overstrength factor must be at least equal to 1.3, and can be determined from the following
equation:

M, 12800 _ .

n

M, 9430

In this cése, the nominal moment capacity is equal to M,= 12,800 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢ = ¢ =1.0were used.

Vw =

The S304-14 minimum rotational demand is &nin = 0.004 for Ductile shear walls. The actual value
is determined from the following equation:

_4RR, —4,7, ) (13-3.01.5-13-1.36) 4.08.10

id — E
h - (15.0—102'0)103

2

This is greater than @i, = 0.004, so the actual rotational demand will be used.
The rotational capacity can be calculated as follows (and should not exceed 0.025)

& |

0. = (_;" ¥ _0.002) = (w
C

2-1820

ic

- 0.002j =4.87-107°

Since the rotational capacity 6y is greater than rotational demand &y, it can be concluded that
the S304-14 ductility requirements have been satisfied.

8. Minimum required factored shear resistance (see Section 2.6.5 and S304-14
Cl.16.9.8.3)

Cl.16.9.8.3 requires that the factored shear resistance, V., should be greater than the shear due
to effects of factored loads, but not less than i) the shear corresponding to the development of
probable moment capacity, M ,, or ii) the shear corresponding to the lateral seismic load (base

shear), where earthquake effects were calculated using RiR,=1.3.

The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to
the probable moment capacity, as follows

M b= 13900 kNm
The shear force resultant acts at the effective height #,, that is, the distance from the base of

the wall to the resultant of all seismic forces acting at the floor levels. Note that/, can be
determined as follows

M,
h,=——=10.0 m
!
The shear force Vpb corresponding to the overturning momentMp is equal to
M, 13900
h 10.0

e

V., =

D

= 1390 kN
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The second requirement gives an “almost elastic” factored base shear force for the wall, which

is equal to

V- Ve R, R, _ 943-3.0-1.5
s 1.3

The smaller of these two values should be used, hence

V., =1390kN

7

=3264 kN

9. Diagonal tension shear resistance (see Sections 2.3.2 and 2.6.5 and $304-14
C1.10.10.2.1 and CI1.16.9.8.1)

Masonry shear resistance (V)):

b, =240 mm overall wall thickness

d, =08/ =8000 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,= 1620 kN

Since
M, 9430 M, . , ,
= =1.25>1.0 use — =1.0 in the equation for masonry shear resistance
V., 943*8.0 V.d,
below

M,
v, =0.1602——2)/f = 0.59 MPa

Vd,
V, =4,(,b,d,+0.25P,)y, =0.6(0.59*240*8000+0.25*1620*10%)*1.0 = 920 kN

wv

The required steel shear resistance can be found from the following equation (see Section 2.6.5
and S304-14 CI.16.9.8.1) (note 50% reduction of V)

V=05V +V 2V,

hence

V.=V ,-05V =1390-0.5-920 =930 kN

The required amount of reinforcement can be found from the following equation
A 4 930*10°

v S

- _ =0.57
s 0.64,f,d, 0.6%0.85%400*8000

Try 2-15M bond beam reinforcing bars at 600 mm spacing ( 4, =400 mm? and s =600 mm):

A
v _ 400 _ 675057 OK

s 600
Steel shear resistance V' :
d
V.=0.69.A4, f, — =O.6*O.85*ﬂ*400"<M = 1088 kN
TS 1000 600

Total diagonal shear resistance:
V=05V +V =0.5-920+1088 =1548 kN >V , =1390kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
max V, = 0.44,\/f,b,d,7, =1690 kN
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Since
V., =1548KkN < maxV, =1690kN OK
In conclusion, the diagonal shear design requirement has been satisfied.

10. Sliding shear resistance (see Sections 2.3.3 and 2.6.7 and S304-14 C1.10.10.5.1 and
16.9.8.2)

The factored in-plane sliding shear resistance V' is determined as follows:
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, = 2800 mm? total area of vertical wall reinforcement

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted
forinthe T calculations (S304-14 Cl.16.9.8.2), and so (see Figure 2-17b)

10000 -1820
10000

l, —c
/

w

T, =¢SASf{ j:0.85*2800*400*(

P, = 1620 kN
C=P, +T, = 1620+779 = 2399 kN

V. =¢ uC =0.61.0"2399 = 1440 kN
V. =1440 kN> ¥, =1390kN  OK

J =779 kN

11. S304-14 seismic detailing requirements for Ductile shear walls — plastic hinge region

According to CI.16.9.4, the required height of the plastic hinge region for Ductile shear walls is
(see Table 2-5)

h,=0.5[+0.14,=0.5-10000+0.1-15000 = 6500 mm

However
0.8/ < hp <1.5],

Since
0.8/, =8000 mm > 6500 mm

It follows that
h,=0.8/,=8.0 mgoverns.

The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are
as follows (see Table 2-4 and Figure 2-41):
1. The wall in the plastic hinge region must be solid grouted (CI.16.6.2).
2. Horizontal reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (CIl.16.9.5.4):
s <600 mm or
s<1,/2=10000/2 = 5000 mm
Since the lesser value governs, the maximum permitted spacing is
s <600 mm
According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements
Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4)
600 mm or
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1,/5=2000 mm

whichever is greater, from the end of the wall. In this case, the reinforcement should not

be lapped within 2000 mm from the end of the wall. The horizontal reinforcement can be
lapped at the wall half-length.

Horizontal reinforcement shall be (CI.16.9.5.4):

i) provided by reinforcing bars only (no joint reinforcement!);

ii) continuous over the length of the wall (can be lapped in the centre), and

iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall.
3. Vertical reinforcement requirements:

a) Reinforcement spacing should not exceed the following limits (CI.16.9.5.3):
s<1,/4=10000/4 =2500 mm, but need not be less than 400 mm, or the minimum

seismic requirements specified in Cl.16.4.5.3, which states that s <1200 mm (this value
governs since the wall thickness is 240 mm). Since the lesser value governs, the
maximum permitted spacing is s <1200 mm.

b) Detailing requirements

At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (Cl.16.9.5.2).

12. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be
partially grouted outside the plastic hinge region (depending on the design forces).
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It is important to consider all possible behaviour modes and identify the one that governs in this

design. The following shear resistance values need to be considered:

13. Discussion

V. =1548 kN diagonal tension shear resistance

4.

V' =1440 kN sliding shear resistance

5.

v, =1390 kN minimum required shear resistance to achieve ductile flexural behaviour

6.

3-77
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It can be concluded that the minimum required shear force corresponding to the flexural failure
mechanism is the smallest (1390 kN), so it governs in this case, which is a requirement for the
Capacity Design approach for Ductile RM shear walls.
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EXAMPLE 5c: Seismic design of a shear wall with Boundary Elements|

Perform the seismic design of the same shear wall designed in Example 5b. The building is
located in Victoria, BC where the seismic hazard index, /,.F,S, (0.2), is 1.3. The design needs
to meet the requirements for a Ductile Shear Wall SFRS according to NBC 2015.

The section at the base of the wall is subjected to a previously calculated total dead load of
1800 kN, an in-plane seismic shear force of 1310 kN, and an overturning moment of 13100
kNm. The elastic lateral displacement at the top of the wall is 18 mm. Select the wall dimensions
(length and thickness) and the reinforcement, so that the CSA S304-14 seismic design
requirements for Ductile shear walls are satisfied. Due to architectural constraints, the wall
length should not exceed 10 m. The wall may have standard rectangular section, or
alternatively, boundary elements may be provided at wall ends if required by design.

Use hollow concrete blocks of 30 MPa unit strength and Type S mortar. Consider the wall as
solid grouted. Grade 400 steel reinforcement (yield strength f =400 MPa) is used for this
design.

£
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M;=13100kNm | *f =1800kN .
Vi =1310kN|
£10m 2
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SOLUTION:

As the first attempt, the wall will be designed with a rectangular cross-section, and boundary
elements will be provided only if a rectangular section cannot be used.

1. Material properties and wall dimensions
Material properties for steel (both reinforcing bars and joint reinforcement):

¢ =085 f, =400MPa

and masonry:

From S304-14 Table 4, for 30 MPa concrete blocks and Type S mortar:
f, =13.5 MPa (assume solid grouted masonry)

¢,=0.6
Wall dimensions:
Overall height 2, =15 m

Wall length considered for initial calculations: / =10 m

2. Load analysis
The section at the base of the wall needs to be designed for the following load effects:
e P,=1800 kN axial load

. Vf = 1310 kN seismic shear force

e M, =13100 kNm overturning moment

For Dubtile shear walls (NBC 2015 Table 4.1.8.9 — see Section 1.7), it is required that Ry= 3.0
and Ro=1.5.

According to S304-14 CI.16.9.2, the height/length aspect ratio for Ductile walls needs to be

greater than 1.0. In this case,
h, _ 15000

>
/ 10000

w

=15>1.0 OK

3. Determine the required wall thickness based on the S304-14 height-to-thickness
requirements (C1.16.9.3, see Section 2.6.4)

S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
Ductile shear walls:

h/(t +10) <12

For this example,

h = 3000 mm (unsupported wall height)

So,

t>h/12-10 =240 mm

Therefore, in this case the minimum acceptable wall thickness is
t =240 mm

4. Minimum S304-14 seismic reinforcement requirements (see Table 2-2)

Since I.F,S, (0.2)= 1.3 > 0.35, it is required to provide minimum seismic reinforcement (S304-
14 CI.16.4.5). See Example 4a for a detailed discussion on the S304-14 minimum seismic
reinforcement requirements.
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5. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.2).

The total area of vertical reinforcement has been estimated as follows:
A, = 6000 mm?

The wall is subjected to axial load P, = 1800 kN. The moment resistance for the wall section
can be determined from the following equations (see Section C.1.1.2):

a, =085 £, =08 @w=009 a=0.08 c=1910 mm

3
400 *IOOOO(H 1800*10 ](1 1910)

P
M, =050 f A1, |1+—L— | 1-5 |=0.5%0.85*—*6000 -
: 81,4, 1 1000 1000 | 0.85*400*6000 \ 10000

M, =15500 kNm> M . =13100 kNm OK

6. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (Cl.16.9.7), the neutral axis
depth ratio (c/lw ) should be less than the following limit:

¢/l, <0.125 when h, /I, >5
In this case,

h

—=15<5

IW

Also, the neutral axis depth

c=1910 mm

and so

¢/l, =1910/10000 = 0.19 > 0.125

Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand QM and the rotational capacity Ql-c , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as
4, =18 mm
The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:
M 18200

= =1.39

n

M, 13100

In this cése, the nominal moment capacity is equal to M,= 18,200 kNm, which was calculated in
the same manner as the factored moment resistance M., except that unit values of material
resistance factors ¢ =@ =1.0were used.

Vw =

Based on the S304-14 rotational demand requirement, the minimum rotational demand &y, =
0.004 for Ductile shear walls. The actual value is determined from the following equation:
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4,R,R,—4 18-3.0-1.5—18-1.
«9,-d=( R Ry A,)_(18:30-1:5-18 ) _5.60.10°

[
h, = [15.0—10'0)-103
2 2

This is greater than i, = 0.004, so the actual rotational demand will be used.
The rotational capacity can be calculated as follows (and should not exceed 0.025)

l [0.0025 10000

0. = (M —-0.002) = - 0.002) =4.53-107
2c 2-1910

Since the rotational capacity is less than the rotational demand, it can be concluded that the
S304-14 ductility requirements have not been satisfied. The design will be continued by
providing boundary elements at wall ends, and following the pertinent S304-14 provisions for
Ductile shear walls with increased compressive strain beyond the 0.0025 limit (S304-14
Cl.16.10). It is proposed that an overall wall length of 9 m be used, which is less than the
maximum length (10 m) per design requirements.

7. Determine the minimum required thickness for the boundary elements and the wall
based on the S304-14 height-to-thickness requirements (C1.16.9.3, see Section 2.6.8.3)
S304-14 prescribes the following height-to-thickness (h/t) limit for the compression zone in
Ductile shear walls with boundary elements (for the zone between the compression face to one-
half of the compression zone depth, see Figure 2-35):

h/(t +10) <12
For this example,

h = 3000 mm (unsupported wall height)

So

t>h/12-10 =240 mm

Therefore, in this case the minimum acceptable wall thickness of the boundary element is 240
mm, however a larger size will be selected since larger number of vertical reinforcing bars need
to be provided, that is,

t, =390 mm

The maximum required thickness of the wall web is

t>h/16—10=178 mm

Therefore, a 190 mm wall thickness could be used for this design based on the height/thickness
requirements, however a larger thickness is required to meet the shear resistance requirements,
therefore

t =240 mm

will be used in this design.

8. Design the wall for the combined effect of axial load and flexure (see Section C.1.1.1).
The proposed wall length /,, = 9000 mm is less than the maximum permitted value (10000 mm).

The proposed dimensions of boundary elements are:
[, =790 mm length

t, =390 mm thickness
These dimensions will be verified at a later stage.
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The design procedure assumes that the concentrated reinforcement (area A, ) is provided at
each boundary element, while the remaining reinforcement (area 4, ) is distributed over the wall

web. After a few trial estimates, the total area of vertical reinforcement 4, was determined as
follows

A,,= 5200 mm?
Concentrated reinforcement in the boundary elements (8-15M bars at each boundary element):
A, = 1600 mm?

Check if this amount is sufficient based on S304-14 CI.16.11.8:
A, >20.00075*¢t*[ =0.00075 *240*9000 = 1620 mm?

The proposed area is slightly less than the required area, but the difference is insignificant.

Distributed reinforcement in the wall:
A, =5200-2*1600 = 2000 mm?

Distance from the wall end to the centroid of concentrated reinforcement A, :

d'=1,/2=395 mm

The area of the compression zone 4, :

4 = P +9¢.f,4, _1800* 10° +0.85*400 * 2000
0.85¢, 1", 0.85*0.6*13.5

=3.6*10° mm?

If the area of the compression zone exceeds the area of boundary element, it follows that the
neutral axis falls in the wall web (as opposed to the boundary element). In this case the area of
boundary element is

A, =1,%1,=390%790=3.08*10" mm?

Since

A, > A4,

it follows that the neutral axis falls in the web. The compression zone depth a can be

determined from the following equation:
A, —b,*, 3.6*10° —=390*790

t ' 240
The neutral axis depth is

c=-% 21259 mm
0.8

+790=1010mm

a

The centroid of the masonry compression zone:

!
f 2
by *1, *(a —2] tla=1,fri2 390%790%(1010— 20y + (1010 = 790)* * 240,2
x= = 2 =539
4, 3.6%10

The resultant of masonry compression stress is

C, =(0.85¢, f' )4, =(0.85%0.6*13.5)(3.6¥10°) = 2480 kN
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Finally, the factored moment resistance of the wall
section is

M, =C,(1,/2-x)+2(g, /4.1, /2—d") = 2.48*]

+2(0.85*400*1600)(9000/2 —395) =14300 kNm

M, =14300 kNm> M  =13100 kNm OK

Note that
c/lw = 1259/9000 =0.14<0.2

therefore the S304-14 minimum rotational demand requirement for Ductile shear walls is
satisfied.

9. Determine the size of boundary elements (see Section 2.6.8.3).
The proposed thickness of a boundary element is

t, =390mm
and the proposed length is
[, =790 mm

Note that the length of a boundary element should not be less than the largest of the following
three values (CI1.16.11.2):

I, >(c-0.1,,¢c/2,c(¢,, —0.0025)/¢,,)

The selection of the length is an iterative process, since it is required to perform a design for
axial load and flexure in order to determine the neutral axis depth ¢, hence
c—0.1/,=1259-0.1*9000 =359 mm

¢/2=1259/2 = 630mm

The larger of these two values will govern, that is,

[, 2630mm

Hence, the proposed value of 790 mm is OK. Note that the third criterion is as follows
I, >c(¢,, —0.0025)/¢,,

Cannot be followed at this stage because ¢,,, is not known.

10. Perform the S304-14 ductility check (see Section 2.6.3).
To satisfy the S304-14 ductility requirements for Ductile shear walls (CI.16.9.7), the neutral axis
depth ratio (c/lw ) should be less than the following limit:

¢/l, <0.125 when h, /I, >5
In this case,

ﬂ =1.67<5

[,

Also, the neutral axis depth
c=1259 mm

and so

¢/l, =1259/9000 = 0.14 > 0.125
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Therefore, the simplified S304-14 ductility requirement is not satisfied. Consequently, a detailed
ductility check according to S304-14 CI.16.8.8 needs to be performed. It is required to determine

the rotational demand Qid and the rotational capacity Ql-c , and to confirm that the capacity
exceeds the demand.

The rotational demand depends on the elastic lateral displacement at the top of the wall, which
is given as

4, =18 mm

The overstrength factor must be at least equal to 1.3 and can be determined from the following
equation:

V= M, =—16600 =1.27<1.3
M, 13100

Hence,

y, =13

In this case, the nominal moment capacity is equal to M,= 16,600 kNm, which was calculated in
the same manner as the factored moment resistance M,, except that unit values of material

resistance factors ¢, = ¢ =1.0were used.

The S304-14 minimum rotational demand is &.» = 0.004 for Ductile shear walls. The actual value
is determined from the following equation:

0, - (Z’flRoRd —ZWW): (18-3.0-1.5—18-1.30):5.49.1073

14
I (15.0_9-0).103
2 2

This is greater than i, = 0.004, so the actual rotational demand will be used.
The required maximum compressive strain value can be determined from the following equation
(see Section 2.6.8.2)

e,, >0, + o.ooz)% =(5.49*107 +0.002)

w

2*1259
9000

=0.0021

Note that
[, z2c(s,, — 0.0025)/6‘mu

However, this criterion cannot be applied since ¢, is less than 0.0025.

11. Minimum required factored shear resistance (see Section 2.6.5 and S$S304-14
C1.16.10.4.3)

Cl.16.10.4.3 requires that the factored shear resistance, V,, should be greater than the shear
due to the effects of factored loads, but not less than i) the shear corresponding to the
development of probable moment capacity, M ,, or ii) the shear corresponding to the lateral

seismic load (base shear), where earthquake effects were calculated using RsR.= 1.3.
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The first requirement is based on the Capacity Design approach (see Section 2.5.1 for more
details). For Ductile shear walls, the shear capacity should exceed the shear corresponding to
the probable moment capacity, as follows

M, =18600 kNm

The shear force resultant acts at the effective height #,, that is, the distance from the base of

the wall to the resultant of all seismic forces acting at the floor levels. Note that/, can be
determined as follows

M,
h,=——=10.0 m

Vv
!
The shear force ¥, corresponding to the overturning moment 3/ , is equal to
M, 1
My 18600 s
h 10.0

e

The second requirement gives an “almost elastic” factored base shear force for the wall, which
is equal to

_Vy-R;-R, _1310:3.0-15

o =4535kN

: 1,.3 1.3
The smaller of these two values should be used, hence
V., =1860kN

12. Diagonal tension shear resistance (see Section 2.6.5 and S304-14 C1.10.10.2.1)
Masonry shear resistance (V)):

b, =240 mm overall wall thickness

d, =08/, =7200 mm effective wall depth
7, =1.0 solid grouted wall

P, =0.9P,= 1620 kN

M.
v, =0.16Q2——2-)./f} = 0.59 MPa
V,d,
Since
M.
r o _B100 439540
Ve, 1310%7.2
M,
use =1.0
V.d,

V., =4,(v,b,d,+025P,)y, =0.6(0.59*240*7200+0.25*1620*10%)*1.0 = 852 kN

The required steel shear resistance can be found from the following equation (see Section 2.6.5
and S304-14 CI1.16.10.4.1)

V. = (0.0025/(25 W, +V. 2V,

Since

0.0025/(25,"“) =0.0025/(2*0.0021) = 0.59
Then

mu
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V.=V,—0.59 =1860-0.59*852=1357 kN

The required amount of reinforcement can be found from the following equation

4, _ V. 1357*10° 0.9

s 0.6¢,1f,d, 0.6%0.85%400%*7200

Try 2-20M bond beam reinforcing bars at 600 mm spacing ( 4, = 600 mm? and s =600 mm):

A, 600

r=—=1.0>092 OK

s 600

Steel shear resistance V' :

V.=0.60.A4,f d _ 0.6*0.85* 400 *600* 7200 1470 kN
‘ B 1000 600

Total diagonal shear resistance:
V=059 +V =059-852+1470=1973 kN >V, =1860 kN OK

Maximum shear allowed on the section is (S304-14 CI.10.10.2.1)
maxV, =0.4¢,\/f1b,d,y, =1520 kN

Since

V. =1973kN > max V., =1520 kN

the above maximum shear resistance requirement has not been satisfied. It would be required
to increase either wall thickness or length to satisfy this requirement. It is recommended to
perform this check at an early stage of the design.

13. Sliding shear resistance (see Sections 2.3.3 and 2.6.7, and S304-14 C1.10.10.5.1 and
16.10.4.2)

The factored in-plane sliding shear resistance V', is determined as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, =5200 mm? total area of vertical wall reinforcement

For Ductile shear walls, only the vertical reinforcement in the tension zone should be accounted
forin the 7', calculations (S304-14 CI.16.10.4.2), (also see Figure 2-17b)

9000-1259
9000

[, —c
Ty=¢sAsfy[ ;
P, =1620 kN
C=P,+T, =1620+1520 = 3140 kN
V. =¢ uC =0.61.0"3140 = 1884 kN
V. =1884 kN> 7, =1860kN  OK

j=0.85*5200*400*[ j = 1520 kN

w

14. Shear at the interface (see Section 2.6.8.4 and S304-14 Cl.16.11.10)

It is required to check whether the horizontal wall reinforcement is sufficient to resist the vertical
shear stresses at the boundary element interface. The shear flow demand is based on the
design shear force transferred over the storey height, that is,

V,= Vo :@:620kNlm
3.0

sf
‘ h
The shear flow resistance is as follows (Cl.16.11.10)
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Vi =@k,

The resistance provided by horizontal reinforcement (2-20M bars at 600 mm spacing) is as
follows

Vi =@,uF, =0.6*1.0%340 = 204 kN/m

Where

F,=¢.f,(4,/s)=0.85%400*(600/600) = 340 kN/m

is the shear flow resistance provided by the horizontal reinforcement. Since
Vi <Vy

it follows that additional horizontal reinforcement is required to satisfy the requirement. Let us
assume that 2-20M bars (total area 600 mm?) will be provided at 200 mm spacing throughout
the wall height at the first-floor level, that is,

F,=¢.f,(4,/s)=0.85%400*(600/200) = 1020 kN/m

Vi=¢,uF, =0.6%1.0%1020 = 612 kKN/m

This shear flow resistance approximately satisfies the shear flow demand. The difference (620-
612=8 kN/m) is 1% of the total demand, which is insignificant.

15. Detailing of boundary elements (see Section 2.6.8.5 and S$304-14 C1.16.11)

1) Regular ties and buckling prevention ties within the plastic hinge zone

Dimensions of a boundary element:

[, =790 mm length

t, =390mm thickness

A4, =1,*t,=790%*390 =3.08 *10° mm?

For the rectangular hoop reinforcement, the minimum area As, in each principal direction should
not be less than the larger of the following (S304-14 CI.16.11.6):

A '
A, =02k,k,, Ao Sn gy

c

ch yh
or
A, = 0.09f—’”s-hc
fyh
where
n, 8

k, = = =133

n-2 8-2

n, = 8 number of supported bars around the perimeter of a boundary element

k, =0.1+30¢,, =0.1+30%0.0021=0.163

A, =290%690 = 2.0*10° mm?

is the area of the confined core and 4, = 690 mm is the larger dimension of the confined core

(the dimension in other direction is 290 mm)
The maximum spacing of buckling prevention ties within the plastic hinge zone should not
exceed the lesser of (S304-14 Cl.16.11.4)
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s <(6d,,24d,,,t,/2)

Where d is longitudinal bar diameter, and dse is the tie diameter, hence
6d, =6*15=90mm

24d,, =24*10 =240 mm

t,/2=390/2 =195 mm

Hence,

s <90 mm governs

Assume

s =80mm

The required area of tie reinforcement in boundary elements should be at least equal to the
larger of

*80* 690 =124 mm?

A ' * 5
A, =02k k, oL ng p —02%133%0,163% 208710 135
"4, L 2.0%10° 400
or

A4, = 0.09&s h, = 0.09%*80 *690 = 168 mm?

yh

Hence

A, =168 mm? governs

This area of reinforcement can be achieved through 3-10M bars (total area 300 mm?): two bars

are a part of a regular tie enclosing the boundary element, plus a cross tie supporting
intermediate bars.

2) Regular ties and buckling prevention ties outside the plastic hinge zone

The maximum spacing of buckling prevention ties outside the plastic hinge zone should not
exceed the lesser of (S304-14 Cl.12.2.1)

s<(6d,,48d,,,t,)

Where d is longitudinal bar diameter, and dse is the tie diameter, hence
16d, =16*15=240mm

48d,, =48*10=480mm

t, =390mm

Hence,

s <240 mm governs

Assume
s =240 mm

3) Vertical reinforcement: detailing
At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (S304-14 Cl.16.11.9).

16. The S304-14 seismic detailing requirements for Ductile shear walls — plastic hinge
region

According to Cl.16.10.3, the required height of the plastic hinge region for Ductile shear walls is
(see Table 2-5)
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h,=0.5l,+0.14,=0.5-9000+0.1-15000 = 6000 mm

However
[, < hp <2.0/,

Since
[,, =9000 mm > 6000 mm

It follows that
h,=1,=9.0 mgoverns.

The reinforcement detailing requirements for the plastic hinge region of Ductile shear walls are
as follows (see Table 2-4 and Figure 2-41):
1. The wall in the plastic hinge region must be solid grouted (CIl.16.6.2).
2. Horizontal reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (Cl.16.9.5.4):
s <600 mm or
s <1,/2=9000/2 = 4500 mm
Since the lesser value governs, the maximum permitted spacing is
s <600 mm
According to the design, the horizontal reinforcement spacing is 600 mm, hence OK.
b) Detailing requirements
Horizontal reinforcement shall not be lapped within (Cl.16.9.5.4)
600 mm or

[,/5= 1800 mm

whichever is greater, from the end of the wall. In this case, the reinforcement should not
be lapped within the distance 1800 mm from the end of the wall. The horizontal
reinforcement can be lapped at the wall half-length.

Horizontal reinforcement shall be (CI.16.9.5.4):
i) provided by reinforcing bars only (no joint reinforcement!);
ii) continuous over the length of the wall (can be lapped in the centre), and
iii) have 180° hooks around the vertical reinforcing bars at the ends of the wall.
3. Vertical reinforcement requirements:
a) Reinforcement spacing should not exceed the following limits (CI.16.9.5.3):

s <1,/4=9000/4 =2250 mm, but need not be less than 400 mm

or the minimum seismic requirements specified in Cl.16.4.5.3, which states that
s <1200 mm (this value governs since the wall thickness is 240 mm).
Since the lesser value governs, the maximum permitted spacing is s <1200 mm.
b) Detailing requirements
At any section within the plastic hinge region, no more than half of the area of vertical
reinforcement may be lapped (Cl.16.9.5.2).

17. Design summary

The reinforcement arrangement for the wall under consideration is summarized in the figure
below. Note that a Ductile shear wall must be solid grouted in plastic hinge region, but it may be
partially grouted outside the plastic hinge region (depending on the design forces).
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EXAMPLE 6 a: Design of a loadbearing wall for out-of-plane seismic effects

Verify the out-of-plane seismic resistance of the loadbearing block wall designed for in-plane
loads in Example 4b, according to NBC 2015 and CSA S304-14 requirements. The wall is a part
of a single-storey warehouse building located in Burnaby, BC, with soil corresponding to Site
Class D. The wall is 8 m long and 6.6 m high, and is subjected to a total dead load of 230 kN
(including its self-weight). The wall is constructed with 200 mm hollow concrete blocks of 15
MPa unit strength, Type S mortar, and solid grouting. The wall is reinforced with 15M Grade 400
vertical rebars at 600 mm on centre spacing. The slenderness effects outlined in S304-14 will
not be considered in this design.

l P=220kN
~ 15M@a00

£ |~
g
=
=
h =]
@ - 190 mm

" Block wall
o  I—

SOLUTION:

1. Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa

Masonry:

¢,=0.6

S304-14 Table 4, 15 MPa concrete blocks and Type S mortar:
f.l=7.5 MPa (assume solid grouted masonry)

2. Determine the out-of-plane seismic load according to NBC 2015 (see Section 2.7.7.3).
This design requires the calculation of seismic load V', for parts of buildings and nonstructural
components according to NBC 2015 Cl.4.1.8.18. First, seismic design parameters need to be
determined as follows:

e Location: Burnaby, BC  (NBC 2015 Appendix C)

§5,(0.2)=0.768 and PGAs= 0.50
e Foundation factors
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F =F(0.2)=0.9 and Site Class D for PGA= 0.50 (from Table 1-3 or NBC 2015 Table

4.1.8.4.B)
e /,=1.0 normal importance building
Find S (horizontal force factor for part or portion of a building and its anchorage per NBC
2015, Table 4.1.8.18, Case 1)
C,=10 4,=10 R, =25 A, =3.0(h =h, topfloor)

S, = CpA,AX/Rp =1.0-1.0-3.0/2.5=1.2
0.7<§,<40 OK
e W,=40 kN/m? unit weight of the 190 mm block wall (solid grouted)
Seismic load V', can be calculated as follows:
V,=03F,S, (O.Z)IESpr =0.3*0.9*0.69*1.0*1.2*(4.0 kN/m?) = 0.99 kN/m?~ 1.0 kN/m?

3. Determine the effective compression zone width (5 ) for the out-of-plane design (see
Section 2.4.2).

According to S304-14 CI.10.6.1, the effective compression zone width (5 ) should be taken as
the lesser of the following two values (see Figure 2-19):

b=s5=600 mm spacing of vertical reinforcement

or

b=4t=4%190=760 mm

All design calculations in this example will be performed considering a vertical wall strip of width
b =600 mm.

4. Find the design shear force and the bending moment.
The wall will be modeled as a simple beam with pin
supports at the base and top. The loads on the wall p
consist of axial load due to roof load and wall self- fl_ emm=01L
weight, plus the seismic out-of-plane load. The roof i

load and wall self-weight create moments due to
minimum axial load eccentricity.

¢ Axial load per wall width equal to b = 600 mm:

# A . ]

P, _ Py BN 6217252170 kN /
[, 8m £ ; ;

¢ Minimum eccentricity (S304-14 CI.10.7.2) B lm}, I."I

e, =0.1¢=0.019m Ve \i |*—'

e Out-of-plane seismic load per wall width equal to < |I .f'l

b =600 mm: \ /

v, =1.0%0.6=0.6 kN/m

IIETEENEEEEE NN N

¢ Design bending moment (at the midheight): =190 mm HI"& {
v *p? % (2 = | \ /
M= p¥ey, +——=" =17*0.019+% . S
: 5 7

=3.59 = 3.6 kNm
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5. Check whether the wall resistance for the combined effect of axial load and bending is
adequate (see Section C.1.2).

This can be verified from a P-M interaction diagram which can be developed using the EXCEL©®
software (or commercially available masonry design software). Relevant tables used to develop
the diagram are presented below, while the detailed theoretical background is outlined in
Section C.1.2. Note that the design width is equal to b = 600mm .

Table 1. Design Parameters

Design parameter Unit Symbol | Value
Wall thickness mm t 190
Design width mm b 600
Masonry maximum strain EPSm 0.003
Masonry strength MPa 'm 7.5
Steel yield strength MPa fy 400
Steel modulus of elasticity | MPa Es 200000
Effective depth mm d 95
(c/d)balanced 0.6
Reinforcement area mm*2/b As 200
Material resistance-

masonry Fim 0.6
Material resistance-steel Fis 0.85
X- factor X 1
BETA1 BETA1 0.8
Effective area mm?*2 Ae 114000

In this case, the reinforcement is placed at the centre of the wall and so
d= L2 = @ =95 mm
2 2

The neutral axis depth corresponding to a balanced condition (onset of yielding in the steel and
maximum compressive strain in masonry) can be determined from the following proportion

c, &

d—c, - £,

For ¢, =0.003 and ¢, =0.002 it follows that

¢, =0.6d

The area of vertical reinforcement per width » = 600 mm can be determined as follows:
A 200

A, =-"t*b= @* 600 =200 mm? (15M@ 600 mm reinforcement)
s

To determine whether the wall can carry the combined effect of axial load and bending moment,

it is useful to construct an axial load-moment interaction diagram (also known as P-M interaction
diagram). The P-M interaction diagram for this example was developed using Microsoft
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EXCEL® spreadsheet, but other methods or computer programs are also available. The results
of the calculations are presented in Table 2.

Table 2. P-M Interaction Diagram Values

c/d c Cm EPSs T, M, P.
mm N N kNm kN
0.01 0.95 |1744.2 ]0.02 68000 0.16504 | -66.256
0.1 9.5 17442 0.02 68000 1.59071 | -50.558
] 0.2 19 34884 0.02 68000 3.04886 | -33.116
P°g;t§tgg|"2fé:fd 0.3 |285 [52326 [0.02  [68000 |4.37445 |-15.674
0.4 38 69768 0.02 68000 5.56749 | 1.768
0.5 47.5 |87210 0.02 68000 6.62796 | 19.21
0.6 57 104652 | 0.02 68000 7.55587 | 36.652
0.6 57 104652 | 0.002 68000 7.55587 | 36.652
Points controlled 0.7 66.5 | 122094 | 0.00129 | 43714.3 | 8.35123 | 78.3797
by masonry c>c, 0.8 76 139536 | 0.00075 | 25500 9.01403 | 114.036
0.9 85.5 | 156978 | 0.00033 | 11333.3 | 9.54426 | 145.645
1 95 174420 |0 0 9.94194 | 174.42
1.2 114 | 209304 |-0.0005 |-17000 | 10.3396 | 209.304
Full section under 1.3 123.5 | 226746 | -0.0007 |-23538 | 10.3396 | 226.746
compression 1.5 142.5 |1 261630 | -0.001 -34000 | 9.94194 | 261.63
1.7 161.5 | 296514 | -0.0012 |-42000 | 9.01403 | 296.514
2 190 | 348840 |-0.0015 |-51000 | 6.62796 | 348.84
Pure compression 0 348.84

The three basic cases considered in the development of the interaction diagram (steel-
controlled behaviour, masonry-controlled behaviour, and the balanced condition) are illustrated

on the figure below. For more detailed explanation related to the development of P-M interaction
diagrams refer to Section C.1.2.
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The P-M interaction diagram showing the point of interest (M , =3.6 kNmand P, =17 kN) is
shown below. It is obvious that the wall resistance to combined effects of axial load and out-of-

plane bending is adequate for the given design loads and the reinforcement determined in

Example 4b.
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6. Check whether the out-of-plane shear resistance of the wall is adequate (S304-14
Cl1.10.10.3, see Section 2.4.2).
Design shear force at the support per wall width 5 = 600 mm:
v, *h *

v, =-—+t—= :0'6 0.6 ~ 2.0 kN

/ 2 2
According to S304-14 CI.10.10.3, the factored out-of-plane shear resistance (V) shall be taken
as follows

V.=¢ (v, -b-d+0.25P)

where

v, =0.16,/f] = 0.44 MPa ( f, = 7.5 MPa for solid grouted 15 MPa block)

d =95 mm effective depth (to the block mid-depth)
b =600 mm effective compression zone width
The axial load P, can be determined as

P, =09P, =0.9%17.25=15.5 kN

(note that the load has been prorated in proportion to the effective compression zone width 5).
So,

V. =0.6%(0.44*600*95+0.25*15500) =17.4 kN
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Since
Vf =20kN<V =174 kN OK

Maximum shear allowed on the section is
maxV, = 0.4¢, /£ (b*d)=0.4%0.6%~7.5*(600%95) = 37.5 kN OK

7. Check the sliding shear resistance (see Section 2.4.3).
The factored out-of-plane sliding shear resistance V| is determined according to S304-14
Cl.10.10.5.2, as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, =200 mm? area of vertical reinforcement per wall width 5 = 600 mm
T,=¢.4,f, =0.857200"400 = 68 kN

P, =09P, =15.5 kN

P,=P,+T, =15.5+68 = 83.5 kN

V. =¢,uP,=0.6"1.083.5= 50.0 kN

V. =50.0kN >V . =2.0kN OK

Note that the sliding shear resistance does not govern in this case, however this mechanism

often governs the in-plane shear resistance.

8. Conclusion

It can be concluded that the out-of-plane seismic resistance for this wall is satisfactory. This wall
seems to be overdesigned for the out-of-plane resistance because the in-plane seismic design

governs (this is a common scenario in design practice).
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EXAMPLE 6 b: Design of a nonloadbearing wall for out-of-plane seismic effects

Consider the same masonry wall discussed in Example 6a, but in this example treat is as a
nonloadbearing wall. The wall is 8 m long and 6.6 m high and is constructed using 200 mm
hollow concrete blocks of 15 MPa unit strength and Type S mortar. Verify the out-of-plane
seismic resistance of the wall according to NBC 2015 and CSA S304-14 seismic requirements.

Consider the following two cases:
a) unreinforced wall, and
b) reinforced partially grouted wall (use Grade 400 steel reinforcement for this design).

Use the seismic load determined in Example 6a, that is, v, = 1.0 kKN/m?.

SOLUTION:

Material properties
Steel (both reinforcing bars and joint reinforcement):

¢ =0.85 f, =400 MPa

Masonry:

¢,=0.6

Compression resistance (S304-14 Table 4, 15 MPa concrete blocks and Type S mortar):
f.'=9.8 MPa (ungrouted, or partially grouted ignoring grout area)

Tension resistance normal to bed joint (S304-14 Table 5):
f,= 0.4 MPa (ungrouted)

Find the design shear force and the bending moment.
The wall will be modeled as a simple beam with pin supports at the base and the top. The wall
heightis /4, = 6.6 m. A unit wall strip (width b =1000 mm) will be considered for this design.

The forces on the wall consist of the axial load due to the wall self-weight and the bending
moment due to seismic out-of-plane load (NBC 2015 load combination 1xD+1xE).

e Factored axial load per width 5 of 1.0 m:

wall weight w= 2.46 kN/m? (ungrouted 190 mm block wall)

P, =w* hz = (2.46)*6;26*1.0= 8.1 kN/m

S

e Out-of-plane seismic load per width 4 of 1.0 m:
v, =1.0 kN/m

e Factored bending moment (at the midheight):

v *h? 1.0%6.6°
M,=-"+——= 076.6 ~ 5.5 kNm/m
' 8 8
o Factored shear force (at the support):

v *h *
Vf =_Lr ¥ _ 1.0%6.6 ~ 3.3 kN/m
2 2
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a) Unreinforced wall

Check whether the wall resistance to the combined effect of axial load and bending is
adequate (see Section 2.7.1.3).
Find the load eccentricity:

o= My SSKNM_ o (m — 680mm
P, 8.1kN
According to S304-14 CI.7.2.1, an unreinforced masonry wall is to be designed as uncracked if
e>0.33¢
where ¢ denotes the wall thickness (¢ = 190mm )
0.33t =0.33*190 = 63mm
In this case,
e =680mm > 0.33t = 63mm
so the wall will be designed as uncracked (i.e. the maximum tensile stress is less than the

allowable value) according to S304-14 CI.7.2. The design procedure is explained in Section
2.71.3.

First, we need to determine properties for the effective wall section for a width 5 =1000 mm.
For a hollow 190 mm wall, the values obtained from Table D-1 are as follows:

A, =75.4*10° mm?m effective cross-sectional area

S, =4.66*10° mm%m section modulus of effective cross-sectional area

. b=1m ,
= |
o A Vo o
5
P o, ST i
( b
A~ \ maortar-bedded

e
area

The maximum compression stress at the wall face can be calculated as follows:

P, M, 81*10° 5.5%10°
maXfC =—++ = 3 + -
A, S, 754*10° 4.66*10
The allowable value is equal to
é, fr =0.6%9.8=59MPa
Since

max f, =1.29MPa < 5.9MPa
it follows that the maximum compression stress is less than the allowable value.

=0.107+1.18 =1.29MPa

Find the maximum tensile stress as follows:

P. M. *103 %106
max f, =~ 2L = 5] 103— >-> 106 =0.107-1.18 =-1.07MPa
A, S, 754*10° 4.66*10
The allowable value is equal to
-¢,f, =—0.6%0.4=-024MPa

Since
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max f, = —-1.07MPa < —0.24MPa
it follows that the maximum tensile stress exceeds the allowable value, which is not acceptable.

In this design, the tensile stress criterion is not going to be satisfied even if the wall thickness is
increased to 290 mm. Therefore, a reinforced masonry wall is required in this case. Also,
reinforcement in this wall is mandatory since the wall is to be constructed at Ottawa, ON, where
the seismic hazard index [, F,S, (0.2 =1.0%1.0*0.66=0.66 > 0.35. Therefore, the design will
proceed considering a reinforced nonloadbearing wall.

b) Reinforced wall

i. Find the minimum seismic reinforcement for nonloadbearing walls (see Section 2.7.4).
According to S304-14 CI.16.4.5.2a, if 0.35<1,F,S,(0.2)<0.75 nonloadbearing walls shall be
reinforced in one or more directions with reinforcing steel having a minimum total area of

Ao =0.00054,

The reinforcement may be placed in one direction, provided that it is located to reinforce the wall
adequately against lateral loads and spans between lateral supports.

A =0.00054, =0.0005%(190*10% mm2) = 95 mm?m

where

4, =(1000mm)*(190mm)=190*10° mm? gross cross-sectional area per metre of wall length

stotal

Let us choose 15M vertical reinforcement (area 200 mm?) at 1200 mm spacing which is the
maximum spacing allowed (1200 mm).
The area of reinforcement per metre of wall length is

1000
A, = 200*% =167mm?m > 95 mm¥m OK

ii. Determine the effective compression zone width (5 ) for the out-of-plane design (see
Section 2.4.2).

The wall resistance will be determined considering a strip equal to the bar spacing s =1200 mm,
as follows:

P, =8.1%12 297 kN
1.0

M =5.5*£: 6.6 KNm

v, =33+12 40 kN
1.0

iii. Check whether the wall resistance to the combined effect of axial load and bending is
adequate (see Section C.1.2).

Since this is a partially grouted wall, its flexural resistance will be determined using a T-section
model.

According to S304-14 CI.10.6.1, the effective compression zone width (5 ) should be taken as
the lesser of the following two values (see Figure 2-19):

b=s=1200 mm

or

b=4t=4%*190 =760 mm
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Therefore, b =760 mm will be used as the width of the masonry compression zone.
A typical wall cross-section is shown on the figure below. Note that the face shell thickness is 38

mm (typical for a hollow block masonry unit). The same value can be obtained from Table D-1,
considering the case of an ungrouted 200 mm block wall.

s b=760 mm ___

oL oo o

— T,

[ |
[ S=1200 mm |

T-section

Since the reinforcement is placed at the centre of the wall, the effective depth is equal to

d:i:@:% mm
2 2

The reinforcement area used for the design needs to be determined as follows:
A, =4, =200 mm?

The internal forces will be determined as follows (see Figure C-9):

T,=¢.f,4, =0.85%400*200 = 68000 N

Since

C, =P, +T, =9700+68000="77700 N

and

C, =(0.85¢, ' Nb-a)

the depth of the compression stress block a can be determined as follows
C 77700

a= m =

0.85¢, 7' b 0.85%0.6%9.8*760
Since
a=20mm < i, = 38mm

=20 mm

the neutral axis is located in the face shell (flange). The moment resistance around the centroid
of the wall section can be determined as follows

M, =C,(d—a/2)=77700*(95-20/2) = 6.6 kNm

Since

M, =6.6 kNm= M =6.6 kNm

it follows that the wall flexural resistance is adequate. However, the reinforcement spacing could

be reduced to s =1000 mm to allow for an additional safety margin (the revised moment
resistance calculations are omitted from this example).

iv. Check whether the out-of-plane shear resistance of the wall is adequate (see Section
2.4.2).

According to S304-14 CI.10.10.3, the factored out-of-plane shear resistance (V) shall be taken
as follows

V. =¢,(, -b-d+0.25P)) where
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v, =0.16,/f] = 0.50 MPa

d =95 mm effective depth

b =200 mm web width - equal to the grouted cell width (156 mm) plus the thickness of the
adjacent webs (26 mm each)

The axial load P, can be determined as

P, =09P, =0.9%9.7=8.7 kN
Thus,
V. =0.6*(0.50*200*95+0.25*8700) = 7.0 kN
Since
V,=40kN</V, =70kN OK
Maximum shear allowed on the section is
maxV, = 0.4, \[f1 (b*d)=0.4%0.6%/9.8 *(200%95) =14.3 kN OK

v. Check the sliding shear resistance (see Section 2.4.3).

The factored in-plane sliding shear resistance V| is determined according to S304-14
Cl.10.10.5.2, as follows:

4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane

A, =200 mm? area of vertical reinforcement at 1.2 m spacing
T,=¢.4,f, =0.857200"400 = 68.0 kN

P, =8.7kN

P,=P,+T, =87+68.0 =76.7 kN

V. .=¢,uP,=0.6"1.0"76.7 = 46.0 kN

V.,=460kN>V, =40kN  OK

vi. Conclusion
It can be concluded that the out-of-plane seismic resistance of this nonloadbearing wall is
satisfactory. It should be noted that the flexural resistance governs in this design. The required
amount of vertical reinforcement (15M@ 1200 mm) corresponds to the following area per metre
length
A =4, * 1000

s
which is significantly larger than the minimum seismic reinforcement prescribed by S304-14,
thatis, 4., =95 mm?m. Note that 15M@1200 mm is also the minimum vertical reinforcement
that meets the minimum spacing requirements using typical15M bars.

=167 mm?

Also, since horizontal reinforcement does not contribute to out-of-plane wall resistance, it was
not considered in this example. However, provision of 9 Ga. horizontal ladder reinforcement at
400 mm spacing could be considered to improve the overall seismic performance of the wall.

It should be noted that, in exterior walls the mortar-bedded joints could be significantly affected
by the presence of aesthetic joint finishes characterized by deeper grooves (e.g. raked joints);
some of the grooves are up to 10 mm deep. The designer should consider this effect in the
calculation of the compression zone depth.
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EXAMPLE 7: Seismic design of masonry veneer ties

Perform the seismic design for tie connections for a 4.8 m high concrete block veneer wall in a
school gymnasium in Montréal, Quebec. The building is founded on Site Class C. The design
should be performed to the requirements of NBC 2015, CSA S304-14, and CSA A370-14.
Consider the following two types of the veneer backup:

a) Concrete block wall (a rigid backup), and

b) Steel stud wall with 400 mm steel stud spacing (a flexible backup).

c¢) Evaluate the minimum tie strength requirements for the rigid and flexible backup.

SOLUTION:

This design problem requires the calculation of seismic load V_ for nonstructural elements
according to NBC 2015 Cl.4.1.8.18 (for more details see Section 2.7.7.3). Note that the wind
load could govern in a tie design for many site locations in Canada, however wind load
calculations were omitted for this seismic design example.

First, seismic design parameters need to be determined as follows:
e Location: Montréal (City Hall), Quebec (NBC 2015 Appendix C)
S,(0.2) = 0.595 and PGA= 0.379
e Foundation factor
F =F(0.2)=1.0 and Site Class C for PGA= 0.379 (from Table 1-3 or NBC 2015
Table 4.1.8.4.B)
e [,=13 school (high importance building)

At this point, it would be appropriate to check whether the seismic design of ties is required for
this design. According to NBC 2015 Cl.4.1.8.18.2, seismic design of ties is required when the
seismic hazard index ,F,S,(0.2)>0.35 (and also for post-disaster buildings in lower seismic
regions). In this case,

I.F,S,(0.2)=1.3*0.88*0.69=0.79 > 0.35
Therefore, seismic design is required.
e Find §, (horizontal force factor for part or portion of a building and its anchorage per NBC

2015, Table 4.1.8.18, Case 8)

S, = CpArAx/Rp =1.0-1.0-3.0/1.5=2.0
where

A, =1+2h /h,=3.0 for top of wall worst case

Since 0.7<S,<4.0 OK.

e W,=18 kN/m? unit weight of the veneer masonry (concrete blocks)

Seismic load V/, can be calculated as follows:

V,=03F,S, (O.2)1ESpr =0.3*1.0*0.595*1.3*2.0%(1.8 kN/m?) =0.85 kN/m?

Note that the above load is determined per m? of the wall surface area.

a) Concrete block backup (rigid)

Assume the maximum tie spacing permitted according to S304-14 CIl.9.1.3 of 600 mm vertically

and 820 mm horizontally (see Section 2.7.7.2), resulting in a tributary tie area for a concrete
backup wall of
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A=0.82*0.60 = 0.49 m?

The required factored tie capacity should exceed the factored tie load, that is,
V,2V,*A=(0.85kN/m?)*(0.49 m?) = 0.42 kN

Alternatively, for a given tie capacity, a tie spacing could be determined based on the maximum
tributary area calculated from V', and the factored tie capacity V', , that is,

A= Vf /Vp

b) Steel stud backup (flexible)

Since the steel stud is a flexible backup, a tie must be able to resist 40% of the tributary lateral
load on a vertical line of ties (S304-14 CI.9.1.3.3, see Section 2.7.7.3):

V,204*V, *4,=0.4*(0.85 kN/m?)*(1.92m?) = 0.65 kN

where 4,=0.4m*4.8m = 1.92 m? is tributary area on a vertical line of ties based on a probable
0.4 m horizontal tie spacing, and 4.8 m wall height

According to the same S304-14 clause, the tie must also be able to resist a load corresponding
to double the tributary area on a tie, that is,

V, =2%V * 4= 2%0.85 kN/m?)*(0.4m*0.6m) = 0.41 kN

Note that the tributary area was based on a 0.4 m stud spacing, and the maximum vertical tie
spacing of 0.6 m prescribed by S304-14 CI.9.1.3.1.

In conclusion, the tie design load for the flexible veneer backup is ', = 0.65 kN.

c) Minimum strength requirements

CSA A370-14 CI.8.1 prescribes minimum ultimate tensile/compressive tie strength of 1 kN. In
order to obtain the ultimate tie strength, the factored strength needs to be divided by the
resistance factor ¢. According to CSA A370-14 C1.9.4.2.1.2, the resistance factor is 0.9 for tie
material strength, or 0.6 for embedment failure, failure of fasteners, or buckling failure of the
connection. It is conservative to use lower resistance factor in determining the ultimate tie
strength V.

e For the steel stud backup:

V, 2V, =0.65kN

thus the ultimate strength can be determined as follows

=ﬂzﬁzl.08 kN
0.6

Vult

¢
This value is slightly higher than the minimum of 1 kN prescribed by CSA A370-04 and governs.
e Forthe concrete block backup:
V,2V,=042kN

thus the ultimate strength can be determined as follows

v, 0.
=Y 042 9N
4 06

This value is less than the minimum of 1 kN, so the minimum requirement governs.
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EXAMPLE 8: Seismic design of a masonry infill wall

A single-storey reinforced concrete frame structure is shown in the figure below. The frame is
infilled with an unreinforced, ungrouted concrete block wall panel that is in full contact with the
frame. The wall is built using 190 mm hollow blocks and Type S mortar.

a) Model the infill as an equivalent diagonal compression strut. Determine the strut dimensions
according to CSA S304-14 assuming the infill-frame interaction.

b) Assuming that the infill wall provides the total lateral resistance, determine the maximum
lateral load that the infilled frame can resist. Consider the following three failure mechanisms:
strut compression failure, diagonal tension resistance, and sliding shear resistance.

400 x 400
..-/ RC beam
[e=le Fales] wleate |
[ T 1T T T T T T 1 '
C T T T T T T 1
e I D e
400 x 400 —.. I|||||||||||||||I £
RC column P T T T T T T T 1 £
|||||||||||||||I| S
|||||||||||||||I| 2
[ T T T T T T T 1
[ T T T T T T 1
[ElEa] Eheals [EhEal & i
) I s ¥
I":5 3600 mm ;‘I
Given:

E, =25000 MPa concrete frame modulus of elasticity

f., = 9.8 MPa hollow block masonry, from 15 MPa block strength and Type S mortar (Table 4,
CSA S304-14)

SOLUTION:
a) Find the diagonal strut properties.

o Key properties for the masonry wall and the concrete frame
Concrete frame:

E, =25000 MPa
Beam and column properties:

4
I, =1, = (4?3) =2.133*10° mm*

Masonry:
E, =850f' =850%9.8 =8330 MPa
Effective wall thickness (face shells only):
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t, =75 mm (Table D-1, 200 mm hollow block wall)
o Diagonal strut geometry (see Section 2.7.2 and S304-14 CI.7.13)

h =3000 mm
[ =3600 mm
Find € (angle of diagonal strut measured from the horizontal):
tan(@d) :ﬁzﬂz 0.833 0 =39.8"
[ 3600

Length of the diagonal:
1, =~I* + 1> =~/3000% +3600> = 4686 mm

Find the strut width (see Figure 2-46):
] 1
g [ AEAL A_Z 4*25000*2.133*10° *3000 4_1587
’ E,t,sin26 2| 8330*75%sin(2%39.8°)

2

1 1

4E 1,1 i 4%25000%2.133%10° #3600 | *

o, =7 — 1" | =g : : =3322
E,t,sin26 833075 *sin(2%39.8°)

Strut width:

w=ya,? +a,’ =+(1587) +(3322)° =3682 mm

Effective diagonal strut width w, for the compressive resistance calculation should be taken as
the least of (CI.7.13.3.3)

w, =w/2=3682/2=1841 mm

or

w,=1,/4=4686/4=1172 mm

thus

w, =1172~1170 mm

The design length of the diagonal strut /. should be equal to (Cl.7.13.3.4.4)

I =1,—w/2=4686-3682/2=2845 mm

b) Determine the maximum lateral load which the infilled frame can resist assuming that
the infill wall provides the total lateral resistance.

e Diagonal strut: compression resistance (Cl.7.13.3.4.3 and Section 2.7.2)
The compression strength of the diagonal strut P is equal to the compression strength of

Fmax

masonry times the effective cross-sectional area, that is,

Prmax = (0851¢mfr:1 ) Ae
where

¢,=0.6
x =0.5 the masonry compressive strength parallel to bed joints
A, =t,*w,=75%1170 =87750 mm? the effective cross-sectional area

P =0.85%0.5%0.6*9.8%87750=219.3 kN

Fmax
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The corresponding lateral force is equal to the horizontal component of the strut compression
force P,, thatis, (see the figure below)

P, =P *cos(d)=219.3*cos(39.8) =168.0 kN

Fmax

4 i

i A ra

=

—HHHHHHA

Before proceeding with the design, slenderness effects should also be checked. First, the
slenderness ratio needs to be determined as follows (S304-14 CI.7.7.5):
k*l  1.0%2845
L= =15.0
t 190
where
k =1.0 assume pin-pin support conditions

[, =2845 mm design length for the diagonal strut

t =190 mm overall wall thickness

The strut is concentrically loaded, but the minimum eccentricity needs to be taken into account,
that is,

e, =e,=0.1%t=19 mm

Since

* *
KL 150 10-3.5¢,/e, =6.5 and LB

<30.0

the slenderness effects need to be considered.

The critical axial compressive force for the diagonal strut P, will be determined according to
S304-14 CI.7.7.6.3 as follows:

P = 2 =1380 kN
T (1+0.58, K, )

where

¢, =0.65

B, =0 assume 100% seismic live load

E  =8330 MPa modulus of elasticity for masonry
I, =041,=209 *10° mm?*

where
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1170%[190° - (190 - 75.4)* ]
° 12
sectional area based on the effective diagonal strut width w, =1170 mm and the effective wall

I 522*10° mm* moment of inertia of the effective cross-

thickness ¢, = 75.4 mm (face shells only).

Since
P =2193 kN< P =1380 kN

rmax

it follows that compression failure governs over buckling failure.

e The diagonal tension shear resistance (see Section 2.3.2 and S304-14 CI.10.10.2).
Find the masonry shear resistance (V) ):

b, =190 mm overall wall thickness

d, ~0.8/, =2880 mm effective wall depth
7, =0.5 ungrouted wall

P, =0 (ignore self-weight)

v, =0.16,/f/ = 0.5 MPa
v, =¢,(v,b,d,+0.25P,)y, = 0.6(0.5*190*2880+0)*0.5 ~ 82.0 kN

h
This is a squat shear wall because — = % =0.83<1.0. In this case, there is no need to find

the maximum permitted shear resistance per S304-14 CI1.10.10.2.1 max V. because it is not
going to control for an unreinforced wall without gravity load.

¢ Sliding shear resistance (see Section 2.7.1 and CI.7.10.5)

VVS = 0'16¢ﬂ1 V fﬂtl AMC‘ + ¢ﬂ1/lP1

The factored in-plane sliding shear resistance V, is determined as follows.
4 = 1.0 for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
A, =t,-d, =75%2880=216000 mm? uncracked portion of the effective wall cross-sectional

area

The compressive force in masonry acting normal to the sliding plane is normally taken as P,
plus an additional component, equal to 90% of the factored vertical component of the
compressive force resulting from the diagonal strut action P, (see the figure on the previous

page).

P =P +09*P

where

P =V _*tan(0)

thus

P, =0+09*V_tan(@)

The sliding shear resistance can be determined from the following equation
V, =0.16¢, /11 A, +@,1(0.9%V, tan(6))

or
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_0164,\fi A, 0.16%0.6*/9.8*216000
" 1—¢ *u*0.9*tan(d) 1-0.6*1.0%0.9*tan(39.8")

=118.0 kN

e Discussion
It is important to consider all possible behaviour modes and identify the one that governs in this
design. The following three lateral forces should be considered:

a) P, =168 kN shear force corresponding to the strut compression failure
b) V., =82 kN diagonal tension shear resistance

c) V. =118 kN sliding shear resistance

It could be concluded that the diagonal tension shear resistance governs, however once
diagonal tension cracking takes place, the strut mechanism forms. Therefore, the maximum
shear force developed in an infill wall corresponds either to the strut compression resistance or
the sliding shear resistance (see the discussion in Section 2.7.2). In this case, sliding shear
resistance governs andso V, =V =118kN.

It should be noted that the maximum shear force developed in the infill 7, will be transferred
to the adjacent reinforced concrete columns, which need to be designed for shear. This is not
the scope of the masonry design, however the designer should always consider the entire

lateral load path and the force transfer between the structural components.
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A.Response of Structures to Earthquakes

This appendix contains background related to fundamentals of seismic response of structures to
earthquakes. A discussion on elastic and inelastic response is included, and a primer on modal
dynamic analysis.

A.1. Elastic Response

When an earthquake strikes, the base of a building is subject to lateral motion while the upper
part of the structure initially is at rest. The forces created in the structure from the relative
displacement between the base and upper portion cause the upper portion to accelerate and
displace. At each floor the lateral force required to accelerate the floor mass is provided by the
forces in the vertical members. The floor forces are inertial forces, not externally applied forces
such as wind loads, and exist only as long as there is movement in the structure.

Earthquakes cause the ground to shake for a relatively short time, 15 to 30 seconds of strong
ground shaking, although large subduction earthquakes may last for a few minutes. The motion
is cyclic and the response of the structure can only be determined by considering the dynamics
of the problem. A few important dynamic concepts are discussed below.

Consider a simple single-storey building with masonry walls and a flat roof. The building can be
represented by a Single Degree of Freedom (SDOF) model (also known as a stick model) as
shown in Figure A-1a). The mass, M , lumped at the top, represents the mass of the roof and a
fraction of the total wall mass, while the column represents the combined wall stiffness, K, in
the direction of earthquake ground motion. If an earthquake causes a lateral deflection, A, at
the top of the building, Figure A-1b), and if the building response is elastic with stiffness, K,
then the lateral inertial force, I, acting on the mass M will be

F=K-A
When the mass of a SDOF un-damped structure is allowed to oscillate freely, the time for a

structure to complete one full cycle of oscillation is called the period, T', which for the SDOF
system shown is given by

M
T =2r.]— (seconds)
K

Instead of period, the term natural frequency, @ , is often used in seismic design. It is related to
the period as follows

= 2—” = 1/£ (radians/sec)
T M

Frequency is sometimes also expressed in Hertz, or cycles per second, instead of radians/sec,

denoted by the symbol @, , where
o —l_®
YT 2z
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Figure A-1. SDOF system: a) stick model; b) displaced position.

As the structure vibrates, there is always some energy loss which will cause a decrease in the
amplitude of the motion over time - this phenomenon is called damping. The extent of damping
in a building depends on the materials of construction, its structural system and detailing, and
the presence of architectural components such as partitions, ceilings and exterior walls.
Damping is usually modelled as viscous damping in elastic structures, and hysteretic damping
in structures that demonstrate inelastic response. In seismic design of buildings, damping is
usually expressed in terms of a damping ratio, /3, which is described in terms of a percentage of
critical viscous damping. Critical viscous damping is defined as the level of damping which
brings a displaced system to rest in a minimum time without oscillation. Damping less than
critical, an under-damped system, allows the system to oscillate; while an over-damped system
will not oscillate but take longer than the critically damped system to come to rest. Damping has
an influence on the period of vibration, T, however this influence is minimal for lightly damped
systems, and in most cases, is ignored for structural systems. For building applications, the
damping ratio can be as low as 2%, although 5% is used in most seismic calculations where
some nonlinear response is present. Damping in a structure increases with displacement
amplitude since with increasing displacement more elements may crack or become slightly
nonlinear. For linear seismic analysis viscous damping is usually taken as 5% of critical as the
structural response to earthquakes is usually close to or greater than the yield displacement. A
smaller value of viscous damping is usually used in non-linear analyses as hysteretic damping
is also considered.

One of the most useful seismic design concepts is that of the response spectrum. When a
structure, say the SDOF model shown in Figure A-1, is subjected to an earthquake ground
motion, it cycles back and forth. At some point in time the displacement relative to the ground
and the absolute acceleration of the mass reach a maximum, A_, and a_, , respectively.
Figure A-2a) shows the maximum displacement plotted against the period, T'. Denote the
period of this structure as 7, . If the dynamic properties, i.e. either the mass or stiffness change,
the period will change, say to 7, . As a result, the maximum displacement will change when the
structure is subjected to the same earthquake ground motion, as indicated in Figure A-2b).
Repeating the above process for many different period values and then connecting the points
produces a plot like that shown in Figure A-2c¢), which is termed the displacement response
spectrum. The spectrum so determined corresponds to a specific input earthquake motion and a
specific damping ratio, . The same type of plot could be constructed for the maximum
acceleration, a_, , rather than the displacement, and would be termed the acceleration
response spectrum.
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Figure A-2. Development of a displacement response spectrum - maximum displacement
response for different periods T : a)T =T,; b) T =T, ; ¢) many values of T .

Figure A-3a) shows the displacement response spectrum for the 1940 EI Centro earthquake at
different damping levels. Note that the displacements decrease with an increase in the damping
ratio, A, from 2% to 10%. Figure A-3b) shows the acceleration response spectrum for the same
earthquake. For the small amount of damping present in the structures, the maximum
acceleration, a_, , occurs at about the same time as the maximum displacement, A
these two parameters can be related as follows

2
2
amax = [_ﬂ-j Amax
T

Thus, by knowing the spectral acceleration, it is possible to calculate the displacement spectral
values and vice versa. It is also possible to generate a response spectrum for maximum
velocity. Except for very short and very long periods, the velocity, v is closely approximated

by

2
vmax = (_7[) Amax
T

This is generally called the pseudo velocity response spectrum as it is not the true velocity
response spectrum.

and

max ’

max ’

9/1/2018 A-4



;%35_ _____ __[3:2% /_\( _____________

§30 | —R=5% | _______ =N

1 — w2 3=10% |____ T~ N

Period (sec)

a)

— —R=2%

A L —QR=5%

- = =R=10%

Spectral acceleration (g)
}
o
<« -

Period (sec)
b)

Figure A-3. Response spectra for the 1940 El Centro NS earthquake at different damping levels:
a) displacement response spectrum; b) acceleration response spectrum.

The response spectrum can be used to determine the maximum response of a SDOF structure,
given its fundamental period and damping, to a specific earthquake acceleration record.
Different earthquakes produce widely different spectra and so it has been the practice to choose
several earthquakes (usually scaled) and use the resulting average response spectrum as the
design spectrum. For years, the NBC seismic provisions have used this procedure where the
design spectrum for a site was described by one or two parameters, either peak ground
acceleration and/or peak ground velocity, that were determined using probabilistic means.
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More recently, probabilistic methods have been used to determine the spectral values at a site
for different structural periods. Figure A-4 shows the 5% damped acceleration response
spectrum for Vancouver used in developing the NBC 2005. This is a uniform hazard response
spectrum, i.e., spectral accelerations corresponding to different periods are based on the same
probability of being exceeded, that is, 2% in 50 years. This is discussed further in Section 1.3.
The NBC 2015 code uses the same method but has been updated by using many more records
to determine the hazard and has extended the period range out to 10 seconds.

1 -
0.8 A

0.6
0.4

0.2 -

Spectral acceleration (g)

0 I [ I I [ I I I I
0 02040608 1 1214 16 18 2

Period (sec)

Figure A-4. Uniform hazard acceleration response spectrum for Vancouver, 2% in 50 year
probability, 5% damping.

A.2. Inelastic Response

For any given earthquake ground motion and SDOF elastic system it is possible to determine
the maximum acceleration and the related inertia force, £, , and the maximum displacement,
A, . Figure A-5a) shows a force-displacement relationship with the maximum elastic force and
displacement indicated. If the structure does not have sufficient strength to resist the elastic
force, F,, then it will yield at some lower level of inertia force, say at lateral force level, Fy. It
has been observed in many studies that a structure with a nonlinear cyclic force-displacement
response similar to that shown in Figure A-5b) will have a maximum displacement that is not
much different from the maximum elastic displacement. This is indicated in Figure A-5c) where
the inelastic (plastic) displacement, A , is shown just slightly greater than the elastic
displacement, A ,, . This observation has led to the equal displacement rule, an empirical rule
which states that the maximum displacement that the structure reaches in an earthquake is
independent of its yield strength, i.e. irrespective of whether it demonstrates elastic or inelastic
response. The equal displacement rule is thought to hold because the nonlinear response
softens the structure and so the period increases, thereby giving rise to increased
displacements. However, at the same time, the yielding material dissipates energy that
effectively increases the damping (the energy dissipation is proportional to the area enclosed by
the force-displacement loops, termed hysteresis loops). Increased damping tends to decrease
the displacements; therefore, it is possible that the two effects balance one another with the
result that the elastic and inelastic displacements are not significantly different.
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Figure A-5. Force-displacement relationship: a) elastic response; b) nonlinear (inelastic)
response; c¢) equal displacement rule.

There are limits beyond which the equal displacement rule does not hold. In short period
structures, the nonlinear displacements are greater than the elastic displacements, and for very
long period structures, the maximum displacement is equal to the ground displacement.
However, the equal displacement rule is, in many ways, the basis for the seismic provisions in
many building codes which allow the structure to be designed for forces less than the elastic
forces. But there is always a trade-off, and the lower the yield strength, the larger the nonlinear
or inelastic deformations. This can be inferred from Figure A-5c) where it is noted that the
difference between the nonlinear displacement, A, and yield displacement, A , which
represents the inelastic deformation, would increase as the yield strength decreases. Inelastic
deformations generally relate to increased damage, and the designer needs to ensure that the
strength does not deteriorate too rapidly with subsequent loading cycles, and that a brittle failure
is prevented. This can be achieved by additional “seismic” detailing of the structural members,
which is usually prescribed by the material standards. For example, in reinforced concrete
structures, seismic detailing consists of additional confinement reinforcement that ensures
ductile performance at critical locations in beams, columns, and shear walls. In reinforced
masonry structures, it is difficult to provide similar confinement detailing, and so restrictions are
placed on limiting the reinforcement spacing, on levels of grouting, and on certain strain limits in
the masonry structural components (e.g. shear walls) which provide resistance to seismic loads
(see Chapter 2 for more details on seismic design of masonry shear walls).

A.3. Ductility

Ductility relates to the capacity of the structure to undergo inelastic displacements. For the
SDOF structure, whose force-displacement relation is shown in Figure A-5c) the displacement
ductility ratio, 4, , is @ measure of damage that the structure might undergo and can be
expressed as

A

u

A

y

Hy =

The ratio between the maximum elastic force, F

.;» and the yield force, F, is given by the force
reduction factor, R, defined as
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If the material is elastic-perfectly plastic, i.e. there is no strain hardening as it yields (see Figure
A-5b), and if A is equalto A, then it can be shown that , is equaltoR .

For different types of structures and detailing requirements, most building codes tend to
prescribe the R value while not making reference to the displacement ductility ratio, 4, , thus
implying that the ;;, and R values would be similar.

A4 A Primer on Modal Dynamic Analysis Procedure

The main objective of this section is to explain how more complex multi-degree-of-freedom
structures respond to earthquake ground motions and how such response can be quantified in a
form useful for structural design. This background should be helpful in understanding the NBC
seismic provisions.

A.41. Multi-degree-of-freedom systems

The idea of modelling the building as a SDOF structure was introduced in Section A.1, and the
dynamic response to earthquake ground motions was developed in terms of a response
spectrum. Such a simple model might well represent the lateral response of a single storey
warehouse building with flexible walls or bracing system, and with a rigid roof system where the
roof comprises most of the weight (mass) of the structure. However, this is not a good model for
a masonry warehouse with a metal deck roof, where the walls are quite stiff and the deck is
flexible and light relative to the walls. Such a system requires a more complex model using a
multi-degree-of-freedom (MDOF) system. A shear wall in a multi-storey building is another
example of a MDOF system.

Figure A-6 shows two examples of MDOF structures. A simple four-storey structure is shown in
Figure A-6a), and a simple MDOF model for this building consists of a column representing the
stiffness of vertical members (shear walls or frames), with the masses lumped at the floor levels.
If the floors are rigid, it can be assumed that the lateral displacements at every point in a floor
are equal, and the structure can be modelled with one degree of freedom (DOF) at each floor
level (a DOF can be defined as lateral displacement in the direction in which the structure is
being analyzed). This will result in as many degrees of freedom as the number of floors, so this
building can be modelled as a 4-DOF system. It must also be assumed that there are no
torsional effects, that is, there is no rotation of the floors about a vertical axis (torsional effects
are discussed in Section 1.11). The analysis will be the same irrespective of the lateral force
resisting system (a shear wall or a frame), aside from details in finding the lateral stiffness
matrix for the floor displacements.

The warehouse building shown in Figure A-6b) is another example of a MDOF structure. The
walls are treated as a single column with some portion of the wall and roof mass, M, located at
the top. The roof can be treated as a spring (or several springs) with the remaining roof mass,
M, , attached to the spring(s). How much mass to attach to each degree of freedom, and how
to determine the stiffness of the roof, are major challenges in this case.
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Figure A-6. MDOF systems: a) multi-storey shear wall building; b) warehouse with flexible roof.

A.4.2. Seismic analysis methods

The question of interest to structural engineers is how to determine a realistic seismic response
for MDOF systems? The possible approaches are:

= static analysis, and

» dynamic analysis (modal analysis or time history method).

The simplest method is the equivalent static analysis procedure (also known as the quasi-static
method) in which a set of static horizontal forces is applied to the structure (similar to a wind
load). These forces are meant to emulate the maximum effects in a structure that a dynamic
analysis would predict. This procedure works well when applied to small, simple structures, and
also to larger structures if they are regular in their layout.

NBC 2015 specifies a dynamic analysis as the default method. The simplest type of dynamic

analysis is the modal analysis method. This method is restricted to linear systems, and consists
of a dynamic analysis to determine the mode shapes and periods of the structure, and then
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uses a response spectrum to determine the response in each mode. The response of each
mode is independent of the other modes, and the modal responses can then be combined to
determine the total structural response. In the next section, the modal analysis procedure will be
explained with an example.

The second type of dynamic analysis is the time history method. This consists of a dynamic
analysis model subjected to a time-history record of an earthquake ground motion. Time history
analysis is a powerful tool for analyzing complex structures and can take into account nonlinear
structural response. This procedure is complex and time-consuming to perform, and as such,
not warranted for low-rise and regular structures. It requires an advanced level of knowledge of
the dynamics of structures and it is beyond the scope of this document. For detailed background
on dynamic analysis methods the reader is referred to Chopra (2007).

A.4.3. Modal analysis procedure: an example

Consider a four-storey shear wall building example such as that shown in Figure A-6a). The
building can be modelled as a stick model, with a weight, W, of 2,000 kN lumped at each floor
level, and a uniform floor height of 3 m (see Figure A-7). For simplicity, the wall stiffness and the
masses are assumed uniform over the height. This model is a MDOF system with four degrees
of freedom consisting of a lateral displacement at each storey level. A MDOF system has as
many modes of vibration as degrees of freedom. Each mode has its own characteristic shape
and period of vibration. The periods are given in Table A-1, the four mode shapes are given in
Table A-2 and shown in Figure A-7. In this example, the stiffness has been adjusted to give a
first mode period of 0.4 seconds, which is representative of a four-storey structure based on a
simple rule-of-thumb that the fundamental period is on the order of 0.1 sec per floor. Note that
the first mode, also known as the fundamental mode, has the longest period. The first mode is
by far the most important for determining lateral displacements and interstorey drifts, but higher
modes can substantially contribute to the forces in structures with longer periods. In this
example the mode shapes have been normalized so that the largest modal amplitude is unity.

For linear elastic structures, the equations governing the response of each mode are
independent of the others provided that the damping is prescribed in a particular manner. Thus,
the response in each mode can be treated in a manner similar to a SDOF system, and this
allows the maximum displacement, moment and shear to be calculated for each mode. In the
final picture, the modal responses have to somehow be combined to find the design forces (this
will be discussed later in this section). Modal analysis can be performed by hand calculation for
a simple structure, however, in most cases, the use of a dynamic analysis computer program
would be required.

Knowing the mode shapes and the mass at each level, it is possible to calculate the modal
mass for each mode, which is given in Table A-1 as a fraction of the total mass of the structure.
The modal masses are representative of how the mass is distributed to each mode, and the
sum of the modal masses must add up to the total mass. When doing modal analysis, a
sufficient number of modes should be considered so that the sum of the modal masses adds up
to at least 90% of the total mass. In the example here this would indicate that only the first two
modes would need to be considered (0.696 + 0.210 = 0.906).
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Figure A-7. Four-storey shear wall building model and modal shapes.

As an example of how the different modes can be used to determine the structural response,
Figure A-8 shows a typical design acceleration response spectrum which will be used to
determine the modal displacements and accelerations. The four modal periods are indicated on
the spectrum (note that only the first two periods are identified on the diagram; 7,=0.40 and
T>=0.062 sec) and the spectral acceleration S, at each of the periods is given in Table A-3.
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Figure A-8. Design acceleration response spectrum.

A very useful feature of the modal analysis procedure is that it gives the base shear in each
mode as a product of the modal mass and the spectral acceleration S, for that mode, as shown
in Table A-3. For example, the base shear for the first mode is equal to (8000kN x 0.696) x 0.74
= 4127 kN). Note that the spectral acceleration is higher for the higher modes, but because the
modal mass for these modes is smaller, the base shear is smaller. The inertia forces from each
floor mass act in the same directions as the mode shape, that is, some forces are positive while
others are negative for the higher modes (refer to mode shapes shown in Figure A-7). It can be
seen from the figure that the forces from the first mode all act in the same direction at the same
time, while the higher modes will have both positive and negative forces. Thus, the base shear
from the first mode is usually larger than that from the other modes.
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The modal base shears shown in Table A-3 are the maximum base shears for each mode. It is
very unlikely that these forces will occur at the same time during the ground shaking, and they
could have either positive or negative signs. Summing the contribution of each mode where all
values are taken as positive, known as the absolute sum (ABS) method, produces a very high
upper bound estimate of the total base shear. Statistical analyses have shown that the square-
root-of-the-sum-of-the squares (RSS) procedure, where the contribution of each mode is
squared, and the square root is then taken of the sum of the squares, gives a reasonably good
estimate of the modal sum, especially if the modal periods are widely separated.

Table A-3 shows the base shear values estimated by the two methods and gives an indication
of the conservatism of the ABS method for this case (total base shear of 6,462 kN), where the
modal periods are widely separated, and use of the RSS method is appropriate since it gives a
lower total base shear value of 4,468 kN. Note that there is a third method that is incorporated in
many modal analysis programs called the complete-quadratic-combination (CQC) method. This
method should be used if the periods of some of the modes being combined are close together,
as would be the case in many three-dimensional structural analyses, but for most structures
with well-separated periods and low damping, the result of the RSS and CQC methods will be
nearly identical (this is true for most two-dimensional structural analyses).

The amplitude of displacement in each mode is dependent upon the spectral acceleration for
that mode and its modal participation factor, which is a measure of the degree to which a certain
mode participates in the response. The value of the modal participation factor depends on how
the mode shapes are normalized, and so will not be given here, however the values are smaller
for the higher modes with the result that the displacements for the higher modes are generally
smaller than those of the first mode. The modal displacements are presented in Table A-4 (to
three decimal places, which is why some values are shown as zero) and plotted in Figure A-9
for the first two modes as well as the RSS value. In this example, the influence of the two
highest modes is very small and has been omitted from the diagram. It is difficult to distinguish
between the first mode displacements and the RSS displacements in Figure A-9; this is
characteristic of structures with periods less than about 1 second, such as would be the case for
most masonry structures.

Storey

-1 0 1 2 3 4
Displacement (cm)

Figure A-9. Modal displacements.
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Modal analysis gives the modal shears and bending moments in each member and these
values can be used to generate the shear and moment diagrams. These are summarized in
Tables A-5 and A-6 and are graphically presented in Figure A-10. Only the results from the first
two modes are shown as the higher modes contribute very little to the response. Except for
some contribution to the shears, the second mode is insignificant in contributing to the total
values calculated using the RSS method.
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Figure A-10. Modal analysis results: a) shear forces; b) bending moments.

The inertia force at each floor for each mode can be determined by taking the difference
between the shear force above and below the floor in question. Modal inertia forces along with
the RSS values are summarized in Table A-7, and show that the higher modes at some levels
contribute more than the first mode. Note that the sum of the inertia forces for each mode is
equal to the base shear for that mode. However, the sum of the RSS values of the floor forces
at each level is 6284 kN (obtained by adding values for storeys 1 to 4 in the last column of the
table); this is not equal to the total base shear of 4468 kN found by taking the RSS of the base
shears in each mode (see Table A-3). This demonstrates the key rule in combining modal
responses: only primary quantities from each mode should be combined. For example, if
the designer is interested in the shear force diagram for the structure, it is necessary to find the
shear forces in each mode and then combine these modal quantities using the RSS method. It
is incorrect to find the total floor forces at each level from the RSS of individual modal values,
and then use these total forces to draw the shear diagram. Even interstorey drift ratios, defined
as the difference in the displacement from one floor to the next divided by the storey height,
should be calculated for each mode and then combined using the RSS procedure. It would be
incorrect to divide the total floor displacements by the storey height; although in this example
since the deflection is almost entirely given by the first mode, this approach would be very close
to that found using the RSS method.

One of the disadvantages of modal analysis is that the signs of the forces are lost in the RSS
procedure and so equilibrium of the final force system is not satisfied. Equilibrium is satisfied in
each mode, but this is lost in the procedure to combine modal quantities since each quantity is
squared. That is why it is important to determine quantities of interest by combining only the
original modal values.
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A.4.4. Comparison of static and modal analysis results

The equivalent static force analysis procedure, which will be presented in more detail in Section
1.6, has been applied to the four-storey structure described above for the spectrum shown in
Figure A-8. Table A-8 compares the results of the two types of analyses. It can be seen that
both the base shear and moment given by the modal analysis method is about 75% of that
given by the static method. This occurs with short period MDOF structures that respond in
essentially the first mode because the modal mass of the first mode for walls is about 70 to 80%
of the total mass. The top displacement from the modal analysis is 78% of the static
displacement, nearly the same as the ratio of the base moments; this would be expected given
that the deflection is mostly tied to the moment.

If the structure is a single-storey, SDOF system, the two analyses methods will give the same
result. But for MDOF systems, such as two-storey or higher buildings, dynamic analysis will
generally result in smaller forces and displacements than the static procedure.

The floor forces from the two analyses are quite different. The floor forces in the upper storeys
obtained by modal analysis are less than the static forces, but in the lower storeys, a reverse
trend can be observed. The reason for this is the contribution of the higher modes to the floor
forces. It can be seen in Table A-7, that at the 2" storey, the second mode contribution is the
largest of all the modes. To ensure the required safety level when seismic design is performed
using the equivalent static analysis procedure, NBC 2015 seismic provisions (e.g. Clause
4.1.8.15) provides additional guidance on the level of floor forces to be used in connecting the
floors to the lateral load resisting elements.

Table A-1. Modal Periods and Masses

Period | Modal mass/
Mode
(sec) Total mass

1 0.400 0.696

2 0.062 0.210

3 0.022 0.070

4 0.012 0.024
Sum 1.000

Table A-2. Mode Shapes

Storey Mode Shapes
1tmode 2"9 mode 39 mode 4t mode
0 0.000 0.000 0.000 0.000
1 0.093 0.505 1.000 -1.000
2 0.328 1.000 0.334 0.969
3 0.647 0.544 -0.972 -0.619
4 1.000 -0.727 0.427 0.175

Note: mode shapes are normalized to a maximum of 1
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Table A-3. Spectral Accelerations, S,, and Base Shears

. Spectral Base
Mode | o8 | acceleration | M09 MasS | gheay
Sa(g) (kN)
1 0.400 0.74 0.696 4127
2 0.062 0.96 0.210 1617
3 0.022 0.96 0.070 534
4 0.012 0.96 0.024 184
Total base shear ABS 6462
Total base shear RSS 4468
Note: total weight = 8000 kN
Table A-4. Modal Displacements
Modal Displacements (cm)
Storey RSS
1*mode 2" mode 3" mode 4" mode
Base 0.000 0.000 0.000 0.000 0.00
1 0.367 0.021 0.002 0.000 0.37
2 1.300 0.042 0.001 0.000 1.30
3 2.564 0.023 -0.002 0.000 2.56
4 3.963 -0.031 0.001 0.000 3.96
Table A-5. Modal Shear Forces
Shear Forces (kN)
Storey RSS
15t mode 2""mode 3" mode 4" mode
0-1 4127 1617 534 -184 4468
1-2 3942 999 -143 204 4074
2-3 3287 -224 -369 -172 3320
3-4 1996 -888 289 68 2205
Table A-6. Modal Bending Moments
Bending Moments (kNm)
Storey RSS
1*mode 2" mode 3" mode 4" mode
Base 40053 -4511 -931 255 40320
1 27675 339 670 -298 27686
2 15849 3335 240 313 16201
3 5988 2665 -867 -204 6614
4 0 0 0 0 0
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Table A-7. Modal Inertia Forces (Floor Forces)

Floor Forces (kN)
Storey RSS
1t mode 2"Y mode 3" mode 4" mode
1 185 618 677 -388 1012
2 655 1223 226 376 1455
3 1291 665 -658 -240 1612
4 1996 -888 289 68 2205
Sum 4127 1617 534 -184 4468
Table A-8. Comparison of Static and Dynamic Analyses Results
Storey Shear Forces Floor Forces Moments Deflections
(kN) (kN) (kNm) (cm)
Static Modal'" | Static Modal® Static Modal® Static Modal®
Base 0 0 53280 40320 0 0
5920 4468
1 592 1012 35520 27686 0.48 0.37
5328 4074
2 1184 1455 19536 16201 1.70 1.30
4144 3320
3 1776 1612 7104 6614 3.32 2.56
2368 2205
4 2368 2205 0 0 5.11 3.96
Notes: (1) see Table A-5, last column
(2) see Table A-7, last column;
(3) see Table A-6, last column;
(4) see Table A-4, last column.
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B Relevant Research Studies and Code Background

This appendix contains additional background material relevant to the aspects of masonry
design discussed in Chapter 2. Findings of some relevant research studies, as well as the
discussion on provisions of masonry design codes from other countries, are included. This
information may be useful to readers interested in gaining a more detailed insight into the
subject. However, it should be noted that designers may use alternative design provisions in
situations where CSA S304 is silent on a specific issue. The design provisions contained in
design standards from other countries cannot supersede the provisions of pertinent Canadian
standards.

B.1 Shear/Diagonal Tension Resistance

The CSA S304 shear strength design equation for RM shear walls was first included in the 1994
version of the standard (CSA S304.1-94) and it is largely based on the research performed in
1970s and 1980s, e.g. research program by the US-Japan Joint Technical Coordinating
Committee for Masonry Research (TCCMAR). Numerous experimental studies on RM shear
walls subjected to reversed cyclic loading conducted since the 1990’s provide additional data for
developing new or revised shear strength design equations.

The CSA S304 shear strength equation was evaluated by several researchers, including Seif
EIDin and Galal (2015a); El-Dakhakhni et al. (2013); Davis et al. (2010); Voon and Ingham
(2007). Davis et al. (2010) compared the estimated shear strength predictions based on 8
different code expressions (including the CSA S304.1-04) with the results from 56 tests of fully
grouted RM shear walls with shear dominated response. The average ratio of the test strength
to the estimated strength for the CSA S304 expression was 1.50 with a Coefficient of Variation
(CQOV) of 0.15; this is considered a rather conservative prediction.

El-Dakhakhni et al. (2013) tested 8 fully grouted cantilever RM shear wall specimens with shear
dominated behaviour subjected to reversed cyclic loading. The specimens were squat walls with
aspect ratio ranging from 0.6 to 1.5, were characterized by horizontal reinforcement ratios of
0.07 to 0.13%, and the level of applied axial stress varied from 0 to approximately 0.08xf'n. The
study examined the effectiveness of design shear strength expressions included in the
Canadian (CSA S304.1-04), US (TMS 402/ACI 530/ASCE 5-11), New Zealand (NZS
4230:2004) and European (Eurocode 6) masonry design codes. The results demonstrated that
the CSA S304.1-04 produced the most conservative predictions of all the codes (mean
experimental/calculated ratio = 1.51 and COV= 18.1%). Shear strength predictions based on
international masonry codes, especially the US TMS 402/602 code (mean= 1.14 COV= 12.7%)
and New Zealand code NZS 4230:2004 (mean= 1.13 COV= 16.9%) gave a better fit of the
experimental results.

El-Dakhakhni et al. (2013) also observed that the shear strength expression of the Canadian
concrete design standard CSA A23.3-04, based on the Simplified Modified Compression Field
Theory (SMCFT) approach (Bentz et al. 2006), gave the most accurate prediction of shear
strength for squat walls (mean= 1.06 COV= 10.8%). The underlying theory is the Modified
Compression Field Theory developed in the 1980s (Vecchio and Collins,1986), which has been
referred to as the General Method for Shear Design of RC flexural members in Canada (CSA
A23.3-04). The same approach was adopted for the design of RM beams in Canada in CSA
S304-14 (Cl.11.3.4). The design equations are similar to CSA A23.3-04, but the input parameter
values were calibrated for masonry design purposes. Also, a new parameter K, has been
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introduced to take into account the level of grouting and type of masonry units. This is based on
the research by Sarhat and Sherwood (2010; 2013), which included the results of their own
experimental studies and a survey of the experimental data by other researchers.

The New Zealand Masonry Standard NZS 4230:2004 (SANZ, 2004) states that the axial load
contribution to masonry shear resistance in squat shear walls is equal to 0.9N tan« . This
contribution results from a diagonal strut mechanism, which is based on an assumption that
axial compression load N forms a compression strut at an angle « to the vertical axis (see
Figure B-1). The axial load must be transmitted through the flexural compression zone, while
the horizontal component of the strut force resists the applied shear force (Priestley et al.,
1994). This model implies that the shear strength of squat walls under axial loads should be
greater than that of more slender walls, and higher than that prescribed in CSA S304-14.
According to this model, the axial load contribution is limited to N <0.1f, 4, .

Figure B-1. Contribution of axial load to wall shear strength (reproduced from NZS 4230:2004
with the permission of Standards New Zealand under License 000725).

The shear strength equation in the US masonry design code TMS 402/602-16 (previous
versions were labelled as TMS 402/ACI 530/ASCE 5) was derived from research dating back to
the 1980s (Shing et al. 1990a; 1990 b). The equation has been evaluated by several
researchers, including Alogla et al. (2014); Davis et al. (2010); and Voon and Ingham (2007).
Davis et al. (2010) compared the estimated shear strength predictions based on the TMS
402/602 expression with the results from 56 tests of fully grouted RM shear walls with a shear
dominated response. The average ratio of the test strength to the estimated strength was 1.17
with a COV of 0.15, indicating that the expression is somewhat conservative. Alogla et al.
(2014) also examined the TMS 402/602 shear strength expression predictions for more than 60
walls from literature. It was observed that the shear strength calculated using the TMS 402/602
design expression overestimated the shear strength of the examined walls by about 10%.

Several design factors influence the shear/diagonal tension resistance of RM walls. A brief
overview of the available experimental research evidence on RM shear walls subjected to
reversed cyclic loading related to these factors is discussed below. El-Dakhakhni and Ashour
(2017) performed a detailed review of past experimental studies on the subject.
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Axial compression:

An experimental study on 16 fully grouted RM wall specimens examined the effect of axial
stress on the wall’s shear resistance (Shing et al., 1989). The axial stress ranged from 0 to
approximately 0.1xf'm. The results indicated that the load at the first diagonal crack increased
with the applied axial load. The study also demonstrated that an increasing axial load could
result in a change in the failure mechanism from a flexural/shear mode to a brittle shear mode.

An experimental study on RM wall specimens by Voon and Ingham (2006) showed that a
relatively moderate increase in axial compression stress level from 0 to 0.025xf’, resulted in an
increase in the maximum wall shear resistance of more than 20%. However, RM walls
subjected to higher axial compression had a reduced post-cracking deformation capacity,
resulting in a more brittle response. Ibrahim and Suter (1999) tested 5 squat RM shear walls
under reversed cyclic loading (aspect ratio ranged from 0.47 to 1.0) and observed that the level
of applied axial stress has a significant effect on the shear capacity.

Wall aspect ratio (squat shear walls):

The findings of several experimental studies, e.g. Matsumura (1987), Okamoto et al. (1987),
and Voon (2007), confirmed that RM walls with lower aspect ratios exhibited shear strengths
that were larger than more slender masonry walls. The researchers concluded that the shear
strength enhancement was due to the more prominent role of arching action in RM walls with
low aspect ratios, in which shear was mainly resisted by compression struts (see Figure 2-16a).
Voon and Ingham (2006) reported that the shear resistance decreased by 15% when the wall
aspect ratio increased from 1.0 to 2.0. A squat wall specimen with an aspect ratio of
approximately 0.6 showed a significant increase in shear resistance (by over 100%) compared
to an otherwise similar specimen with an aspect ratio of 1.0. The findings of an experimental
study by Okamoto et al. (1987) confirmed that the wall shear strength increased by 20 % when
the aspect ratio decreased from 2.3 to 1.6, and by 30 % when aspect ratio decreased from 2.3
to 0.9. A study on partially grouted RM walls by Schultz (1996) showed that a decrease in the
wall aspect ratio was reported to have a beneficial effect on the shear resistance, that is, squat
walls are expected to have larger shear resistance than flexural walls of the same height.
However, squat wall specimens also showed a reduced deformation capacity and increased
strength deterioration.

A few studies on RM squat shear walls subjected to reversed cyclic loading were performed in
Canada (Seif EIDin and Galal, 2015b; 2016a; 2016b; 2017; El-Dakhakhni et al., 2013). The
results confirmed the findings of other studies with regard to the shear strength of squat RM
shear walls.

Horizontal reinforcement:

Shing et al. (1989) concluded that horizontal reinforcement influences the post-cracking
response of RM walls. The study included 8 walls that failed in a shear dominated mode. and
had horizontal reinforcement ratios ranging from 0.12 to 0.22 %. The onset of cracking
(occurrence of the first major diagonal crack) depends primarily on the tensile strength of the
masonry and the applied axial load. However, increasing the amount of horizontal reinforcement
caused a change in the failure mechanism from a brittle shear mode to a ductile flexural mode.

Sveinsson et al. (1985) tested 10 RM piers (a double curvature loading condition) and varied the
amount of horizontal reinforcement from 0.075 to 0.394%. They concluded that the horizontal
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reinforcement was effective in increasing shear strength, but higher amounts of reinforcement
did not correspond to a proportional gain in strength. For example, a 16% increase in the shear
strength was observed in a specimen which had twice the amount of horizontal reinforcing bars
compared to an otherwise similar specimen.

Shear reinforcement in RM shear walls does not seem to be as effective as in RC shear walls. A
possible explanation is that the reinforcing bars located where the inclined crack crosses near
the end of the bar are unable to develop their full yield strength in the masonry walls. To
account for this phenomenon, the New Zealand Masonry Standard NZS 4230:2004 (SANZ,
2004) prescribes a coefficient of 0.8 in the V| equation, while CSA S304-14 uses a 0.6 factor.
This phenomenon is particularly pronounced in short walls, where it is likely that the length of
the shear reinforcement is insufficient to fully develop its yield strength.

Seif EIDin and Galal (2015b) tested 9 squat RM walls under quasi-static cyclic loading. Contrary
to the previous experimental studies, they observed that the horizontal reinforcement
contributes to the wall shear resistance with its full yield capacity (there is no reduction
coefficient as discussed above). This can be explained by the redistribution in the shear
resistance between the reinforcement and the masonry, especially at high ductility demands.
Most previous researchers quantified shear contribution of reinforcement based on the
difference between the shear capacities of specimens with different transverse reinforcement
ratios.

It appears that horizontal reinforcement in RM shear walls does not have as good anchorage as
the corresponding reinforcement in RC shear walls. Anderson and Priestley (1992) have noted
that straight bars or 90° hooks were used in some experimental studies (see Figure B-2a),
whereas the horizontal reinforcement in RC shear walls is usually anchored in a more effective
way, such as by 180° hooks. The type and extent of anchorage are expected to influence the
effectiveness of shear reinforcement. Sveinsson et al. (1985) tested 10 fully grouted RM piers
and studied (among other factors) the effect of anchorage conditions in horizontal reinforcement
(90° versus 180° hooks). They recommended the use of 180° hooked end anchorage for
horizontal reinforcement because it produced better energy dissipation, and enabled the bars to
develop their full tensile strength This is particularly true for shorter walls/piers.

Seif EIDin and Galal (2016a) tested 3 squat RM wall specimens with shear dominant behaviour
under reversed cyclic loading. The specimens were identical, except for the end anchorage of
the horizontal reinforcing bars: the first specimen had 180° hooks, the second one 90° hooks,
and the third one had straight bars (no hooks). The results showed that the specimen with 180°
hooks provided the most effective anchorage and attained the largest shear capacity and
displacement ductility, while the specimen with straight bars attained the smallest shear
capacity and displacement ductility. However, the difference in the strength values was not
significant (it was within 10%). The most significant difference was in the post-peak behaviour.
The specimen with straight bars showed the most rapid post-peak degradation of the lateral
load resistance. The 180° hooks proved to be effective in providing confinement for the vertical
end bars in the wall, while the 90° hooks were less effective. For that reason, displacement
ductility of the specimen with 180° hooks (4.2) was higher than the specimen with 90° hooks
(3.9) and the one with straight bars (3.6). This difference again indicates the superior ductility
potential of the 180° end hooks, but the other anchorage conditions may be acceptable in some
cases. The researchers recommended the use of horizontal reinforcing bars with 90° hooks for
masonry structures located in regions of low to moderate seismic hazard, and/or outside the
plastic hinge regions in ductile shear walls.
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Vertical reinforcement:

Anderson and Priestley (1992) found that shear strength didn’t show any correlation with the
vertical reinforcement ratio, hence the CSA S304 shear design equation ignore the effect of
vertical reinforcement. However, according to some researchers (Shing et al., 1990; Tomazevic,
1999; Voon, 2007), a fraction of the wall shear resistance can be attributed to the presence of
vertical reinforcement. Dowel action in vertical reinforcing bars enables shear transfer across a
diagonal crack by the localized kinking in reinforcing bars due to their relative displacement (see
Figure B-2b) (note that compression kinks cancel out some of the tension kinks). However, once
the vertical reinforcement yields, as it would in the plastic hinge zone of ductile walls, its
contribution to the shear resistance drops significantly and could be ignored.
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Figure B-2. Wall reinforcement contributing to shear resistance: a) horizontal reinforcement
acting in tension; b) dowel action in vertical reinforcement (Tomazevic, 1999, reproduced by
permission of the Imperial College Press).

Ductility:

Experimental studies on RM shear walls with shear dominant behaviour (aspect ratio less than
2.0) have demonstrated that significant levels of ductility and energy dissipation capacity are
possible in these walls (Sveinsson et al. 1985; Shing et al. 1989; Voon and Ingham 2006; EI-
Dakhakhni et al. 2013). Shing et al. (1989) observed that the displacement ductility ratio tends
to increase with an increase of axial load for the shear dominated specimens. They attributed
the increased ductility level to the aggregate interlock forces which are enhanced by the
increase of axial load.

It has been recognized that shear degradation at higher ductility demands occurs in shear-
dominated RM walls. In their empirical equation which estimates the shear strength of RM shear
walls, Anderson and Priestley (1992) proposed factor k to account for the degradation of the
shear resistance provided by masonry for the inelastic response when the displacement ductility
ratio increases from 2.0 to 4.0. The value decreases linearly from 1.0 to O as the displacement
ductility ratio increases from 2.0 to 4.0.
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Grouting:

Experimental studies have reported a significant reduction in the shear resistance of partially
grouted walls compared to otherwise identical fully grouted walls. Brzev (2011) performed a
review of available experimental data related to the subject. The review included 29 partially
grouted RM wall specimens tested in the period from 1978 to 2010, including Nolph (2010);
Nolph and ElGawady (2012); Elmapruk (2010); Minae et al. (2010); Maleki (2008); Maleki et al.
(2009); Voon (2007a); Schultz (1996); and Chen et al. (1978). Most specimens (24 out of 29)
were squat RM walls and had a horizontal reinforcement ratio of 0.07% or higher and 180°
hooks. All specimens had a vertical reinforcement ratio of 0.07% or higher, while 15 out of 29
specimens had a vertical reinforcement ratio of 0.3% or higher.

Lateral load resisting mechanisms for lightly reinforced partially grouted RM shear walls are
significantly different than for fully grouted walls. Research evidence related to the seismic
response of partially grouted walls consists primarily of experimental studies where individual
wall specimens were subjected to quasi-static cyclic loading, although there are also a few
shake-table studies.

Most research studies on specimens subjected to quasi-static cyclic loading report shear
dominated mechanism of seismic response characterized by stair-stepped and/or diagonal
tension cracks in the masonry panels enclosed by grouted bond beams and vertical cells. These
cracks are indicative of the formation of compression struts within the panel. The failure is often
accompanied by spalling of face shells in the block units (Nolph, 2010).

In general, the response of tested specimens to the cyclic loads was reasonably stable. None of
the specimens displayed a sudden failure, and the resistance gradually deteriorated with
progressively increasing cyclic loading.

Most specimens achieved a displacement ductility ratio of 2.0 or higher, except for the
specimens tested by Nolph (2010) and Elmapruk (2010), which were characterized by relatively
high vertical reinforcement ratios (0.46% for the Nolph specimens and 0.33% for the Elmapruk
specimens). It was observed that the displacement ductility ratio decreased with an increase in
the vertical reinforcement ratio. The specimens tested by Voon (2007a) also showed a ductility
ratio of less than 2.0, but these specimens had no horizontal reinforcement.

Schultz (1996) tested a series of 6 partially grouted RM wall specimens under in-plane cyclic
loads. Only the outermost vertical cores and a single course bond beam at midheight were
grouted. The mechanism of shear resistance in the tested walls was characterized by the
development of vertical cracks between the ungrouted and grouted masonry due to stress
concentrations or planes of weakness (this mechanism is different from the one expected to
develop in solidly grouted RM walls). It was also reported that an increase in horizontal
reinforcement ratio did not have a significant effect on the overall shear resistance.

An experimental study by Voon and Ingham (2006) showed that the shear strength of a solidly
grouted wall specimen was approximately 110% higher than an otherwise identical specimen
with 30% grouted cores. Also, the specimen with 55% grouted cores had a shear strength more
than 50% higher than the specimen with 30% grouted cores. However, the difference
decreases when the shear stress is compared using the net wall area.
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Ingham et al. (2001) reported the results of an experimental study on 12 full-scale RM squat
wall specimens subjected to in-plane cyclic lateral loading (aspect ratios ranged from 0.57 to
1.33). Of the twelve specimens, nine were partially grouted, and three were fully grouted. The
walls were designed to fail in the diagonal tension shear mode. The test results showed that the
fully grouted RM wall specimens demonstrated significantly higher displacement ductility (on the
order of 6.0) than the displacement ductility of otherwise identical partially grouted specimens
(about 4.0) It should be noted that all partially grouted specimens achieved a displacement
ductility of 2.0 or higher. A possible reason for the higher ductility in the fully grouted RM wall
specimens is that they ultimately failed in a sliding shear mode, which is characterized by large
deformations at the base of the wall. The partially grouted specimens failed in the diagonal
tension mode. Force-displacement responses for a partially grouted Wall 2 and a fully grouted
Wall 3 specimen are shown in Figure B-3 (the specimens were otherwise similar, except for the
grouting pattern).
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Figure B-3. Force-displacement responses for partially grouted (left) and fully grouted (right)
wall specimens (Ingham et al., 2001, reproduced by permission of the Masonry Society).

B.2 Sliding Shear Resistance

Sliding shear resistance according to the CSA S304-14 standard has been determined based
on friction resistance from Coulomb’s Law, as discussed in Section 2.3.3. However, a sliding
shear mechanism is also characterized by sliding displacements along the sliding interface
(usually base of the wall). In long walls with openings consisting of several interconnected piers,
sliding movements at the base of one pier might cause damage in the adjacent piers. However,
current international masonry design codes, including CSA S304-14, do not contain provisions
for estimating sliding displacements in the walls or corresponding displacement limits. Centeno
(2015) studied sliding failure mechanisms in RM shear walls and estimated sliding
displacements due to lateral loading. He proposed a Sliding Shear Behavior (SSB) method for
estimating the base sliding displacements in RM shear walls (Centeno, 2015; Centeno et al.,
2015). This section summarizes the method, which can be applied through a step-by-step
process. The objective of the process is to determine: 1) the wall’s yield mechanism, and 2) the
magnitude of sliding displacements that occur in that mechanism. There are two principal yield
mechanisms associated with sliding shear (Figure B-4): a) a sliding shear mechanism and b) a
combined flexural-sliding shear mechanism. The sliding shear mechanism occurs when the
lateral force, V, is equal to or greater than the sliding shear resistance of the RM wall, where the
sliding displacements develop at the base of the wall. The combined flexural-sliding shear
mechanism occurs when the RM wall yields in flexure and forms an open flexural crack along

9/1/2018 B-8



the wall length. Inelastic displacements in the wall are equal to the sum of flexural and shear
displacements.
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Figure B-4. Yield mechanisms in RM shear walls subjected to monotonic lateral loading: a)
sliding shear mechanism and b) flexural yield mechanism (Centeno, 2015).

For displacement estimation purposes, Centeno (2015) identified three yield mechanisms that
lead to sliding displacements: i) Sliding Shear (SS) mechanism, ii) Combined Flexural-Sliding
Shear (CFSS) mechanism, and iii) Sliding Failure (SF) mechanism. These mechanisms are
based on the two mechanisms illustrated in Figure B-4. The SS mechanism is illustrated in
Figure B-4a), while the remaining two mechanisms (CFSS and SF) are variants of mechanism
shown in Figure B-4b). In RM walls that experience a SS mechanism, sliding displacements
occur when an applied lateral force exceeds the wall’s sliding shear resistance. In the walls that
experience a CFSS or a SF mechanism, sliding displacements are the result of dowel
deformations that occur in order for dowel action to transfer shear across an open flexural crack
during cyclic loading. In a CFSS mechanism, displacements are elastic but influenced by
degradation in dowel action shear stiffness, while in a SF mechanism, the displacements are
inelastic and occur when the applied shear force exceeds the dowel action yield resistance.

The procedure for estimating sliding displacements according to the SSB method is presented
below.

Part 1: Determine the Wall’s Yield Mechanism

Step 1: Determine the plastic moment resistance, M,, and its corresponding lateral force
resistance, Vr.

Step 2: Establish the Upper Bound Sliding Shear Resistance, Vsg,;:

‘VE-E-[T = Frﬂ. + FrFer + DA‘_‘,’ (B1)

Fry = pg P, where pz, =06 (B.2)
c d
1____

FrI—'l.U = Ug, |F.9 (J_;T’-Ld_)l J‘:LB fy (B3)
L "L
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DA, = (CMJ%) A, (B.4)

2.2, H/L =05
H
Cpa =1 [22-2(F-05)], 05 <H/L <10 (B.5)
12, H/L = 1.0
where:
d’: masonry cover S: rebar spacing
. masonry grout compression strength fy: reinforcing steel yield stress
(MPa)
As: total area of reinforcing steel P axial compression force
MFr: friction coefficient, (ur- = 0.6) C: depth of compression zone
H: wall height L: wall length
H/L: height to length aspect ratio
Fr,: friction force due axial compression Fry,,: friction force due to flexural
compression
(upper bound)
DA,. dowel action yield resistance Cpa: dowel action strength coefficient

Step 3: Determine if the yield mechanism is a Sliding Shear (SS) Mechanism:
If Vss,, < Vi, then yield mechanism is Sliding Shear Mechanism. Continue to Part II, Step A1.

If Vsg; 2 Vi, then yield mechanism is not Sliding Shear Mechanism. Continue to Step 4.

Step 4: Calculate the overturning moment, Mo, and corresponding lateral force, Vo, required to
close flexural crack during cyclic loading:
4.1: Determine the overturning moment, Mo:

M, = CuAf,L (B.6)
5 P

Cy =021(1+ E) (1— AJYJ

V,=M_/H (B.7)

where:

Mo:  overturning moment to close flexural crack
Cwm: overturning moment coefficient

Vo: lateral force to close flexural crack

Step 5: Determine if yield mechanism is Sliding Failure Mechanism

If DA, < V,, then yield mechanism is Sliding Failure Mechanism. Must increase the wall's dowel
resistance, DA, and return to step 1.

If DA, > V,, then yield mechanism is not Sliding Failure Mechanism. Continue to Step 6.

Step 6: Determine if yield mechanism is a Combined Flexural Sliding Shear (CFSS)

Mechanism.

6.1: Calculate the upper limit aspect ratio, TAR2, for which a wall develops a CFSS mechanism.
TARZ = 0.8 [1 + Gy J;i (B.8)

If H/L < TARZ2 then yield mechanism is CFSS Mechanism. Continue to Part Il, Step B1.
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If H/L 2 TAR2 then yield mechanism is a Flexural Mechanism. Sliding displacements in the wall
design will be small. If necessary, the sliding displacements can be measured by continuing to
Part Il, Step B1.

Part Il: Estimate the Sliding Displacements
Step A: Estimate sliding displacements for a SS mechanism

A1: Calculate the upper limit aspect ratio, TAR1, for which a wall develops a SS mechanism.
TAR1 = H/L (when Vg; = Vs, ) (B.9)
(Note: Calculating TAR1 requires trying multiple values of H/L until finding the aspect ratio that
meets the condition in equation B.9)

A2: Calculate the friction from flexural compression, Frg;,

This is a correction of the friction force component that corresponds to flexural yielding, because
in a wall that develops a sliding shear mechanism not all of the tension reinforcement will reach
its yielding stress due to flexure. Therefore, the friction force, Frg, is only a fraction of the upper
bound friction force, Frgy,;, determined in step 2.

H/L
Pl‘Fl = (m) PrFlu (B10)
A3: Determine sliding shear resistance, Vss, due to a SS mechanism:
vg_g = FI'A + FI'F[ + DAS, (B1 1)

A4: Calculate wall lateral stiffness, K, ...
Following the recommended empirical equation by Shing et al. (1990) for the lateral stiffness of
a wall with a shear-dominant response:

P
Kohear = (0.2 +0.1073 ﬁ) K. (8.12)
g __ Emlt ' (B.13)

® 24H(1+v)
where:
K. elastic shear stiffness E... Elastic Modulus of Masonry
K.hear POst-cracking shear stiffness u Poisson ratio, (for Masonry, v = 0.2)

t: wall thickness

A5: Sliding Displacement Equation for SS Mechanism,

Bpase= (= D= when > 1 (B.14)
where:
Mpazer Wall base sliding displacement
M displacement ductility ratio
Step B: Estimate sliding displacements for a CFSS mechanism
B1: Determine Triggering aspect ratios: TAR1, TAR2 and TARS.

5
TARZ=08|1+Cy |7 (B.8)
f
-\| E

TAR3 = H/L when ¥, = DA, (B.15)
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Note that calculation of TAR1 and TARS3 requires trying multiple values of H/L until finding the
aspect ratio that meets the condition in equations B.9 and B.15, respectively)

B2: Calculate dowel action secant stiffness coefficient, Ck.

C —[ﬂ'4ﬂ+(1 0.40)(51;1,—1431 )] if TAR3 < TAR1 B.16
Sl v J\Tarz—Tar1/” ! (B.163)
0.12 0.12% f H/L — TAR3 )]
Cp=|—+|1- , if TAR3 = TAR1 B.17b
k [u ( 0 )(TARE—THRS : (B.176)
where:
M displacement ductility ratio
B3: Determine dowel action yield stiffness, kpa.
3/4
kdy
= —_— B.18
RDA lldbEsIs (4']3313) ( )
127 Ilf_é ,
k, = \l J Note: fq (MPa), dp (mm) (B.19)
dy, /3
B4: Calculate base sliding displacement, Agase.
V, (B.20)
Ag.=125—2
® Ckpa

B.3 Ductile Seismic Response of Reinforced Masonry Shear Walls

A prime consideration in seismic design is the need to have a structure that is capable of
deforming in a ductile manner when subjected to several cycles of lateral loading well into the
inelastic range. This section explains a few key terms related to ductile seismic response,
including ductility ratio, curvature, plastic hinge, etc. It is important for a structural designer to
have a good understanding of these concepts before proceeding with the seismic design and
detailing of ductile masonry walls according to CSA S304-14. In particular, the content of this
section is related to the ductility check for RM shear walls discussed in Section 2.6.3.

Ductility is a measure of the capacity of a structure or a member to undergo deformation beyond
yield level, while maintaining most of its load-carrying capacity. Ductile structural members are
able to absorb and dissipate earthquake energy by inelastic (plastic) deformations that are
usually associated with permanent structural damage. These inelastic deformations are
concentrated mainly in regions called plastic hinges. In general, plastic hinges develop in shear
walls responding in the flexural mode and are typically formed at their base. An example of a
plastic hinge formed in a RM wall subjected to seismic loading is shown in Figure 2-8a. The
concept of ductility and ductile seismic response was introduced in Section 1.4.3.

A common way to quantify ductility in a structure is through the displacement ductility ratio u, .
This is the ratio of the maximum lateral displacement experienced by the structure at the
ultimate (A, ), to the displacement at the onset of inelastic response (A ) (see Figure 1-5c).

ﬂA:A

y
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Next, the concept of curvature will be explained by an example of a RM shear wall subjected to
bending due to a shear force applied at the top, as shown in Figure B-5a. Consider a wall
segment ABCD of unit height. This segment deforms due to bending moments, so sections AB
and CD rotate by a certain angle relative to their original horizontal position (these deformed
sections are denoted as A’'B’ and C’'D’). Rotation between the ends of the segment defines the
curvature ¢, as shown in Figure B-5b. Curvature represents relative section rotations per unit
length. It should be noted that curvature is directly proportional to the bending moment at the
wall section under consideration, if the section remains elastic.

Consider any section CD that undergoes curvature ¢, as shown in Figure B-5c. Strain
distribution along the wall section is defined by the product of curvature and the distance from
the neutral axis, located by the depth ¢. The maximum compressive strain in masonry ¢, is
given by

unit |
height

e

e
e € o] c)

o) ‘-\\*’H‘?ﬁl Sm
—

Figure B-5. Curvature in a shear wall subjected to flexure: a) wall elevation; b) deformed wall
segment ABCD; c) strain distribution along the section CD.

For the seismic design of RM walls, it is of interest to determine curvatures at the following two
stages: the onset of steel yielding and at the ultimate stage. Consider a RM wall section
subjected to axial load and bending shown in Figure B-6a.

Yield curvature ¢ corresponds to the onset of yielding characterized by tensile yield strain ¢,
developed in the end rebars, as shown in Figure B-6b, where

)

T —d—¢
Ultimate curvature ¢, corresponds to the ultimate stage, when the maximum masonry

compressive strain ¢, has been reached. The maximum ¢, value has been limited to 0.0025
by CSA S304-14 (see Figure B-6¢) to prevent damage to the outer blocks in the plastic hinge

Py
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region. Note that the neutral axis depth ¢ is going to decrease as more of the reinforcement has
yielded (see Figure B-6¢).

/I‘Jl\M
(3] o o [ [ ] Y
-k I, i
| =
| 'S i
- g ~
\ij |€my b)
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T L e f')!; %ﬁm},—: ml
Eyl = ::f':ﬁ\;‘;’-i; LP}’ | .
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% i/ I I\- fﬂ'i‘:m‘r’zea‘
= |y : :
?}r ¢, Curvature i)

Figure B-6. Curvature in a RM wall section: a) wall cross section; b) yield curvature; c) ultimate
curvature; d) moment-curvature relationship.

The curvature value depends on the load level, the section geometry, the amount and
distribution of reinforcement, and the mechanical properties of steel and masonry. An actual
moment-curvature relationship for ductile sections is nonlinear, however it is usually idealized by
elastic-plastic (bilinear) relationship, as shown in Figure B-6d.

Once the curvatures at the critical stages have been determined, the curvature ductility ratio p,
can be found as follows

When the curvature distribution along a structural member (e.g. shear wall) is defined, rotations
and deflections can be calculated by integrating the curvatures along the member. This can be
accomplished in several ways, including the moment area method.
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Rotations and deflections in a masonry shear wall at the ultimate state can be determined
following the approach outlined above. Consider a cantilevered shear wall of length / and
height %, and the plastic hinge length / (see Figure B-7a). The wall is subjected to a seismic
shear force at the top, which results in a corresponding bending moment diagram as shown in
Figure B-7b. The curvature diagram shown in Figure B-7c has two distinct portions: an elastic
portion, with the maximum curvature equal to the yield curvature ¢ , and the plastic portion with
the maximum curvature equal to the ultimate curvature ¢, . Note that the elastic portion of the
curvature diagram has the same shape as the bending moment diagram (since the curvatures
and bending moments are directly proportional). The actual curvature distribution in the plastic
region varies in a nonlinear manner, as shown in Figure B-7c. For design purposes, the
curvature can be taken as constant over the plastic hinge length / (note that the areas under
the actual and the equivalent plastic curvature are set to be equal). The elastic rotation €, and
the plastic rotation Hp are presented in Figure B-7d. The plastic rotation can be determined as
the area of the equivalent rectangle of width ¢, — ¢, and height / , as shown in Figure B-7c.
These rotations can be calculated from the curvature diagram as follows:

0, =0,+ l9p
where
0, :—(Dy -
2
Hp :( u _(Dy)'lp

The maximum deflection A, at the top of the wall is shown in Figure B-7d. This deflection has
two components: elastic deflection A  corresponding to the yield curvature ¢ , and the plastic
deflection A | due to a rigid body rotation, since bending moments do not increase once the
yielding has taken place. Deflection values can be found by taking the moment of the curvature
area around point A, as follows:

2

A = (Dth . 2hw — (Dth
g 2 3 3

A, =, ~9, )1, —050)
A, =A, +A,

The above equations can be used to determine the displacement ductility ratio z, , in terms of
the curvature ductility x, and other parameters, as follows:

A ! !
=2 13, 1] 2 [ 1-0.5-2
ﬂA Ay (ﬂ(p {hw J( hW j

Alternatively, the curvature ductility ratio 12, can be expressed in terms of the displacement
ductility ratio, as follows:

N )

U = +
>, 31k -050)

It should be noted that 4, and g, values are different for the same member. Once the yielding
has taken place, the deformations concentrate at the plastic hinges, so the curvature ductility 4,
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is expected to be larger than the displacement ductility z, . This difference is more pronounced
in walls with larger displacement ductility ratios.
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Figure B-7. Shear wall at the ultimate: a) wall elevation; b) bending moment diagram;
¢) curvature diagram; d) deflections.

B.4 Wall Height-to-Thickness Ratio Restrictions

The out-of-plane wall instability of RM and RC shear walls due to in-plane lateral reversed cyclic
loading is a complex phenomenon, which has proven to be difficult to account for by means of a
rational mechanics-based approach. The out-of-plane instability of RC shear walls in multi-
storey buildings was observed in the 2010 Maule, Chile earthquake (M 8.8) (Westenenk et al.
2012) and the 2011 Christchurch, New Zealand earthquake (M 6.3) (Elwood 2013). However,
there is no evidence of out-of-plane instability for RM shear walls in past earthquakes, and
experimental research evidence is extremely limited. Azimikor et al. (2011) and Herrick (2014)
performed a literature review of past experimental studies related to this subject.

A pioneering research study on this subject was undertaken by Paulay and Priestley (1992,
1993). They concluded that a RC or RM shear wall can experience lateral instability when the
longitudinal reinforcement in its end zones is subjected to compression loads subsequent to
cycles of tensile plastic strain. Horizontal cracks form along the height of the plastic hinge region
in the wall end zone during tension load cycles, and may not fully close during subsequent
compression load cycles. Due to the presence of open cracks and the residual plastic strains in
the vertical reinforcement within the wall end zone, that zone becomes very flexible and
susceptible to significant out-of-plane displacements at low compression stress levels. It is
possible to determine the critical out-of-plane displacement beyond which instability will occur
for a specific design case. This displacement is equal to the minimum distance between the
centroid of steel and face of masonry block. For example, the critical displacement is equal to
b/2 for a wall with thickness b and one layer of longitudinal reinforcement (where a reinforcing
bar is placed in the centre of a hollow core).
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Paulay and Priestley (1993) developed an analytical model which offers a means to find the
minimum wall thickness required to avoid out-of-plane instability. The minimum thickness value
depends on several parameters, including the vertical reinforcement ratio, the desired curvature
and displacement ductility ratios, the plastic hinge length, and the mechanical properties of the
steel and masonry. Paulay and Priestley also performed an experimental study to confirm their
analytical model. They tested a few reinforced concrete shear wall specimens and a concrete
masonry wall specimen. The masonry wall specimen failed by out-of-plane buckling at a very
large displacement ductility x, of around 14.

The application of this procedure will be illustrated on an example of a RM wall. The equation
for the critical wall thickness b, is as follows (Paulay and Priestley, 1992)

b, =0.0221, [u,

Curvature ductility, M, is related to displacement ductility, z, , as shown in Section B.3. The
plastic hinge length lp is taken equal to 4,,/6, and so the equation can be simplified as follows

Hy = 2'2(luA - 1)

The displacement ductility ratio 1, can be considered equal to R, prescribed by NBC 2015 for
different SFRSs (note that s, values in the range from 2.0 to 3.0 are considered in this
example). By following the above procedure, it is possible to obtain the b, /I, ratios
corresponding to different x, values. The results are summarized in Table B-1.

For example, if the wall length [ is equal to 5,000 mm, the corresponding critical thickness b, is

equal to 150 mm for x, = 2.0, or 230 mm for u, = 3.0. Paulay and Priestley suggest that the
critical wall thickness should be expressed as a fraction of the wall length rather than its height.

Table B-1. Critical Wall Thickness b, Versus the Displacement Ductility Ratio 1,

ﬂA :Ll(p lw/bc
2.0 2.2 31
2.5 3.3 25
3.0 4.4 22

A recent Canadian experimental program (Azimikor 2012; Robazza 2013; Azimikor et al. 2012;
2017; Robazza et al. 2017a; 2017b; 2018) demonstrated that the out-of-plane wall instability is
difficult to induce in RM shear walls at the ductility demand levels relevant for Canadian
masonry design practice. Phase 1 of the program focused on simulating the behaviour of the
wall end zones using uniaxial specimens. The purpose of the study was to understand the out-
of-plane instability phenomenon and identify key factors influencing its development. Phase 2
consisted of testing several full-scale RMSW specimens under in-plane reversed cyclic loading.
Masonry for the test specimens was laid in 50% running bond using Type S mortar for faceshell
bedding and standard Canadian concrete hollow block units.

Phase 1 consisted of testing 5 prismatic specimens with a rectangular cross-section (600 mm
length and 140 mm thickness), which were designed to simulate the end zone of a RM shear
wall (Azimikor 2012; Azimikor et al. 2012; 2017). All specimens had the same height (3.8 m),
resulting in a h/t ratio of 27. The vertical reinforcement ratio varied from 0.24% (the minimum
permissible by CSA S304.1-04) to 1.07% (the maximum practical in the masonry industry). The
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loading protocol consisted of reversed-cyclic uniaxial tension and compression displacement
cycles of incrementally increasing magnitude until failure. Four specimens experienced out-of-
plane instability, while the fifth specimen was a reference specimen which was subjected to
monotonic compression and experienced a compression/crushing failure. These tests had some
limitations: the specimens were isolated and were not able to simulate actual boundary
conditions along the wall height and the effect of strain gradient along the wall length. It was
concluded that the level of applied tensile strain in a wall end-zone was one of the critical factors
governing its out-of-plane stability. The maximum tensile strain that may be imposed on a
ductile RM shear wall’'s end-zone could be determined, at least in part, by a kinematic
relationship between the axial strain and the out-of-plane displacement. A preliminary
mechanical model was proposed which provided a theoretical prediction of the maximum tensile
strain before an instability would take place.

Phase 2 comprised of an experimental study of 8 full-size RMSW specimens of varying h/t and
aspect (h/L) ratios, vertical and horizontal reinforcement amounts and detailing, applied axial
pre-compression, and cross-section shape (6 specimens had regular rectangular cross-
sections, while the other 2 specimens had T-shaped cross-sections) (Robazza 2013; Robazza
et al. 2017a; 2017b; 2018). The specimens were subjected to either cyclic or reversed-cyclic
loading until failure. All specimens were designed to exhibit flexure-controlled behavior
characterized by the development of high tensile strains over a distinct region of plastic hinging,
which is a theoretical prerequisite for the occurrence of out-of-plane instability. The specimens
had aspect ratios varying from 1.5 to 3.0, which were required to maintain a relatively large
plastic hinge height while still avoiding a shear failure. The specimens were designed with
relatively high h/t ratios, ranging from 21.1 to 28.6, which exceeded the maximum CSA S304.1-
04 limits for ductile RM shear walls. However, only one specimen experienced out-of-plane
displacements large enough to precipitate instability, which occurred only after the wall had
reached its ultimate shear capacity and experienced substantial degradation.

It was found that several factors may influence the out-of-plane response of RM shear
wallsubjected to in-plane loading, including ductility and tensile strain demands, applied pre-
compression levels and construction practices, as well as the effects of alternative failure
mechanisms. This research also demonstrated that the strain gradient in a RM wall is a very
important factor. This was not included in previous numerical models for out-of-plane stability in
RM or RC shear walls, which were developed exclusively based on data from testing uniaxial
specimens (e.g. Paulay and Priestley, 1993; Chai and Elayer, 1999). The estimates based on
these models may lead to overly conservative h/t requirements.

Findings of the research by Paulay and Priestley (1992; 1993) were incorporated in the seismic
design provisions for RM shear walls in New Zealand. The New Zealand masonry design
standard NZS 4230:2004 prescribes the following minimum thicknesses for limited ductility walls
(u, of 2.0) and ductile walls ( z, of 4.0):

1. For walls up to 3 storeys high (Cl.7.4.4.1 and 7.3.3), minimum thickness ¢ should not be
less than L /20 (or 0.05L,), where L denotes clear vertical distance between lines of
effective horizontal support or clear horizontal distance between lines of effective vertical
support. Commentary to CI.7.3.3 states that “for a given wall thickness, ¢, and the case
when lines of horizontal support have a clear vertical spacing of L, >20¢, then vertical lines
of support having a clear horizontal spacing of L, < 20t shall be provided.”

2. For walls more than 3 storeys high (Cl.7.4.4.1) minimum thickness ¢ shall not be less than
L, /13.3 (or 0.075L, ). However, a smaller wall thickness can be used provided that one of
the following conditions is satisfied (maximum strain in masonry ¢, is equal to 0.003
according to NZS 4230:2004) (see Figure 2-28):

a) c<4t or
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b) ¢<0.3/, or
c) c¢ <6t from the inside of a wall return of a flanged wall, which has a minimum length
0.2L,.

The relaxed thickness requirement applies to the cases where the neutral axis depth is small,
and so the compressed area may be so small that the adjacent vertical strips of the wall will be
able to stabilize it. This is likely the case with rectangular walls subjected to low axial
compression.

Commentary to NZS 4230 CI.7.4.4.1 states that it is considered unlikely that failure due to
lateral instability of the wall will occur in structures less than 3 storeys high, because of the rapid
reduction in flexural compression with height. This is also in line with the statement made by
Paulay (1986), that out-of-plane stability is likely to take place in walls with large plastic hinge
length (one storey or more).

Paulay and Priestley (1992) stated that “where the wall height is less than three storeys, a
greater slenderness should be acceptable. In such cases, or where inelastic flexural
deformations cannot develop, the wall thickness ¢ need not be less than 0.05L,” (where
L, denotes clear wall length between the supports).

FEMA 306 (1999) also discusses the issue of wall instability. This document also refers to the
procedure by Paulay and Priestley (1993) and provides the following recommendation for
minimum wall thickness in ductile walls ( z, of 4.0):

t<1,/24 or t<h/18

Note that the above requirement, which applies to the walls with displacement ductility ratio
(u,)equalto 4.0.

FEMA 306 (1999) also points out that “the lack of evidence for this type of failure in existing
structures may be due to the large number of cycles at high ductility that must be achieved —
most conventionally designed masonry walls are likely to experience other behaviour modes
such as diagonal shear before instability becomes a problem.”
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C Relevant Design Background

This appendix contains additional information relevant for masonry design as discussed in
Chapter 2, but it is not directly related to the seismic design provisions of CSA S304-14.
Applications of the design methods and procedures presented in this appendix can be found in
Chapter 3, which contains several design examples. This appendix addresses in detail several
topics of interest to masonry designers, e.g., the calculation of in-plane wall stiffness, including
the effect of cracking, and force distribution in perforated shear walls. However, modeling and
analysis of multi-storey perforated shear walls are not covered in this document.

C.1 Design for Combined Axial Load and Flexure

C.1.1 Reinforced Masonry Walls Under In-Plane Seismic Loading

10.2

Seismic shear forces acting at floor and roof levels cause overturning bending moments in
shear walls, which reach a maximum at the base level. In general, shear walls are subjected to
the combined effects of flexure and axial gravity loads. The theory behind the design of masonry
wall sections subjected to effects of flexure and axial load is well established, and is essentially
the same as that of reinforced concrete walls. A typical reinforced masonry wall section is
shown in Figure C-1a), along with the distribution of internal forces and strains arising from the
axial load and moment. According to CSA S304-14, the strain distribution along the wall length
is based on the assumptions that the wall section remains plane and that the maximum
compressive masonry strain ¢, is equal to 0.003 (see Figure C-1b)). Figure C-1c) shows the
distribution of internal forces on the base of the wall, as well as the axial load, P, and the
bending moment, M . In the compression zone, the equivalent rectangular stress block has a
depth a, and a maximum stress intensity of 0.85y¢ 1" . Note that the y factor assumes a
value of 1.0 for members subjected to compression perpendicular to the bed joints, such as
structural walls (S304-14 CI.10.2.6). Each reinforcing bar develops an internal force (either
tension or compression) equal to the product of the factored stress and the corresponding bar
area. The internal vertical forces must be in equilibrium with P, , and the factored moment
capacity M, can be determined by taking the sum of the moments of the internal forces around
the centroid of the section.

The following three design scenarios and the related simplified design procedures will be
discussed in this section:
1. Wall reinforcement (both concentrated and distributed) and axial load are given — find
moment capacity
2. Wall is reinforced with distributed reinforcement only — find moment capacity
3. Wall reinforcement needs to be estimated (factored bending moment and axial force are
given)

The first two are applicable for the common situations where a designer assumes the minimum
seismic reinforcement amount and desires to find its moment capacity.

Approximate design approaches that can be used to assist designers in each of these scenarios

are presented below. For detailed analysis and design procedures, the reader is referred to
Drysdale and Hamid (2005) and Hatzinikolas, Korany and Brzev (2015).
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Figure C-1. A reinforced masonry shear wall under the combined effects of axial load and
flexure: a) plan view cross section; b) strain distribution; c) internal force distribution.

C.1.1.1 Moment capacity for a wall section with concentrated and distributed
reinforcement

Rectangular section

A simplified wall design model is shown in Figure C-2. The wall reinforcement can be divided
into:

e Concentrated reinforcement at the ends (area A, at each end), and

o Distributed reinforcement along the wall length (total area A4, ).

It is assumed that the concentrated wall reinforcement yields either in tension or in compression
at the wall ends. Also, it is assumed that the distributed reinforcement yields in tension.

A procedure to find the factored moment capacity M, for a shear wall with a given vertical
reinforcement (size and spacing) is outlined below.

From the equilibrium of vertical forces (see Figure C-2b)), it follows that

P, +T,+T,—~C,~C, =0 (1)
where

Ti = C3 = ¢sf‘yAc

T2 :¢sfyAd

c,=(0.85¢, 1" \t-a)
The compression zone depth, a, can be determined from equation 1 as follows
_ Pj + ¢sfyAd

‘0854, " 1 (9
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B, =0.8 when f' <20MPa (note that S, value decreases when f"' >20MPa, as prescribed
in S304-14 C1.10.2.6)

The neutral axis depth, ¢, measured from the extreme compression fibre to the point of zero
strain is given by

c= a/lBl
Next, the factored moment capacity, M, can be determined by summing up the moments
around the centroid of the wall section (point O) as follows

M, =C (I -a) / 2+2[¢S 1A, b, /2—&)} (3)

where d' is the distance from the extreme compression fibre to the centroid of the concentrated
compression reinforcement.

| o Y a)

o b)
/2

T
5 L,/2

Figure C-2. A simplified design model for rectangular wall section: a) plan view cross-section
showing reinforcement; b) internal force distribution.

For squat shear walls, CSA S304-14 prescribes the use of a reduced effective depth d for
flexural design, i.e.

d=0.67, <0.7h

As a result, the moment capacity should be reduced by taking a smaller lever arm for the tensile
steel, as follows:

M_=C (I - a)/2 + [¢sfyAC (zw/z - d')} + [¢sfyAC (- zw/z)} (4)

Note that the reinforcement area A4, in squat walls should be increased to provide more than
one reinforcing bar, since the end zone constitutes a larger portion of the overall wall length in
these cases.

9/1/2018 C-a



The CSA S304-14 provision for the reduced effective depth in squat walls contained in CI.10.2.8
is intended to account for the effect of the deep beam behaviour of squat walls. This provision
makes more sense for non-seismic design, and it should not be used if the tension steel yields
in seismic conditions.

Flanged section

In the case of the flanged wall section shown in Figure C- 3, the factored moment capacity M,
can be determined by summing up the moments around the centroid of the wall section (point
0O) as follows

M, =C,(1,/2-x)+2(g,f,4. X1, /2~d"
where
P, +¢.1,4,
L0859 11
is the area of compression zone, and its depth is
A, b, *t+1’
t
t*(a?/2)+ b, -0)(*/2)
= ”
and the resultant of masonry compression stress is
C,=(0.85¢, 1", )4,

:=-|E|-=:_

L

2] [y

a =

a) b)

Figure C- 3. A simplified design model for a flanged wall section.
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Section with boundary elements

In the case of the wall section with boundary elements shown in Figure C-4, the factored
moment capacity M, can be determined by summing up the moments around the centroid of
the wall section (point O) as follows

M, =C,(,/2-x)+2(g,f,4. )1, /2~d")
Where
B P, +¢SfyAd

L0859 [

is the area of compression zone. When the neutral axis falls within the boundary element, the
depth of compression block is

A

q=L
b,

but if neutral axis falls in the wall web, the depth of the compression zone is
A, —-b, -1,

a=———"t T4 I,

t
The centroid of the masonry compression zone can be determined from the following equation:

b, -lf[a—l-zf}(a—zf)2 /2

AL
and the resultant of masonry compression stress is
C,=(0.854,1",)4,

X =

. A
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111

— =

t-. ._;I i
JEOEOE0OE0OE E ,
“ 5 e < t

P b - [l

5 M”/l\f L
|-=:_' j:=-| 0 |_::__ X . "I

0.85 b ff FTTTTTTTS 1 | =
G=bf, Ac T IC;n T T=0fA¢
= = Sz IIW/Z =
aj b

Figure C-4. A simplified design model for a wall section with boundary elements.
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C.1.1.2 Moment capacity for rectangular wall sections with distributed vertical
reinforcement
The previous section discussed a general case of a shear wall with both concentrated and
distributed vertical reinforcement. In low to medium-rise concrete and masonry wall structures,
the provision of distributed vertical reinforcement is often sufficient to resist the effects of
combined flexure and axial loads (see Figure C-5a)). The factored moment capacity for walls
with distributed vertical reinforcement can be determined based on the approximate equation
proposed by Cardenas and Magura (1973), which was originally developed for reinforced
concrete shear walls. The equation was derived based on the assumption that the distributed
wall reinforcement shown in Figure C-5b) can be modeled like a thin plate of length /  (equal to
the wall length), and the thickness is such that the total area 4, is the same as that provided by
distributed reinforcement along the wall length. The factored moment capacity can be
determined as follows:

M =054 f A1 |1+ A PR (5)
r Ve sd y i huttw ¢Sf;)Avt l

w

where
A, - the total area of distributed vertical reinforcement
¢ - neutral axis depth

9./, 4,
0=—
¢mf'm lW't
P
o = s
¢mf'm th
¢ ota
[, 20+a,p,

a, =085 and p =0.8

F}
/""\ Mf IL s 8 & : - & ® b-)
Avt
distributed
vertical Avt
reinforcement : 4 : 0)
o lw

aj

Figure C-5. Shear wall with distributed vertical reinforcement: a) vertical elevation; b) actual
cross section; ¢) equivalent cross-section.

9/1/2018 C.7



C.1.1.3 An approximate method to estimate the wall reinforcement

Consider the wall cross-section shown in Figure C-6a). In design practice, there is often a need
to produce a quick estimate of wall reinforcement based on the given factored loads. In this
case, the loads consist of the factored bending moment M , and the axial force P, acting at the
centroid of the wall section (point O).

The goal of this procedure is to find the total area of wall reinforcement A4, . To simplify the
calculations, an assumption is made that the reinforcement yields in tension and that the
resultant force 7', acts at the centroid of the wall section, that is, (see Figure C-6b)).

T, =¢.f,4, (6)
Initially, the compression zone depth a can be estimated in the range from 0.2/ to 0.3/ . The

moment resistance is usually not too sensitive to the a value as long it is relatively small. For
example, the designer could use an estimate a = 0.3/ ,.

| lrW I

| — —

N | N Y )

LS

b)

( Ly ﬂ')/2 _

Figure C-6. Reinforcement estimate: a) plan view wall cross-section; b) distribution of internal
forces.

Next, compute the sum of moments of all forces around the centroid of the compression zone
(point C), as follows

M,-P.(, —a)/2—Tr (l,-a)/2=0
From the above equation it follows that
M,-P.(, 6 —a)2
e / (7)

(1, -a)2
The area of reinforcement can then be determined from equation (7) as follows
AS = 7—;/¢Afy

The area of reinforcement estimated by this procedure is usually close to the required value. A
uniform reinforcement distribution over the wall length is recommended for seismic design,
since research studies have shown that shear walls with a uniform reinforcement distribution
show better seismic response in the post-cracking range. In addition, the seismic detailing
requirements for vertical reinforcement need to be followed.
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C.1.2 Reinforced Masonry Walls Under Out-of-Plane Seismic Loading

Masonry walls are subjected to the effects of seismic loads acting perpendicular to their surface
— this is called out-of-plane seismic loading. For design purposes, wall strips of a predefined
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width are treated as beams
spanning vertically or
horizontally between lateral
supports. When the walls
span in the vertical
direction, floor and/or roof
diaphragms provide the
lateral supports.

Walls can also span
horizontally, in which case
the lateral supports need to
be provided by cross walls
or pilasters, as shown in
Figure C-7. Note that
support on four edges is
very efficient, since these
walls behave as two-way
slabs.

Figure C-7. Masonry walls under out-of-plane seismic loads: a) spanning vertically between

floor/roof diaphragms; b) spanning horizontally between pilasters.

Consider a reinforced concrete masonry wall subjected to the effects of a factored axial load
P, and a bending moment M ., as shown in Figure C-8a). The wall is reinforced vertically, with
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only the reinforced cores grouted. It is assumed that the size and distribution of vertical
reinforcement are given. The notation used in Figure C-8b) is explained below:
t - overall wall thickness (taken as actual block width, e.g. 140 mm, 190 mm, etc.)

t;- face shell thickness

b - effective width of the compression zone (see Section 2.4.2 and Figure 2-19)

d - effective depth, that is, distance from the extreme compression fibre to the centroid of the
wall reinforcement; typically, the reinforcement is placed in the centre of the wall, so

d=t/2

A_ - total area of steel reinforcement placed within the effective width b

It is assumed that the steel has yielded, that is, ¢ > ¢, and the corresponding stress in the
reinforcement is equal to the yield stress, f . This is a reasonable assumption for low-rise
masonry buildings, since the axial load is low and the walls are expected to fail in the steel-
controlled mode. The design procedure is outlined below.

e The resultant forces in steel 7. and masonry C, can be determined as follows:
T, =4.f,4,
C, =(0.854, f' Yb-a)

o The equation of equilibrium of internal forces gives (see Figure C-8d))

e The depth of the compression stress block a is equal to
C
a=—"— (8)
0.85¢, ' b

¢ The moment resistance can be found from the following equation
M' . =C, (d—al2) (9)
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Figure C-8. A wall under axial load and out-of-plane bending: a) vertical section showing
factored loads; b) plan view of a wall cross-section; c) strain distribution; d) internal force
distribution.

For partially grouted wall sections (where only reinforced cores are grouted), the designer needs
to confirm that

aStf

When the above relation is correct, then the compression zone is rectangular, as shown in
Figure C-9a). Note: in solidly grouted walls, the compression zone is always rectangular!

When a > ¢, , the compression zone needs to be treated as a T-section and an additional
calculation is required to determine the a value. The following equations can be used to
determine the moment resistance in sections with a T-shaped compression zone:

e The resultant force in the steel 7. can be determined as follows:

T,=4.f,4,
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e The resultant force in the masonry, C, , acts at the centroid of the compression zone and
can be determined from the equation of equilibrium of internal forces, that is,

C,=P +T,
Once the compression force in the masonry is found, the area of the masonry compression
zone, 4,, (see Figure C-9b)), is given by
C, =(0.85¢, 1,) 4
o The depth of the compression stress block « can be found from the following equation
A, =b-t,+la-1,)b,
where
b,,= width of the grouted cell plus the adjacent webs
e The distance from the extreme compression fibre to the centroid of the compression zone a

is equal to
( /2) (a —tj)( +“_2th
- A (10)
ty " : - C%C _ Gy
{ﬂ‘. ] '_"“““Jf‘“ai b — 00/2
ll I : T 7
- S Ky
a) as tf T-section
e
te) “ oy .
o C % __:_—_:_:.::_:f:_.'ff_:_:_gi‘%h%f %d-ﬁ
I 1
<D
b) Cl’:>.'f‘r

S (tributary wall width)
= b (effective compre;.:lsfon width)

T i i o) [

< S -

c)

Figure C-9. Masonry compression zone: a) rectangular shape; b) T-shape; c) effective width
and tributary width.
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¢ The moment resistance can be found from the following equation
M', =C,(d-a) (11)

Note that M', denotes the moment capacity for a wall section of width 4 . It is usually more
practical to convert the A", value to a unit width equal to 1 metre (see Figure C-9c)), as follows

M, =M (1.0/s) (12)

where
s - spacing of vertical reinforcement expressed in metres (where b <s)

M - factored moment capacity in KNm/m.

The design of masonry walls subjected to the combined effects of axial load and bending is
often performed using P-M interaction diagrams. The axial load capacity is shown on the vertical
axis of the diagram, while the moment capacity is shown on the horizontal axis. The points on
the diagram represent the combinations of axial forces and bending moments corresponding to
the capacity of a wall cross-section. An interaction diagram is defined by the following four
distinct points and/or regions: 1) balanced point, 2) points controlled by steel yielding, 3) points
controlled by masonry compression, and 4) pure compression (zero eccentricity). A conceptual
wall interaction diagram is presented in Figure C-10.

P
| _tied
R'max____ —— e 3
4 P - o~
rmax :
~untied _
1
0 r

- pure bending

Figure C-10. P-M interaction diagram.

1. Balanced point

At the load corresponding to the balanced point, the steel has just yielded, thatis, £, =¢ . The
position of the neutral axis ¢, can be determined from the following proportion (refer to strain
diagram in Figure C-8c)):

€, _ &
d—c, ¢,
or
£
_ m
¢, =d( )
e, te,
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For f, =400 MPa and ¢, =0.002 it follows that
¢, =0.6d

2. Points controlled by steel yielding

For ¢ <c,, the steel will yield before the masonry reaches its maximum useful strain (0.003).
Since the steel is yielding, it follows that &, > ¢ . The designer needs to assume the neutral
axis depth (¢ ) value so that ¢ < Cp- The compressmn zone depth can then be calculated as

a= f,c=0.8c (thisis valid for f, <20MPa according to S304-14 CI.10.2.6). Combinations of
axial force and moment values corresponding to an assumed neutral axis depth can be found
from the following equations of equilibrium (see Figure C-8d)).

Pr = Cm - Tr

where

T,=¢.f,4, (note that the stress in the steel is equal to f, since the steel is yielding)

Moment resistance depends on the shape of the masonry compression zone, that is, on
whether the section is partially or solidly grouted.

e For a solidly grouted section or a partially grouted section with the compression zone in the
face shells only:

M', =C, (d—af2)

where

C, =(0.854, 1", Nb-a)

e For a partially grouted section with the compression zone extending into the grouted cells:
M'.=C,(d-a)

where

Cm = (0'85¢ﬂ1 f‘lﬂ ) : A

3. Points controlled by masonry compression

For ¢ > ¢,, the steel will remain elastic, thatis, ¢, <&, and f, < f,, while the masonry reaches
its maximum strain of 0.003. The designer needs to assume the neutral axis depth (¢ ) value so
that ¢ > ¢, , and the strain in steel can then be determined from the following proportion (see
Figure C-8c)):

£ £

m o __ s

d d-c
thus

( j
g, =&,
c

The stress in the steel can be determined from Hooke’s Law as follows

fy =E *¢&,  (note that steel stress [, < f)

where E_ is the modulus of elasticity for steel. The equations of equilibrium are the same as
used in part 2 above, except that

T)" = ¢bf3Ab

The point corresponding to ¢ = /2 is considered as a special case. At that point, the strain
distribution is defined by the following values

g, =0.003 and ¢, =0
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thus
T =0

4. Pure compression (zero eccentricity)
In the case of pure axial compression (S304-14 CI.10.4.1) the axial load resistance for untied
sections can be determined as follows:

P =0.85¢, f, A, actual axial compression resistance

m e
and
P ... =0.8P. design axial compression resistance

According to S304-14 C1.10.4.2, when the steel bars are tied as specified in Cl.12.2, then the
steel contribution can be considered for the compression resistance. The design equation for
tied wall sections is as follows:

P. = 0854, f,(4,— A)+4.f,4,
and
Prmax = 08])}’

C.2 Wall Intersections and Flanged Shear Walls

Flanged shear wall configurations are encountered when a main shear wall intersects a cross-
wall (or transverse wall). Examples of flanged walls in masonry buildings are very common,
since the bearing wall systems often consist of walls laid in two orthogonal directions. Also, in
medium-rise wood frame apartment buildings, elevator shafts are usually of masonry
construction, and the intersecting masonry walls that form the core can be considered as
flanged walls.

C.2.1 Effective Flange Width

In flanged shear walls, a portion of the cross wall is considered to act as the flange, while the
main shear wall acts at the web. Depending on the cross-wall configuration, flanged shear walls
may be of |, T- or L-section. An I-section is characterized by the two end flanges, similar to that
in Figure C-11 (left), a T-section is characterized with one flanged end and one rectangular/
non-flanged end, while a L-section is characterized by one flanged end (similar to that shown in
Figure C-11 (right), and one rectangular-shaped (non-flanged) end. Design codes prescribe the
maximum effective flange width that may be considered in the shear wall design. The CSA
S304-14 requirements for overhanging flange widths for these wall sections are summarized in
Table C-1 and Figure C-11. For masonry buildings with substantial flanges the height ratio limits
will usually govern.
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Table C-1. Overhanging Flange Width Restrictions for T- and L- Section Walls per CSA S304-
14 C1.10.6.2

T-sections (b,) L-sections (b, ) where
b, < the smallest of: b, < the smallest of: bocua - actual overhang/flange width
a) b a) b a, - clear distance between the
actual actual
adjacent cross walls
b) a,/2 b) a,/2 t - actual flange thickness
c) 6-¢ c) 61 h. - wall height
d) h,/12 d) h,/16
L
i -
2 ' Ay 7
b
) Or Desy
by 7 7
t
N bm‘tuaf

Figure C-11. CSA S304-14 flange width requirements.

C.2.2 Types of Intersections

According to CI. 7.11, the effective shear transfer across the web-to-flange connection in both
unreinforced and reinforced masonry walls can be achieved through bonded or unbonded
intersections, as follows (see Figure C-12):
a) Bonded intersections — alternating courses with the units of one wall embedded at least
90 mm into the other wall (CI.7.11.1),
b) Unbonded intersections (Cl.7.11.2) which can be achieved in the following ways:
¢ Mechanical connection with steel connectors (e.g. anchor straps, rods, or bolts)
at a maximum vertical spacing of 600 mm, and
e Connection with a minimum of two 3.65 mm diameter steel wires from joint
reinforcement spaced at a maximum of 400 mm vertically, or
¢ Fully grouted bond beam intersections with reinforcing bars spaced at 1200 mm
or less vertically.
o Steel connectors, joint reinforcing and reinforcing bars should be detailed to
develop the full yield strength on each side of the intersection.
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Note that S304-14 CI.10.11.2 does not permit the use of rigid anchors (approach b)) or joint
reinforcement (approach c)) for portions of reinforced masonry shear walls in which the flanges
contain tensile steel and are subject to axial tension, but reinforced bond beams (approach d))
may be used.

B _-web E
" ~steel anchor
50% units D sasomm| |fF~ @600mmoc
interlocked / flange
!
T\ OO 5 ] || | .
a) b)
min No. 9 ASWG
ladder-type joint
reinforcement = 15M rebar

-

@400 mm o.c.

B~ [O]E

E=geany

c) d)

Figure C-12. Masonry wall intersections: a) bonded intersections; b) mechanical connection;
¢) horizontal joint reinforcement; d) horizontal reinforcing bars (bond beam reinforcement).

Seismic studies in the U.S. under the TCCMAR research program resulted in recommendations
related to horizontal reinforcement at the web-to-flange intersections (Wallace, Klingner, and
Schuller, 1998). To ensure the effective shear transfer, horizontal reinforcement in bond beams
needs to be continued from one wall into other, for a distance of 600 mm (2 feet) or 40 bar
diameters, whichever is greater. The grout must be continued across the intersection by
removing the face shells of the masonry units in one of the walls, as illustrated in Figure C-13.
Note that TMS 402/602-16 requires that bond beams in ductile walls be provided at a vertical
spacing of 1200 mm (4 feet).
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Figure C-13. Horizontal reinforcement at the web-to-flange intersection: TCCMAR
recommendations.

C.2.3 Shear Resistance at the Intersections

7.11

Vertical shear resistance of the intersections must be checked by one of the following methods:
o For bonded intersections, vertical shear at the intersection shall not exceed the out-of-plane
masonry shear resistance (Cl.7.10.2).

e For flanged sections with the mechanical steel connectors (Figure C-12 approach b), the
connectors must be capable of resisting the vertical shear at the intersection. The connector
resistance should be determined according to CSA A370-14.

e For flanged sections with the horizontal reinforcement (approaches ¢ and d), the
reinforcement must be capable of resisting the vertical shear at the intersection.

Vertical shear resistance for bonded wall intersections

The factored vertical shear resistance at bonded intersections should not exceed the factored
shear resistance of the masonry taken as

V, =016, 4,
where 4, is effective mortared area of the bed joint for hollow and partially grouted walls. For

fully grouted walls A, is gross cross-sectional area.

Minimum horizontal reinforcement shall be provided across the vertical intersection. This
reinforcement shall be equivalent in area to at least two 3.65 mm diameter steel wires spaced
400 mm vertically.

9/1/2018 C-18



Vertical shear resistance for unbonded wall intersections

Where wall intersections are not bonded in accordance with Cl.7.11.1, or where additional
capacity is required, the factored shear resistance of the web-to-flange joint shall be based on
the shear friction resistance taken as

Vr = ¢m ﬂch

where
1 =1.0 coefficient of friction for the web-to-flange joint

C, = compressive force in the masonry acting normal to the head joint, normally taken as the
factored tensile force at yield of the horizontal reinforcement that crosses the vertical section.
The reinforcement must be detailed to enable it to develop its yield strength on both sides of the
vertical masonry joint, which may be hard to achieve in practice.

| Commentary |

For flanged walls with horizontal reinforcement, resistance to vertical shear sliding is provided
by the frictional forces between the sliding surfaces, that is, the web and the flange of the wall.

The shear friction resistance V', is proportional to the coefficient of friction x, and the clamping
force C, acting perpendicular to the joint of height / (see Figure C-14a)).

C, is equal to the sum of the tensile yield forces developed in reinforcement of area 4, spaced
at the distance s, that is,

Ch = wsj;)As h/S
In case of a flanged shear wall with openings, shear friction resistance V, is provided by wall
segments between the openings, as shown in Figure C-14b).

Reinforcement providing the shear friction resistance should be distributed uniformly across the
joint. The bars should be long enough so that their yield strength can be developed on both
sides of the vertical joint, as shown in Figure C-15b).

Cl.7.11.2 lists three approaches (a, b, and c) that can be used to ensure shear transfer at the
web-to-flange interface for unbonded masonry. The U.S. masonry design standard TMS
402/602-16 prescribes intersecting bond beams in intersecting walls at maximum spacing of
1200 mm (4 ft) on centre. The bond beam reinforcement area shall not be less than 200 mm?
per metre of wall height (0.1 in?/ft), and the reinforcement shall be detailed to develop the full
yield stress at the intersection.

9/1/2018 C-19



T T |"M i
||||||||$ TS
I b =

R A
\As I'd)sAs};

b)

Figure C-14. Shear friction resistance at the web-to-flange intersection: a) resistance provided
by the reinforcement; b) flanged shear wall with openings.

When the shear resistance of the web-to-flange interface relies on masonry only (see Figure C-
15a)), the horizontal shear stress v, due to shear force V,, can be given by:
v,
v, = —L
. telw
where
t, - effective web width

[,,- wall length

The designer should also find the vertical shear stress caused by the resultant compression
force P, :
P

P,

Vf =

‘ bw * hW
The larger of these two values governs. The factored shear stress should be less than the
factored masonry shear resistance, v, , as follows
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where

v, =0.16¢, /1!

If the above condition is not satisfied, horizontal reinforcement needs to be provided
(see Figure C-15b)), and the following shear resistance check should be used
V.=V, +V
and
VS,
where v_ is the factored shear resistance provided by the steel reinforcement, which can be
determined as follows:
AL,
y, =——

N

N
where A_ is area of horizontal steel reinforcement crossing the web-to-flange intersection at the
spacing s .

Note that the reinforcement that crosses the vertical section has to be detailed to develop yield
strength on both sides of the vertical masonry joint (see Figure C-15b)).
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a) b)

Figure C-15. Shear resistance of the web-to-flange interface: a) bonded masonry intersection;
b) horizontal reinforcement at the intersection.
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C.3 Wall Stiffness Calculations

The determination of wall stiffness is one of the key topics in the seismic design of masonry
walls. Although this topic has been covered in other references (e.g. Drysdale and Hamid, 2006,
and Hatzinikolas, Korany and Brzev 2015), a few key concepts are discussed in this section.
Section C.3.2 derives expressions for the in-plane lateral stiffness of walls under the assumption
that the walls are uncracked. For seismic analysis it is expected that the walls will be pushed
into the nonlinear range, and so cracking will occur and the reinforcement will yield. The
stiffness to be used in seismic analysis should not be the linear elastic (uncracked) stiffness but
some effective stiffness that reflects the effect of cracking up to the yield capacity of the wall.
Section C.3.5 gives some suggestions for the effective stiffness of shear walls responding in
shear-dominant and flexure-dominant modes.

C.3.1 Lateral Load Distribution

The distribution of lateral seismic loads to individual walls can be performed once the storey
shear forces have been determined from the seismic analysis. The flexibility of floor and/or roof
diaphragms is one of the key factors influencing the load distribution (for more details, see
Example 3 in Chapter 3). In the case of a flexible diaphragm, the lateral storey forces are
usually distributed to the individual walls based on the tributary area. In the case of a rigid
diaphragm, these forces are distributed in proportion to the stiffness of each wall. In calculating
the wall forces, torsional effects must be considered, as discussed in Section 1.11. The
distribution of lateral loads (without torsional effects) in a single-storey building with a rigid
diaphragm is shown in Figure C-16.

KT Kz Kff
4 K+K+K5 V K +K+K; 4 K +K+K,
@ ® ®
K,
K; K
4

Figure C-16. Distribution of lateral loads to individual walls.

Wall stiffness is usually determined from the elastic analysis, and depends on wall height/length
aspect ratio, thickness, mechanical properties, extent of cracking, size and location of openings,
etc.
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C.3.2 Wall Stiffness: Cantilever and Fixed-End Model

Wall stiffness depends on the end support conditions, that is, whether a wall or pier is fixed or
free to move and/or rotate at its ends. Two models for wall stiffness include the cantilever model
and the fixed-end model, as shown in Figure C-17. In the cantilever model, the wall is free to
rotate and move at the top in the horizontal direction — this is usually an appropriate model for
the walls in a single-storey masonry building.

The stiffness can be defined as the lateral force required to produce a unit displacement, but it
is determined by taking the inverse of the combined flexural and shear displacements produced
by a unit load. It should be noted that flexural displacements will govern for walls with an aspect
ratio of 2 or higher. For example, the contribution of shear deformation in a wall with a
height/length aspect ratio of 2.0, is 16% for the cantilever model and 43% for the fixed-end
model. The stiffness equations presented in this section take into account both shear and
flexural deformations.

The stiffness of a cantilever wall or a pier can be determined from the following equation (see
Figure C-17 a)):
K 1

BGIOR

The stiffness of a wall or a pier with the fixed ends can be determined from the following
equation (see Figure C-17 b)):

(13)

K 1
= (14)
E *t 2
[, [,
where

h - wall height (cantilever model) or clear pier height (fixed-end model)

[,, - wall or pier length

E, =850f' modulus of elasticity for masonry

The following assumptions have been taken in deriving the above equations:

G, =04E, modulus of rigidity for masonry (shear modulus)

¢ %] L
[ == 12‘” uncracked wall moment of inertia

5%, *1
A — e w

v

shear area (applies to rectangular wall sections only)

where ¢, = effective wall thickness.
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Figure C-17. Wall stiffness models: a) cantilever model, and b) fixed-end model.

The wall stiffnesses for both models for a range of height/length aspect ratios are presented in
Table D-3. Note that the derivation of stiffness equations has been omitted since it can be found
in other references (see Hatzinikolas, Korany and Brzev 2015).

C.3.3 Approximate Method for Force Distribution in Masonry Shear Walls

In most real-life design applications, walls are perforated with openings (doors and windows).
The seismic shear force in a perforated wall can be distributed to the piers in proportion to their
stiffnesses. This approach is feasible when the openings are very large and the stiffness of lintel
beams is small relative to the pier stiffnesses, or if the lintel beam is very stiff so that connected
piers act as fixed-ended walls. Figure C-18 illustrates the distribution of the wall shear force
to individual piers in direct proportion to their stiffness. Note that, according to this model, the
wall shear force is equal to the sum of shear forces in the piers, that is,

V=>

where

V. =K, *A, force in the pier i
Thus

V=>(K,*A)

If the floor diaphragm is considered to be rigid, it can be assumed that the lateral displacement
in all piers is equal to A, that is,

A, =Ay=A.=A

and so

V=0_K)*A

Thus

denotes the overall wall stiffness for the system.
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Therefore, the force in each pier is proportional to its stiffness relative to the sum of all pier
stiffnesses within the wall, as follows

4 :Ki*Ai :Ki*L:V*L

KXk
This means that stiffer piers are going to attract a larger portion of the overall shear force. This
can be explained by the fact that a larger fraction of the total lateral force is required to produce
the same deflection in a stiffer wall as in a more flexible one.

v stiff lintel beam -
Tuf Jw Y v
|
I 4 B G
B [ —
@

b)

Figure C-18. Shear force distribution in a wall with a rigid diaphragm: a) wall in the deformed
shape: b) pier forces.

An approximate approach for determining the stiffness of a solid shear wall in a multi-storey
building is to consider the structure as an equivalent single-storey structure, as shown in Figure
C-19. The entire shear force is applied at the effective height, /,, defined as the height at which
the shear force 7, must be applied to produce the base moment M ., that is,

The wall stiffness is found to be equal to the reciprocal of the deflection at the effective height
A,, as follows
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k=L
A

This model, although not strictly correct, can be used to determine the elastic distribution of the
torsional forces as well as the displacements, as illustrated in Example 2 in Chapter 4.
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Figure C-19. Vertical combination of wall segments with different stiffness properties.

Several different elastic analysis approaches can be used to determine the stiffness of a wall
with openings. A simplified approach suitable for the stiffness calculation of a perforated wall in
a single-storey building can be explained with the help of an example of the wall X4 shown in
Figure C-20 (see also Example 3 in Chapter 3). For a unit load applied at the top, the wall
stiffness calculation involves the following steps:

o First, calculate the deflection at the top for a cantilever wall, considering the wall to be solid
(Ami )

o liﬂext, calculate the deflection for the strip containing openings ( A
wall length (i.e. ignore openings).

e Finally, calculate the deflection for the piers A, B, C, and D (A ,;-,) assuming that all piers
have the same deflection.

Note that the deflections for individual components are calculated as the inverse of their
stiffness values, and that the pier stiffnesses are determined assuming either the cantilever or
fixed-end models. In most cases, the use of the cantilever model is more appropriate.

Vs,

), considering the full

strip

s

strip{

N
%,

\"\.
¥

r
i
|
l\'"-.

l\"-.
S

Wall X,

Figure C-20. An example of a perforated wall.

The overall wall deflection can be determined by combining the deflections for these
components, as follows:

A= Asolid -A +A yzep

strip
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Note that the strip deflection is subtracted from the solid wall deflections - this removes the
entire portion of the wall containing all the openings, which is then replaced by the four
segments.

Finally, the wall stiffness is equal to the reciprocal of the deflection, as follows

K=
A

C.3.4 Advanced Design Approaches for Reinforced Masonry Shear Walls

with Openings
The approximate approach based on elastic analysis presented in Section C.3.3 is appropriate
for determining the lateral force distribution in masonry walls. However, that method is not
adequate for predicting the strengths in perforated reinforced masonry shear walls (walls with
openings). Openings in a masonry shear wall alter its behaviour and add complexity to its
analysis and design. When the openings are relatively small, their effect can be ignored,
however in most walls the openings need to be considered. The following two design
approaches can be used to design walls with openings:

1) Plastic analysis method, and

2) Strut-and-tie method.
These two approaches have been evaluated by experimental studies and have shown very
good agreement with the experimental results (Voon, 2007; Elshafie et al., 2002; Leiva and
Klingner, 1994). The key concepts will be outlined in this section.

C.3.4.1 Plastic analysis method

The plastic analysis method, also known as limit analysis, can be used to determine the ultimate
load-resisting capacity for statically indeterminate structures. A masonry wall with an opening as
shown in Figure C-21a) can be modeled as a frame (see Figure C-21b)). The model is
subjected to an increasing load until the flexural capacity of a specific section is reached and a
plastic hinge is formed at that location. (The plastic hinge is a region in the member that is
assumed to be able to undergo an infinite amount of deformation, and can therefore be treated
as a hinge for further analysis.) With further load increases, plastic hinges will be formed at
other sections as their flexural capacity is reached. This process continues until the system
becomes statically determinate, at which point the formation of one more plastic hinge will result
in a collapse under any additional load. This is called a collapse mechanism, and an example is
shown in Figure C-21c). There is usually more than one possible collapse mechanism for a
statically indeterminate structure, and the mechanism that gives the lowest capacity is closest to
the ultimate capacity, as this is an upper bound method.

For specific application to perforated masonry walls, the wall is idealized as an equivalent
frame, where piers are modeled as fixed at the base, and either pinned or fixed at the top, while
lintels are modeled as fixed at the ends. A failure state is reached when plastic hinges form at
the member ends, and the collapse mechanism forms. The sequence of plastic hinge formation
depends on the relative strength and stiffness of the elements. In this approach, structural
members must be designed to behave mainly in a flexural mode, while a shear failure is
avoided by applying the capacity design approach.
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Figure C-21. An example of a plastic collapse mechanism for a frame system: a) perforated

masonry wall; b) frame model; ¢) plastic collapse mechanism.

The following two mechanisms are considered appropriate for the plastic analysis of reinforced
masonry walls with openings, as shown in Figure C-22 (Leiva and Klingner, 1994, Leiva et al.

1990):

b) pier mechanism, and

c¢) coupled wall mechanism.

Hinging

Hinging
Reglons

Figure C-22. Plastic analysis models for perforated walls: a) actual wall; b) pier model;
¢) coupled wall model (Leiva and Klingner, 1994, reproduced by permission of The
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Masonry Society).
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A pier mechanism is a collapse mechanism with flexural hinges at the tops and bottoms of the
piers. A pier-based design philosophy visualizes a perforated wall as a ductile frame. Horizontal
reinforcement above and below the openings is needed to transfer the pier shears into the rest
of the wall. A drawback of the pier mechanism is that the formation of plastic hinges at the top
and bottom of all piers at a story level can lead to significant damage to the piers, which are the
main vertical load-carrying elements.

A coupled wall mechanism is a collapse mechanism in which flexural hinges are formed at the
base of the wall and at the ends of the coupling lintels. A perforated wall is modeled as a series
of ductile coupled walls; this concept is similar to that used for seismic design of reinforced
concrete shear walls. The vertical reinforcement in each pier must be designed so that the
flexural capacity of the piers exceeds the flexural capacity of the coupling beams. To achieve
this, additional longitudinal reinforcement is placed in the piers, but cut off before it reaches the
wall base. The shear reinforcement in the coupling beams is designed based on the flexural and
shear capacity of the piers. Since masonry walls are usually long in plan, the formation of plastic
hinges at their bases produces large strains in the wall longitudinal reinforcement. Plastic hinges
must have adequate rotational capacity to allow the complete mechanism to form; this can be
achieved in wall structures with low axial load. To ensure the successful application of the
plastic analysis method, the wall reinforcement must be detailed to develop the necessary
strength and inelastic deformation capacity.

Figure C-23 shows a simple single-storey wall that is analyzed for the two mechanisms.
Ultimate shear forces corresponding to the pier and coupled wall mechanisms can be
determined from the equations of equilibrium assuming that the moments at the plastic hinge
locations are known. These equations are summarized in Figure C-23 (Elshafaie et al., 2002).

The plastic analysis method has a few advantages: stiffness calculations are not required, and
the designer can choose the failure mechanism, which ensures a desirable ductile response.
The designer needs to have a general background in plastic analysis, which is covered in
several references, e.g. Bruneau, Uang, and Whittaker (1998) and Ferguson, Breen, and Jirsa
(1988). This method is also used for the seismic analysis of concrete and steel structures, and
is referred to as nonlinear static analysis or pushover analysis.
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Figure C-23. Ultimate wall forces according to the plastic analysis method: a) pier mechanism;
b) coupled wall mechanism (Elshafaie et al., 2002, reproduced by permission of the Masonry
Society).

C.3.4.2 Strut-and-Tie Method

The strut-and-tie method essentially follows the truss analogy approach used for shear design
of concrete and masonry structures. Pin-connected trusses consist of steel tension members
(ties), and masonry compression members (struts). The masonry compression struts develop
between parallel inclined cracks in the regions of high shear. The essential feature of this
approach is that the designer needs to find a system of internal forces that is in equilibrium with
the externally applied loads and support conditions. A further essential feature is that the
designer must ensure that the steel and masonry tie members provided adequately resist the
forces obtained from the truss analysis.

The design of tension ties is particularly important. If a ductile response is to be assured, the
designer should choose particular tension chords in which yielding can best be accommodated.
Other ties can be designed so that no yielding will occur by using the capacity design approach.
The magnitudes of the forces in critical tension ties can be determined from statics,
corresponding to the overturning moment capacity of the wall using the nominal material
properties (rather than the factored ones). The remaining forces are then determined from the
equilibrium of nodes (conventional truss analysis). Compression forces developed in masonry
struts are usually small due to the small compression strains and do not govern the design.
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Careful detailing of the wall reinforcement is necessary to ensure that the actual structural
response will correspond to that predicted by the analytical model.

The designer needs to use judgement to simplify the force paths that are chosen to represent
the real structure — these differ considerably depending on individual judgement.

An example of a strut-and-tie model for a two-storey perforated masonry wall subjected to
seismic lateral load is shown in Figure C-24 (note that gravity load also needs to be considered
in the analysis, however it is omitted from the figure). It can be seen that two different models
are required to account for the alternate direction of seismic load. The examples show the
seismic load being applied as a compressive load to the building; however, these loads should
be applied to the floor levels, depending on the diaphragm-to-wall connection. The designated
tie members in one model will become struts in the other model (when the seismic load changes
direction). An advantage of the reversible nature of seismic forces is that a significant fraction of
the inelastic tensile strains imposed on the end strut members is recoverable due to force
reversal, thereby providing hysteretic energy dissipation. A detailed solution for this example is
presented in the User's Guide by NZCMA (2004).
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Figure C-24. Strut-and-tie models for a masonry wall corresponding to different directions of
seismic loading (NZCMA, 2004, reproduced by the permission of the New Zealand Concrete
Masonry Association Inc.).

Strut-and-tie models are used for the design of masonry walls in New Zealand, and this
approach is explained in more detail by Paulay and Priestley (1992). The New Zealand Masonry
Standard NZS 4230:2004 (SANZ, 2004) recommends the use of strut-and-tie models for the
design of perforated reinforced masonry shear walls. In Canada, strut-and-tie models are used
to design discontinuous regions of reinforced concrete structures according to the Standard
CSA A23.3-04 Design of Concrete Structures. The design concepts and applications of strut-
and-tie models for concrete structures in Canada are covered by McGregor and Bartlett (2000).
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C.3.5 The Effect of Cracking on Wall Stiffness

The behaviour of masonry walls under seismic load conditions is rather complex and depends
on the failure mechanism (shear-dominant or flexure-dominant), as discussed in Section 2.3.1.
Figure C-25 shows the hysteretic response of shear-dominant and flexure-dominant walls. The
effective stiffness discussed in this section reflects the secant stiffness up to first crack in brittle
shear-dominant walls, and the stiffness for an elastic-perfectly-plastic model that would
approximate the strength envelope of the hysteretic plot in ductile flexure-dominant walls.

For the shear-dominant mechanism, the response is initially elastic until cracking takes place, at
which point there is a substantial drop in stiffness. This is particularly pronounced after the
development of diagonal shear cracks. After a few major cracks develop, the load resistance is
taken over by the diagonal strut mechanism, and the shear stiffness can be estimated by an
appropriate strut model. However, the stiffness drops significantly shortly after the strut
mechanism is formed and can be considered to be zero for most practical purposes (see Figure
C-25b)). It is expected that an increase in the quantity of vertical and horizontal steel and/or the
magnitude of axial compressive stress causes a reduced crack size and an increase in the

shear stiffness (Shing et al., 1990).
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Figure C-25. Cracking pattern and load-displacement curves for damaged masonry wall
specimens tested by Shing et al. (1990, 1991): a) flexure-dominant response, and b) shear-
dominant response (Kingsley, Shing, and Gangel, 2014).
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For the flexure-dominant mechanism, a drop in the stiffness immediately after the onset of
cracking is not very significant. As can be seen from Figure C-25a), the stiffness drops after the
yielding of vertical reinforcement takes place, and continues to drop with increasing inelastic
lateral deformations (this depends on the ductility capacity of the wall under consideration). The
specimen for which the results are shown in Figure C-25a) showed yielding of vertical
reinforcement and compressive crushing of masonry at the wall toes (Shing et al., 1989).

Note that the height of wall test specimens shown in Figure C-23 was 1.8 m (6 feet), thus a
2.5% drift ratio permitted by the NBC 2015 for regular buildings corresponds to 45 mm (1.8 inch
) displacement. It can be seen that the displacements and drifts in these specimens are very
low, particularly so for the shear-dominant specimen shown in Figure C-25b).

Evidence from studies that focus on quantifying the changes in in-plane wall stiffness under
increasing lateral loading are limited, so CSA S304-14 and other masonry codes do not provide
guidance related to this issue. Shing et al. (1990) tested a series of 22 cantilever block masonry
wall specimens that were laterally loaded at the top, with a height/length aspect ratio of 1.0.
Based on the experimental test data, they have recommended the following empirical equation
for the lateral stiffness of a wall with a shear-dominant response

K,=(02+0.1073f)K . <K, (15)
where
*
K ..., = ———= is the shear stiffness of a wall/pier
h
3* _
lW
h = wall height

[, = wall length
t, = effective wall thickness

f. = axial compressive stress (MPa)

The above equation is based on the force/displacement measurements taken just after the first
diagonal crack developed, in specimens with a height/length ratio of 1.0. For seismic
applications where the walls are expected to yield in flexure before failing in shear, and the
lateral stiffness is used to estimate the fundamental period of the structure and to determine the
seismic displacements, it is more appropriate to determine the effective stiffness from a cracked
section analysis at first yield of the tension reinforcement.

A study by Priestley and Hart (1989), based on the cracked transformed section stiffness at first
yield of the tension reinforcement, recommends that the effective moment of inertia, 7, , of a wall
can be approximated by:
P,
1= (1e)
I fad

where
[, = steel yield strength (MPa)

Pf = factored axial load
A = effective cross-sectional area for the wall

- 0

/., = masonry compressive strength, and
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*73
e w

I, = T is the gross moment of inertia of the wall.
Note that the first term in the bracket, IOO/f is equal to 0.25 for f, =400 MPa (Grade 400
steel). The second term is a ratio of axial compressive stress in the waII equalto P /A and
the masonry compressive strength, f .

The above relation is based solely on consideration of flexural stiffness, and is a best fit
relationship for several different values of height/length ratio (h/lw ), steel strength, vertical
reinforcement ratio and axial load. Other considerations are whether the vertical reinforcement
is uniformly distributed across the wall length or concentrated at the ends, and the effect of
tension stiffening. The vertical reinforcement ratio is not included in the above expression, and
as a result, the wall stiffness is overestimated for lightly reinforced walls and underestimated for
heavily reinforced walls.

If it is assumed that wall cracking causes the same proportional decrease in the effective shear
area as it does for the moment of inertia, then the stiffnesses can be combined to give the
following equation for the reduced wall stiffness, K, ,

P
S
f fmAe
where
E *t,

is the combined stiffness of an uncracked cantilever wall or pier, considering both the flexural
and shear deformation components (refer to Section C.3.2 for the wall stiffness equations).

The terms in the large right-hand bracket of the K equation give the comparative value of
flexural deformation to shear deformation. At a h/l ratio of 1.0, flexure contributes 4/7 of the
total deformation and shear 3/7, while at a 4/l ratio of 0.5, shear contributes % of the total
defection.

The Priestley and Hart equation was obtained using experimental data related to cantilever wall
specimens, however it may also be used for fixed-end walls. The stiffness equation for these

walls, Kfe, is the same as for the cantilever walls, that is,
P
- (lfﬂ s T
where
E *t, . ) ) .
K, = ; is the stiffness of an uncracked fixed-end wall or a pier

A comparison of the proposed equations for a masonry block wall under axial compressive
stress is presented in Figure C-26. The following values were used in the calculations:
f, =400 MPa, P, /4, =1MPa, and f, =10 MPa.
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Note that the Shing equation is only shown for A/, up to 1.5 as it is based entirely on shear
deformation. Since the Shing equation represents stiffness at first diagonal cracking, it is
expected to give higher stiffness values than the Priestley-Hart equation. Use of the Priestley-
Hart stiffness equation is recommended since it is valid for all 4/l ratios.

The elastic uncracked stiffness could be used to distribute lateral seismic load to individual walls
and piers, but the reduced cracked stiffness should be used for period estimation and deflection
calculations.

The wall design deflections can be found from the following equation:

R, *R
Adevign = Ael o
where

A, = elastic deflections calculated using the reduced wall stiffness (K, or K ;) and the
factored design forces, and ‘

R,*R

o

= deflection multiplier to account for the effects of ductility, overstrength, and the
E

building importance factor (see Section 1.13)

0.25

0.20 - —Shing
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0.15 -

KI(E*t)
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0.00

0.5
h/l

Figure C-26. A comparison of the stiffness values obtained using the Shing and Priestley-Hart
equations.
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D Design Aids

Table D-1. Properties of Concrete Masonry Walls (per metre or foot length)’

Grouted Cells f metre 0.00 0.83 1.00 1.25 167 250 5.00
Celfdowel Spacing (mm) | none 1200 1000 800 GO0 400 200
Nominal Size 150 mm 6 linch
A {mmg X 193} 520 66.7 696 740 81.3 96.0 140.0
iin%) 24.6 31.5 329 3.0 38.4 45.4 6.2
I {I‘I‘IITI4 X 106} 172 181 183 186 191 201 229
iin* 126 433 L T T 168
S (mm’ x 10%) 246| 259 262| 266 273 287 3.27
iin®) 45.8 48.2 487 49.5 50.7 53.3 0.8
Weight {kNFm?} 1.90 2.09 213 2.19 2.29 2.49 3.08
{psf) 30.6 437 44.6 458 47.0 52.0 £4.3
Nominal Size 200 mm &8 inch
A {I‘l‘ll'l'lz X 103} 754 945 98.3| 104.0( 1136 1327 190.0
in%) 35.6 446 46.5 49.2 53.7 62.7 29.8
I, {mm4 X 106} 442 464 468 475 485 507 572
{in% sed| 340 a3 s sms[ am 419
S, (mm?® x 10°) 466| 488 493| 500 511 534 6.02
{in%) 86.7 g0.9 917 830 95.0 99.3 112.0
Weight l:kNJII'I'I?} 2.46 275 2.81 2.89 3.03 3.32 4.18
{psi) 5.4 §7.4 586 fi.4 §3.4 £9.4 873
Nominal Size 250 mm 10 inch
A, {mm2 X 103} 817 1081 1134 121.3| 1345 1609 240.0
iin%) 386 §1.1 536 §7.3 §3.5 76.0 113.4
I, (mm* x 10°) 816 872 883 900 928 984 1152
iin* sas 638 gar| w0l srol 7o 544
Sy {mm3 X 106} 6.80 727 7.36 7.50 773 8.20 9.60
iin®) 1265] 1352 1369  13as| 1438|1528 178.6
Weight {kNJII'I'Iz} 297 3.35 3.43 3.55 3.74 412 5.28
{psf) 62.0 o0 717 4.1 78.1 6.1 110.3
Nominal Size 300 mm 12 linch
A {mmg X 193]' 883 1219 1286( 1387 1555 1892 290.0
iin%) 4.7 57.6 0.8 £5.5 73.5 89.4 137.0
I, {mrn4 X 106} 1341 1456 1479 1514 1571 1687 2032
iin* asz[ 1066 1083 o8 q1s0]  q235 1455
Sy {mm’ X 196]' 9.25( 10.04 10.20( 1044 1083 11.63 14.01
iin®) 172.1 186.8 1807  1941|  2mis| 2163 26006
Weight {kam?} 353 4.00 4.10 4.24 4.48 495 6.38
ipsf) 73.7 836 85.6 88,6 g3.6| 1035 133.3
Mote: Assume Bond Beamns at 2.4 m (8 ft) O.C.
Table based on Metric blocks and modules (130 mm high units)
Assumed Wieight 22 kMIim3 140.4 pcf

" Source: Masonry Technical Manual (MIBC, 2017, reproduced by permission of the Masonry Institute of
BC)
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Table D-2. ¢/l ratio,

0]

f, =400 MPa

0.000

0.025

0.050

0.075

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0

0.000

0.037

0.074

0.110

0.147

0.221

0.294

0.368

0.441

0.515

0.588

0.01

0.014

0.050

0.086

0121

0.157

0.229

0.300

0.371

0.443

0.514

0.586

0.02

0.028

0.063

0.097

0.132

0.167

0.236

0.306

0.375

0.444

0.514

0.583

0.03

0.041

0.074

0.108

0.142

0.176

0.243

0.311

0.378

0.446

0.514

0.581

0.04

0.053

0.086

0.118

0.151

0.184

0.250

0.316

0.382

0.447

0.513

0.579

0.05

0.064

0.098

0.128

0.160

0.192

0.256

0.321

0.385

0.449

0.513

0.677

0.06

0.075

0.106

0.138

0.169

0.200

0.263

0.325

0.388

0.450

0.513

0.575

0.07

0.085

0.116

0.145

077

0.207

0.268

0.329

0.390

0.451

0.512

0.573

0.08

0.0945

0.125

0.155

0.185

0.214

0.274

0.333

0.393

0.452

0.512

0.5M

0.09

0.105

0.134

0.163

0.192

0.221

0.279

0.337

0.395

0.453

0.512

0.570

0.1

0.114

0.142

0.170

0.199

0.22v

0.284

0.341

0.398

0.455

0.511

0.568

0.1

0.122

0.150

0.178

0.206

0.233

0.289

0.344

0.400

0.456

0.511

0.567

0.12

0.130

0.158

0.185

0.212

0.239

0.293

0.348

0.402

0.457

0.511

0.565

0.13

0.138

0.165

0.191

0.218

0.245

0.298

0.351

0.404

0.457

0.511

0.564

0.14

0.148

0.172

0.198

0.224

0.250

0.302

0.354

0.408

0.458

0.510

0.563

0.15

0.153

0.17%

0.204

0.230

0.255

0.306

0.387

0.408

0.459

0.510

0.561

0.16

0.160

0.185

0.210

0.235

0.260

0.310

0.360

0.410

0.460

0.510

0.560

047

0.167

013

0.216

0.240

0.265

0.314

0.363

0.412

0.461

0.510

0.559

0.18

0173

0.197

0.221

0.245

0.269

0.317

0.365

0.413

0.462

0.510

0.558

0.19

0.179

0.203

0.226

0.250

0.274

0.321

0.368

0.414

0.462

0.509

0.557

0.2

0.185

0.208

0.231

0.255

0.278

0.324

0.370

0417

0.463

0.50%

0.556
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Figure D-1: ¢/, ratio, f, =400 MPa
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Table D-3. Wall Stiffness Values K/(E,, *t)

n .-"q Cantilever Fixed Cantilever model:
005 |6G45 F.GE1
0.1 3.284 1322 K 1
018 |21a7 2306 PR >
0z |1582 1,645 " (hj 4(}’] 43
0.25  |1.231 1.308 [, [,
0.3 0.992 1.074
035 |os19 0.915
0.4 0.687 0,701
045 0583 0.594
05 0.500 0615
058|043z 0.561
0.6 0.375 0.406
068 |0.328 0.450
o o Fixed both ends:
0.3 0.225 0.343
085 o200 0.316 K _ !
0.9 0178 0.292 E *t A TR
095 [|0159 0.270 (j (j +3
1 0143 0.250 L, )\,
1068 0129 0.232
1.1 0116 0.216
115 |o105 0.201
13 0.095 0.18a
125 |o.026 0175
1.3 0.0749 0164
138 [o072 0154 E, =850/ Modulus of
1.4 0.066 0144 .
145 |0.060 0135 elasticity
15 0056 0127 G= 0.4Em Modulus of
1.55  |0.051 0119 rigidity (shear modulus)
1.6 0.047 0112 A,=54/6  Sheararea
165 |0.044 0.106
17 0.040 0.100
176 |ooa7 0.004
1.8 0.035 0.0849
186 0032 0.084
1.9 0.030 0.080
195 |oo0z28 0.075
2 0.026 0.071
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E Notation

a,.. = maximum acceleration

a = depth of the compression zone (equivalent rectangular stress block)
a,, = clear distance between the adjacent cross walls

A, = area of reinforcement bar

A, = area of concentrated reinforcement at each end of the wall

A

ch

= cross-sectional area of core of the boundary element
A, = area of distributed reinforcement along the wall length
A, = effective cross-sectional area of masonry

Ag = gross cross-sectional area of masonry

A, = area of the compression zone (flanged wall section)
A, =response amplification factor to account for the type of attachment of equipment or veneer ties

A, = area of steel reinforcement

A, =total area of rectangular hoop reinforcement (buckling prevention ties) in each horizontal direction

of the boundary element

A = uncracked area of the cross-section

uc

AV = area of horizontal wall reinforcement

A,, = total area of the distributed vertical reinforcement
A, = shear area of the wall section

A = amplification factor at level x to account for variation of response with the height of the building

(veneer tie design)

b = effective width of the compression zone
b = actual flange width

b. = critical wall thickness

actual

b, = overhanging flange width
b,, = overall web width (shear design)

B =torsional sensitivity factor

¢ = neutral axis depth (distance from the extreme compression fibre to the neutral axis)

C = compressive force in the masonry acting normal to the sliding plane
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C,, = the resultant compression force in masonry
C, = compressive force in the masonry acting normal to the head joint

Cp = seismic coefficient for a nonstructural component (veneer tie design)

d = effective depth (distance from the extreme compression fibre to centroid of tension reinforcement)

d, = effective wall depth for shear calculations

d' = distance from the extreme compression fibre to the centroid of the concentrated compression

reinforcement

D, = plan dimension of the building at level x perpendicular to the direction of seismic loading being

considered

e = load eccentricity

e_ = accidental torsional eccentricity

e, = torsional eccentricity (distance measured perpendicular to the direction of earthquake loading
between the centre of mass and the centre of rigidity at the level being considered)

Ef = modulus of elasticity of the frame material (infill walls)

E =modulus of elasticity of masonry

f, = flexural tensile strength of masonry (see Table 5 of CSA S304-14)

f”', = compressive strength of masonry normal to bed joints at 28 days (see Table 4 of CSA S304-14)
fy = yield strength of reinforcement

fyh = specified yield strength of hoop reinforcement in a boundary element

F =force
F(T) = site coefficient (NBC 2015 Cl.4.1.8.4)

F, = a portion of the base shear V applied at the top of the building
F, = elastic force

F, = factored tensile force at yield of horizontal reinforcement

F, = acceleration-based site coefficient

F = velocity-based site coefficient

F_ = seismic force applied to level x

F, =yield force

G = modulus of rigidity for masonry (shear modulus)
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h = unsupported wall height/height of the infill wall

hc = dimension of core of rectangular section measured perpendicular to the direction of the hoop bars

(boundary elements)

h, = building height

hp = extent of the plastic hinge region above the critical section of the shear wall (previously lp)
h, = storey height

h,, = total wall height

h_ = height from the base of the structure up to the level x

I, = moment of inertia of the beam

I .= moment of inertia of the column

I, = earthquake importance factor of the structure
J = numerical reduction coefficient for base overturning moment
k = effective length factor for compression member

k, = factor accounting for the effectiveness of transverse reinforcement in a boundary element

k,, = factor accounting for the compressive strain level in a boundary element

K = stiffness

[ =length of the infill wall

[, =length of the diagonal (infill wall)
[, = design length of the diagonal strut (infill wall)
[ =wall length

w

L = clear vertical distance between lines of effective horizontal support or clear horizontal distance

n

between lines of effective vertical support
M =mass

M , = factored bending moment

M . = factored moment resistance
M , = nominal moment resistance
Mp = probable moment resistance

M , = factor to account for higher mode effect on base shear
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n, = total number of longitudinal bars in the boundary element cross-section that are laterally supported

by the corner of hoops or by hooks of seismic cross-ties

N = axial load arising from bending in coupling beams or piers

D = distributed axial stress

PGA4,,, = reference Peak Ground Acceleration (PGA) for determining F'(T')
P, = axial compressive load on the section under consideration

P, = critical axial compressive load

P,, =dead load

ij = the resultant compression force (flanged walls)

P =factored axial load resistance

P, = compressive force in the unreinforced masonry acting normal to the sliding plane
P, = horizontal component of the diagonal strut compression resistance (infill walls)
P = the vertical component of the diagonal strut compression resistance (infill walls)

P

" = ultimate tie strength

R, = ductility-related force modification factor

R = overstrength-related force modification factor

o

Rp = element or component response modification factor (veneer tie design)

s = reinforcement spacing

S(T') = design spectral acceleration
S, (T') =5% damped spectral response acceleration

S = section modulus of effective wall cross-sectional area

Sp = horizontal force factor for part or portion of a building and its anchorage (veneer tie design)
t = overall wall thickness

t, = effective wall thickness

t, = face shell thickness

T =fundamental period of vibration of the building

T'. = torsional moment at level x

T', = the resultant force in steel reinforcement
Ty = factored tensile force at yield of the vertical reinforcement
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v, = distributed shear stress
v,, = masonry shear strength

v__ = maximum velocity

max
V' = ateral earthquake design force at the base of the structure
V, = lateral earthquake elastic force at the base of the structure

Vf = factored shear force

Vi

= shear flow resistance

V., = the resultant shear force corresponding to the development of nominal moment resistance M, at
the base of the wall

V., = masonry shear resistance

V' = factored shear resistance

V. = average shear wave velocity in the top 30 m of soil or rock
V. = factored shear resistance of steel reinforcement

w = diagonal strut width (infill walls)

w, = effective diagonal strut width (infill walls)

W = seismic weight, equal to the dead weight plus some portion of live load that would move laterally
with the structure

Wp = weight of a part or a portion of a structure (veneer tie design)

W _ = a portion of seismic weight /¥ that is assigned to level x
a, = vertical contact length between the frame and the diagonal strut (infill walls)

«a, = horizontal contact length between the frame and the diagonal strut (infill walls)

f = damping ratio

B, = ratio of the factored dead load moment to the total factored moment

P, = ratio of depth of rectangular compression block to depth of the neutral axis

Vo= factor to account for partially grouted or ungrouted walls that are constructed of hollow or semi-solid
units

o =the maximum storey displacement at level x at one of the extreme corners in the direction of

max

earthquake
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0, = the average storey displacement determined by averaging the maximum and minimum
displacements of the storey at level x
A = lateral displacement

Ap = plastic displacement

Ay = displacement at the onset of yielding

A, = elastic displacement

A ... =maximum displacement

A, =inelastic (plastic) displacement

&, = the maximum compressive strain in masonry

&, = strain in steel reinforcement
€, = yield strain in steel reinforcement
= factor used to account for direction of compressive stress in a masonry member relative to the

direction used for determination of f

@ = curvature
@, = ultimate curvature

®, = yield curvature corresponds to the onset of yielding

Per

resistance factor for member stiffness

resistance factor for masonry

m

¢5Y = resistance factor for steel reinforcement

¢

P, = horizontal reinforcement ratio

resistance factor

P, = volumetric ratio of circular hoop reinforcement for buckling prevention ties

p, = vertical reinforcement ratio

u = coefficient of friction

M, = displacement ductility ratio

u,, = curvature ductility ratio

M, = displacement ductility ratio

@ = angle of diagonal strut measured from the horizontal
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0, = elastic rotation
6, = inelastic rotational capacity
6, = inelastic rotational demand

91, = plastic rotation

@ = natural frequency
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